13581,80 , 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種二極體熱沉裝置,詳言之,係一種 尚功率雷射二極體熱沉之陣列裝置。 【先前技術】13581, 80, IX. Description of the Invention: [Technical Field] The present invention relates to a diode heat sink device, and more particularly to an array device of a power laser diode heat sink. [Prior Art]
習知有限長度之高功率雷射二極體,主要係以鋁合金散 熱模組進行散熱的工作,然而,隨著高功率雷射二極體功 率之不同,會有不同散熱模組設計之選用。 參考圖1,其顯示習知散熱模組之示意圖。該習知散熱 模組1包括:一鋁合金散熱基板u及一風扇12,其中,該 鋁合金散熱基板^具有複數個散熱鰭片U1。在習知技術 中複數個冋功率雷射二極體13結合於該铭 轨 U,該等高功率雷射二極㈣所產生之熱傳導至㈣2 散熱基板11,再利用該風扇12驅動空氣流過該等散熱韓片 111之間,以達到散熱之功效p 該習知散熱模W僅能適用於較低之光纖雷射功率(小於 100 w)’通常應用雷射功率輸出在1〇至_ W之間。對於 輸出較高功率之雷射二極體以及特殊光纖接頭並不實用 (容易造成壽命降低)。在習知技術中,該等散㈣片⑴係 使用铭合金之材料,但該等雷射二極體13經電流啟動之 後,因為較高之電流會造成該等雷射二極體13溫度的突 升’以致於發光品質不穩定。 因此,有必要提供一創新且具 ,、匁運步性之两功率雷j 極體熱沉之陣列裝置,以解決上述問題。 127151.doc 1358180 【發明内容】 本發明提供一種高功率雷射二極體熱沉之陣列裝置,其 包括:-承載板'複數個散熱單^、複數個雷射二極體及 -介電阻障層。該承載板具有一表面,該承載板内部另包 :至少-通道。每一散熱單元具有一容設空間,該等散熱 早疋設置於該表面。該等雷射二極體分別設置於該等散熱The finite-length high-power laser diodes are mainly used for heat dissipation of aluminum alloy heat-dissipating modules. However, with the power of high-power laser diodes, there are different heat-dissipation module designs. . Referring to Figure 1, there is shown a schematic diagram of a conventional heat dissipation module. The conventional heat dissipation module 1 includes an aluminum alloy heat dissipation substrate u and a fan 12, wherein the aluminum alloy heat dissipation substrate has a plurality of heat dissipation fins U1. In the prior art, a plurality of neon power laser diodes 13 are coupled to the Ming rail U, and the heat generated by the high power laser diodes (4) is conducted to the (4) 2 heat dissipation substrate 11, and the fan 12 is used to drive air to flow through. Between these heat-dissipating Korean films 111, to achieve the effect of heat dissipation. The conventional heat-dissipating mode W can only be applied to lower fiber laser power (less than 100 w). Generally, the laser power output is applied at 1 〇 to _ W. between. It is not practical for outputting higher power laser diodes and special fiber connectors (it is easy to cause a decrease in life). In the prior art, the dispersive (four) sheet (1) is made of a material of the alloy, but after the laser diode 13 is activated by current, the higher current causes the temperature of the laser diode 13 Sudden rise so that the quality of the light is unstable. Therefore, it is necessary to provide an innovative and versatile array of two power thunder pole heat sinks to solve the above problems. 127151.doc 1358180 SUMMARY OF THE INVENTION The present invention provides an array device for a high power laser diode heat sink, comprising: a carrier plate, a plurality of heat sinks, a plurality of laser diodes, and a dielectric barrier. Floor. The carrier board has a surface, and the carrier board is further packaged with at least a channel. Each of the heat dissipating units has a receiving space, and the heat dissipating is disposed on the surface as early as possible. The laser diodes are respectively disposed in the heat dissipation
早兀之該等容設空間中。該介電阻障層設置於該雷射二極 體與該散熱單元之間。 本發明之該等雷射二極體係與該等散熱單元形成模組化 結構’並將該等散熱單元以陣列方式設置於該承載板之該 表面,以簡化該高功率雷射二極體熱沉之陣列裝置之組裝 程序,以及使得該等雷射二極體容易更換,並且可穩定控 制該等雷射二極體之溫度變化。 另外’該等f射:極體與該等散熱單元模組化之陣列設 置’可使得該等雷射二極體所產生之熱分佈均句,以提昇 該等雷射二極體之出光效率及使用壽再者,該介電阻 障層設置於該雷射二極體與該散熱單元之間,可減少電流 損耗及防止短路,使該等雷射二極體之發光穩定性大幅改 善,進而提昇該等雷射二極體之發光效率。 【實施方式】 圖2顯示本發明高功率雷射 率雷射二極體熱沉之陣列裝置2包括:一承 意圖。該高功 載板21、複數個散熱單元22 電阻P早層24。在本實施例中 二極體熱沉之陣列裝置之示 、複數個雷射二極體23及一介 ’該承載板21具有一表面211 127I51.doc 13581.80 及一凹槽212’該表面211具有複數個第一引導部213。較 佳地’該承載板21係為金屬,以加速散熱效果。例如:該 承載板21係為紹、紹合金、銅或銅合金材質。其中,該承 載板21之該凹槽212係用以設置一光纖25。 圖3顯示本發明該承載板21之分解示意圖。配合參考圖2 及圖3,該承載板21内部包括至少一通道214,且該通道 214中設有一冷卻單元。該冷卻單元可為水或空氣。在本 實施例中’該承載板21係包括二基板215,每一基板215具 有至少一槽道216,該等基板215相結合,使得該等槽道 216相對應形成該通道2 14。較佳地,該等基板215之間可 設置一銲料(圖未示出),以加強該等基板215之結合效果。 其中,該銲料為銀銅硬銲填料(BAg-8)。 要注忍的疋’該通道214中亦可設置一熱管25(如圖4所 示)’以更進一步提升散熱效能。較佳地,該熱管25之内 徑為1至2公釐(mm),其外徑為ι·5至3公釐,其中,該熱 管25中可設有氫氣、氦氣、氬氣、水或油。 圖5顯示本發明該散熱單元22之示意圖;圖6顯示本發明 該雷射二極體23之示意圖。配合參考圖2、圖5及圖6,在 本實施例中,每一散熱單元22具有一容設空間221及一第 二引導部222,該等散熱單元22設置於該表面211,該等第 二引導部222之型狀係配合該等第一引導部213之型狀,且 該等第二引導部222係相對於該等第一引導部213而設置, 並且,該等散熱單元22之該等第二引導部22係根據該等第 一引導部213而活動。 127151.doc 1358180 - 在本實施例中,該等第一引導部213係為凸部,該等第 • 二引導部222係為凹部,在其他應用中,該等第一引導部 213係為凹部’該等第二引導部222係為凸部。較佳地,該 • 等放熱早元22係為链、紹合金、銅或銅合金材質。 該等雷射二極體23分別設置於該等散熱單元22之該等容 設空間221中。在本實施例中,該雷射二極體23另包括一 光纖套管接頭231,用以與該光纖25連接。 φ 要注意的是,每一散熱單元22可另包括一第一導接部 223,每一雷射二極體23另包括一第二導接部232,該第二 導接部232相對於該第一導接部223。在本實施例中,該等 第導接部223係為凸部,該等第二導接部232係為凹部, 在其他應用中’該等第一導接部223係為凹部,該等第二 導接部232係為凸部。其中,該雷射二極體23係以該第二 導接部232根據該第一導接部223設置於該散熱單元22之該 谷3又空間中’使得該等雷射二極體23更容易設置及更換。 • 另外,根據不同散熱之需求,該等散熱單元22可另包括 複數個通槽224(如圖7所示),以增加散熱功效。 再配合參考圖2及圖5,該介電阻障層24設置於該雷射二 極體23與該政熱單元22之間。在本實施例中,該介電阻障 層24較佳為高導熱率之材質(例如:氮化鋁(ain)材質),該 - 介電阻障層24較佳之厚度為10至100微米(μιη)。該介電阻 - 障層24可快速導熱同時也可隔絕電流短路之情形發生,以 提高該等雷射二極體23之使用壽命及品質。 本發明之該等雷射二極體23係與該等散熱單元22形成模 127151.doc 1358180 組化結構,並利用該等散熱單元22之該等第二弓丨導部222 與該承載板21之該等第一引導部213配合,以陣列方式設 置於該承載板21之該表面211 ’且該等雷射二極體23可根 據該等第一引導部213移動,故可簡化該高功率雷射二極 體熱沉之陣列裝置2之組裝程序,以及使得該等雷射二極 體23容易更換,並且可穩定控制該等雷射二極體23之溫度 變化。 另外,該等雷射二極體23與該等散熱單元22模組化之陣 列設置,可使得該等雷射二極體23所產生之熱分佈均勻, 以提昇該等雷射二極體23之出光效率及使用壽命。再者, 該介電阻障層24設置於該雷射二極體23與該散熱單元“之 間,可減少電流損耗及防止短路,使該等雷射二極體以之 發光穩定性大幅改善,進而提昇該等雷射二極體23之發光 效率。 上述實施例僅為說明本發明之原理及其功效,並非限制 本發明。因此習於此技術之人士對上述實施例進行修改及 變化仍不脫本發明之精神。本發明之權利範圍應如後述之 申請專利範圍所列。 【圖式簡單說明】 圖1顯示習知散熱模組之示意圖; 圖2顯示本發明高功率雷射二極體熱沉之陣列裝置之示 意圖; 圖3顯示本發明之承載板之分解示意圖; 圖4顯示本發明具有一熱管之承載板示意圖; 127151.doc -10- 1358180 圖5顯示本發明之散熱單元之示意圖; 圖6顯示本發明之雷射二極體之示意圖;及 圖7顯示本發明具有複數個通槽之散熱單元之示意圖。 【主要元件符號說明】 1 習知散熱模組 2 本發明高功率雷射二極體熱沉之陣列裝置 11 鋁合金散熱基板 12 風扇 13 高功率雷射二極體 21 承載板 22 散熱單元 24 介電阻障層 23 雷射二極體 25 光纖 26 熱管 111 散熱鰭片 211 表面 212 凹槽 213 第一引導部 214 通道 215 基板 216 槽道 221 容設空間 222 第二引導部 127151.doc -11 - 13581.80 223 第一導接部 224 通槽 231 光纖套管接頭 232 第二導接部This space is in the early space. The dielectric barrier layer is disposed between the laser diode and the heat dissipation unit. The laser diode system of the present invention forms a modular structure with the heat dissipating units and arranges the heat dissipating units in an array on the surface of the carrier plate to simplify the high power laser diode heat The assembly process of the array device of the sink, and the easy replacement of the laser diodes, and the temperature variation of the laser diodes can be stably controlled. In addition, 'these shots: the polar body and the array arrangement of the heat dissipating units' can make the heat distribution generated by the laser diodes uniform to improve the light-emitting efficiency of the laser diodes. And the use of the resistor barrier layer is disposed between the laser diode and the heat dissipation unit, which can reduce current loss and prevent short circuit, thereby greatly improving the illumination stability of the laser diodes, and further Improve the luminous efficiency of the laser diodes. [Embodiment] FIG. 2 shows an array device 2 for a high power laser laser diode of the present invention comprising: a schematic. The high power carrier board 21 and the plurality of heat sink units 22 have a resistor P early layer 24. In the embodiment, the array device of the diode heat sink, the plurality of laser diodes 23 and the carrier plate 21 have a surface 211 127I51.doc 13581.80 and a groove 212'. The surface 211 has a plurality of surfaces 211 First guiding portions 213. Preferably, the carrier plate 21 is metal to accelerate the heat dissipation effect. For example, the carrier plate 21 is made of Shao, Shao alloy, copper or copper alloy. The recess 212 of the carrier board 21 is used to provide an optical fiber 25. Figure 3 shows an exploded schematic view of the carrier plate 21 of the present invention. Referring to FIG. 2 and FIG. 3, the inside of the carrier plate 21 includes at least one channel 214, and a cooling unit is disposed in the channel 214. The cooling unit can be water or air. In the present embodiment, the carrier board 21 includes two substrates 215, each of which has at least one channel 216, and the substrates 215 are combined such that the channels 216 correspondingly form the channel 214. Preferably, a solder (not shown) may be disposed between the substrates 215 to enhance the bonding effect of the substrates 215. Among them, the solder is a silver-copper brazing filler (BAg-8). To be forcible, a heat pipe 25 (shown in Figure 4) can be placed in the passage 214 to further improve the heat dissipation performance. Preferably, the heat pipe 25 has an inner diameter of 1 to 2 mm (mm) and an outer diameter of 1 to 3 mm, wherein the heat pipe 25 can be provided with hydrogen, helium, argon, and water. Or oil. Figure 5 shows a schematic view of the heat dissipating unit 22 of the present invention; and Figure 6 shows a schematic view of the laser diode 23 of the present invention. Referring to FIG. 2, FIG. 5 and FIG. 6, in the embodiment, each heat dissipating unit 22 has a receiving space 221 and a second guiding portion 222. The heat dissipating units 22 are disposed on the surface 211. The shape of the two guiding portions 222 is matched with the shape of the first guiding portions 213, and the second guiding portions 222 are disposed relative to the first guiding portions 213, and the heat dissipating unit 22 is The second guiding portion 22 is moved according to the first guiding portions 213. 127151.doc 1358180 - In the present embodiment, the first guiding portions 213 are convex portions, and the second guiding portions 222 are concave portions. In other applications, the first guiding portions 213 are concave portions. The second guiding portions 222 are convex portions. Preferably, the exothermic early element 22 is made of chain, sinter alloy, copper or copper alloy. The laser diodes 23 are disposed in the accommodating spaces 221 of the heat dissipating units 22, respectively. In the present embodiment, the laser diode 23 further includes a fiber ferrule joint 231 for connecting to the optical fiber 25. φ It should be noted that each of the heat dissipating units 22 may further include a first guiding portion 223, and each of the laser diodes 23 further includes a second guiding portion 232, the second guiding portion 232 is opposite to the The first guiding portion 223. In this embodiment, the first guiding portions 223 are convex portions, and the second guiding portions 232 are concave portions. In other applications, the first guiding portions 223 are concave portions. The two guiding portions 232 are convex portions. The laser diode 23 is such that the second guiding portion 232 is disposed in the valley 3 of the heat dissipating unit 22 according to the first guiding portion 223, so that the laser diodes 23 are further Easy to set up and replace. In addition, according to different heat dissipation requirements, the heat dissipation units 22 may further include a plurality of through slots 224 (shown in FIG. 7) to increase heat dissipation efficiency. Referring again to FIGS. 2 and 5, the dielectric barrier layer 24 is disposed between the laser diode 23 and the thermal unit 22. In the present embodiment, the dielectric barrier layer 24 is preferably made of a material having a high thermal conductivity (for example, an aluminum nitride (ain) material), and the dielectric barrier layer 24 preferably has a thickness of 10 to 100 micrometers (μιη). . The dielectric resistor - the barrier layer 24 can be thermally thermally insulated while also insulating current short circuit to improve the service life and quality of the laser diodes 23. The laser diodes 23 of the present invention form a 127151.doc 1358180 group structure with the heat dissipating units 22, and utilize the second bow guides 222 of the heat dissipating units 22 and the carrier board 21 The first guiding portions 213 are matched and disposed on the surface 211 ′ of the carrier plate 21 in an array manner, and the laser diodes 23 can be moved according to the first guiding portions 213 , so that the high power can be simplified. The assembly procedure of the array device 2 for the laser diode sink and the easy replacement of the laser diodes 23, and the temperature variation of the laser diodes 23 can be stably controlled. In addition, the laser diodes 23 and the array of the heat dissipating units 22 are arranged in an array, so that the heat distribution generated by the laser diodes 23 is uniform to enhance the laser diodes 23 . Light output efficiency and service life. Moreover, the dielectric barrier layer 24 is disposed between the laser diode 23 and the heat dissipation unit, which can reduce current loss and prevent short circuit, so that the laser diodes have greatly improved illumination stability. Further, the luminous efficiency of the laser diodes 23 is improved. The above embodiments are merely illustrative of the principles and effects of the present invention, and are not intended to limit the present invention. Therefore, those skilled in the art have not modified or changed the above embodiments. The scope of the present invention should be as described in the following patent application. [Simplified Schematic] FIG. 1 shows a schematic diagram of a conventional heat dissipation module; FIG. 2 shows a high power laser diode of the present invention. FIG. 3 is a schematic view showing the carrier plate of the present invention; FIG. 4 is a schematic view showing a carrier plate having a heat pipe according to the present invention; 127151.doc -10- 1358180 FIG. 5 is a schematic view showing the heat dissipation unit of the present invention. 6 is a schematic view showing a laser diode of the present invention; and FIG. 7 is a schematic view showing a heat dissipating unit having a plurality of through grooves according to the present invention. Heat Dissipation Module 2 Array device for high power laser diode heat sink of the present invention 11 Aluminum alloy heat sink substrate 12 Fan 13 High power laser diode 21 Carrier plate 22 Heat sink unit 24 Dielectric barrier layer 23 Laser diode 25 fiber 26 heat pipe 111 heat sink fin 211 surface 212 groove 213 first guide portion 214 channel 215 substrate 216 channel 221 accommodation space 222 second guide portion 127151.doc -11 - 13581.80 223 first guide portion 224 through slot 231 fiber ferrule connector 232 second guide
127151.doc127151.doc