TWI395087B - Pvt-independent current-controlled oscillator - Google Patents
Pvt-independent current-controlled oscillator Download PDFInfo
- Publication number
- TWI395087B TWI395087B TW98137076A TW98137076A TWI395087B TW I395087 B TWI395087 B TW I395087B TW 98137076 A TW98137076 A TW 98137076A TW 98137076 A TW98137076 A TW 98137076A TW I395087 B TWI395087 B TW I395087B
- Authority
- TW
- Taiwan
- Prior art keywords
- current
- voltage
- coupled
- pmos transistor
- controlled oscillator
- Prior art date
Links
Landscapes
- Control Of Electrical Variables (AREA)
- Oscillators With Electromechanical Resonators (AREA)
Description
本發明係有關於電流控制振盪器(current-controlled oscillator,CCO),特別係有關於不會受到製程變動(process variation)、供應電壓變動(supply voltage variation)和溫度漂移(temperature deviation)影響的電流控制振盪器。The present invention relates to a current-controlled oscillator (CCO), and more particularly to a current that is not affected by process variation, supply voltage variation, and temperature deviation. Control the oscillator.
電流振盪器係為一種電子振盪器,其藉由控制電流而產生振盪頻率。然而,與多數電子元件類似,電流振盪器的效能通常受到多種因素的影響,例如製程變動、供應電壓變動和溫度漂移(合稱為製程-電壓-溫度,文後簡寫為PVT)。第1圖為顯示電流控制振盪器的圖示。在第1圖中,電流控制振盪器10用以產生振盪頻率Fout ,其中振盪頻率Fout 由電流源Ic 所控制。然而,雖然電流控制振盪器10具有固定的電流源Ic ,但其輸出的振盪頻率Fout 還是會受到製程電壓溫度的影響而變動。The current oscillator is an electronic oscillator that generates an oscillation frequency by controlling the current. However, like most electronic components, the performance of a current oscillator is often affected by a number of factors, such as process variation, supply voltage variation, and temperature drift (collectively, process-voltage-temperature, abbreviated as PVT). Figure 1 is a diagram showing a current controlled oscillator. In FIG 1, the current controlled oscillator 10 to generate an oscillating frequency F out, F out where the oscillation frequency is controlled by the current source I c. However, although the current control oscillator 10 having a fixed current source I c, but the output of the oscillation frequency F out the process can be affected voltage of the temperature fluctuates.
第2圖描繪電流控制振盪器的特徵曲線。在第2圖很清楚地顯示,電流控制振盪器10輸出的振盪頻率Fout 與溫度成反比,對於理想的電流控制振盪器而言,上述現象並不樂見。Figure 2 depicts the characteristic curve of the current controlled oscillator. It is clearly shown in Fig. 2 that the oscillation frequency Fout output from the current controlled oscillator 10 is inversely proportional to the temperature, which is not desirable for an ideal current controlled oscillator.
本發明之一實施例提供一種與製程-電壓-溫度(PVT)無關的電流控制振盪器,包括:製程和電壓控制器、電流控制振盪器以及溫度控制器。電流控制振盪器耦接至製程和電壓控制器,用以輸出振盪頻率。溫度控制器耦接至製程和電壓控制器和電流控制振盪器,用以提供總電流予製程和電壓控制器和電流控制振盪器一同共享,其中若電流控制振盪器因製程變動而使振盪頻率高於既定頻率時,則製程和電壓控制器藉由增加製程和電壓控制器的電流,減少電流控制振盪器的電流,並且若電流控制振盪器因製程變動而使振盪頻率低於既定頻率時,則製程和電壓控制器藉由減少控制器的電流,增加電流控制振盪器的電流,藉此動態地調整上述振盪頻率。One embodiment of the present invention provides a process-voltage-temperature (PVT) independent current controlled oscillator comprising: a process and voltage controller, a current controlled oscillator, and a temperature controller. The current controlled oscillator is coupled to the process and voltage controller for outputting the oscillation frequency. The temperature controller is coupled to the process and voltage controller and the current controlled oscillator to provide total current to the process and the voltage controller and the current controlled oscillator are shared together, wherein if the current controlled oscillator has a high oscillation frequency due to process variation At a given frequency, the process and voltage controller reduces the current of the current-controlled oscillator by increasing the current of the process and voltage controller, and if the current-controlled oscillator causes the oscillation frequency to be lower than the predetermined frequency due to process variations, then The process and voltage controller dynamically adjusts the above-mentioned oscillation frequency by reducing the current of the controller and increasing the current of the current-controlled oscillator.
下述實施例用以實現本發明最佳模式。實施例用以說明本發明之一般性概念,並非用以限定本發明,本發明的範圍當視所附之申請專利範圍而定。The following examples are presented to best practice the invention. The examples are intended to be illustrative of the general inventive concept and are not intended to limit the scope of the invention.
第3圖為本發明之一實施例,其描繪與製程電壓溫度無關的一種電流控制振盪器30。與製程電壓溫度無關的電流控制振盪器30包括溫度控制器31(文後簡寫為T-控制器31)、製程和電壓控制器32(文後簡寫為PV-控制器32)以及電流控制振盪器10。T-控制器31除了提供電壓VN1 至PV-控制器32,也提供電流IM6 給PV-控制器32和電流控制振盪器10一同共享。此外,T-控制器31用以避免電流控制振盪器10受到溫度漂移的影響,且PV-控制器32用以避免電流控制振盪器10受到製程和供應電壓變動的影響,因此使得電流控制振盪器10輸出的振盪頻率Fout 能夠不被製程變動、供應電壓變動和溫度飄移影響。Figure 3 is an embodiment of the invention depicting a current controlled oscillator 30 independent of process voltage temperature. The current controlled oscillator 30 independent of the process voltage temperature includes a temperature controller 31 (hereinafter abbreviated as T-controller 31), a process and voltage controller 32 (hereinafter abbreviated as PV-controller 32), and a current controlled oscillator. 10. In addition to providing voltage V N1 to PV-controller 32, T-controller 31 also provides current I M6 for sharing with PV-controller 32 and current-controlled oscillator 10. In addition, the T-controller 31 is used to prevent the current-controlled oscillator 10 from being affected by temperature drift, and the PV-controller 32 is used to prevent the current-controlled oscillator 10 from being affected by process and supply voltage variations, thus making the current-controlled oscillator The 10 output oscillation frequency F out can be unaffected by process variations, supply voltage variations, and temperature drift.
第4圖所示之電路圖係為本發明中T-控制器之一實施例。T-控制器31包括能帶隙參考電路(bandgap circuit)310、第一調節器電路312、PMOS電晶體對314以及第二調節器電路316。能帶隙參考電路310產生不被PVT影響的第一能帶隙參考電壓VN1 、反比於溫度的第二能帶隙參考電壓VN4 (溫度越高,第二能帶隙參考電壓VN4 越低)以及能帶隙參考電流IN1 。第一調節器電路312包括運算大器、PMOS電晶體M2 ,以及電阻器R1 。運算放大器具有第一輸入端、第二輸入端,以及輸出端。第一輸入端接收第二能帶隙參考電壓VN4 。第二輸入端耦接至電阻器R1 的一端和PMOS電晶體M2 的汲極。運算放大器的輸出端耦接至PMOS電晶體M2 的閘極。PMOS電晶體M2 的源極耦接至電源供應端。電阻器R1 的另一端耦接至接地端。PMOS電晶體對314具有PMOS電晶體M4 和PMOS電晶體M3 。PMOS電晶體M4 具有閘極耦接至能帶隙參考電路310之PMOS電晶體M1 的閘極,PMOS電晶體M4 的源極耦接至電源供應端,以及汲極。PMOS電晶體M3 具有閘極耦接至第一調節器電路312之PMOS電晶體M2 的閘極,PMOS電晶體M3 的源極耦接至電源供應端,以及汲極耦接至PMOS電晶體M4 的汲極。第二調節器電路316包括電阻器R2 、運算放大器、PMOS電晶體M5 、PMOS電晶體M6 ,以及外部的電阻器Rext 。電阻器R2 具有第一端耦接至PMOS電晶體對314,以及第二端耦接至接地端。運算放大器具有第一輸入端耦接至電阻器R2 的第一端、第二輸入端,以及輸出端。PMOS電晶體M5 具有閘極耦接至運算放大器的輸出端、源極耦接至電源供應端,以及汲極耦接至運算放大器的第二輸入端。PMOS電晶體M6 具有閘極耦接至PMOS電晶體M5 的閘極、源極耦接至電源供應端,以及汲極耦接至電流控制振盪器10和PV-控制器32。高精度之外部的電阻器Rext 耦接於PMOS電晶體M5 的汲極和接地端之間。The circuit diagram shown in Fig. 4 is an embodiment of the T-controller of the present invention. The T-controller 31 includes a bandgap circuit 310, a first regulator circuit 312, a PMOS transistor pair 314, and a second regulator circuit 316. The bandgap reference circuit 310 generates a first PVT not affect the bandgap reference voltage V N1, inversely proportional to the temperature of a second bandgap reference voltage V N4 (the higher the temperature, a second bandgap reference voltage V N4 more Low) and the bandgap reference current I N1 . The first regulator circuit 312 includes an arithmetic amplifier, a PMOS transistor M 2 , and a resistor R 1 . The operational amplifier has a first input, a second input, and an output. The first input receives the second energy bandgap reference voltage V N4 . The second input terminal is coupled to one end of the resistor R 1 and the drain of the PMOS transistor M 2 . The output of the operational amplifier is coupled to the gate of the PMOS transistor M 2 . The source of the PMOS transistor M 2 is coupled to the power supply terminal. The other end of the resistor R 1 is coupled to the ground. The PMOS transistor pair 314 has a PMOS transistor M 4 and a PMOS transistor M 3 . The PMOS transistor M 4 has a gate whose gate is coupled to the PMOS transistor M 1 of the band gap reference circuit 310, the source of the PMOS transistor M 4 is coupled to the power supply terminal, and the drain. The PMOS transistor M 3 has a gate coupled to the gate of the PMOS transistor M 2 of the first regulator circuit 312, the source of the PMOS transistor M 3 is coupled to the power supply terminal, and the drain is coupled to the PMOS transistor The drain of the crystal M 4 . The second regulator circuit 316 includes a resistor R 2 , an operational amplifier, a PMOS transistor M 5 , a PMOS transistor M 6 , and an external resistor R ext . The resistor R 2 has a first end coupled to the PMOS transistor pair 314 and a second end coupled to the ground. The operational amplifier has a first input coupled to the first end of the resistor R 2 , a second input, and an output. The PMOS transistor M 5 has a gate coupled to the output of the operational amplifier, a source coupled to the power supply, and a second input coupled to the operational amplifier. The PMOS transistor M 6 has a gate coupled to the gate of the PMOS transistor M 5 , a source coupled to the power supply terminal, and a drain coupled to the current controlled oscillator 10 and the PV controller 32 . A high-precision external resistor R ext is coupled between the drain of the PMOS transistor M 5 and the ground.
在能帶隙參考電路310中,若電壓VN2 等於第二能帶隙參考電壓VN4 ,則應滿足下列方程式:In the bandgap reference circuit 310, if the voltage V N2 is equal to the second bandgap reference voltage V N4 , the following equation should be satisfied:
IMA ‧RA +VEB1 =VEB2 I MA ‧R A +V EB1 =V EB2
因此,therefore,
IMA ‧RA =VEB1 -VEB2 I MA ‧R A =V EB1 -V EB2
其中,among them,
所以,and so,
IMA ‧RA =VT ln(n)。I MA ‧R A =V T ln(n).
根據上述推導,若三個MOS電晶體MA 、MB 和M1 均相同,則:According to the above derivation, if the three MOS transistors M A , M B and M 1 are the same, then:
其中,能帶隙參考電流IN1 為(VT ln(n)/RA ),且與溫度成正比。因為PMOS電晶體M1 的閘極連接於PMOS電晶體M4 的閘極,且PMOS電晶體M1 的源極連接於PMOS電晶體M4 的源極,所以PMOS電晶體M4 上的電流IM4 是能帶隙參考電流IN1 之鏡射電流。鏡射的電流IM4 不一定等於能帶隙參考電流IN1 ,需視PMOS電晶體M1 和M4 的寬長比(length-to-width ratio)而定。在此處,因為能帶隙參考電流IN1 與溫度成正比,所以電流IM4 亦與溫度成正比。此外,第一調節器電路312接收第二能帶隙參考電壓VN4 並產生調節器電流IR1 ,其中調節器電流IR1 等於第二能帶隙參考電壓VN4 除以電阻器R1 (即VN4 /R1 )。因為PMOS電晶體M2 的閘極連接於PMOS電晶體M3 的閘極,且PMOS電晶體M2 的源極亦連接於PMOS電晶體M3 的源極,所以PMOS電晶體M3 上的電流IM3 是調節器電流IR1 的鏡射電流。鏡射的電流IM3 不一定等於調節器電流IR1 ,需視PMOS電晶體M2 和M3 的寬長比而定。在此處,因為第二能帶隙參考電壓VN4 與溫度成反比,所以電流IM3 亦與溫度成反比。電流IM3 和IM4 形成一暫時總電流Itemp 。暫時總電流Itemp 用以補償電流控制振盪器10之非理想的溫度效應。舉例而言,藉由合適地選擇電阻器R1 的數值,當電流控制振盪器10的振盪頻率隨著溫度增加而減少時(如第2圖所示),暫時總電流Itemp 會隨之增加,因此能夠提供更大的電流IM6 至電流控制振盪器10(原因如後詳述)。因為提供了更大的電流,所以電流控制振盪器10的振盪頻率也更高,溫度飄移造成的共振頻率的降低藉此得到補償。Wherein, the bandgap reference current I N1 is (V T ln(n)/R A ) and is proportional to the temperature. Because the PMOS transistor M gate 1 is connected to the gate PMOS transistor M 4 of the pole, and the PMOS transistor M source 1 is connected to a source of the PMOS transistor M 4 pole, so that the current I on the PMOS transistor M 4 M4 is the mirror current of the bandgap reference current I N1 . The mirrored current I M4 is not necessarily equal to the band gap reference current I N1 , depending on the length-to-width ratio of the PMOS transistors M 1 and M 4 . Here, since the bandgap reference current I N1 is proportional to the temperature, the current I M4 is also proportional to the temperature. Furthermore, the first regulator circuit 312 receives the second bandgap reference voltage V N4 and produces a regulator current I R1 , wherein the regulator current I R1 is equal to the second band gap reference voltage V N4 divided by the resistor R 1 (ie V N4 /R 1 ). Because the gate PMOS transistor M 2 is connected to the gate PMOS transistor M 3 of the pole, and the PMOS transistor M source 2 electrode is also connected to a source of the PMOS transistor M 3 of the pole, so that the current on. 3 PMOS transistor M I M3 is the mirror current of the regulator current I R1 . The mirrored current I M3 is not necessarily equal to the regulator current I R1 , depending on the aspect ratio of the PMOS transistors M 2 and M 3 . Here, since the second band gap reference voltage V N4 is inversely proportional to the temperature, the current I M3 is also inversely proportional to the temperature. Currents I M3 and I M4 form a temporary total current I temp . The temporary total current I temp is used to compensate for the non-ideal temperature effects of the current controlled oscillator 10. For example, by appropriately selecting the value of the resistor R 1 , when the oscillation frequency of the current-controlled oscillator 10 decreases as the temperature increases (as shown in FIG. 2 ), the temporary total current I temp increases. Therefore, a larger current I M6 can be supplied to the current controlled oscillator 10 (for reasons as described later). Since a larger current is supplied, the oscillation frequency of the current-controlled oscillator 10 is also higher, and the decrease in the resonance frequency caused by the temperature drift is thereby compensated.
然而,由於電阻器的公差(tolerance)(電阻器的公差可能高達20%),暫時總電流Itemp 可能隨之變動。有鑒於此,故在第二調節器電路316中使用高精度的外部的電阻器Rext ,如下所述。However, due to the tolerance of the resistor (the tolerance of the resistor may be as high as 20%), the temporary total current I temp may vary accordingly. In view of this, a high-precision external resistor R ext is used in the second regulator circuit 316 as described below.
第二調節器電路316由PMOS電晶體對314接收暫時總電流Itemp ,並在運算放大器的輸入端產生電壓VR2 。因此,在外部的電阻器Rext 上會產生等於電壓VR2 的電壓VRext 。因為外部的電阻器Rext 為高精度的電阻器(high-precision resistor),具有極小的誤差,所以在外部的電阻器Rext 上的電流IRext 的變動也很小。此外,因為PMOS電晶體M5 的閘極亦連接於PMOS電晶體M6 的閘極,且PMOS電晶體M5 的源極亦連接於PMOS電晶體M6 的源極,所以PMOS電晶體M6 上的電流IM6 是電流IRext 的鏡射電流。鏡射的電流IM6 不一定等於電流IRext ,需視PMOS電晶體M5 和M6 的寬長比而定。電流IM6 是最終輸出的輸出電流,並且由電流控制振盪器10與PV-控制器32一同共享。The second regulator circuit 316 receives the temporary total current I temp from the PMOS transistor pair 314 and produces a voltage V R2 at the input of the operational amplifier. Therefore, a voltage V Rext equal to the voltage V R2 is generated on the external resistor R ext . Since the external resistor R ext is a high-precision resistor with a small error, the variation of the current I Rext on the external resistor R ext is also small. In addition, since the gate of the PMOS transistor M 5 is also connected to the gate of the PMOS transistor M 6 and the source of the PMOS transistor M 5 is also connected to the source of the PMOS transistor M 6 , the PMOS transistor M 6 The current I M6 is the mirror current of the current I Rext . The mirrored current I M6 is not necessarily equal to the current I Rext and depends on the aspect ratio of the PMOS transistors M 5 and M 6 . The current I M6 is the output current of the final output and is shared by the current controlled oscillator 10 together with the PV-controller 32.
目前為止已經說明T-控制器31如何避免受到溫度漂移的影響。接下來的實施例將說明PV-控制器32如何避免受到製程和供應電壓變動的影響。It has been explained so far how the T-controller 31 is protected from temperature drift. The next embodiment will illustrate how the PV-controller 32 is protected from variations in process and supply voltage.
第5A圖所示之電路圖為本發明中PV-控制器之一實施例。PV控制器32包括第三調節器電路320和調整電路322。第三調節器電路320包括運算放大器、PMOS電晶體,以及電阻器R3 。運算放大器具有第一輸入端以接收第一能帶隙參考電壓VN1 、第二輸入端,以及輸出端。PMOS電晶體具有閘極耦接至運算放大器的輸出、源極耦接至電源供應端,以及汲極耦接至運算放大器的第二輸入端。電阻器R3 耦接於PMOS電晶體的汲極與接地端間。如第5A圖所示,調整電路322包括PMOS電晶體M7 、NMOS電晶體M8 ,以及電流鏡。PMOS電晶體M7 具有源極耦接至第一能帶隙參考電壓VN1 ,以及閘極耦接至電阻器R3 。電流鏡耦接至PMOS電晶體M7 。NMOS電晶體M8 具有汲極耦接至電流IM6 流經的節點NX 、閘極耦接至電阻器R3 ,以及源極耦接至接地端。The circuit diagram shown in Fig. 5A is an embodiment of the PV-controller of the present invention. The PV controller 32 includes a third regulator circuit 320 and an adjustment circuit 322. Third regulator circuit includes an operational amplifier 320, the PMOS transistor, and a resistor R 3. The operational amplifier has a first input to receive a first energy bandgap reference voltage V N1 , a second input, and an output. The PMOS transistor has a gate coupled to the output of the operational amplifier, a source coupled to the power supply terminal, and a drain coupled to the second input of the operational amplifier. The resistor R 3 is coupled between the drain of the PMOS transistor and the ground. , The adjusting circuit 322 comprises a PMOS transistor M 7, NMOS transistor M 8, as in the first current mirror 5A and FIG. The PMOS transistor M 7 has a source coupled to the first bandgap reference voltage V N1 and a gate coupled to the resistor R 3 . The current mirror is coupled to the PMOS transistor M 7 . The NMOS transistor M 8 has a node N X through which the drain is coupled to the current I M6 , a gate coupled to the resistor R 3 , and a source coupled to the ground.
調整電路322的元件需視電流控制振盪器10內元件的形式而定。具體而言,電流控制振盪器10可能僅包括PMOS或NMOS電晶體,或同時包括PMOS和NMOS電晶體。如第5B圖所示,若電流控制振盪器10僅包括PMOS電晶體,則調整電路322必須包括相應的PMOS電晶體M7。如第5C圖所示,若電流控制振盪器10僅包括NMOS電晶體,則調整電路322必須包括相應的NMOS電晶體M8 。如第5A圖所示,類似地,若電流控制振盪器10同時包括PMOS和NMOS電晶體,則調整電路322必須同時包括相應的PMOS和NMOS電晶體M7 和M8 。參考第5A圖,PV-控制器32接受由T-控制器31提供的第一能帶隙參考電壓VN1 。因為第一能帶隙參考電壓VN1 不會被PVT和電阻器公差所影響,所以第一能帶隙參考電壓VN1 除以電阻器R3 也不會被PVT和公差所影響。這提供了穩定的電壓差於PMOS電晶體M7 的閘極和源極間(即VSG )。因此,PMOS電晶體M7 上的電流IM7 便不會受到供應電源變動的影響(若PMOS電晶體M7 連接至作為供應電源的一個供應電壓,則PMOS電晶體M7 上的電流會受到供應電壓變動的影響)。根據相同的原理,介於NMOS電晶體M8 閘極和源極間的電壓差(即VGS )也是穩定的。The components of the adjustment circuit 322 are dependent on the form of the components within the current controlled oscillator 10. In particular, current controlled oscillator 10 may include only PMOS or NMOS transistors, or both PMOS and NMOS transistors. As shown in FIG. 5B, if the current controlled oscillator 10 includes only PMOS transistors, the adjustment circuit 322 must include a corresponding PMOS transistor M7. As shown on FIG. 5C, only when the current-controlled oscillator 10 comprises an NMOS transistor, the adjusting circuit 322 must include a respective NMOS transistor M 8. As shown in FIG. 5A, similarly, if the current controlled oscillator 10 includes both the PMOS and NMOS transistors, the adjusting circuit 322 must also comprise a respective PMOS transistor M 7 and the NMOS and M 8. Referring first to FIG 5A, PV- controller 32 receives the first controller can be provided by a T- 31 bandgap reference voltage V N1. Since the first bandgap reference voltage V N1 is not affected by the PVT and resistor tolerances, the first bandgap reference voltage V N1 divided by the resistor R 3 is not affected by the PVT and tolerance. This provides a stable voltage difference between the electrodes (i.e., V SG) of the PMOS transistor M 7 of the gate and the source. Therefore, the current I M7 on the PMOS transistor M 7 is not affected by the variation of the power supply (if the PMOS transistor M 7 is connected to a supply voltage as a supply source, the current on the PMOS transistor M 7 is supplied. The effect of voltage fluctuations). According to the same principle, the voltage difference (i.e., V GS ) between the gate and the source of the NMOS transistor M 8 is also stable.
因此,上述即為PV-控制器32如何避免電流控制振盪器10受到供應電壓變動的影響。接著的實施例將說明PV-控制器32如何避免電流控制振盪器32受到製程變動的影響。考慮以下公式:Therefore, the above is how the PV-controller 32 prevents the current-controlled oscillator 10 from being affected by variations in the supply voltage. The following embodiment will illustrate how the PV-controller 32 avoids the current controlled oscillator 32 from being affected by process variations. Consider the following formula:
對PMOS電晶體M7 而言, For PMOS transistor M 7 ,
對NMOS電晶體M8 而言, For the NMOS transistor M 8 ,
根據第5A圖的電路,PMOS和NMOS電晶體M7 和M8 的閘源電壓(VGS )不會被PVT和電阻器公差所影響。因此,電流IM7 和IM8 與其臨界電壓(VTH )有關。臨界電壓的大小與MOS電晶體的製程變動有關。當製程邊界F(corner=F)的製程變動造成電流控制振盪器10的振盪頻率高於既定頻率(頻率變動)時,電流IM7 /IM8 也會比較大。這是因為製程邊界F的製程變動代表臨界電壓VTH 比較小,而比較小的臨界電壓VTH 造成比較大的電流IM7 /IM8 ,其中電流IM7 /IM8 是由電流IM6 的分支電流。由於由電流IM6 分支出來的電流IM7 /IM8 比較大,提供至電流控制振盪器10的電流也比較小,因而降低電流控制振盪器10的振盪頻率。因為PV-控制器32和電流控制振盪器10均使用同型的MOS電晶體(P型或N型電晶體),所以在PV-控制器32和電流控制振盪器10內電晶體的製程變動也都是在製程邊界F。上述即為PV-控制器32如何避免電流控制振盪器32受到製程變動之影響的說明。According to the circuit of Figure 5A, the gate voltages (V GS ) of the PMOS and NMOS transistors M 7 and M 8 are not affected by the PVT and resistor tolerances. Therefore, the currents I M7 and I M8 are related to their threshold voltage (V TH ). The magnitude of the threshold voltage is related to the process variation of the MOS transistor. When the process variation of the process boundary F (corner=F) causes the oscillation frequency of the current-controlled oscillator 10 to be higher than a predetermined frequency (frequency variation), the current I M7 /I M8 is also large. This is because the process variation of the process boundary F represents that the threshold voltage V TH is relatively small, and the relatively small threshold voltage V TH causes a relatively large current I M7 /I M8 , wherein the current I M7 /I M8 is a branch of the current I M6 Current. Since the current I M7 /I M8 branched by the current I M6 is relatively large, the current supplied to the current controlled oscillator 10 is also relatively small, thereby reducing the oscillation frequency of the current controlled oscillator 10. Since both the PV-controller 32 and the current-controlled oscillator 10 use the same type of MOS transistor (P-type or N-type transistor), the process variations of the transistors in the PV-controller 32 and the current-controlled oscillator 10 are also Is at the process boundary F. The above is a description of how the PV-controller 32 avoids the influence of the current-controlled oscillator 32 on process variations.
雖然本發明以較佳實施例揭露如上,但並非用以限制本發明。相對地,習知技藝者應能知悉能夠將本發明的概念延伸推廣至多種變型與相似的設置。因此,申請專利範圍的範疇應以本發明之多種變型與相似的設置為考量依據。While the invention has been described above in the preferred embodiments, it is not intended to limit the invention. In contrast, the skilled artisan will be able to appreciate that the concept of the invention can be extended to a variety of variations and similar arrangements. Therefore, the scope of the patent application scope should be considered in view of various modifications and similar arrangements of the present invention.
10‧‧‧電流控制振盪器10‧‧‧ Current Controlled Oscillator
Fout ‧‧‧振盪頻率F out ‧‧‧Oscillation frequency
VDD ‧‧‧供應電壓V DD ‧‧‧ supply voltage
Ic ‧‧‧電流源I c ‧‧‧current source
30‧‧‧電流控制振盪器30‧‧‧ Current Controlled Oscillator
31‧‧‧T-控制器31‧‧‧T-controller
32‧‧‧PV-控制器32‧‧‧PV-controller
NX ‧‧‧節點N X ‧‧‧ nodes
VN1 、VN2 、VN4 、VR2 、VRext ‧‧‧電壓V N1 , V N2 , V N4 , V R2 , V Rext ‧‧‧ voltage
IM6 、IMA 、IN1 、IM3 、IM4 、IR1 、IM6 、IM7 、IM8 、IRext ‧‧‧電流I M6 , I MA , I N1 , I M3 , I M4 , I R1 , I M6 , I M7 , I M8 , I Rext ‧‧‧ Current
RA 、RB 、R1 、R2 、R3 、Rext ‧‧‧電阻器R A , R B , R 1 , R 2 , R 3 , R ext ‧‧‧ resistors
310‧‧‧能帶隙參考電路310‧‧‧ Bandgap reference circuit
312‧‧‧第一調節器電路312‧‧‧First regulator circuit
314‧‧‧PMOS對314‧‧‧ PMOS pair
316‧‧‧第二調節器電路316‧‧‧Second regulator circuit
320‧‧‧第三調節器電路320‧‧‧ Third regulator circuit
322‧‧‧調整電路322‧‧‧Adjustment circuit
Q1 、Q2 、Q3 、MA 、MB 、M1 -M8 ‧‧‧電晶體Q 1 , Q 2 , Q 3 , M A , M B , M 1 -M 8 ‧‧‧O crystal
本發明能夠以實施例伴隨所附圖式而被理解,其中:第1圖為電流控制振盪器的圖示;第2圖為電流控制振盪器的特徵曲線;第3圖為本發明實施例之與製程-電壓-溫度(PVT)無關的電流控制振盪器;第4圖為本發明實施例之溫度控制器(T-控制器)的電路圖;第5A圖為本發明實施例之製程和電壓控制器(PV-控制器)的完整電路圖;第5B圖為本發明實施例部份之PV-控制器的部份電路圖;第5C圖為本發明另一實施例部份之PV-控制器的部份電路圖。The present invention can be understood by the accompanying drawings in which: FIG. 1 is a diagram of a current controlled oscillator; FIG. 2 is a characteristic curve of a current controlled oscillator; FIG. 3 is an embodiment of the present invention a current controlled oscillator independent of process-voltage-temperature (PVT); FIG. 4 is a circuit diagram of a temperature controller (T-controller) according to an embodiment of the present invention; and FIG. 5A is a process and voltage control according to an embodiment of the present invention A complete circuit diagram of a PV-controller; FIG. 5B is a partial circuit diagram of a PV-controller according to an embodiment of the present invention; FIG. 5C is a diagram of a portion of a PV-controller according to another embodiment of the present invention. Circuit diagram.
10...電流控制振盪器10. . . Current controlled oscillator
Fout ...振盪頻率F out . . . Oscillating frequency
30...電流控制振盪器30. . . Current controlled oscillator
31...T-控制器31. . . T-controller
32...PV-控制器32. . . PV-controller
VN1 ...電壓V N1 . . . Voltage
IM6 ...電流I M6 . . . Current
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98137076A TWI395087B (en) | 2009-11-02 | 2009-11-02 | Pvt-independent current-controlled oscillator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98137076A TWI395087B (en) | 2009-11-02 | 2009-11-02 | Pvt-independent current-controlled oscillator |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201116967A TW201116967A (en) | 2011-05-16 |
TWI395087B true TWI395087B (en) | 2013-05-01 |
Family
ID=44935039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW98137076A TWI395087B (en) | 2009-11-02 | 2009-11-02 | Pvt-independent current-controlled oscillator |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI395087B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5748044A (en) * | 1996-10-11 | 1998-05-05 | Silicon Motion, Inc. | Dual VCO phase-locked loop |
TW200713831A (en) * | 2005-09-26 | 2007-04-01 | Univ Nat Sun Yat Sen | Low-jitter clock generator circuit using dual regulators |
TW200715091A (en) * | 2005-10-05 | 2007-04-16 | Taiwan Semiconductor Mfg Co Ltd | Bandgap reference circuit |
US7463101B2 (en) * | 2004-05-21 | 2008-12-09 | Sunplus Technology Co., Ltd. | Voltage controlled oscillator with temperature and process compensation |
-
2009
- 2009-11-02 TW TW98137076A patent/TWI395087B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5748044A (en) * | 1996-10-11 | 1998-05-05 | Silicon Motion, Inc. | Dual VCO phase-locked loop |
US7463101B2 (en) * | 2004-05-21 | 2008-12-09 | Sunplus Technology Co., Ltd. | Voltage controlled oscillator with temperature and process compensation |
TW200713831A (en) * | 2005-09-26 | 2007-04-01 | Univ Nat Sun Yat Sen | Low-jitter clock generator circuit using dual regulators |
TW200715091A (en) * | 2005-10-05 | 2007-04-16 | Taiwan Semiconductor Mfg Co Ltd | Bandgap reference circuit |
Also Published As
Publication number | Publication date |
---|---|
TW201116967A (en) | 2011-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI405402B (en) | Voltage source circuit for crystal oscillation circuit | |
US8598941B2 (en) | Hybrid impedance compensation in a buffer circuit | |
WO2015172555A1 (en) | Frequency control method and circuit for ring oscillator | |
US8476967B2 (en) | Constant current circuit and reference voltage circuit | |
JP2008015925A (en) | Reference voltage generation circuit | |
CN109845110B (en) | Compensating device for compensating PVT variations of analog and/or digital circuits | |
JP2008052639A (en) | Constant current circuit | |
US7893728B2 (en) | Voltage-current converter and voltage controlled oscillator | |
JP2009053971A (en) | Reference voltage generation circuit and timer circuit | |
CN109960309B (en) | Current generating circuit | |
US8089326B2 (en) | PVT-independent current-controlled oscillator | |
EP2360547A1 (en) | Band gap reference circuit | |
JP5782346B2 (en) | Reference voltage circuit | |
JP2010003115A (en) | Constant current circuit | |
JP2004015423A (en) | Circuit for generating constant current | |
TWI395087B (en) | Pvt-independent current-controlled oscillator | |
KR101257459B1 (en) | Temperature compensation circuit and device for comprising the same | |
JP5801333B2 (en) | Power circuit | |
US10747248B2 (en) | Oscillator | |
US7834609B2 (en) | Semiconductor device with compensation current | |
JP5198971B2 (en) | Oscillator circuit | |
TWI528369B (en) | Reference supply voltage generator | |
JP3227711B2 (en) | Reference voltage generation circuit | |
JP2020087192A (en) | Power supply circuit | |
KR102397443B1 (en) | A integrated circuit for providing an adjustable voltage according to a process and temperature variation |