TWI336626B - Flavivirus ns1 subunit vaccine - Google Patents

Flavivirus ns1 subunit vaccine Download PDF

Info

Publication number
TWI336626B
TWI336626B TW098133581A TW98133581A TWI336626B TW I336626 B TWI336626 B TW I336626B TW 098133581 A TW098133581 A TW 098133581A TW 98133581 A TW98133581 A TW 98133581A TW I336626 B TWI336626 B TW I336626B
Authority
TW
Taiwan
Prior art keywords
protein
virus
mva
flavivirus
thr
Prior art date
Application number
TW098133581A
Other languages
Chinese (zh)
Other versions
TW201002343A (en
Inventor
Paul Howley
Sonja Layrer
Mary Jane Cordosa
Magdeline Sia Henry Sum
Original Assignee
Bavarian Nordic As
Venture Technologies Sdnbhd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bavarian Nordic As, Venture Technologies Sdnbhd filed Critical Bavarian Nordic As
Publication of TW201002343A publication Critical patent/TW201002343A/en
Application granted granted Critical
Publication of TWI336626B publication Critical patent/TWI336626B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

1336626 六、發明說明: 【發明所屬之技術領域】 發明領域 本發明係有關黃病毒之NS1蛋白或其部分’特別是登革熱 病毒。一黃病毒之NS1蛋白或部分可用於預防接種以對抗該黃 病毒和許多其它黃病毒。本發明特別有關一種登革熱病毒亞型 之NS1蛋白或其部分(特別是亞型2),可用於預防接種以對抗來 自所有亞型之登革熱病毒。本發明更有關包含一種編碼一黃病 毒NS1或其部分之表現卡匣的DNA、包含該DNA之載體以及含有 或表現一黃病毒NS1之疫苗。 發明背景 登革熱之病原體是登革熱病毒’其屬於黃病毒屬黃病毒科 (Burke和Monath,2001 )。一特別重要之黃病毒的亞群係稱之 為由蚊子攜帶的黃病毒,即經蚊子傳播的黃病毒。除上所提及 之登革熱病毒之外,此群還包含諸如西尼羅河病毒、曰本腦炎 病毒和黃熱病毒之其它重要的病毒(病毒領域’由FieldsB.N· 編輯,Lippincott-Raven 出版社,第 3 版 1996,ISBN: 0-7817-0253-4第931-1034頁)。由這些病毒傳播之典型的疾 病係由西尼羅河病毒、日本腦炎病毒引起之西尼羅河熱和西尼 羅河腦炎、由黃熱病毒引起之黃熱病以及由登革熱病毒引起之 登革熱、登革出血熱(DHF;見下文)和登革熱休克綜合症狀。 登革熱病毒由三種結構性蛋白質形成之包封的、單股、正 股RNA病毒:外殼蛋白(C),其形成一種結合病毒基因組之核 3 1336626 殼體,其被其中附有Μ(膜)和E(封套)蛋白之脂肪雙層圍繞。 該基因組將近llkb長且包含一個編碼約3400胺基酸殘基之多 蛋白前體的單一開放讀碼架構。個體的病毒蛋白係藉細胞和病 毒的蛋白酶之作用,產生自此前趨物。該三種結構性蛋白(c、 Μ和E)係由該多蛋白之N_端部分衍生而來且接著七個非結構性 蛋白:NS卜 NS2A、NS2B、NS3、NS4A、NS4B 和 NS5 (Lindenbach 和 Rice , 2001)。 存在於所有黃病毒中之糖蛋白NS1似乎是病毒生存能力 所不可或缺的。登革熱病毒NS1係由受感染之哺乳動物細胞分 泌而來,其呈可溶之六聚體型式(Flamand等人,1999)。此非 共價鍵結的六聚體錯合物係由3個二聚體次單元形成且具 310kDa之分子量。如其仍是被感染的細胞表面唯一的病毒固有 蛋白時,對於NS1蛋白輸出至細胞膜而言,二聚化係不可或缺 的。 哺乳動物細胞中,而非昆蟲細胞株中可支持登革熱感染, 部分的傳遞NS1被釋放於細胞外周圍。細胞外之NS1不是以可 溶性蛋白形式分泌(呈一較高六聚的寡聚體型式存在),就是呈 與微粒子而非病毒粒子聯結形式分泌。此外,已發現NS1於受 登革熱病毒感染之病人之血清中循環,此暗示了 NS1的分泌在 黃病毒感染人類宿主上可能是一重要因素。在黃病毒的感染期 間,NS1蛋白誘發一強烈抗體反應來幫助清除宿主中之感染病 毒,其可能係透過補體調節路徑(Schlesinger,J. J.等人,1987) 和抗體依賴性細胞之細胞毒性(ADCC) (Schlesinger,J.J.等 人,1993) ° 4 1336626 登革熱與其四種血清類型,登革熱病毒血清類 1 ^en-n 至登革熱血清類型4 (Den-4),對於黃病毒屬感染人絲 一 頌方面係 非常重要的,其產生之疾病的範圍從似流行性感冒症狀至嚴’、 的或致命的疾病,伴隨休克之登革熱出血熱。登革熱之爆重 直是人口密集、具有大量蚊子傳染媒介之熱帶與亞熱帶區立。 重要的公共衛生問題。 /1336626 VI. OBJECTS OF THE INVENTION: FIELD OF THE INVENTION The present invention relates to NS1 proteins of flavivirus or portions thereof, particularly dengue viruses. The NS1 protein or portion of a flavivirus can be used for vaccination against the flavivirus and many other flaviviruses. The invention particularly relates to a NS1 protein of a dengue virus subtype or a portion thereof (particularly subtype 2) which can be used for vaccination against dengue viruses from all subtypes. More specifically, the present invention relates to a DNA comprising a marker of a yellow virus NS1 or a portion thereof, a vector comprising the DNA, and a vaccine comprising or expressing a flavivirus NS1. BACKGROUND OF THE INVENTION The pathogen of dengue is the dengue virus, which belongs to the Flaviviridae family (Burke and Monath, 2001). A particularly important subgroup of flaviviruses is called a flavivirus carried by mosquitoes, a mosquito-borne flavivirus. In addition to the dengue virus mentioned above, this group also contains other important viruses such as West Nile virus, sputum encephalitis virus and yellow fever virus (virus field' edited by FieldsB.N., Lippincott-Raven Press , 3rd edition 1996, ISBN: 0-7817-0253-4, pp. 931-1034). Typical diseases transmitted by these viruses are West Nile fever and West Nile encephalitis caused by West Nile virus, Japanese encephalitis virus, yellow fever caused by yellow fever virus, and dengue fever and dengue hemorrhagic fever caused by dengue virus ( DHF; see below) and dengue shock syndrome. An enveloped, single-stranded, positive-stranded RNA virus formed by three structural proteins: the coat protein (C), which forms a core 3 1336626 shell that binds to the viral genome, to which is attached a membrane (membrane) and The E (envelope) protein is surrounded by a fat bilayer. The genome is approximately llkb long and contains a single open reading frame encoding a polyprotein precursor of approximately 3400 amino acid residues. The individual viral proteins are produced by the action of cellular and viral proteases from the predecessor. The three structural proteins (c, Μ, and E) are derived from the N-terminal portion of the polyprotein and are followed by seven non-structural proteins: NS NS2A, NS2B, NS3, NS4A, NS4B, and NS5 (Lindenbach and Rice, 2001). The glycoprotein NS1 present in all flaviviruses appears to be indispensable for virus viability. The dengue virus NS1 is secreted from infected mammalian cells in a soluble hexamer form (Flamand et al., 1999). This non-covalently bound hexamer complex is formed from 3 dimeric minor units and has a molecular weight of 310 kDa. If it is still the only viral intrinsic protein on the surface of the infected cell, dimerization is indispensable for the export of the NS1 protein to the cell membrane. In mammalian cells, non-insect cell lines can support dengue infection, and part of the delivered NS1 is released outside the cell. Extracellular NS1 is not secreted as a soluble protein (presented as a higher hexamer oligomeric form), but is secreted in association with microparticles rather than virions. In addition, NS1 has been found to circulate in the serum of patients infected with dengue virus, suggesting that secretion of NS1 may be an important factor in the infection of human hosts by flaviviruses. During infection with the flavivirus, the NS1 protein induces a strong antibody response to help clear the infectious virus in the host, possibly through the complement regulatory pathway (Schlesinger, JJ et al., 1987) and antibody-dependent cellular cytotoxicity (ADCC). (Schlesinger, JJ et al., 1993) ° 4 1336626 Dengue fever and its four serotypes, dengue virus serotype 1 ^en-n to dengue serotype 4 (Den-4), for the flavivirus infection Very importantly, the disease it produces ranges from symptoms like influenza to severe, or fatal, with dengue hemorrhagic fever in shock. The explosion of dengue fever is a tropical and subtropical zone with dense population and a large number of mosquito vectors. Important public health issues. /

因為經蚊子傳播之黃病毒引起之登革熱感染與其它疾, 之散布的關係,已經導致世界上許多地方更致力於研發可預 登革熱(DF)與登革出血熱(DHF)之登革熱疫苗以及可 ^ 於保護 已接種疫苗之個體免於因某些或全部經蚊子傳播之黃病毒 起之感染的疫苗。The spread of dengue infection and other diseases caused by mosquito-borne flaviviruses has led to more efforts in the world to develop dengue fever vaccines for pre-denigative fever (DF) and dengue hemorrhagic fever (DHF). Protecting vaccinated individuals from vaccines that are caused by some or all of the mosquito-borne flaviviruses.

雖然大部分之DF病例在第一次感染四種血清類型中之任 何一種後出現徵兆,但是大部分之DHF病例是發生在患者受到 第二次感染與第一次感染不同血清類型之登革熱病毒時。此觀 察報告產生了此假說,即於一適當的間隔,以不同病毒血清類 型依序感染具有對抗一種登革熱血清類型之抗體之個體,可能 會導致特定數量的’病例。抗體依賴性增高(纖)在登革熱 以及其它具有封套之病毒方面已在㈣外獲得㈣,且在_ 之疾病發展上被視為一重要的機制。 亦可,主意到’ DHF通常出現在地理位置上具有多種(三或 四)病毒血清類型-起傳播之區域。在諸如東南亞國家具有地 方性雨之區域中,特定年記的發病率在兒童中較高,而許多 DHF病例在較年長的族群中較少。此大致上符合針對登革熱之 血’月廣泛的增加’顯示出自㈣錢可引起保護性免疫。此現 5 1336626 象與由諸如A梨肝炎病毒之病毒感染中所觀察到的不同.臨床 軼事之觀察顯示出’病人有可能會遭受二次的 DHF(Nimmannitya等人’ 1990) ’然而這是極罕見的,且難於精 確的鑑定導致第二次與後來感染的血清類型。目前為止,還未 有報告指出在相同個體中有四種感染,僅管事實上全部四種登 革熱病毒血清類型於同一地區傳播。此暗示著,在本質上,於 同一個體中’遭受二或三種登革熱病毒血清類型感染可能會產 生交又反應之抗體或甚至一種交又反應之細胞毒性淋巴反 應。此可能If由本質上剩餘之登革熱病毒血清類型來調控咬保 護預防感染。 目前還不存有經認可之登革熱疫苗。現今,登革熱病毒威 染的預防係依賴控制主要的蚊子宿主埃及黑斑文。殺蟲劑耐受 性、科技和經濟支持的缺少會使得當地衛生部門維持有效的蚊 子控制計劃,且宿主蚊子和登革熱病毒兩者之持續地理上的傳 播使其特別無法以目前之蚊子控制計劃來預防。所以,發展安 全又有效之疫苗來對抗登革熱病毒之全部四種血清類型,已被 WHO指定為優先考慮用於預防登革熱感染最有成本效益的方 式。WHO建礅,對抗登革熱和DHF之理想的疫苗應是可預防由 所有血清類型所產生之感染,藉此連續地感染就不會發生。 為每目的,W0 98/13500計劃使用一種會表現所有登革熱 病毋亞型之抗原的重組經修飾的牛痘病毒Ankara(MVA),或使 用四種重組MVA ’其中每_重組_表現至少―種登革熱病毒亞 31之k原兩者方柄提供非常好的疫苗來對抗所有的登革熱 病毒亞5L然而’希望提供—種單一次單元疫苗,其在施用之 6 1336626 後可產生一種可對抗多於一種黃病毒或多於一種登革熱病毒 血清類型,較佳是對抗所有登革熱病毒血清類型之免疫反應。 C發明内容2 發明概要 因此,本發明之標的係提供一種衍生自黃病毒或黃病毒亞 型之疫苗,其係安定的、易於生產,且誘導一種免疫反應,其 可保護經施打疫苗之個體不僅免於衍生成該疫苗之該黃病毒 或黃病毒亞型之感染,且免於其它黃病毒或黃病毒的感染。本 發明之一特定的標的係提供一種衍生自蚊子所傳播之黃病毒 之疫苗,其保護經施打疫苗之個體不僅免於衍生成該疫苗之蚊 子所傳播之黃病毒或黃病毒亞型之感染,且免於其它蚊子所傳 播之黃病毒或黃病毒亞型之感染。本發明之進一步標的係提供 一種衍生自一種登革熱病毒亞型之疫苗,且保護一個體免於所 有登革熱亞型之感染。 I:實施方式:! 較佳實施例之詳細說明 這些目的已藉由提供黃病毒之NS1蛋白或其部分以及提 供各別包含編碼有黃病毒NS1蛋白或其一部分之表現卡匣之 DNA序列得到解決。明確地,對於提供一種衍生自經蚊子傳播 之黃病毒的疫苗之目的,可藉由提供經蚊子傳播之黃病毒之 NS1蛋白或其部分得到解決,該疫苗保護一個體不僅免於衍生 成該疫苗之經蚊子傳播之黃病毒的感染,且亦免於其它經蚊子 傳播之黃病毒之感染,特別是登革熱病毒,較佳是登革熱血清 類型2以及各別相對之DNA序列。更明確地,對於提供一種衍 7 生自經登革熱病毒亞型的疫苗之目的,可藉由提供登革熱病毒 (特別是登革熱血清類型2和各別之DNA序列)之NS1蛋白或其 部分得到解決,該疫苗保護一個體至少免於所有登革熱亞型之 感染,且較佳係免於其它黃病毒之感染(特別是諸如曰本腦炎 病毒、黃熱病毒和西尼羅河病毒之經蚊子傳播之黃病毒)。 於實驗部分中被更詳細地顯示地,來自一登革熱病毒血清 類型之被重新合成(de novo)表現的NS1蛋白在疫苗接種後會 誘導一會與登革熱病毒血清類型1、2、3和4之NS1蛋白加上 來自黃病毒屬之其它成員(諸如曰本腦炎病毒、黃熱病毒和西 尼羅河病毒)的NS1產生交又反應的抗體反應。因此,來自一 種登革熱病毒血清類型之NS1蛋白質係一通用的DHF次單元來 供用於同時保護對抗登革病毒之所有血清類型以及進一步對 抗黃病毒屬之其他病毒。因為於此次單元疫苗策略中沒有涉及 E蛋白,不會有在隨後暴露於登革病毒的任一血清類型疫之抗 體依賴性增高(ADE)的風險,而因此疫苗相關之DHF在登革熱 傳染的自然爆發条^期間應不會被誘發。 根據較佳實施例,本發明係有關一種包含一編碼至少一種 黃病毒NS1蛋白或其部分之表現卡匣的DNA。此文中之術語“至 少”意指該表現卡匣可進一步編碼額外的蛋白/胜肽,其可為分 離的蛋白/胜肽或接至該NS1蛋白或其部分,如於下所詳細定 義者。於本文中術語,,DNA“指意任何類型之DNA,諸如單股DNA、 雙股DNA、線性或環狀DNA或呈質體之DNA或為一病毒基因組。 因為黃病毒係RNA病毒,所以編碼黃病毒NS 1蛋白之DNA係諸 如cDNA或合成之DNA之非自然發生之DNA。 1336626 4術^編碼黃病毒NS1蛋白或其部分之表現切“意指位 ; I白或&部分之編碼序列之前加上可控制轉錄 特別是轉錄之起始)的要素。有關此轉錄調節要素之例子為原 核生物起動子7增奸。較奴真核㈣子/㈣子係人類巨大 細胞病毒立即早期起動子/增強子以及如於實例部分中所揭 露’諸如?.5起動子、“毒最小起動子之㈣毒起動子。該 疫病毒最小起動子之相示於第2圖中且為序列編號:9。必 要的話,絲現切可進—步包含控_錄之終止的要素,諸 如原核終止要素或真核多A訊號序列。 該表現卡E可僅表現黃病毒之咖*白或其部分或可表 現連同-或多種另外的黃病毒蛋白/胜狀之_蛋白或其部 分’其中β NS1蛋白或其部分和該另外的蛋白/胜肽被生成分 離蛋白’胜狀或融合蛋白/胜肽形式。於此說明書若沒有定義, 則於本發明内文中之術語,顧“意指至少iq個胺基酸,較佳 2〇個胺基酸,更佳25個胺基酸之連續的胺基酸序列長列。Although most DF cases show signs after first infecting any of the four serotypes, most DHF cases occur when the patient receives a second infection and the first infection with a different serotype of dengue virus. . This observation report yields the hypothesis that individuals infected with antibodies against a dengue serotype in a sequence of different viral serotypes at appropriate intervals may result in a specific number of cases. Antibody-dependent increase (fibrosis) has been obtained (4) outside of dengue fever and other enveloped viruses, and is considered an important mechanism in the development of disease. Alternatively, the idea is that 'DHF usually appears in geographically diverse areas with multiple (three or four) viral serotypes. In areas with localized rains such as in Southeast Asia, the incidence of specific years is higher in children, and many DHF cases are fewer in older groups. This is broadly consistent with the 'monthly increase in blood for dengue', which shows that (4) money can cause protective immunity. This is now different from that observed in viral infections such as A pear hepatitis virus. Clinical observations show that 'patients may suffer secondary DHF (Nimmannitya et al '1990)' however this is Very rare, and difficult to accurately identify the type of sera that causes the second and subsequent infections. So far, there have been no reports of four infections in the same individual, except that virtually all four dengue virus serotypes are transmitted in the same region. This implies that, in essence, two or three dengue virus serotype infections in the same individual may produce cross-reactive antibodies or even a reactive cytotoxic lymphatic response. It is possible to control bite protection against infection by the type of dengue virus sera that is essentially left. There are currently no approved dengue vaccines. Today, the prevention of dengue virus infection relies on the control of the main mosquito host, Egyptian black zebra. The lack of pesticide tolerance, technology and financial support will enable the local health sector to maintain an effective mosquito control program, and the continued geographical spread of both host and dengue viruses makes it particularly difficult to use current mosquito control programs. prevention. Therefore, the development of safe and effective vaccines against all four serotypes of dengue virus has been designated by WHO as the most cost-effective way to prevent dengue infection. The WHO recommends that the ideal vaccine against dengue and DHF should prevent infections caused by all serotypes, so that continuous infection does not occur. For each purpose, W0 98/13500 plans to use a recombinant modified vaccinia virus Ankara (MVA) that will express all antigens of the dengue subtype, or use four recombinant MVAs, each of which has at least one type of dengue fever Both of the k-prototypes of the virus sub-31 provide a very good vaccine against all dengue virus sub-5L. However, it is hoped to provide a single-unit vaccine that produces one against more than one yellow after application of 13 1336626. The virus or more than one type of dengue virus serotype, preferably an immune response against all dengue virus serotypes. C SUMMARY OF THE INVENTION 2 SUMMARY OF THE INVENTION Accordingly, the subject matter of the present invention provides a vaccine derived from a flavivirus or flavivirus subtype that is stable, easy to produce, and induces an immune response that protects the vaccinated individual It is not only free from the infection of the flavivirus or flavivirus subtype of the vaccine, but also from other flaviviruses or flaviviruses. A particular subject of the invention provides a vaccine derived from a flavivirus-borne flavivirus that protects a vaccinated individual from infection by a flavivirus or flavivirus subtype transmitted by a mosquito derived from the vaccine. And is free of infection by flavivirus or flavivirus subtypes transmitted by other mosquitoes. A further subject of the invention is to provide a vaccine derived from a subtype of dengue virus and to protect a body from infection by all dengue subtypes. I: Implementation:! DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS These objects have been solved by providing a virulence NS1 protein or a portion thereof and providing a DNA sequence each comprising a expression cassette encoding a flavivirus NS1 protein or a portion thereof. Specifically, for the purpose of providing a vaccine derived from a mosquito-borne flavivirus, it can be solved by providing a mosquito-transmitted flavivirus NS1 protein or a part thereof, which protects a body from being derived from the vaccine It is infected by mosquito-borne flavivirus and is also free of infection by other mosquito-borne flaviviruses, especially dengue virus, preferably dengue serotype 2 and individual relative DNA sequences. More specifically, for the purpose of providing a vaccine derived from a subtype of dengue virus, it can be solved by providing an NS1 protein or a part thereof of dengue virus (especially dengue serotype 2 and individual DNA sequences), The vaccine protects a body from at least infection with all dengue subtypes and is preferably free of infection by other flaviviruses (especially mosquito-borne flaviviruses such as sputum encephalitis virus, yellow fever virus and West Nile virus) ). As shown in more detail in the experimental section, the NS1 protein from the de novo manifestation of a dengue virus serotype is induced after vaccination with dengue virus serotypes 1, 2, 3 and 4 The NS1 protein plus NS1 from other members of the Flavivirus genus, such as sputum encephalitis virus, yellow fever virus and West Nile virus, produces a reactive antibody response. Thus, the NS1 protein from a dengue virus serotype is a universal DHF subunit for the simultaneous protection of all serotypes against dengue virus and further against other flaviviruses. Because there is no E protein involved in this unit vaccine strategy, there is no risk of antibody-dependent elevation (ADE) in any subsequent serotype of dengue virus, and therefore vaccine-associated DHF is transmitted in dengue fever. Natural outbreaks should not be induced during the period. According to a preferred embodiment, the invention relates to a DNA comprising a cassette which encodes at least one flavivirus NS1 protein or a portion thereof. The term "at least" as used herein means that the performance cassette further encodes an additional protein/peptide, which may be a separate protein/peptide or to the NS1 protein or portion thereof, as defined in detail below. As used herein, the term "DNA" refers to any type of DNA, such as single-stranded DNA, double-stranded DNA, linear or circular DNA or plastid DNA or a viral genome. Because the flavivirus is an RNA virus, the coding The DNA of the flavivirus NS 1 protein is a non-naturally occurring DNA such as cDNA or synthetic DNA. 1336626 4 The method of encoding the flavivirus NS1 protein or a portion thereof is described as "meaning position; I white or & part of the coding sequence Elements that control transcription, especially the initiation of transcription, are added before. An example of this transcriptional regulatory element is the priming of the prokaryotic promoter 7 . Compared to the slave nucleus (four) sub/(iv) subfamily human giant cell virus immediate early promoter/enhancer and as disclosed in the example section, such as? .5 starter, "four-toxic starter of the poisonous minimum starter. The phase of the minimum promoter of the plague virus is shown in Figure 2 and is the serial number: 9. If necessary, the wire can be cut into The elements of the termination, such as the pronuclear termination element or the eukaryotic multi-A signal sequence. The performance card E may only represent the yellow virus coffee white or part thereof or may be expressed together with - or a variety of additional flavivirus proteins / wins a protein or a portion thereof, wherein the β NS1 protein or a portion thereof and the additional protein/peptide are produced as an isolated protein 'successor or fusion protein/peptide form. If not defined herein, in the context of the present invention The term "consider" means at least iq amino acids, preferably 2 amino acids, more preferably a continuous amino acid sequence of 25 amino acids.

該另外的黃病毒蛋白並不是完整的E蛋白 '因為此蛋白 似乎涉及了丽的發展。因此,假如該另外的黃病毒胜肽係衍 生自E-蛋白,其應該要包含少於4()個縣酸難係少於35 胺基酸。假如衍生自E-蛋白之胺基暖序列長列與脱蛋白或其 部分-起表現,則應可證實此胺基駿長列沒有包含涉及纖和 DHF生成之抗原決定位。 除了 NS1蛋白或其部分外,假如該表現卡&亦表現呈分離 蛋白/胜肽形式之Μ的黃病毒蛋白/_,職表現卡£在介 於該編碼脱蛋白或其部分之序列與編碼另外的黃病毒蛋白之 9 序Μ間’可能包含-核糖體内入位(IRES)。IRES要素係習知此 技"者所知悉者。IRES要素之例子為小RNA病毒IRES要素或 C !肝炎病毒之5’未編碼區域。 任擇地’編碼該NS1蛋白或其部分之核誓酸序列可被融合 至編碼另外的黃病毒蛋白/胜肽之DNA彳列,藉此,介在該 NS1蛋白或其部7分與該另外的黃病毒蛋白/胜肽之間形成-融 °蛋白。設右該NS1蛋白或其部分與該另外的黃病毒蛋白/胜 被形成融合蛋白/胜肽之形&,則該各別之編碼序列被以 對準架構的融合(fused in frame)。 於較佳具體例中,在編碼該NS1蛋白或其部分之DNA序列 之前加上編碼E-蛋白之糖化訊號序列之序列。據此具體例,產 生了一融合蛋白’其包含融合至該NS1蛋白或其部分之E—蛋白 糖化訊號序列。如上所示,該£_蛋白衍生之胺基酸長列應是儘 可能的短’且其應該將此胺基酸長列會包含涉及ADE與j)HF生 成之抗原決定位的可能排除在外。該£_蛋白之糖化訊號序列符 合此要求。 於一任擇之較佳具體例令,本發明之表現卡匣僅包含編碼 該NS1蛋白或其部分之黃病毒序列。因此,於較佳具體例中, 本發明之表現卡匣不會表現任何來自其它黃病毒基因組部分 之其它胜肽/蛋白質’待別是NS2A或E蛋白。 於另一任擇的具體例中,本發明之DNA表現一 NS1蛋白或 其部分’其呈具有非衍生自黃病毒之蛋白/胜肽之融合蛋白形 式。該蛋白/胜肽包含非-黃病毒訊號序列或用於偵測或純化諸 如tag之經表現之融合蛋白的序列。 10 1336626 如本發明之較佳具體例中,於表現卡匣中之黃病毒序列的 一般結構簡介如下:在天然黃病毒感染期間,該病毒產生一種 單一的多蛋白,其之後先被宿主細胞之蛋白酶打斷,然後被病 毒編碼的蛋白酶打斷成下列蛋白:C、PrM和Μ、E、NS1、NS2A、 NS2B、NS3、NS4A、NS4B和NS5(蛋白質次序依多蛋白質前體蛋 白質排列)。所以,DNA序列,特別是編碼NS1蛋白或其部分 之cDNA序列必須額外加上"ATG"起始密碼子。於一較佳具體例 中,該起始ATG之後被加上一糖化訊號序列,藉此新合成之NS1 蛋白在内質網時被糖化。此訊號序列係習知此技藝者所知悉 者。最後,該編碼蛋白質之卡匣需要一個終止密碼子,其可以 是一個加在該編碼cDNA序列之蛋白質的3’終端之TAG。例如, 本發明所使用之"A T G +訊號序列"要素係衍生自E蛋白之疏水性 C-終端(最後28個胺基酸,其為登革熱病毒新天竺鼠品種(,,NGC 品種“,基因資料庫登錄號AF038403)以胺基酸M(ATG)為起 始)。本發明之一典型的表現卡匣示於第2圖且以序列編號9 和序列編號10表示。 因此簡言之,此具體例有關一種包含一表現之卡匣之 DNA,該表現卡匣包含編碼一黃病毒NS1蛋白或其部分之序列, 其中該編碼序列之前加上一起始密碼子(“ATG”)與一編碼用於 糖化之訊號序列的序列,較佳係衍生自如上所定義之E-蛋白以 及其中該編碼序列最後以一轉譯之終止密碼子(第1A、1C和2 圖、序列編號5-10)。 本發明之DNA序列編碼一黃病毒NS1病毒或其部分。術語 “黃病毒”意指任何之黃病毒。更佳地,術語“黃病毒”意指諸如 11 西尼羅河病毒、日本腦炎病毒、黃熱病毒和登革熱病毒之經蚊 子傳播之翻毒。衍生自—種以如本發明之DNA編碼之經蚊子 傳播的脱蛋白或其部分應可保護經接種疫苗之個體不僅免於 街生成該疫苗之病毒或病毒亞型之感染,且免於衍生成該疫苗 之其匕...坐蚊子傳播之病毒或其它病毒亞型的感染。該NS1蛋白 可較佳係任何登革熱病毒亞型。更佳地,g NS1蛋白編碼序列 係衍生自-種諸如登革熱病毒新天竺鼠品種(,,NGC品種“,基因 資料庫登錄號綱38_之登革熱亞型2。術語“亞型,,和“血清 類型”在此發明書中可交換使用。術語,NS1蛋白或其部分“中之 術語,,其部分“意指該蛋白之胺基酸長列,其夠長以誘導一 特定免疫反應來對抗衍生成該”其部分“之NS1蛋白。假如該黃 病毒是—登革熱病毒,該胺基酸長列應是可在-經接種疫苗之 動物(包括人㈤身上料產线抗所有登革翻毒亞型之NS1 蛋白之免疫反應的胺基酸長❸於實例部分中顯示熟悉此技藝 人士如何能蚊是否NS1蛋白或其部分誘導產生肢對所有登 熱亞型之免疫反應。輯_較佳具體例,該黃赫序列編碼整 個NS1蛋白。 簡言之,本發明最佳具體例之-係種包含編碼有-經蚊 子傳播之黃病毒NS1或其部分之表現卡E之瞧,其中該黃病 毒較佳係登革熱’更别是登革熱病毒亞型2,且其中該NS1蛋 白或其部分之表現係由真核生物轉錄調節要素控制 。更佳地 疋’本發明之DNA編喝—呈具有_糖化訊號序列之融合蛋白形 式之NS1蛋白或其部分。This additional flavivirus protein is not a complete E protein' because this protein seems to be involved in the development of Li. Thus, if the additional flavivirus peptide is derived from an E-protein, it should contain less than 4 () counts of less than 35 amino acids. If the long base of the amino-based warm sequence derived from the E-protein is expressed by deproteinization or its fraction, it should be confirmed that the amine-based long column does not contain an epitope involved in the production of fibrils and DHF. In addition to the NS1 protein or a portion thereof, if the performance card & also exhibits a flavivirus protein/_ in the form of an isolated protein/peptide, the performance of the sequence is in the sequence and coding of the encoded deproteinized portion or portion thereof. The additional 9-sequence of the flavivirus protein may contain - ribosome in place (IRES). The IRES element is known to the skilled person. Examples of IRES elements are the small RNA virus IRES element or the 5' uncoded region of the C! hepatitis virus. Optionally, a nuclear acid sequence encoding the NS1 protein or a portion thereof can be fused to a DNA array encoding an additional flavivirus protein/peptide, whereby the NS1 protein or a portion thereof is intervened with the additional A protein is formed between the flavivirus protein/peptide. The NS1 protein or a portion thereof is fused to the additional flavivirus protein/winning form of the fusion protein/peptide, and the respective coding sequences are fused in frame. In a preferred embodiment, the sequence encoding the glycated signal sequence of the E-protein is added prior to the DNA sequence encoding the NS1 protein or portion thereof. According to this specific example, a fusion protein is produced which comprises an E-protein saccharification signal sequence fused to the NS1 protein or a portion thereof. As indicated above, the £_protein-derived amino acid long column should be as short as possible and it should be excluded from the long-term listing of the amino acid to contain epitopes involved in ADE and j) HF production. The £_protein glycation signal sequence meets this requirement. Preferably, the performance cassette of the present invention comprises only the flavivirus sequence encoding the NS1 protein or a portion thereof. Thus, in a preferred embodiment, the performance cassette of the present invention does not exhibit any other peptide/protein ' from other phage viral portions that are NS2A or E proteins. In another optional embodiment, the DNA of the present invention exhibits an NS1 protein or a portion thereof which is in the form of a fusion protein having a protein/peptide which is not derived from flavivirus. The protein/peptide comprises a non-flavonoid signal sequence or a sequence for detecting or purifying a fusion protein such as a tag. 10 1336626 In a preferred embodiment of the invention, the general structure of the flavivirus sequence in the expression cassette is as follows: during native flavivirus infection, the virus produces a single polyprotein which is then first hosted by the host cell. The protease is interrupted and then cleaved by the virally encoded protease into the following proteins: C, PrM and Μ, E, NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5 (protein sequence Dependent Protein Precursor Protein Arrangement). Therefore, the DNA sequence, particularly the cDNA sequence encoding the NS1 protein or a portion thereof, must be additionally appended with the "ATG" initiation codon. In a preferred embodiment, a saccharification signal sequence is added after the initiation of the ATG, whereby the newly synthesized NS1 protein is saccharified in the endoplasmic reticulum. This sequence of signals is known to those skilled in the art. Finally, the cassette encoding the protein requires a stop codon, which can be a TAG added to the 3' terminus of the protein encoding the cDNA sequence. For example, the "ATG+signal sequence" element used in the present invention is derived from the hydrophobic C-terminus of the E protein (the last 28 amino acids, which are dengue virus neonatal scorpion breeds (,, NGC cultivar, "gene The database accession number AF038403) is based on amino acid M (ATG). A typical performance card of the present invention is shown in Figure 2 and is represented by SEQ ID NO: 9 and SEQ ID NO: 10. Thus, in short, this A specific example relates to a DNA comprising a cassette which comprises a sequence encoding a flavivirus NS1 protein or a portion thereof, wherein the coding sequence is preceded by a start codon ("ATG") and a coding sequence. The sequence of the signal sequence for saccharification is preferably derived from an E-protein as defined above and wherein the coding sequence is terminated by a translational stop codon (1A, 1C and 2, SEQ ID NO: 5-10). The DNA sequence of the invention encodes a flavivirus NS1 virus or a portion thereof. The term "flavivirus" means any flavivirus. More preferably, the term "flavor virus" means, for example, 11 West Nile virus, Japanese encephalitis virus, yellow fever. Virus and boarding A mosquito-borne virus-borne virus that is derived from a mosquito-borne deproteinized portion or a portion thereof that is encoded by the DNA of the present invention, and which protects the vaccinated individual from the virus or virus that generates the vaccine in the street. Subtype infection, and exempt from the infection of the vaccine... a mosquito-borne virus or other viral subtype infection. The NS1 protein may preferably be any dengue virus subtype. More preferably, g NS1 The protein coding sequence is derived from a species such as the dengue virus neonatal squirrel breed (,, NGC cultivar ", Genodata Accessory No. 38_ of the dengue subtype 2. The term "subtype," and "serum type" in this invented book It can be used interchangeably. The term "NS1 protein or a part thereof", "part of it" means a long column of amino acids of the protein, which is long enough to induce a specific immune response against the derivation of the "part" thereof. NS1 protein. If the flavivirus is a dengue virus, the long-term amino acid should be immune to NS1 protein in all vaccinated animals (including human (5) material line against all dengue-detoxification subtypes). reaction Amino acid sorghum shows in the Examples section how a person skilled in the art can vaccinate the NS1 protein or a portion thereof to induce an immune response to all of the Denga subtypes. A preferred embodiment, the huanghu sequence encodes the entire NS1. Briefly, in a preferred embodiment of the invention, the phylum comprises a sputum containing a mosquito-borne flavivirus NS1 or a portion thereof, wherein the flavivirus is preferably dengue fever, more preferably dengue fever. Viral subtype 2, and wherein the expression of the NS1 protein or a portion thereof is controlled by eukaryotic transcriptional regulatory elements. More preferably, the DNA of the present invention is NS1 protein in the form of a fusion protein having a saccharide signal sequence. Or part thereof.

本發明進—步提及包含有如本發明之DNA 之載體^術語,, 12 1336626 載體“意指任習知此藝人士知悉者。載體可以是諸如邠R322之 質體載趙或pUC系列之載體。更佳地,該載體是—病毒載體。 於本發明之内文中’術語,,病毒的載體“或“病毒載體,,意指包含 病毒基因組之感染性病毒。於此情況下,本發明之DNA是要被 選殖入該各別病毒載體之病毒基因組中。之後該重組的病毒基 因組被包裝起來,因此所獲得之重组載體可被用於感染細胞和 細胞株,特別是感染包括人類之動物的活體。如本發明之典型 的病毒載體是腺病毒载體、腸病毒載體或以腺相關之病毒 2(AAV2)為基礎之載體。最佳是痘病毒的載體。該痘病毒較佳 應是金絲雀痘病毒、家禽痘病毒或牛痘病毒。更佳的是經修飾 的牛痘病毒 Ankara(UVA) (Sutter, G 等人,[1994],Vaccine 12·· 1032-40)。典型之MVA品種是MVA 575,其已寄存在歐洲 動物細胞培養收集中心,寄存號碼為ECACC V00120707。更佳 的是MVA-BN或其衍生物,其已述於在2001年11月22日,由 申請人巴代利亞日耳曼民族研究院GmbH (Bavarian Nordic Research Institute GmbH),以”經修飾之牛殖Ankara病毒變 異體“為標題,於歐洲專利局提申之PCT申請案中。MVA-BN已 寄存於歐洲動物細胞培養收集中心中,寄存號碼為ECACC V00083008。籍由使用MVA-BN或其衍生物,額外的技術問題已 經解決,俾提供一可對抗黃病毒之特別安全的病毒疫苗,因為 已顯示出MVA-BN病毒載體是一完全減毒病毒,其衍生自經修 飾之牛痘Ankara病毒且其特徵在於失去其於人類細胞株中有 效複製的能力。由於缺少在人類中之複製能力,所以MVA-BN 比任何其它已知之牛痘病毒品種還安全。於較佳具體例中,本 13 1336626 發明有關一種含有如本發明之DNA的MVA-BN和MVA-ΒΝ衍生物 載體。MVA-BN之特徵、允許評詁是否MVA是MVA-BN或MVA-BN 之衍生物的生物分析的說明以及允許獲得MVA-ΒΝ或其衍生物 之方法顯示於以下說明部分與實施例3中》 術語病毒之M衍生物",如寄存號碼ECACC V00083008之病 毒的"衍生物"(即MVA-ΒΝ之衍生物),意指顯示至少一種該經 寄存品種之特徵,但在其基因組之一或多部分顯示差異之牛痘 病毒。較佳地,衍生物具有至少二個、更佳地衍生物具有至少 三個、更佳地具有下列四個MVA-ΒΝ之所有特徵。特別是,MVA-BN 之衍生物基本上具有與MVA-ΒΝ相同之複製特徵。與該寄存病 毒具相同“複製特徵’’之病毒意指,在CEF細胞與細胞株BHK、 HeLa、HaCat和143B中,具有與已寄存之品種相似擴增比率之 病毒,且當以AGR129基因轉殖老鼠模型偵測時,其在活體内 顯示相似之複製。MVA-ΒΝ之特徵如下: -能在雞胚胎纖維母細胞(CEF)與幼倉鼠腎細胞株BHK (ECACC 85011433)中有效複製,但在人類細胞株HaCat中無複 製能力(Boukamp 等人,1988, J Cell Biol· 106(3): 761-71), -無法在活體内複製, -相較於習知之MVA575(ECACC V00120707),在互刺激模 型中誘導較高之致免疫性和/或 -當相較於DNA-初次/牛痘病毒推升療法,在牛痘病毒初 次/牛痘病毒推升療法中誘導至少實質上相同位準之免疫力。 術語"無有效複製之能力"意指如本發明之病毒,在人類細 胞株HaCat中顯示少於1之複製率(Boukamp等人,1988, J Cell 14 1336626The present invention further refers to a carrier comprising the DNA of the present invention, and the term "13 1336626" means "known to those skilled in the art. The carrier may be a carrier of a plastid such as 邠R322 or a pUC series. Preferably, the vector is a viral vector. In the context of the present invention, the term 'viral vector' or 'viral vector' means an infectious virus comprising a viral genome. In this case, the DNA of the present invention is It is to be selected into the viral genome of the respective viral vector. The recombinant viral genome is then packaged, so that the obtained recombinant vector can be used to infect cells and cell lines, particularly living animals infected with humans. A typical viral vector according to the present invention is an adenovirus vector, an enterovirus vector or a vector based on adeno-associated virus 2 (AAV2). Preferably, it is a carrier of poxvirus. The poxvirus should preferably be gold wire. It is better to modify the vaccinia virus Ankara (UVA) (Sutter, G et al., [1994], Vaccine 12·· 1032-40). Typical MVA varieties It is MVA 575, which has been deposited at the European Animal Cell Culture Collection Center under the registration number ECACC V00120707. More preferably MVA-BN or its derivatives, which was described on November 22, 2001 by the applicant Bade The Belgian Nordic Research Institute GmbH, titled "Modified Bovine Ankara Virus Variant", is filed in the PCT application filed by the European Patent Office. MVA-BN has been deposited in European animals. In the cell culture collection center, the registration number is ECACC V00083008. By using MVA-BN or its derivatives, additional technical problems have been solved, and a special safe virus vaccine against the flavivirus is provided, as MVA- has been shown. The BN viral vector is a completely attenuated virus derived from the modified vaccinia Ankara virus and characterized by the loss of its ability to replicate efficiently in human cell lines. MVA-BN is less than any due to its lack of replication in humans. Other known vaccinia virus species are also safe. In a preferred embodiment, the present invention relates to MVA-BN and MVA-ΒΝ derivatives containing DNA according to the invention. Biological carrier. Characteristics of MVA-BN, a description of the bioanalysis that allows evaluation of whether MVA is a derivative of MVA-BN or MVA-BN, and a method allowing obtaining MVA-oxime or a derivative thereof are shown in the following description section and examples. "M" derivative of the term "virus", such as the "derivative" of the virus of the registration number ECACC V00083008 (ie, a derivative of MVA-ΒΝ), means to display at least one characteristic of the registered variety, but in One or more of its genomes show differential vaccinia virus. Preferably, the derivative has at least two, more preferably derivatives having at least three, more preferably all of the following four MVA-oximes. In particular, the derivative of MVA-BN has substantially the same replication characteristics as MVA-ΒΝ. The virus having the same "replication characteristics" as the registered virus means that in the CEF cells and cell lines BHK, HeLa, HaCat and 143B, there is a virus having a similar amplification ratio to the registered variety, and when the AGR129 gene is transferred When the rat model is detected, it shows similar replication in vivo. The characteristics of MVA-ΒΝ are as follows: - can be effectively replicated in chicken embryonic fibroblasts (CEF) and baby hamster kidney cell line BHK (ECACC 85011433), but No replication capacity in the human cell line HaCat (Boukamp et al., 1988, J Cell Biol 106(3): 761-71), - unable to replicate in vivo, - compared to the conventional MVA575 (ECACC V00120707), Induction of higher immunogenicity in a mutual stimulation model and/or induction of at least substantially the same level of immunity in vaccinia virus primary/vaccinia virus push-up therapy compared to DNA-primary/vaccinia virus push-up therapy The term "capability without effective replication" means a virus of the invention exhibiting a replication rate of less than 1 in the human cell line HaCat (Boukamp et al., 1988, J Cell 14 1336626).

Biol. 106(3): 761-71。較佳地,用作為本發明之載體之病毒 在人類細胞株HaCat中之擴增比率係0.8或更少。一病毒之“擴 增比率”係產生自一感染的細胞(輸出)的病毒相對於原來用於 在第一位置感染該細胞之數目(輸入)的比率(“擴增比率”)。介 於輸出與輸入間之比率為“1”定義為一擴增狀態,其中產生自該 感染的細胞之病秦的數目是相同於原來用於感染該細胞之數 目。此狀態暗示一個事實,即經感染的細胞容許病毒感染與病 毒複製。最佳的MVA載體,特別是MVA-BN和其衍生物,在HaCat 細胞中不會有效複製。詳言之,MVA-BN在人類胚胎腎細胞株 293 (ECACC No. 85120602)中所顯示之擴增比率為〇.〇5至 0· 2。於人類骨肉瘤細胞株143B (ECACC No. 91 112502)中,比 率係在0. 0至0. 6之範圍内。至於人類子宮頸腺瘤細胞株HeLa (ATCC No. CCL-2)和人類角質細胞細胞株HaCat (Boukamp等 人,1988,J Cell Biol. 106(3): 761-71),其等之擴增比率 各別在0. 04至0. 8和0. 02至0. 8之範圍内。MVA-BN在非洲綠 猴腎細胞(CV1: ATCC No. CCL-70)中之擴增比率為〇.〇1至 0. 06。因此’ MVA-BN於任何測試的人類細胞株中均不會有效的 複製。 MVA-BN在雞胚胎纖維母細胞(CEF··初代培養)或幼倉氣腎 細胞株BHK(ATCC No. CRL-1632)中之擴增比率明確地大於1。 如上之概述,大於“1”之比率意指有效地複製,因為相較於用於 感染細胞之病毒數目,從受感染的細胞產生之病毒數目增加 了。因此,病毒可很容易地以大於500之比率在cef初代培養 中’且以大於50的比率在BHK細胞中繁殖與擴增。 15 1336626 在定義MVA-ΒΝ的上下文中,術語“在活體内無法複製”意 指病毒無法在如下所述之人類與老鼠模型中複製。該“在活體内 無法複製”較佳地可在不能產生成熟B和T細胞之老鼠中決定。 此種老鼠之例子為基因轉殖老鼠模型AGR129 (獲自Mark Sutter,瑞士蘇黎世大學病毒研究所)。此老鼠品種在ifN受 體類型I (IFN-α/β)和類型II (IFN-γ)基因與RAG中具有基因 標的之苷擾。由於此等苷擾,該老鼠沒有IFN系統且無法產生 成熟的B和T細胞且就其本身而言係嚴重的免疫放棄以及高度 易受複製病毒的影響。除了 AGR129老鼠,任何其它無法產生B 和T細胞且就其本身而言係嚴重的免疫放棄以及高度易受複製 病毒的影響之老鼠品種均可使用。特別是,如本發明之病毒, 其在以腹内注射1〇7 pfu之病毒而感染AGR129老鼠後之至少 45天,更佳係60天,最佳是90天的期間内不會毒殺該老鼠。 較佳地,該等顯示“在活體内無法複製”之病毒的進一步特徵 為’在以腹内注射1〇7 pfu之病毒而感染AGR129老鼠後之45 天’更佳係60天,最佳是90天,沒有病毒可在該老鼠之器官 或組織中恢復。 根據致死刺激老鼠模型測得之結果,MVA-ΒΝ和其衍生物 較佳之特徵在於比已知之MVA 575品種具較高的致免疫性。於 此模型中,沒有接種疫苗之老鼠在以諸如西方儲備(Western Reserve)品種L929 TK+或IHD-J之能充分複製之牛痘品種感 染後死亡。以能充分複製之牛痘病毒感染即為於致死刺激模型 之說明中所稱之“刺激,,。在刺激四天後,老鼠通常會被毒殺且 在藉由使用VERO細胞來做標準斑分析時,可在卵巢中測得病 16 1336626 毒效價。測定在沒有接種疫苗之老鼠和以如本發明之痘病毒接 種疫苗之老鼠中之病毒效價。更明確地說,如本發明之病毒之 特徵為,於此測試中,在以102TCID5»/ml如本發明之病毒接種 後,於卵巢中之病毒效價相較於沒有接種之老鼠減少了至少 70%,較佳至少80%,更佳至少90%。 MVA-BN或其衍生物較佳特徵為,相較於以DNA-初次/牛痘 病毒推升療法,其於以牛痘病毒初次/牛症病毒推升療法中可 誘導至少實質上相同之免疫位準。相較於以DNA-初次/牛痘病 毒推升療法,設若以牛痘病毒初次/牛痘病毒推升療法,在下 列兩種分析法(,,分析法1“和,,分析法2“)之任一個,較佳係兩者 並行,中所測得之CTL反應係至少實質上相同時,則一牛痘病 毒被視為在相較於以D N A _初次/牛:座病毒推升療法,以牛:座病 毒初次/牛痘病毒推升療法可誘導至少實質上相同之免疫位 準。更佳的是,相較於DNA-初次/牛痘病毒推升療法,在施用 牛痘病毒初次/牛痘病毒推升後,以至少一種分析法測得之CTL 反應係較高的。最佳的是,CTL反應在下列兩種分析法中均較 高。分析法1:關於牛痘病毒初次/牛痘病毒推升投與法,藉由 腹内注射107 TCIDsd如本發明中會表現鼠類多面體之牛痘病毒 (述於 Thomson 等人,1988,J. Immunol. 160,1717)來初次-免疫8週大之BALB/c (H-2d)老鼠,且在三週之後施用相同方 式,相同數目之病毒來推升-免疫該老鼠。為此目的,去建構 一個會表現該多面體之重組牛痘病毒係必要的。建構此重組牛 痘病毒之方法係習於此技藝人士所知悉者,且於下文中詳細說 明之。進行DNA初次/牛痘病毒推升療法時,初次之接種係以 17 1336626 肌肉内注射該老鼠50 Mg會表現與牛痘病毒相同抗原之DNA的 方式來進行;以與牛痘病毒初次/牛痘病毒推升投與完全相同 之方法’來進行牛痘病毒的推升投與。於上文中所引述Th〇ms〇n 等人之公開案中,對表現多面體之_質體亦有說明。於兩個 療法中’對抗抗原決定位SYIPSAEKI、RPQASGVYM和/或 YPHFMPTNL的CTL反應之發展係在推升投與後的兩個星期進行 測定。CTL反應之測定較佳係使用Eusp〇T分析(述於Biol. 106(3): 761-71. Preferably, the virus used as the vector of the present invention has an amplification ratio of 0.8 or less in the human cell strain HaCat. The "expansion ratio" of a virus is the ratio of the number of viruses (inputs) generated from an infected cell (output) relative to the number (input) originally used to infect the cell at the first position ("amplification ratio"). A ratio of "1" between the output and the input is defined as an amplification state in which the number of diseased Qin derived from the infected cells is the same as the number originally used to infect the cells. This state implies the fact that infected cells allow viral infection and viral replication. The best MVA vectors, particularly MVA-BN and its derivatives, do not replicate efficiently in HaCat cells. In particular, MVA-BN showed an amplification ratio of 〇.〇5 to 0.2 in human embryonic kidney cell line 293 (ECACC No. 85120602). 0至范围内。 The human osteosarcoma cell line 143B (ECACC No. 91 112502), the ratio is in the range of 0. 0 to 0.6. As for human cervical adenoma cell line HeLa (ATCC No. CCL-2) and human keratinocyte cell line HaCat (Boukamp et al., 1988, J Cell Biol. 106(3): 761-71), amplification thereof The ratio is in the range of 0.04 to 0.8 and 0. 02 to 0.8. The amplification ratio of MVA-BN in African green monkey kidney cells (CV1: ATCC No. CCL-70) was 〇.〇1 to 0.06. Therefore, 'MVA-BN does not replicate efficiently in any of the tested human cell lines. The amplification ratio of MVA-BN in chicken embryonic fibroblasts (CEF··primary culture) or juvenile gas kidney cell line BHK (ATCC No. CRL-1632) was clearly greater than 1. As outlined above, a ratio greater than "1" means efficient replication because the number of viruses produced from infected cells is increased compared to the number of viruses used to infect cells. Therefore, the virus can be easily propagated and expanded in BHK cells at a ratio of greater than 500 in the primary culture of cef' and at a ratio greater than 50. 15 1336626 In the context of defining MVA-ΒΝ, the term “unable to replicate in vivo” means that the virus cannot replicate in human and mouse models as described below. The "unable to replicate in vivo" is preferably determined in mice that are unable to produce mature B and T cells. An example of such a mouse is the genetically transgenic mouse model AGR129 (available from Mark Sutter, University of Zurich, Viral Research Institute). This mouse cultivar has a genotypic interference with the gene in the ifN receptor type I (IFN-α/β) and type II (IFN-γ) genes and RAG. Due to these glucosides, the mouse lacks the IFN system and is unable to produce mature B and T cells and is itself a serious immune abandonment and highly susceptible to replicating virus. In addition to AGR129 mice, any other mouse species that are unable to produce B and T cells and are severely immune to their own and highly susceptible to replicating viruses can be used. In particular, the virus according to the present invention does not poison the mouse for at least 45 days, preferably 60 days, preferably for a period of 90 days after infecting AGR129 mice by intraperitoneal injection of 1 〇 7 pfu of virus. . Preferably, the virus exhibiting "unable to replicate in vivo" is further characterized as '45 days after infection of AGR129 mice by intraperitoneal injection of 1〇7 pfu of virus', preferably 60 days, preferably At 90 days, no virus recovered in the organs or tissues of the mouse. MVA-ΒΝ and its derivatives are preferably characterized by a higher immunogenicity than the known MVA 575 varieties, as measured by a lethal-stimulated mouse model. In this model, mice that were not vaccinated died after being infected with a vaccinia variety that was fully replicated, such as the Western Reserve variety L929 TK+ or IHD-J. The fully vaccinated vaccinia virus infection is called "stimulation" in the description of the lethal stimulation model. After four days of stimulation, the mice are usually poisoned and used for standard speckle analysis by using VERO cells. The virulence titer of the disease 16 1336626 can be measured in the ovary. The virus titer in the non-vaccinated mouse and the mouse vaccinated with the poxvirus of the present invention is determined. More specifically, the virus according to the present invention is characterized by In this test, after inoculation with 102TCID5»/ml of the virus of the present invention, the virus titer in the ovary is reduced by at least 70%, preferably by at least 80%, more preferably by at least 90% compared to the non-vaccinated mouse. MVA-BN or a derivative thereof is preferably characterized in that it induces at least substantially the same immunity in vaccinia virus primary/bovine virus boost therapy as compared to DNA-primary/vaccinia virus push-up therapy. In comparison with the DNA-primary/vaccinia virus push-up therapy, if the vaccinia virus primary/vaccinia virus push-up therapy is used, the following two methods are used (, analysis method 1 ", and, analysis method 2") Any one, preferably In parallel, when the CTL reaction measured in the system is at least substantially the same, then a vaccinia virus is considered to be compared to the DNA_primary/bovine: viral boost therapy, and the bovine viral first time/vaccinia Viral push therapy induces at least substantially the same level of immunity. More preferably, at least one assay is performed after the vaccinia virus primary/vaccinia virus is boosted compared to the DNA-primary/vaccinia virus push-up therapy. The CTL response was higher. Best, the CTL response was higher in the following two assays. Analytical method 1: For vaccinia virus primary/vaccinia virus push-up administration, by intra-abdominal injection 107 TCIDsd, as in the present invention, will display a murine polyhedrin vaccinia virus (described in Thomson et al., 1988, J. Immunol. 160, 1717) for the first time - immunization of 8 week old BALB/c (H-2d) mice, and After three weeks, the same way, the same number of viruses were used to boost-immunize the mouse. For this purpose, it is necessary to construct a recombinant vaccinia virus system that expresses the polyhedron. Known by the skilled person, and As described in detail below, when the DNA primary/vaccinia virus push-up therapy is performed, the initial inoculation is performed by intramuscular injection of the mouse, and the 50 mg of the mouse exhibits the same antigen as the vaccinia virus; / Vaccinia virus pushes up the same method to carry out the promotion of vaccinia virus. In the disclosure of Th〇ms〇n et al. cited above, the plastid of the polyhedron is also explained. The development of the CTL response to the anti-antigenic epitopes SYIPSAEKI, RPQASGVYM and/or YPHFMPTNL in both therapies was measured two weeks after the boosted administration. Preferably, the determination of the CTL reaction is performed using Eusp〇T (described in

Schneider 等人,1998,Nat. Med. 4,397-402 申)來進行, 且在下列實例部分中概述一種如本發明之特定病毒。如本發明 之病毒的特徵在於此實驗中,當以產生ΙΡΝ_γ之細胞數目/1〇6 脾細胞來評估時,由牛痘病毒初次/牛痘病毒推升投與所引 起,對抗於上所提及之抗原決定位的CTL免疫反應實質上,較 佳至少與由DNA初次/牛痘病毒推升投與所引起的相同(亦可見 實驗部分)。分析法2:此分析法基本上對應於分析法1。然而, 代替如分析法1中靜脈内投與1〇7 TCIDm牛痘病毒,於此分析 法中係以皮下投與1〇8 TCIDsd如本發明之牛痕病毒來供用於初 次免疫和推升免疫。如本發明之病毒的特徵在於此實驗中,當 以產生IFN-γ之細胞數目Λ〇6脾細胞來評估時,對抗於上所提 及由牛癌·病毒初次/牛癌·病毒推升投與所引起之抗原決定位的 CTL免疫反應實質上,較佳至少與由dna初次/牛痘病毒推升投 與所引起的相同(亦可見實驗部分)。 對於如何獲得具有如上所示之MVA-BN和其衍生物之特性 係習於此技藝人士所熟知者:欲獲得此一病毒之方法可包含下 列步驟: 18 1336626 -引入一個已知之牛痘病毒品種’較佳是MVA 574或MVA 575 (ECACC V00120707)至於其中該病毒能夠有效的複 製之非人類細胞中,其中該非人類細胞較佳係選自於 CEF細胞和細胞株BHK, -分離/豐富來自該等細胞之病毒粒子,以及 -分析所獲得之病毒是否具有至少一種如上所所欲之生 物特性, 其中上述之步驟可任擇地重覆,直至獲得一具有所欲複製 特徵之病毒。 有關將如本發明之DNA插入痘病毒DNA中之方法以及獲 付重組癌病毒之方法是習於此技藝人士所熟知者。在一重組牛 痘病毒中,如本發明之DNA的表現較佳是在痘病毒起動子,更 佳是牛痘病毒起動子之轉錄控制下,但並不是絕對的。如本發 明之DNA較佳是插入病毒基因組之非-必要區域。於本發明之 另-個較佳具體例中,異源的核酸序列被插置在MVA基因組中 自然發生缺失的位置(揭示於pCT/Ep96/〇2926中)。 簡言之,本發明之最佳具體例係提供一種包含有如本發明 之DNA的載體,其中該載體是MVA BN或其衍生物且其中如本 發明之DNA包含-編碼登革熱病毒,特別是登革熱病毒血清類 型2之NS1蛋白或其部分之表現卡匣。 於一較佳具體例中’本發明係有關由如本發明之DNA或如 本發明之載體所編碼之NS1蛋白或其部分。對於本發明之眼 或其部分之定義,參照此說明書上文部分,其中本發明之D N A已 藉由該DNA表現的產物來定義。因此,下列有關如本發明之蛋 19 1336626 白質的簡要說明並不會被視為本發明之限制。簡言之如本發 明之蛋白質可以是一個由任何黃病毒所編碼之經分離的NS1蛋 白或其部分。該NS1蛋白或其部分較佳係衍生自—登革熱病 毒、更佳疋街生自登革熱病毒亞型2。本發明之蛋白質可能僅 包含一病毒NS1蛋白之胺基酸序列。於一較佳具體例中,該nsi 蛋白可能包含額外的胺基酸,其於該蛋白質之有效的表現上是 必要的。該胺基酸/胺基酸序列之例子已示於上文中且在蛋 白質的N端包括一個由被加入之ATG密碼子所蝙碼之甲硫氨 酸,以及一個自該E-蛋白之C-終端衍生之胺基酸序列,其作 用為一用於糖化本發明之蛋白質的訊號序歹,卜其它訊號序列亦 包含於本發明之範圍内。於一任擇的具體例中,該NS1胺基酸 序列或其部分可被融合至其它蛋白/胜肽。融合的夥伴之例子 係允許蛋白的鑑定之序列,諸如tag或其它黃病毒蛋白質或其 部分。 於一較佳具體例中,本發明係有關作為疫苗之本發明的 DNA、載體或NS1蛋白或其部分。”疫苗“是一種化合物即會誘 導特定反應之DNA、蛋白質、載體或病毒。 根據一任擇的具體例,本發明之”疫苗“係根據—登革熱病 毒NS1蛋白或其一部分,其誘導對抗所有登革熱病毒亞型之n幻 蛋白之免疫反應。特別是已顯示出,登革熱病毒亞型之NS1蛋 白,特肢亞型2,會誘導產生-種對抗所有登革熱病毒亞型 之NS1蛋白之免疫反應,較佳亦可對抗其它經蚊子傳播之,病 毒。 如上所述,本發明之發明人發現,本發明之黃病毒之N幻 20 1336626 蛋白或其部分會誘導產生對抗其它黃病毒之NS1蛋白之免疫反 應。如上所指’“黃病毒,,較佳係經蚊子傳播之黃病毒。換言之, 本發明之發明人發現,於本案-任擇的具雜例中如本發明之Schneider et al., 1998, Nat. Med. 4, 397-402, and a specific virus of the present invention are outlined in the Examples section below. The characteristics of the virus according to the present invention, in this experiment, are evaluated by the vaccinia virus primary/vaccinia virus boosting administration when evaluated by the number of cells producing ΙΡΝ_γ/1 〇 6 spleen cells, against the above mentioned The CTL immune response of the epitope is substantially the same as that caused by the initial administration of the DNA/vaccinia virus (see also the experimental part). Analytical Method 2: This analysis basically corresponds to Analytical Method 1. However, instead of intravenously administering 1〇7 TCIDm vaccinia virus as in Analytical Method 1, a 〇8 TCIDsd, such as the bovine mark virus of the present invention, is administered subcutaneously for primary immunization and boosting immunization. The characteristics of the virus according to the present invention, in this experiment, when evaluated by the number of cells producing IFN-γ Λ〇6 spleen cells, against the above mentioned bovine cancer virus primary/bovine cancer virus boost The CTL immune response to the epitope that is caused is substantially the same as that caused by the promotion of the dna primary/vaccinia virus (see also the experimental part). It is well known to those skilled in the art how to obtain the properties of MVA-BN and its derivatives as indicated above: The method for obtaining this virus may comprise the following steps: 18 1336626 - Introduction of a known vaccinia virus variety' Preferably, MVA 574 or MVA 575 (ECACC V00120707) is in a non-human cell in which the virus is capable of efficient replication, wherein the non-human cell is preferably selected from CEF cells and cell line BHK, - isolated/rich from such The virions of the cells, and - whether the virus obtained by the assay has at least one biological property as desired above, wherein the steps described above can optionally be repeated until a virus having the desired replication characteristics is obtained. Methods for inserting a DNA of the present invention into poxvirus DNA and methods for administering a recombinant cancer virus are well known to those skilled in the art. In a recombinant vaccinia virus, the performance of the DNA of the present invention is preferably under the transcriptional control of a poxvirus promoter, preferably a vaccinia virus promoter, but is not absolute. Preferably, the DNA of the present invention is inserted into a non-essential region of the viral genome. In another preferred embodiment of the invention, the heterologous nucleic acid sequence is inserted at a position in the MVA genome where deletion occurs naturally (disclosed in pCT/Ep96/〇2926). Briefly, a preferred embodiment of the invention provides a vector comprising a DNA according to the invention, wherein the vector is MVA BN or a derivative thereof and wherein the DNA according to the invention comprises - encoding a dengue virus, in particular a dengue virus The performance of serotype 2 NS1 protein or a portion thereof is defective. In a preferred embodiment, the invention relates to an NS1 protein or a portion thereof encoded by a DNA according to the invention or a vector according to the invention. For the definition of the eye or a part thereof of the present invention, reference is made to the above section of the specification, wherein the D N A of the present invention has been defined by the product represented by the DNA. Accordingly, the following brief description of the white matter of the egg 19 1336626 according to the present invention is not to be considered as a limitation of the present invention. Briefly, the protein of the present invention may be an isolated NS1 protein or a portion thereof encoded by any flavivirus. Preferably, the NS1 protein or portion thereof is derived from a dengue virus, and more preferably from the dengue virus subtype 2. The protein of the invention may comprise only the amino acid sequence of a viral NS1 protein. In a preferred embodiment, the nsi protein may comprise additional amino acids which are necessary for efficient expression of the protein. Examples of the amino acid/amino acid sequence are shown above and include a methionine at the N-terminus of the protein from the tarcode of the ATG codon to which it is added, and a C- from the E-protein. The terminal-derived amino acid sequence functions as a signal sequence for saccharifying the protein of the present invention, and other signal sequences are also included in the scope of the present invention. In an optional embodiment, the NS1 amino acid sequence or a portion thereof can be fused to other proteins/peptides. Examples of fused partners are sequences that allow for the identification of proteins, such as tags or other flavivirus proteins or portions thereof. In a preferred embodiment, the invention relates to a DNA, vector or NS1 protein or a portion thereof of the invention as a vaccine. A "vaccine" is a compound that is a DNA, protein, vector or virus that induces a specific response. According to an optional embodiment, the "vaccine" of the present invention is based on the dengue virus NS1 protein or a portion thereof which induces an immune response against all n-type proteins of dengue virus subtypes. In particular, it has been shown that the NS1 protein of the dengue virus subtype, the specific subtype 2, induces an immune response against the NS1 protein of all dengue virus subtypes, preferably against other mosquito-transmitted viruses. . As described above, the inventors of the present invention have found that the N-magic 20 1336626 protein of the flavivirus of the present invention or a portion thereof induces an immune reaction against the NS1 protein of other flaviviruses. As the above, "the flavivirus, preferably a mosquito-borne flavivirus. In other words, the inventors of the present invention have found that in the present case - the optional heterogeneous example is the present invention.

經蚊子傳播之黃病毒的NS1蛋白或其部分,會绣導產生一種對 抗衍生成疫苗之經蚊子傳播之黃病毒的脱蛋“及對抗其它 經蚊子傳狀黃病毒的免歧應。因此,衍生自較子傳播之 黃病毒之疫苗可用作為對抗—或多種經蚊子傳播 疫苗。術語“衍生自黃病毒之載體”或於本文中相似之術語音指 如上所指包含本發明之嶋之載體(如疫病毒載體或質體)。因 此,此術語意指載體鑲嵌物而不是載體骨架。“衍生自黃病毒之 載體”之例子為諸如MVA之痙病毒載體,其包含—表現n 表現卡£包含4病毒起動子、一編碼黃病毒NS1蛋白或其= 分之序列’其中該編碼有黃病毒脱蛋白或其部分之序列之前 加上一挪密瑪子和—蝙碼糖化訊號序列之序列以及其中顿 碼序例之終端為一轉譯之終止密碼子。The NS1 protein or part of the mosquito-borne flavivirus, which embres to produce a mosquito against the mosquito-borne flavivirus derived from the vaccine, and the anti-aliasing against other transgenic mosquito-like flaviviruses. A vaccine derived from a relatively spreader of flavivirus may be used as a counter- or a plurality of mosquito-borne vaccines. The term "a vector derived from a flavivirus" or a similar term herein refers to a vector comprising the purine of the present invention as indicated above (eg ELISA virus vector or plastid. Thus, the term means a vector inlay rather than a vector backbone. An example of a "vector derived from a flavivirus" is a prion vector such as MVA, which contains - the expression n represents a card containing 4 a viral promoter, a sequence encoding a flavivirus NS1 protein or a fragment thereof, wherein the sequence encoding the deproteinized portion of the flavivirus or a portion thereof is preceded by a sequence of a Norma and a squaring saccharification signal sequence and a sequence thereof The terminal of the code sequence is a translation stop codon.

因此’具本發明之_ ’載體或脱蛋白之 可對抗廣泛黃祕歧少黃鱗亞型之單—次單元疫 此’编碼來自黃病毒或黃病毒亞型之脱蛋白或其部分的疆 或載趙,或者疋來自該黃病毒或亞型之奶ι *白或 分別作為對抗其它黃縣和黃病“狀 登革熱病毒亞型2之疫苗可作為對抗亞型卜3和^及對抗 亞型2之疫苗。其更可用认彳。 丁机 飞用於保護一個體來對抗諸如西 毒之其它黃病毒。 、维'可病 於一較佳具體例中 本發明之DNA被作成疫苗。投與含有 21 1336626 本發明之真核生物表現卡E之裸露的臟,特別是肌肉内注射 DNA,可導致由該表現卡£所編碼之蛋白質的表現,此為熟悉 此技藝人士所知悉者。該蛋白曝露於免疫系統,且產生一特定 之免疫反應。 於-任擇的具體例中,疫苗之接種係藉由投與本發明之載 體’特別S病毒載體’更佳是€病毒載體,最佳是核病毒栽 體如MVA載體來進行。 在以牛痘病毒為基礎之疫苗的製備方面,本發明之病毒被 轉換成生理可接受之型式。此製備係根據在製備用於對抗天花 之痘病毒疫苗之經驗來進行。(述於Stickl, H. enriching, [1974] Dtsch· med. Wschr. 99,2386-2392)。例如,將經純 化之病毒儲存在-80〇C’以5xl08TCID5〇/ml之效價配方於約1〇mM 二經甲基氨基曱烧(Tris)、140 mM NaCl pH 7. 4中。在製備疫 苗劑方面,如1〇2 -108個病毒粒子在1〇〇 ml,存在有2%蛋白 腺和1 %人類白蛋白之磷酸鹽緩衝的食鹽水(PBS)中被凍乾於安 瓿中,較佳是玻璃安瓿。任擇地,該疫苗劑可以逐步冷凍乾燥 配方中之病毒來產生。此配方可包含諸如甘露醇、葡萄聚糖、 糖、甘氨酸、乳糖或聚乙烯吡咯烷酮之額外的添加物或諸如抗 氧化劑或惰性氣體、安定劑或適合活體内投與之蛋白質(如人 類血清蛋白)之其它添加物。之後將玻璃安瓿密封且其可儲存 於4°C和室溫之下數個月。然而,只要無必要存在時,安银較 佳係儲放於低於-20。(:之溫度下。接種時,將可該凍乾物溶於 0.1至0· 5毫升之液態溶液中,較佳是生理食鹽水或緩衝 液,以全身性或局部投與,即藉由非口服、肌肉内或其它從業 22 1336626 人士已知之投與方式投與。投與模式、劑量和投與之數目可由 熟悉此技藝人士予以最佳化。痘病毒載體之最佳投與方式是皮 下或肌肉内投與。 設若該疫苗是包含本發明之DNA的MVA-ΒΝ載體或其珩生 物,則本發明之一特定具體例係有關一種疫苗套組,該套組包 含本發明之MVA-DN病毒載體,其供用於第一小玻璃瓶/容器中 1 之第一接種疫苗初次“)以及於第二小玻璃瓶/容器中之第二 接種疫苗(,,推升“)。 • 設若該疫苗是包含本發明之DNA的MVA-BN載體或其珩生 物,則本發明之一特定具體例係有關在第一次接種時(“初次接 種”)與第二次接種時(“推升接種”)投與一治療有效量之疫苗 因此在疫苗具體例中,本發明係有關一種包含本發明之 DMA、載體或NS1蛋白或其部分之疫苗,以及該DNA、疫苗或蛋 白質用於製備疫苗之用途。根據較佳具體例,本發明係有關該 DNA、疫苗或蛋白質用於製備疫苗之用途,其中該NS1蛋白或 其部分、由該DNA或該載體編碼之NS1蛋白質或其部分係來自 ® 一種登革熱亞型,以及其中該DNA、該載體或該NS1蛋白或其 部分被用作為對抗所有登革熱病毒亞型之疫苗。最佳之登革熱 病毒亞型係亞型2。 ' 本發明更有關一種用於治療或預防黃病毒感染之方法,其 • 包含於包括人類之需要治療或預防黃病毒感染的動物身上接 種如上述之DNA、如上述之載體或如上述之NS1蛋白或其部分。 特別地,本發明係有關一種如上述之方法,其中該NS1蛋白或 其部分或由該DNA或該載體編碼之NS1蛋白或其部分係來自一 23 1336626 種登革熱病毒亞型,且其中該DNA、該載體或該NS1蛋白或其 部分被用作為對抗所有登革熱亞型之疫苗。 本發明之簡要說明 一種DNA,其包含一編碼有至少一種黃病毒NS1蛋白或其部 分之表現卡匣。 如上述之DNA,其中該表現卡匣包含真核生物轉錄調節要素 和編碼一種黃病毒NS1蛋白或其部分之序列。 如上述之DNA,其中該編碼黃病毒之NS1蛋白或其部分之序 列之前面加上一 ATG密碼子和一編碼糖化訊號序列之序列,以 及其中該編碼序列係以一轉譯之終止密碼子結束。 如上述之DNA,其中該真核生物之轉錄調節要素係痕病毒起 動子。 如上述之DNA,其中該黃病毒係一種經蚊子傳播之黃病毒。 如上述之DNA,其中該黃病毒係登革熱病毒。 如上述之DNA,其中該登革熱病毒係登革熱病毒亞型2。 一種載體,其包含如上述之DNA。 如上述之載體,其中該載體係一痘病毒載體。 如上述之載體,其中該痘病毒係一牛痘病毒,特別是經修 飾的牛痘病毒Ancara (MVA)。 MVA-BN 或其衍生物,特別是 MVA 575 (ECACC V00120707), 最佳是 MVA-BN (V00083008)。 一種NS1蛋白或其部分,其由如上述DNA或如上述載體所 編碼。 如上述之DNA,如上述之載體或如上述之NS1蛋白係作為疫 24 苗。 如上述之DNA、載體或NS1蛋白,其中該NS1蛋白或其部分 或由該DNA或該載體所編碼之NS1蛋白或其部分係來自一種經 蚊子傳播之黃病毒,其中該DNA、該載體、該NS1蛋白或其部 分被用作為一種對抗衍生成疫苗(即該DNA、該載體或該NS1或 其部分)之經蚊子傳播之黃病毒或對抗其它經蚊子傳播的黃病 毒之疫苗。 如上述之DNA、載體或NS1蛋白,其中該NS1蛋白或其部分 或由該DNA或該載體所編碼之NS1蛋白或其部分係來自一種登 革熱病毒亞型,其中該DNA、該載體、該NS1蛋白或其部分被 用作為一種對抗所有登革熱病毒亞型之疫苗。較佳地衍生成該 疫苗之登革熱病毒係登革熱病毒亞型2。 一種疫苗,其包含如上述之DNA,如上述之載體、如上述之 NS1蛋白。 一種如上述之DNA,如上述之載體、如上述之NS1蛋白之用 途,供用於製備疫苗。 如上述之用途,其中該NS1蛋白或其部分或由該DNA或該 載體所編碼之NS1蛋白或其部分係來自一種登革熱病毒亞型, 其中該DMA、該載體、該NS1蛋白或其部分被用作為一種對抗 所有登革熱病毒亞型之疫苗。 如上述之用途,其中該NS1蛋白或其部分或由該DNA或該 載體所編碼之NS1蛋白或其部分係來自一種經蚊子傳播之黃病 毒,其中該DNA、該載體或該NS1蛋白或其部分被用作為一種 對抗衍生成疫苗(即該DNA、該載體或該NS1或其部分)之經蚊 25 子傳播的黃病毒以及對抗其它經蚊子傳播的黃病毒之疫苗。 —種用於治療或預防一黃病毒感染之方法,其包含接種如 上述之DNA,如上述之載體、如上述之NS1蛋白或其部分至一 需要治療或預防該黃病毒感染之動物,包括人類。 如上述之方法,其中該NS1蛋白或其部分或由該DNA或該 載體所編碼之NS1蛋白或其部分係來自一種登革熱病毒亞型, 其中4 DNA、s玄載體、;|玄NS1蛋白或其部分被用作為一種對抗 所有登革熱病毒亞型之疫苗。 如上述之用途,其中該NS1蛋白或其部分或由該ΜΑ或該載 體所編碼之NS1蛋白或其部分係來自—種經蚊子傳播之黃病 毒,其中該DNA、該載體或該邶丨蛋白或其部分被用作為一種對 抗衍生成疫苗(即該DNA、該載體或該NS1或其部分)之經蚊子傳 播的黃病毒以及對抗其它經蚊子傳播的黃病毒之疫苗。 實施例 下列之實施例將可進一步例示本發明。其等由熟悉該項技 藝者充分了解。所提供之實施例不可被解釋成,本發明所提供 之技術的實施限於此等實施例。 實施例1: mBN07之構成 L NS1抗原之詳細說明(第1圖) 此實施列關於來自新天竺老鼠c品種_NGC品種(例如:基 因庫序列AF038403)之血清類型2的NSI。因為黃病毒之nsi 蛋白係被產生成多蛋白前體的部分,因此在對應DNA方面該 NS1基因之前面不是”ATG‘‘起始密碼子。 因此’編碼該NS1蛋白之CDNA序列必須加上一"ATG"起始 26 1336626 密碼子。之後接著加上一訊號序列,藉此新合成的Ns!蛋白在 内質網中會被糖化。最後,該蛋白質-編码卡匣需要一個終止 密碼子且在此貫施例中,TAG係加在該蛋白質編碼cDNA序列的 3’終端。用於本發明之實施例中之"ATG+訊號序列"要素係來自 E蛋白質的疏水性c-終端(至少28個胺基酸,對NGC品種而言 係胺基酸M(ATG)起始)。 第1A圖顯示作為本發明之實施例之精確的訊號序列+NS1 序列(亦可參見序列編號5和6)。該“訊號序列+NS1”核苷酸編 碼序列係藉由使用下列之引子,以RT-PCR擴增來自登革熱NGC RNA基因組而得: D2NS卜1上面: 5’ -ACA^^rCTGAATGAATTCACGTAGCACCTCA-3,(序列编號 4) 斜體字部分:Bgl II内切限制酶辨識位置。 在下面劃線的是起始密碼子。 D2NS卜2下面: 5’ -AAT^^7C7CTACTAGGCTGTGACCAAGGAGTT-3,(序列編號 3) 斜體子部分:Bgl II内切限制酶辨識位置。 在下面劃線的是終止密碼子。 依製造業者所建議之儀器,該RT-PCR擴增可使用來自Therefore, the single-subunit disease with the 'vector' or the deproteinized protein that can counteract the broad yellow-skinned subtypes of the yellow scales encodes the de-protein or part of the flavivirus or flavivirus subtype. Zhao, or 疋 from the yellow virus or subtype of milk ι * white or as a vaccine against other Huangxian and yellow disease "like dengue virus subtype 2 can be used as anti-subtype 3 and ^ and anti-subtype 2 Vaccine. It is more usable. Ding Jifei is used to protect one body against other flaviviruses such as western poison. Wei's disease In a preferred embodiment, the DNA of the present invention is made into a vaccine. 1336626 The exposed viscera of the eukaryotic expression card E of the present invention, particularly intramuscular injection of DNA, can result in the performance of the protein encoded by the performance card, as is known to those skilled in the art. The immune system, and produces a specific immune response. In the specific example, the vaccine is vaccinated by administering the vector of the present invention 'special S virus vector', preferably a viral vector, preferably a nuclear virus. The carrier is like MVA The virus of the present invention is converted into a physiologically acceptable form in the preparation of a vaccine based on vaccinia virus. This preparation is based on the experience in preparing a poxvirus vaccine against smallpox. In Stickl, H. enriching, [1974] Dtsch· med. Wschr. 99, 2386-2392). For example, the purified virus is stored at -80 ° C ' at a potency of 5 x 108 TCID 5 〇 / ml at about 1 〇 mM di-methylamino oxime (Tris), 140 mM NaCl pH 7.4. In the preparation of vaccines, such as 1 〇 2 - 108 virions in 1 〇〇 ml, there are 2% protein glands and 1 % human albumin phosphate buffered saline (PBS) is lyophilized in ampoules, preferably glass ampoules. Optionally, the vaccine can be produced by gradual freeze-drying of the virus in the formulation. Additional additives such as mannitol, dextran, sugar, glycine, lactose or polyvinylpyrrolidone or other additives such as antioxidants or inert gases, stabilizers or proteins suitable for in vivo administration (eg human serum proteins) After the glass The ampoule is sealed and can be stored at 4 ° C and room temperature for several months. However, as long as it is not necessary, An Yin is better stored at a temperature below -20. (: at the time of inoculation, it will be The lyophilizate is dissolved in a liquid solution of 0.1 to 0.5 ml, preferably a physiological saline solution or a buffer, for systemic or topical administration, that is, by non-oral, intramuscular or other practitioners known as 22 1336626 Administration of administration mode. The number of administration modes, dosages and administrations can be optimized by those skilled in the art. The optimal administration of poxvirus vectors is subcutaneous or intramuscular administration. A specific embodiment of the present invention relates to a vaccine kit comprising the MVA-DN viral vector of the present invention for use in a first vial/container The first vaccination of the first vaccination in the first ") and the second vaccination in the second small glass bottle / container (,, push "". • If the vaccine is an MVA-BN vector comprising the DNA of the present invention or a purine thereof, a specific specific example of the present invention relates to the first vaccination ("primary vaccination") and the second vaccination (" Pushing a Vaccination") administering a therapeutically effective amount of the vaccine. Thus, in a particular embodiment of the vaccine, the invention relates to a vaccine comprising a DMA, vector or NS1 protein of the invention or a portion thereof, and the DNA, vaccine or protein is used The use of a vaccine. According to a preferred embodiment, the invention relates to the use of the DNA, vaccine or protein for the preparation of a vaccine, wherein the NS1 protein or a portion thereof, the NS1 protein encoded by the DNA or the vector, or a portion thereof, is derived from a dengue. Type, and wherein the DNA, the vector or the NS1 protein or a portion thereof is used as a vaccine against all dengue virus subtypes. The best dengue virus subtype is subtype 2. The present invention relates to a method for treating or preventing a flavivirus infection, which comprises vaccinating an animal, such as the above-mentioned vector or the NS1 protein as described above, in an animal including a human in need of treatment or prevention of flavivirus infection. Or part thereof. In particular, the invention relates to a method as described above, wherein the NS1 protein or a portion thereof or the NS1 protein encoded by the DNA or the vector or a portion thereof is derived from a 23 1336626 dengue virus subtype, and wherein the DNA, The vector or the NS1 protein or a portion thereof is used as a vaccine against all dengue subtypes. BRIEF DESCRIPTION OF THE INVENTION A DNA comprising a performance cassette encoding at least one flavivirus NS1 protein or a portion thereof. A DNA as described above, wherein the expression cassette comprises a transcriptional regulatory element of eukaryotes and a sequence encoding a flavivirus NS1 protein or a portion thereof. A DNA according to the above, wherein the sequence encoding the NS1 protein of the flavivirus or a portion thereof is preceded by an ATG codon and a sequence encoding a glycation signal sequence, and wherein the coding sequence ends with a translated stop codon. A DNA as described above, wherein the transcription regulating element of the eukaryotic organism is a trace virus promoter. A DNA as described above, wherein the flavivirus is a mosquito-borne flavivirus. A DNA as described above, wherein the flavivirus is a dengue virus. DNA as described above, wherein the dengue virus is a dengue virus subtype 2. A vector comprising the DNA as described above. A vector as described above, wherein the vector is a poxvirus vector. A vector as described above, wherein the poxvirus is a vaccinia virus, in particular a modified vaccinia virus Ancara (MVA). MVA-BN or its derivatives, especially MVA 575 (ECACC V00120707), preferably MVA-BN (V00083008). An NS1 protein or a portion thereof, which is encoded by DNA as described above or as described above. The DNA as described above, such as the above vector or the NS1 protein line as described above, is used as the vaccine. A DNA, vector or NS1 protein as described above, wherein the NS1 protein or a portion thereof or the NS1 protein encoded by the DNA or the vector or a portion thereof is derived from a mosquito-borne flavivirus, wherein the DNA, the vector, the DNA The NS1 protein or a portion thereof is used as a vaccine against a mosquito-borne flavivirus derived from a vaccine (i.e., the DNA, the vector or the NS1 or a portion thereof) or against other mosquito-borne flaviviruses. A DNA, vector or NS1 protein as described above, wherein the NS1 protein or a portion thereof or the NS1 protein encoded by the DNA or the vector or a portion thereof is derived from a dengue virus subtype, wherein the DNA, the vector, the NS1 protein Or a portion thereof is used as a vaccine against all dengue virus subtypes. The dengue virus-based dengue virus subtype 2 is preferably derived from the vaccine. A vaccine comprising DNA as described above, such as the vector described above, such as the NS1 protein described above. A DNA such as the above, such as the above-described vector, such as the above-described NS1 protein, is used for the preparation of a vaccine. The use as described above, wherein the NS1 protein or a portion thereof or the NS1 protein encoded by the DNA or the vector or a portion thereof is derived from a dengue virus subtype, wherein the DMA, the vector, the NS1 protein or a portion thereof is used As a vaccine against all dengue virus subtypes. The use as described above, wherein the NS1 protein or a portion thereof or the NS1 protein encoded by the DNA or the vector or a portion thereof is derived from a mosquito-borne flavivirus, wherein the DNA, the vector or the NS1 protein or a portion thereof It is used as a flavivirus 25-transmitted flavivirus against a derivative vaccine (ie, the DNA, the vector or the NS1 or a portion thereof) and a vaccine against other mosquito-borne flaviviruses. A method for treating or preventing a flavivirus infection, comprising vaccinating a DNA as described above, such as the above vector, the NS1 protein as described above or a part thereof to an animal in need of treatment or prevention of the flavivirus infection, including human . A method according to the above, wherein the NS1 protein or a portion thereof or the NS1 protein encoded by the DNA or the vector or a part thereof is derived from a dengue virus subtype, wherein 4 DNA, s-negative vector,; Partially used as a vaccine against all dengue virus subtypes. The use as described above, wherein the NS1 protein or a portion thereof or the NS1 protein encoded by the sputum or the vector or a part thereof is derived from a mosquito-borne flavivirus, wherein the DNA, the vector or the prion protein or It is used in part as a mosquito-borne flavivirus against a derivative vaccine (ie, the DNA, the vector or the NS1 or a portion thereof) and a vaccine against other mosquito-borne flaviviruses. EXAMPLES The following examples will further illustrate the invention. They are fully understood by those familiar with the art. The embodiments provided are not to be construed as limiting the implementation of the techniques provided herein to such embodiments. Example 1: Composition of mBN07 Detailed description of L NS1 antigen (Fig. 1) This example relates to NSI of serotype 2 from the Scorpio mouse c variety _NGC variety (e.g., gene library sequence AF038403). Since the nsi protein of the flavivirus is produced as part of a polyprotein precursor, the NS1 gene is not preceded by the "ATG" start codon in terms of the corresponding DNA. Therefore, the 'CDNA sequence encoding the NS1 protein must be added "ATG" Start 26 1336626 codon. This is followed by a signal sequence whereby the newly synthesized Ns! protein is glycosylated in the endoplasmic reticulum. Finally, the protein-encoding cassette requires a stop codon. And in this embodiment, the TAG is added to the 3' terminus of the protein-encoding cDNA sequence. The "ATG+ signal sequence" element used in the embodiment of the present invention is derived from the hydrophobic c-terminus of the E protein ( At least 28 amino acids, starting with amino acid M (ATG) for NGC varieties. Figure 1A shows the exact signal sequence + NS1 sequence as an embodiment of the invention (see also sequence number 5 and 6) The "signal sequence + NS1" nucleotide coding sequence is obtained by RT-PCR amplification of the dengue NGC RNA genome by using the following primers: D2NSb1 above: 5'-ACA^^rCTGAATGAATTCACGTAGCACCTCA- 3, (sequence number 4) oblique Word part: Bgl II restriction endonuclease recognition position. Underlined is the start codon. D2NS Bu 2 below: 5' -AAT^^7C7CTACTAGGCTGTGACCAAGGAGTT-3, (SEQ ID NO: 3) Italic subsection: Bgl II The restriction enzyme recognizes the position. The underlined is the stop codon. According to the manufacturer's recommended instrument, the RT-PCR amplification can be used from

Roche Molecular Biochemical 之 Titan One Tube RT-PCR 套 組(目錄號碼1-939-823)來進行。然而,基本上任何商業化或 未商業化之RT-PCR套組均可代替使用。 27 1336626 之後,該RT-PCR產物可被選殖進入出現於許多商業上可 得之細菌選殖質體中之任何多數選殖位置的BamHI位置’然而 於此實施例中,其係被選殖進入PAF7中’以選殖成PaF7D2NS1-見第1B和1C圖關於PAF7D2NS1之詳細序列。第ID圖顯示NS1 胺基酸序列和含有加上來自E蛋白之C-端胺基酸編碼序列之訊 號序列的NS1之疏水性墨點。短的F端疏水性區域指的是訊 號序列。 2. NS1表現卡匣之細節(第2圖) 為表現來自諸如金絲雀痘、家禽痘、牛殖或MVA之痘病毒 病毒載體的"訊號序列+NS1",在其cDNA的5’端上需要加上痘 病毒起動子。當所有痘病毒合成的RNA係以病毒編碼的酵素(其 不需polyA額外訊序列來進行此功能)來多腺°票吟化時,則多 腺嗓吟化訊號序列非為必須的。任何癌·病毒起動子均可用於表 現此卡匣。第2圖與序列編號9與10顯示作為本發明之實施 例的"痘病毒起動子+訊號序列+NS1"卡匣之核苷酸序列。 關於本發明所使用之例子,該"訊號序列+NS Γ進一步係使 用引子OBN338和OBN345,藉由PCR從NS1質體選株擴増而來。 oBN345引子包含殖痕病毒最小的起動子要素5’至在選殖質體 内之標的序列的核苷酸序列。供OBN345引子結合之質趙標% 序列係在該訊號序列起始密碼子的上流將近40個核苷酸處。 此係用於確定RNA的轉錄在該訊號序列ATG起始密碼子之前包 含一長列非蛋白質編碼序列。 具有Ps起動子之PCR引子: oBN338: 5’-TTGTTAGCAGCCGGATCGTAGACTTAATTA (30)(序列編 28 1336626 號1) oBN345: 5, -CAAAAAATTGAAATTTTATTTTTTTTTTTTGGAATATAAmA ACACGATAATACCATGG -3’(序列編號 2) 下面劃線的核笞酸代表該痘病毒最小的起動子序歹,j。 用於該PCR擴增反應的首五個循環的黏合溫度係以 OBN345結合至選殖載體中相同序列的核苷酸序歹,丨來計算。 3.整合NS1表現卡匣至MVA中(第3圖) 該PCR擴增的產物以平口鈍端選擇進入質體ρΒΝχ〇7的平 切口為終端的Xho I位置(參見第3a圖)以形成質體pBN41 (失 見第3a圖)。pBN41係用於以同源重組,將"殖起動子+訊號序 列+NS1"卡匣整合至MVA的缺失位置2之載體。 pBN41 (參見第3a圖)的基本特徵如下: -質體骨架係來自stratagene之卿此町冰 SK-plus(Genbank VB0078)。 -D2F1:缺失2側面1同源重組臂。此代表從基因資料庫 序列U94848之20117至207Π之核^:酸序列。 -PPr:痘病毒起動子。 -NPTII··新徽素填轉換酶蛋白質編妈序列(基因資料庫v〇〇618 之蛋白質編碼序列)。 -IRES:來自腦心肌炎病毒之核糖體内入序列(Jang等人, 1989,基因資料庫M16802)。 -EGFP:經提升的綠勞光蛋白質編喝序列(基因資料庫序列 U57609之蛋白質編碼序列-核苷酸675至核每酸1394)。 29 1336626 -NSl:來自登革熱NGC品種之“訊號序列+NS1”蛋白質編碼序 列。 -D2F2:缺失2側面2同源重組臂。此代表從MVA基因資料庫 序列1)94848之20719至21343核苷酸序列。Roche Molecular Biochemical's Titan One Tube RT-PCR kit (catalog number 1-939-823) was performed. However, essentially any commercial or uncommercial RT-PCR kit can be used instead. 27 1336626 Thereafter, the RT-PCR product can be colonized into the BamHI position that occurs in any of the majority of the commercially available bacterial selection plastids. However, in this example, it is colonized. Enter PAF7 'to select for PaF7D2NS1 - see Figures 1B and 1C for the detailed sequence of PAF7D2NS1. The ID plot shows the NS1 amino acid sequence and the hydrophobic ink dot containing NS1 plus the signal sequence from the C-terminal amino acid coding sequence of the E protein. The short F-terminal hydrophobic region refers to the signal sequence. 2. Details of the NS1 performance cassette (Fig. 2) is the "signal sequence + NS1" from the poxvirus vector such as canarypox, poultry pox, bovine colonization or MVA, at the 5' end of its cDNA A poxvirus promoter is required. A multi-adenosed signal sequence is not necessary when all of the poxvirus-synthesized RNAs are viral-encoded enzymes that do not require a polyA extra sequence to perform this function. Any cancer/virus promoter can be used to express this card. Fig. 2 and SEQ ID NOs: 9 and 10 show the nucleotide sequences of "poxvirus promoter + signal sequence + NS1" cassette as an example of the present invention. With respect to the examples used in the present invention, the "signal sequence + NS Γ is further amplified from the NS1 plastid by PCR using primers OBN338 and OBN345. The oBN345 primer contains the nucleotide sequence of the minimal promoter element 5' of the colony virus to the target sequence within the plastid. The sequence of the standard for the binding of the OBN345 primer is approximately 40 nucleotides upstream of the start codon of the signal sequence. This is used to determine that transcription of RNA contains a long list of non-protein coding sequences prior to the ATG start codon of the signal sequence. PCR primer with Ps promoter: oBN338: 5'-TTGTTAGCAGCCGGATCGTAGACTTAATTA (30) (sequence 28 1336626 No. 1) oBN345: 5, -CAAAAAATTGAAATTTTATTTTTTTTTTTTGGAATATAAmA ACACGATAATACCATGG -3' (sequence number 2) Underlined nucleotides represent the pox The smallest promoter sequence of the virus, j. The binding temperature for the first five cycles of the PCR amplification reaction was calculated by binding the OBN345 to the nucleotide sequence of the same sequence in the selection vector. 3. Integrate the NS1 performance cassette into MVA (Fig. 3). The PCR amplified product is selected as the terminal Xho I position by the flat blunt end into the flat incision of the plastid ρΒΝχ〇7 (see Figure 3a) to form the plastid Body pBN41 (see figure 3a). pBN41 was used to integrate the "promoter + signal sequence + NS1 " cassette into the deletion position 2 of MVA by homologous recombination. The basic characteristics of pBN41 (see Fig. 3a) are as follows: - The plastid skeleton is from the stratagene of this town ice SK-plus (Genbank VB0078). -D2F1: deletion of 2 flanking 1 homologous recombination arms. This represents the nuclear: acid sequence from 20117 to 207 of the gene library sequence U94848. -PPr: Pox virus promoter. -NPTII··New Huisu filled with enzyme-encoding protein-making sequence (protein coding sequence of gene library v〇〇618). -IRES: ribosome in vivo sequence from encephalomyocarditis virus (Jang et al., 1989, Gene Database M16802). -EGFP: Elevated green light protein protein-drinking sequence (protein library sequence U57609 protein coding sequence - nucleotide 675 to nuclear per acid 1394). 29 1336626 -NSl: The "signal sequence + NS1" protein coding sequence from the dengue NGC variety. -D2F2: deletion of 2 flanking 2 homologous recombination arms. This represents the nucleotide sequence of 20719 to 21343 from the MVA gene library sequence 1) 94848.

AmpR: pBluescript之氨比西林抗性基因。 3. 1藉由同源重組將登革熱"痘起動子+訊號序列+NS1"插入MVA 之缺失位置 3.1.1藉由同源重組整至MVA基因組 上述整合載體pBN41係用於以於pBN41的側面1和側面2 臂以及該MVA基因組内相同的標的序列間之同源重組,將該登 革熱NS1表現卡匣且加上報告卡匣(痘起動子+NPT II-IRES-EGFP)整合至該MVA基因組。此係藉由轉染該線性的 整合載體至之前已受低量重覆的MVA感染(MOI,例如,每細胞 0.01感染單位)之雞胚胎纖維母細胞(CEF)内來達成。在感染 48小時後或當該感染已到達融合時,製備病毒萃取液且將其儲 存於-20°C中以備所欲之重組MVA(rMVA)的選擇與選殖純化時 用。 3.1.2 rMVA的選擇以及選株的純化 非-重組MVA的排除(空的載體病毒)以及rMVA的擴增係藉 由在G418的存在下(G418的數量必須最佳化至決定不會殺死 CEF細胞之最高劑量)以低Μοι感染融合雞胚胎纖維母(CEF)細 胞來達成。任何不含與經整合的Νρτ n基因的病毒在被加入 細胞維持培養液之G418的存在下將不會複製<418會抑制DNA 複製,但因為CEF細胞將呈不動的非複製的狀態,所以其等將 30 1336626 不又G418的影響。由於該提升的螢光綠蛋白質的表現所以 被rMVAs感染之CEF細胞可在螢光顯微鏡下觀察到。 得自該同源重組步驟之病毒萃取物必須依序地稀釋且用 於在G418的存在下感染未經處理的CEF細胞並覆蓋以低熔 點之洋菜膠m天之後’將該被錢之洋菜膠板置於螢光 .4微鏡下觀察經感染細胞之單_綠色清晰成像。將該等標示起 來且取出含該被感染成清晰成像之細胞的洋菜膠栓並置於含 無菌細胞維持培養液之l.5ml微離心管中。藉由在_2〇13(:冷凍 -融解該管3次而讓病毒從該洋菜膠栓中釋出。 该最好的選殖株或該等選殖株進一步於洋菜膠下以pCR 刀析來選殖純化直至無空白的載體污染的跡象(3到3〇回的選 殖純化)。之後該等選殖株被擴増以供進一步進行嚴苛測式來 校正插入的配置、外來起動子基因卡匣的序列證明以及以 RT-PCR的表現分析。在此等分析之後,僅有一個選殖株會在 G418選擇下被進一步擴增,俾便製備一主要的儲備液供進一步 的特徵與致免疫性的研究。 具有於本發明中所述之被插入登革熱表現卡匣之重組 MVA稱為mBN07。第3b圖顯示在mBN〇7中插入的外來序列之配 置。 4.以MVA來表現真正的NS1 來自該重組MVA(mBN07)之NS1蛋白的表現係藉由標準的 西方點墨法分析,在沒有變性的情況下確認。第4圖顯示在經 純化的mBN07被用於感染哺乳動物組織培養細胞(例如BHK-21 細胞,MOI每細胞1.0感染單元)之後,NS1表現的結果。粗糙 31 1336626 的蛋白質萃取物係在錢24-3G小時之後從該等經感染的細胞 製備而來,此時將部分萃取物與含有2_巯基乙醇(2_ME)或不含 2-ME的SDS-PAGE凝膠裝載緩衝液混合。作為正控制組之該等 樣本加上來自以登革熱NGC品種(蚊子細胞株)感染之細胞的蛋 白質萃取物係於SDS-PAGE凝膠申以電泳來分離,且之後被墨 點於硝基纖維素膜上。以一抗登革熱NS1單株抗體來探測該膜。 第4圖顯示’由mBN07表現之NS1係以抗-登革熱NS1單 株抗體來辨識,且形成與來自經登革熱感染之細胞之NS1相似 的正確的二聚型式(比較沒有煮沸的 '不含2_ME之mBN〇7巷與 沒有煮沸的、不合2-ME之DEN2巷)。第4圖顯示,該二聚型 式於變性的情況下分開成單體型式(參見經煮沸的、含2_贶之 mBN07 巷)。 於被mBN07感染之細胞中表現之NS1亦可以在西方點墨分 析法中’由經合併復原中之病人的血清,以及具有可與登革熱 之全部四種血清類型產生交互反應之單株抗體來辨識。此證明 了由mBN07表現的NS1係產生致免疫性。 實施例2:由mBN07所表現之NS1對於非血清類型2的登革熱病 毒與日本腦炎之NS1的交叉免疫原性 1.由mBN07表現之NS1對復原中之病人的血清致反應性 測試的結果具有下列可能性,mBN07表現的NS1可被證實 之前受過登革熱病毒感染之個體於復原中的血清辨識出來。來 自68個具有對抗登革熱病毒封套蛋白質之抗體之個體的血清 (藉由免疫墨點圖對照由登革熱血清類型1至4製成之真正的 抗原)被選擇用於測試對照由mBN07感染的細胞萃取液製備成 32 1336626 與作為控制組之MVA-GFP感染的細胞萃取液之免疫墨點條帶° 令該含抗原之細胞以不含2 Μ基乙醇之樣本緩衝液處理且不加 熱。關於68位個體之測試的血清,在免疫墨點圖中有(91.2%) 與由mBN07表現之ΒΝ07 NS1反應。該等血清進一步被分析對 全部四種登革熱病毒血清類型以及日本腦炎病毒之NS1的反應 (JEV)。結果示於表1中。54個血清與全部的登革熱病毒血清 類型和日本腦炎病毒(JEV)之NS1反應,而該等54個血清中之 53個(98. 2%)亦與由mBN07表現之NS1反應。七(7)個血清對至 少一種登革熱病毒血清類型之NS1具專一性,且不會與JEV之 NS1反應。該7個血清亦與由Π1ΒΝ07表現之NS1反應。另外7 個血清僅與JEV的NS1反應,而不與任何登革熱病毒血清類型 之NS1反應,然而該等JEV專一的血清中之2個(28. 6%)亦會 與由mBN07表現的NS1反應。 表1: BN07 NS1 陰性 BN07 NS1 陽性 真正DEN NS1陽性 0% (0/7) 100% (7/7) 真正 DEN & JEV NS1 陽性 1.85% (1/54) 98.15% (53/54) i正JEV NS1陽性 71.43% (5/7) 28.57% (2/7) 抗血清對真正的NS1與由mBN07表現的NS1之反應的比 較。括弧令.測試為陽性之樣本數目/測試樣本之總數。den = 登革熱,JEV =日本腦炎病毒。 亦對相同的68個血清分析其對前棋(prememi3rane)之蛋 白質的反應性。依發明人之經驗,抗體對前膜比抗體對NS1或 E具較高的專一性。因此,已受登革熱感染過之病人將會產生 會辨識登革熱病毒前膜,而不是jEV前膜之抗體,反之亦然β 33 1336626 順著該等方式之分析將提供個體之感染歷史之較佳預報。表2 顯示’來自22個人之血清單獨與真正的登革熱前膜蛋白質反 應,因此推刺s亥22個病人僅曾遭受登革熱病毒,而不疋JEV 的感染。該等22個血清全部與由mBN07表現之NS1反應。其 它22個病人已證實之前曾有被登革熱與JEV兩者感染’再者 所有22個血清亦與由mBN07表現之NS1反應。於此系列中, 亦存在有21個已證實之前只被JEV感染之病人(即使該等血清 已具有對抗登革熱E之交叉反應的抗體)。任擇地,該21個JEV 反應者中的Π個(82%)與由mBN07表現之NS1反應。在整組中 只有3個血清不與登革熱或JEV任一者反應,而該等當中僅有 1個與mBN07表現的NS1反應。對此,最有可能的理由係抗體 的效價太低以致於無法藉由免疫墨點法測得。 表2: BN07 NS1 陰性 BN07 NS1 陽性 真正DEN prM陽性 0% (0/22) 100% (22/22) 真正 DEN & JEV prM 陽性 0% (0/22) 100% (22/22) 真正JEV prM陽性 19.0% (5/7) 81.0% (17/21) PrM陰性 66.7%(2/3) 33. 3°/〇(1/3)AmpR: pBluescript is an aminopyrazine resistance gene. 3. 1 by the homologous recombination of dengue & acne promoter + signal sequence + NS1 " insertion of MVA deletion position 3.1.1 by homologous recombination to the MVA genome The above integration vector pBN41 is used for the side of pBN41 Homologous recombination between the 1 and the lateral 2 arms and the same target sequence in the MVA genome, the dengue NS1 expression cassette and the reporter cassette (pox promoter + NPT II-IRES-EGFP) were integrated into the MVA genome . This was achieved by transfecting the linear integration vector into chicken embryonic fibroblasts (CEF) that had previously been infected with a low amount of repeated MVA (MOI, e.g., 0.01 infectious units per cell). After 48 hours of infection or when the infection had reached confluence, the virus extract was prepared and stored at -20 °C for selection and purification of the desired recombinant MVA (rMVA). 3.1.2 Selection of rMVA and purification of selected strains Exclusion of non-recombinant MVA (empty vector virus) and amplification of rMVA by the presence of G418 (the number of G418 must be optimized until it is decided not to kill The highest dose of CEF cells is achieved by infecting fusion chicken embryonic fibroblast (CEF) cells with low Μ. Any virus that does not contain the integrated Νρτ n gene will not replicate in the presence of G418 added to the cell maintenance medium, and 418 will inhibit DNA replication, but since the CEF cells will be immobile, non-replicating, Its etc. will be 13 1336626 not affected by G418 again. Due to the enhanced expression of the fluorescent green protein, CEF cells infected with rMVAs can be observed under a fluorescence microscope. The virus extract from this homologous recombination step must be sequentially diluted and used to infect untreated CEF cells in the presence of G418 and cover the gelatin gum at a low melting point for m days. The vegetable gelatin board was placed under fluorescent .4 micromirrors to observe the single-green clear image of the infected cells. These were labeled and the gelatin plug containing the cells infected with clear imaging was removed and placed in a 1.5 ml microcentrifuge tube containing sterile cell maintenance medium. The virus is released from the gelatin plug by 2-3〇13: freeze-thawing the tube 3. The best selection strain or the selection strain is further pCR under the vegetable gum Knockout to purify and purify until there is no evidence of contamination of the vector (3 to 3 rounds of colonization and purification). The plants are then expanded for further stringent testing to correct the inserted configuration, foreign Sequence identification of the promoter gene cassette and analysis of the performance of RT-PCR. After these analyses, only one selected strain will be further amplified under the selection of G418, and a major stock solution will be prepared for further preparation. Characteristics and immunogenicity studies. The recombinant MVA having the dengue expression cassette inserted in the present invention is referred to as mBN07. Figure 3b shows the configuration of the foreign sequence inserted in mBN〇7. The expression of the true NS1 NS1 protein from this recombinant MVA (mBN07) was confirmed by standard Western blotting and was confirmed without denaturation. Figure 4 shows that purified mBN07 was used to infect mammals. Tissue culture cells (eg BHK-21 cells, MOI The result of NS1 expression after 1.0 infection unit per cell. The protein extract of Rough 31 1336626 was prepared from the infected cells after 24-3 G hours of money, at which time some extracts were containing 2 巯 groups. Ethanol (2_ME) or SDS-PAGE gel loading buffer without 2-ME is mixed. These samples, which are positive control groups, are supplemented with protein extracts from cells infected with dengue NGC varieties (mosquito cell lines). The SDS-PAGE gel was separated by electrophoresis and then blotted onto a nitrocellulose membrane. The membrane was probed with a monoclonal antibody against dengue NS1. Figure 4 shows that the NS1 line expressed by mBN07 is resistant. - Dengue NS1 monoclonal antibody to identify and form the correct dimeric pattern similar to NS1 from dengue-infected cells (compared to no boiled '2B-free mBN〇7 lane with no boiled, not 2-ME DEN2 Lane). Figure 4 shows that the dimeric form is separated into a monomeric form in the case of denaturation (see the boiled mBN07 lane containing 2_贶). The NS1 expressed in cells infected with mBN07 is also Can be in the West The method was identified by the sera of patients who had undergone combined reconstitution, and the monoclonal antibodies that interacted with all four serotypes of dengue fever. This demonstrates that the NS1 line expressed by mBN07 produces immunogenicity. 2: NS1 expressed by mBN07 for the cross-immunogenicity of non-serum type 2 dengue virus and Japanese encephalitis NS1 1. The results of the sero-response test of NS1 expressed by mBN07 on a reconstituted patient have the following possibilities Sex, mBN07-expressed NS1 can be identified by individuals who have previously been infected with dengue virus in reconstituted sera. Serum from 68 individuals with antibodies against dengue virus envelope proteins (by immunoblotting plots against real antigens made from dengue serotypes 1 to 4) was selected for testing control cell extracts infected with mBN07 An immunoblot strip prepared as 32 1336626 with the MVA-GFP-infected cell extract as a control group was allowed to treat the antigen-containing cells in a sample buffer containing no 2-mercaptoethanol and was not heated. Serum for the test of 68 individuals, (91.2%) in the immunoblot map reacted with ΒΝ07 NS1 expressed by mBN07. These serums were further analyzed for the response of all four dengue virus serotypes and NS1 of Japanese encephalitis virus (JEV). The results are shown in Table 1. 54 sera were reacted with all dengue virus serotypes and NS1 of Japanese encephalitis virus (JEV), and 53 of these 54 sera (98. 2%) also reacted with NS1 expressed by mBN07. Seven (7) sera are specific for NS1 of at least one dengue virus serotype and do not react with JEV NS1. The 7 sera also reacted with NS1 expressed by Π1ΒΝ07. The other 7 sera only reacted with NS1 of JEV and did not react with any NS1 of the dengue virus serotype, however 2 of these JEV-specific sera (28.6%) also reacted with NS1 expressed by mBN07. Table 1: BN07 NS1 negative BN07 NS1 positive true DEN NS1 positive 0% (0/7) 100% (7/7) true DEN & JEV NS1 positive 1.85% (1/54) 98.15% (53/54) i positive JEV NS1 positive 71.43% (5/7) 28.57% (2/7) Comparison of antiserum to true NS1 response to NS1 expressed by mBN07. Brackets. The number of samples tested positive / the total number of test samples. Den = dengue, JEV = Japanese encephalitis virus. The same 68 sera were also analyzed for their reactivity to the protein of the prememi3rane. According to the experience of the inventors, the antibody has a higher specificity for the anterior membrane than the antibody for NS1 or E. Therefore, patients who have been infected with dengue will develop antibodies that recognize the dengue virus anterior membrane rather than the pre-jEV membrane, and vice versa. β 33 1336626 along these lines will provide a better prediction of the individual's infection history. . Table 2 shows that serum from 22 individuals reacted with the true dengue pre-membrane protein alone, so 22 patients who had been stunned had only suffered from dengue virus, not JEV infection. These 22 sera all reacted with NS1 expressed by mBN07. Twenty-two patients had previously been confirmed to have been infected with both dengue and JEV. Again, all 22 sera also reacted with NS1 expressed by mBN07. In this series, there were also 21 patients who had previously been confirmed to be infected only with JEV (even if the serum had antibodies that cross-reacted against dengue E). Optionally, one of the 21 JEV responders (82%) reacted with NS1 expressed by mBN07. Only 3 sera in the entire group did not react with either dengue or JEV, and only 1 of these responded to NS1 expressed by mBN07. The most likely reason for this is that the antibody titer is too low to be measured by the immunoblotting method. Table 2: BN07 NS1 negative BN07 NS1 positive true DEN prM positive 0% (0/22) 100% (22/22) true DEN & JEV prM positive 0% (0/22) 100% (22/22) true JEV prM positive 19.0% (5/7) 81.0% (17/21) PrM negative 66.7% (2/3) 33. 3°/〇 (1/3)

抗血清對真正的前膜與mBN07 NS1之反應的比較。括弧中: 測試為陽性之樣本數目/測試樣本之總數。DEN =登革熱,JEV =曰本腦炎病毒。 於表2中之資料亦清楚地顯示,對於6個不會與mBN07 表現之NS1反應之血清,4個係來自之前曾受JEV,而不是登 革熱的感染之個體。剩下的2個測不到對登革熱或JEV任一者 34 1336626 之前膜蛋白的抗體,可能是效價太低。 2. mBN07接種之兔子且測試免疫後血清對登革熱病毒與日本腦 炎病毒之免疫墨點圖與ELISA分析 根據如下所示本發明之接種程序’以皮下途徑免疫二隻無 特定病原體之兔子。於第〇天,以一瓶用無菌水配製成1毫升 之冷凍-乾燥的疫苗(lxl〇e8 TCID50 BN07冷凍〜乾燥的疫苗) 來接種每一隻免子,之後於第28天再次接種。取在第一次接 種前(預先採血)之血液樣本,且在第二次接種10天後再取一 次。 第0天=預先採血,接著第1次接種 第28天=第2次接種 第38天=血液取樣 2. 1測試預先採血與免癌後之血清對登革命缸清類型2之免疫 墨點圖 第5圖顯示1:200稀釋之血清被測試於在無-變性情況 下,藉由SDS PAGE所分離之登革熱2病毒抗原的免疫墨點圖 條帶與未受感染之C6/36細胞的控制條帶。結果清楚地顯示 出,在以mBN07接種時,全部的兔子均產生相對高效價之抗-NS1 抗體,其與由登革熱血清類型2感染之組織培養蚊子細胞所產 生之真正的NS1產生交叉反應。 在接種之前取得之血清不會與免疫墨點圖上任何登革熱 蛋白質反應。Comparison of the response of antiserum to the true anterior membrane to mBN07 NS1. In brackets: The number of samples tested positive / the total number of test samples. DEN = dengue fever, JEV = sputum encephalitis virus. The data in Table 2 also clearly shows that for 6 sera that did not respond to NS1 exhibited by mBN07, 4 were from individuals who had previously been infected with JEV, not dengue fever. The remaining 2 antibodies that did not detect membrane proteins before dengue or JEV 34 1336626 may be too low titers. 2. MBN07-inoculated rabbit and test immunological dot map and ELISA analysis of post-immune serum against dengue virus and Japanese encephalitis virus The rabbits without specific pathogens were immunized subcutaneously according to the inoculation procedure of the present invention as shown below. On the third day, a bottle of sterile-dried vaccine (lxl〇e8 TCID50 BN07 frozen-dried vaccine) was formulated with sterile water to inoculate each of the excipients, and then inoculated again on the 28th day. Take the blood sample before the first inoculation (pre-blood collection) and take it again 10 days after the second inoculation. Day 0 = pre-blood collection, followed by the first vaccination on the 28th day = the second vaccination on the 38th day = blood sampling 2. 1 test pre-blood and anti-cancer serum against the revolutionary cylinder clear type 2 immune ink dot map Figure 5 shows that 1:200 diluted serum was tested in a non-denaturing case, an immunoblot band of dengue 2 virus antigen separated by SDS PAGE and a control strip of uninfected C6/36 cells. band. The results clearly show that when inoculated with mBN07, all rabbits produced a relatively high titer anti-NS1 antibody which cross-reacted with the true NS1 produced by tissue cultured mosquito cells infected with dengue serotype 2. Serum obtained prior to vaccination does not react with any dengue protein on the immunoblot map.

免疫後之血清被滴定成1:1000、1:2000、1:4000、1:10-4、 1:1(Γ5、1:10 _6 ’且被測試於無-變性情況下,藉由SDS PAGE 35 所分離之登革熱2病毒抗原的免疫墨點條帶以及未受C6/36之 細胞的控制條帶。參見第6圖三隻兔子之滴定終定被計算成 1:10000。 免疫前與免疫後之血清被滴定成1:1〇_2、1:1〇_3、1:1〇-4、 1:1〇-5、 1:10_6 ' 1:10'7 ,且被測試於間接IgG ELISA。 井係以 1:250稀釋之登革熱2與未受感染之C6/36的細胞溶解物塗覆。 表3: 1:102 1:103 1:104 1:105 1:106 i:ur7— 免了 # 1 Pre -0.012 0. 006 0.007 0.003 -0.002 ο. ooT~ 兔子#2 Post 0.623 0. 127 0.02 0.004 0.001 ~0.003 Pre -0.012 0 -0.001 -0.003 0 -0. 001 兔子#3 Post 0. 402 0.06 -0.007 0.008 -0.003 0. 002 Pre -〇. 008 0. 03 -0. 002 0.005 -0.002 -0.002 ----- Post 0. 907 0. 224 0. 038 0.011-0.001 -0.003 在不同稀釋下,每一隻兔子在免疫前與免疫後之血清的 ELISA及光凟數(pre =免疫前的血清,p〇st =免疫後的血清)。 關於每一隻兔子免疫後之滴定結果示於第7圖中。針對每 一隻兔子免疫後之血清所評估之終點效價係1:1 〇〇〇。 1_2預先採血與免癌後血清對登革熱病毒血清娓刑1、3和4 丛及曰木腦炎病毒旁,痙墨點圖測結 每一隻兔子血清在1:1000之稀釋濃度下被測試於在非_ 變性情況下,藉由SDS PAGE所分離之登革熱1、2、3、4的免 疫墨點條帶上與JE病毒抗原+未受C6/36之細胞的控制條帶 上。第8圖顯示,每一隻兔子免疫後血清與來自登革熱血清類 型1、3和4之NS1反應且與日本腦炎免疫墨點反應。 3.結論 -由mBN07疫苗免疫之兔子誘出辨識真正的登革熱病毒 36 血清類型2 NS1之抗體。 ''當於免疫墨點法分析與ELISA中之終點為i:i〇 _4和 h 10 3時,可觀察到很高的免疫反應。 -於該兔子中被誘出之抗體與所有其它登革熱血清類型 (1、3 & 4)交叉反應。 该抗體亦與來自諸如JEV之異源病毒的NS1交叉反應。 實施例3:於選定之細胞株中之MVA-BN載體病毒之成長動力 予、於活體内之複製以及免疫學的資料 如於說明書章節中所指出,本發明之DNA較佳係被插入 A BN痘病毒的載想或其衍生物中。下列實施例更詳細的描 述MVa〜BN。所揭示之實施例允許熟習此技藝者識別MVA_BN和 其名ϊ生物。 L細皰株之成長動力學: 為描繪MVA-BN之特性,將此品種的成長動力學與其它特性 已破描繪出之MVA作比較。 此實驗之進行係藉由比較於隨後所列出之原始細胞與細胞 株中之下列病毒的成長動力學: MH-BN (病毒儲備#23, 18· 02. 99未經處理的,滴定成 2,0 X 107 TCIDso/ml); 由Mtenburger描繪特性之MVA(美國專利第5, 185, 146號) '另外稱為MVA-HLR; 由 Anton Mayr 描繪特性之 MVA(passage 575)(Mayr 等人, [1975] Infection 3; 6-14)且另外稱為 MVA-575 (ECACC V00120707);以及 1336626 於國際專利申請案PCT/EP01/02703(WO 01/68820)中描繪特 性之 MVA-Vero(病毒儲備,passage 49,#20,22. 03.99 未經 處理的,滴定成 4, 2 X 107 TCIDsfl/ml)。 所使用之原始的細胞以及細胞株為: CEF雞胚胎纖維母細胞(從SPF卵中新鮮配置);The immunized serum was titrated to 1:1000, 1:2000, 1:4000, 1:10-4, 1:1 (Γ5, 1:10 _6 ' and tested in the absence-denatility case by SDS PAGE The immune dot strip of 35 dengue 2 virus antigens isolated and the control strips of cells not subjected to C6/36. See Figure 6 for the titration of three rabbits to be calculated as 1:10000. Pre-immune and post-immunization The serum was titrated to 1:1〇_2, 1:1〇_3, 1:1〇-4, 1:1〇-5, 1:10_6 ' 1:10'7 and was tested in indirect IgG ELISA The well was coated with dendritic 2 diluted 1:250 and cell lysate of uninfected C6/36. Table 3: 1:102 1:103 1:104 1:105 1:106 i:ur7—Free # 1 Pre -0.012 0. 006 0.007 0.003 -0.002 ο. ooT~ Rabbit #2 Post 0.623 0. 127 0.02 0.004 0.001 ~0.003 Pre -0.012 0 -0.001 -0.003 0 -0. 001 Rabbit #3 Post 0. 402 0.06 -0.007 0.008 -0.003 0. 002 Pre -〇. 008 0. 03 -0. 002 0.005 -0.002 -0.002 ----- Post 0. 907 0. 224 0. 038 0.011-0.001 -0.003 At different dilutions, ELISA and number of sputum in serum of each rabbit before and after immunization (pre = pre-immune Serum, p〇st = serum after immunization. The titration results for each rabbit after immunization are shown in Figure 7. The endpoint titer evaluated for each rabbit immunized with sera is 1:1 〇〇 _2 1_2 Pre-blood and post-cancer serum Serum sequestration of dengue virus serum 1, 3 and 4 plexus and eucalyptus encephalitis virus, 痉 点 图 测 每一 每一 每一 每一 每一 每一 每一 每一 每一 每一 每一 每一 每一 每一 每一 每一 每一 每一The test was performed on a control strip of JE virus antigen + cells not subjected to C6/36 by stripping the dengue 1, 2, 3, 4 of the dengue by SDS PAGE in a non-denaturing condition. Figure 8 shows that each rabbit was immunized with NS1 from dengue serotypes 1, 3 and 4 and reacted with Japanese encephalitis immune dots. 3. Conclusion - Rabbits immunized with mBN07 vaccine were induced to recognize true dengue fever Virus 36 Antibody to serotype 2 NS1. ''A high immunoreactivity was observed when the endpoints in the immunoblot analysis and ELISA were i: i〇_4 and h 10 3 . - The antibody elicited in the rabbit cross-reacted with all other dengue serotypes (1, 3 & 4). The antibody also cross-reacts with NS1 from a heterologous virus such as JEV. Example 3: Growth motility, replication in vivo, and immunological data of the MVA-BN vector virus in selected cell lines. As indicated in the specification section, the DNA of the present invention is preferably inserted into A BN. The concept of a poxvirus or its derivatives. The following examples describe MVa~BN in more detail. The disclosed embodiments allow those skilled in the art to identify MVA_BN and its name. Growth kinetics of L-blister plants: To characterize the MVA-BN, the growth kinetics of this variety were compared with other MVAs that have been delineated. This experiment was carried out by comparing the growth kinetics of the following viruses in the original cells and cell lines listed: MH-BN (virus reserve #23, 18.02.99 untreated, titrated into 2 , 0 X 107 TCIDso/ml); MVA characterized by Mtenburger (US Patent No. 5, 185, 146) 'Alternatively referred to as MVA-HLR; MVA (passage 575) characterized by Anton Mayr (Mayr et al., [1975] Infection 3; 6-14) and additionally referred to as MVA-575 (ECACC V00120707); and 1336626 in the international patent application PCT/EP01/02703 (WO 01/68820) depicting the characteristics of MVA-Vero (virus reserve) ,passage 49,#20,22. 03.99 Untreated, titrated to 4, 2 X 107 TCIDsfl/ml). The original cells and cell lines used were: CEF chicken embryonic fibroblasts (freshly configured from SPF eggs);

HeLa 人類子宮頸腺瘤(表皮),ATCC No. CCL-2; 143B 人類骨肉瘤 TK-,ECACC No. 91112502;HeLa human cervical adenoma (epidermal), ATCC No. CCL-2; 143B human osteosarcoma TK-, ECACC No. 91112502;

HaCaT人類角質細胞細胞株,Boukamp等人,1988, J Cell Biol 106(3): 761-771; BHK 幼倉鼠腎,ECACC 85011433;HaCaT human keratinocyte cell line, Boukamp et al, 1988, J Cell Biol 106(3): 761-771; BHK baby hamster kidney, ECACC 85011433;

Vero 非洲綠猴腎纖維素母細胞,ECACC 85020299; CV1非洲綠猴腎纖維母細胞,ECACC 87032605。 在感染方面,以5 X 105細胞/井之濃度將不同細胞種入6-井-盤中,且於 37°C,5% C〇2 下,於 DMEM (Gibco,Cat. No. 61965-026)加上2% FCS中培育至隔夜。將細胞培養液移除且 令細胞在將近moi 0.05下,於37°C、5%C〇2中感染1個小時(在 感染方面,假定細胞數目在隔夜後加倍)。對於不同細胞類型 之每一感染所用之細胞數目為5 X 1〇4 TCID5。以及此稱為輸入。 之後以DMEM清洗細胞三個,最後加入1毫升DMEM、2% FCS且 將該盤留在37°C,5%C〇2下培育96個小時(4天)。藉由將該盤 置於-80°C下冷凍,來終止感染以供滴定分析用。 2.滴定分析(與疫苗病毒專一的抗體免疫染色) 為滴定病毒之數目’以1 X 1〇4細胞/井之濃度,將測試細 胞(CEF)種在 96-井-盤上,RPMI(Gibco, Cat. No. 61870-010)、 38 1336626 7%FCS、1% 抗生素 / 抗黴菌素(Gibco, Cat. No. 15240-062)中, 且於37〇C ’ 5% C〇2下培育至隔夜。將包含感染實驗之6-井-盤 冷凍/融化3次,且使用RPUI成長培養液稀釋10-1至ι〇-12。將 病毒稀釋液分散至測試細胞上且在37。(:,5¾ C〇2下培育5天, 以允許CPE (細胞病態作用)發展。將測試細胞固定(丙酮/甲醇 1:1)10分鐘,以PBS清洗並以1:1〇〇〇配置於培育緩衝液中, 與多株的牛痘病毒專一性抗體在室溫下一起培育(QuartettVero African green monkey kidney cellulose mother cell, ECACC 85020299; CV1 African green monkey kidney fibroblast, ECACC 87032605. In terms of infection, different cells were seeded into 6-well-discs at a concentration of 5 X 105 cells/well at 37 ° C, 5% C 〇 2 in DMEM (Gibco, Cat. No. 61965-026 ) Plus 2% FCS to grow overnight. The cell culture medium was removed and the cells were infected for 1 hour at 37 ° C, 5% C 2 at nearly moi 0.05 (in terms of infection, the number of cells was assumed to double after overnight). The number of cells used for each infection of different cell types was 5 X 1 〇 4 TCID5. And this is called input. Thereafter, the cells were washed three times with DMEM, and finally 1 ml of DMEM, 2% FCS was added and the plate was left at 37 ° C, and incubated at 5% C 2 for 96 hours (4 days). The infection was terminated for titration analysis by freezing the plate at -80 °C. 2. Titration analysis (antibody immunoassay specific to vaccine virus) To quantify the number of viruses 'at the concentration of 1 X 1〇4 cells/well, test cells (CEF) were seeded on 96-well-plate, RPMI (Gibco , Cat. No. 61870-010), 38 1336626 7% FCS, 1% antibiotic/antimycotic (Gibco, Cat. No. 15240-062), and incubated at 37 ° C ' 5% C〇2 Overnight. The 6-well-plate containing the infection experiment was frozen/melted 3 times and diluted 10-1 to ι〇-12 using the RPUI growth medium. The virus dilution was dispensed onto the test cells and at 37. (:, 53⁄4 C〇2 for 5 days to allow CPE (cell pathological effect) to develop. The test cells were fixed (acetone/methanol 1:1) for 10 minutes, washed with PBS and placed at 1:1 于Incubation buffer with multiple strains of vaccinia virus-specific antibodies at room temperature (Quartett

Berlin’Cat. No. 9503-2057)1 個小時。在以 PBS(Gibco, Cat. No,20012-019)清洗2次之後,加入以1:1000配置於培育緩 衝液中之HPR偶合的-抗-兔子抗體(promega Mannheim,Cat. No. W4011) ’在室溫下歷時1個小時。再次以pbs清洗兩次, 且與染色溶液(10 ml PBS + 200 μΐ配置於100%乙醇中之〇-二甲氡基聯苯胺飽合溶液+ 15 μΐ新鮮配置的Η2〇2) —起培育 至可觀察到棕色斑點(2個小時)。將染色溶液移除,加入PBS 以終止染色反應。每個顯示棕色斑點的井表示對CPE陽性,以 及使用Kaerber之方程式來計算效價(TCID50為基礎之分 析)(Kaerber,G. 1931. Arch. Exp. Pathol. Pharmakol. 162, 480)。 該病毒一方面被用於以低重覆性感染,即0.05感染單元/ 每細胞(5 X 1〇4 TCIDso)來感染CEF與BHK之複製組,其被預期 對MVA寬容的,而另一方面,感染CV-1、Vero、Hela、143B 與HaCat之複製,其被預期對MVA非寬容的。之後,將該病毒 接種體除移,且清洗該細胞三次,以移除任何殘留未被吸收的 病毒。當病毒萃取物被製備好時,使感染持續4天’且之後於 39 1336626 CEF細胞上滴定。表1和第1圖顯示滴定分析的結果,此處所 給之值係感染4天後所產生之病毒的總量。 其顯示,所有的病秦均如預期般於CEF(雞胚胎纖維母細胞) 細胞中適當的被擴增,因為此係對所有MVA均寬容的的細胞 株。此外’其顯示’所有的病毒均於BHK (幼倉鼠腎細胞株) 細胞中適當的被擴增。MVA-Vero表現最佳,因為BHK係一寬 容的細胞株。 有關於Vero細胞(猴子之腎細胞株)中的複製,MVA-Vero 如預期般適當的擴增,即高於輸入1000倍。MVA-HLR和 MVA-575分別適當的擴增以高於33倍和1〇倍輸入的增加。相 較於其它’僅MVA-BN被發現沒有在該等細胞中適當地被擴增, 即僅高於輸入2-倍的增加。 又關於於CV1細胞(猴子之腎細胞株)中之複製,其發現, MVA-BN於此細胞株中大量的減少。其顯示低於輸入之200~倍 的減少。MVA-575亦沒有擴增至高於輸入之位準,亦顯示稍微 負的擴增,即低於輸入之16-倍的減少。MVA-HLR最佳,擴增 高於輸入之30-倍的增加,接著是MVA-Vero ’具有局於輸入之 5-倍的增加。 最重要的是比較各種病毒於人類細胞株之成長動力學。有 關於143B細胞(人類骨癌細胞株)中之有效的複製’其顯示, MVA-Vero是唯——個顯示擴增高於輸入(3-倍的增加)。所有其 它病毒沒有擴增高於輸入,但在MVA-HLR以及MVA-BN和 MVA-575兩者間具有很大的差異。MVA-HLR係"廣範圍的n (低 於輸入1倍的減少),如MVA-BN顯示最小的減少(低於輸入之 40 300倍的減少),接著是MVA-575 (低於輸入59倍的減少)。 簡言之,就於人類143B細胞中之減少而言,MVA-BN是較優的。 再者,有關在HeLa細胞(人類子宮頸癌細胞)中的複製,其 顯示MVA-HLR於此細胞株中擴增良好,甚至比於寬容的BHK細 胞中來的好(Hela =高於輸入之125倍的增加;BHK =高於輸 入之88倍的增加),MVA-Vero亦於此細胞株中擴增(高於輸入 27倍的增加)。然而,MVA-BN以及較小範圍的MVA-575於該等 細胞中係減少的(MVA-BN =低於輸入29倍的減少,而MVA-575 =低於輸入6倍的減少)。 有關在HaCat細胞(人類角質細胞細胞株)中之複製,其顯 示,MVA-HLR於此細胞中擴增良好(高於輸入55-倍的增加)。 MVA-Vero適當的和MVA-575兩者顯示於此細胞株中擴增(分別 為高於輸入之1.2和1. 1倍的增加)。然而,MVA-BN是唯一個 呈現減少(低於輸入之5-倍的減少)。 結論說明了,於此群病毒中,MVA-BN是最減少的病毒品種: 藉由於人類胚胎腎細胞(293: ECACC No. 85120602)中顯示0.05 至0. 2的擴增比率(資料沒有併入表1中),MVA-BN於人類細胞 株中顯示出極端的減少。其進一步顯示,於143B細胞中約0.0 之擴增比率;於HeLa細胞中約0.04之擴增比率;於HaCat細 胞中約0. 22之擴增比率。此外,MVA-BN於CV1中顯示約0. 0 之擴增比率。僅於Vero細胞中,擴增可被觀察到(比率為 2.33),然而當其於諸如BHK和CEF之寬容的細胞株中,不一 定是相同的延伸(比較表1)。因此,僅知道MVA-BN於所有的人 類細胞株(143B、Hela、HaCat和293)中顯示小於1之擴增比 41 1336626 率0 MVA-575顯示與MVA-ΒΝ相似的量變曲線,但不是如同 MVA-BN般的減少。 MVA-HLR於所有測試細胞(143]B細胞除外)中均擴增良好。 因此’其於所有測試細胞株中(14犯細胞除外)可被視為複製充 足的。於某一情況下’其在人類細胞株(HeLa)中之擴增甚至比 於寬容的細胞株(BHK)中還好。 “”MVA-Vero於所有細胞株中確實顯示出擴增,然而比 MVA-HLR所顯示的範圍小(忽略143B的結果)。不過,就減少而 言,其不可以被視為與MVA-BN或MVA-575相同“種類,,者。 3.於活體内之複製 假如’一些MVA品種於活體内明確地複製,對於不同MVA品 種在活體内的複製可藉由使用遺傳工程老鼠模型AGR129來檢 測。此老鼠品種在IFN受體類型I (IFN-α/β )與類型II (IFN-γ ) 基因以及RAG中具有標的被破壞之基因。由於該等破壞,此老 鼠沒有IFN系充,且無法產生成熟之8與T細胞,因此嚴重免 疫放棄的以及非常容許複製病毒。以l〇7pfu之MVA-BN、MVA-HLR 或MVA572來免疫(i,p.)六個老鼠群組(在德國被用於120, 〇〇〇 個人上)且每天監控臨床現象。以MVA HLR或MVA 572接種之 全部老鼠分別在28至60天内死亡。屍體檢驗時,在主要器官 中存在一個嚴重病毒感染之普遍現象,且藉由標準斑分析時, 從卵巢中可重新找到MVA(l〇8pfu)。相反的,以相同劑量之 MVA-BNC對應於被寄存之品種ECACC V00083008)接種後之老鼠 存活90天以上,且無MVA玎從器官或組織中重新找到。 42 1336626 當一起取得活體外與活體内之數據時,研究明顯示顯示, MVA-BN比母想和商業的MVA_HLR品種較嚴重的減少。 4.不同品種之MVA在刺激免疫反應上亦不同。 複製充足的品種之牛痘於老鼠中會誘導免疫反應,而高 劑量下係致命的。雖然MVA係高度減少的,且在哺乳動細胞上 的複製方面具有—降低的能力,然而不同品種之MVA間在減低 上有差異存在。的確,MVA BN比其它MVA品種出現較多的減 少’甚至是母體品種MVA 575。為決定在降低方面的差異是否 會影響MVA誘導保護性免疫反應的效力,於是在致死牛痘刺激 模型中比較不同劑量的MVA BN與MVA 575。保護的位準的量測 係藉由在刺激4天後,於卵巢牛痘中所決定之效價的降低,同 時此允許量化評估不同劑量與不同品種之MVA。 致死刺激模型 以不同劑量(102、104或 l〇6TCID5D/ml)的 MVA BN 或 MVA 575 免疫(i.p.)特定無病原體之6-8-週大的雌性 (n=5)。MVA-BN和MVA-575已於CEF細胞上繁殖,且已經薦糖 純化並於Tris中配方成7. 4。三週後,該鼠接受一增加之相同 劑量的MVA與MVA品種,兩週之後接著以牛痘之複製充足的品 種進行致死刺激(i_pj。WR-L929 TK+品種或IHD-J品種均可 作為複製充足的牛痘病毒(縮寫“rVV”)。控制組之老鼠接受—安 慰劑。保護作用可藉由在刺激4天後’以標準斑分析所決定於 卵巢中之效價的減少量來量測。於此,在刺激後第4天犧牲讀 老鼠,且將卵巢移除,於PBS(lml)中均質化且使用VERO細胞, 以標準斑分析來決定病毒效價(Thomson等人,1998, 43 1336626Berlin’Cat. No. 9503-2057) 1 hour. After washing twice with PBS (Gibco, Cat. No, 20012-019), HPR-coupled anti-rabbit antibody (promega Mannheim, Cat. No. W4011) was placed at 1:1000 in incubation buffer. It lasted for 1 hour at room temperature. Wash again twice with pbs and incubate with staining solution (10 ml PBS + 200 μΐ 〇-dimethylhydrazine benzidine saturated solution in 100% ethanol + 15 μΐ freshly prepared Η2〇2) Brown spots (2 hours) were observed. The staining solution was removed and PBS was added to terminate the staining reaction. Each well showing a brown spot indicates positive for CPE and a Kaerber equation to calculate titer (TCID50-based analysis) (Kaerber, G. 1931. Arch. Exp. Pathol. Pharmakol. 162, 480). The virus was used on the one hand to infect a replication group of CEF and BHK with a low repetitive infection, ie 0.05 infected units per cell (5 X 1〇4 TCIDso), which is expected to be tolerant to MVA, and on the other hand , infection of CV-1, Vero, Hela, 143B and HaCat, which is expected to be non-tolerant to MVA. Thereafter, the virus inoculum was removed and the cells were washed three times to remove any residual unabsorbed virus. When the virus extract was prepared, the infection was allowed to continue for 4 days' and then titrated on 39 1336626 CEF cells. Table 1 and Figure 1 show the results of the titration analysis, where the values given are the total amount of virus produced after 4 days of infection. It was shown that all of the diseased kidneys were appropriately expanded in CEF (chicken embryonic fibroblast) cells as expected because this was a cell strain that was tolerant to all MVA. Furthermore, it showed that all viruses were appropriately amplified in BHK (baby hamster kidney cell line) cells. MVA-Vero performed best because BHK is a tolerant cell line. Regarding replication in Vero cells (kidney kidney cell line), MVA-Vero amplifies as appropriate as expected, ie 1000 times higher than the input. Appropriate amplification of MVA-HLR and MVA-575, respectively, increased by more than 33 fold and 1 fold input. Compared to the other 'only MVA-BN, it was found that it was not properly amplified in these cells, i.e., only a 2-fold increase over the input. Further, regarding replication in CV1 cells (kidney kidney cell strain), it was found that MVA-BN was greatly reduced in this cell strain. It shows a decrease of 200~ times lower than the input. MVA-575 also did not amplify to a level above the input and also showed a slightly negative amplification, which is a 16-fold reduction below the input. The MVA-HLR is optimal, with an amplification that is 30-fold higher than the input, followed by MVA-Vero' with a 5-fold increase in the input. The most important thing is to compare the growth kinetics of various viruses in human cell lines. There is an efficient replication in 143B cells (human bone cancer cell lines) which shows that MVA-Vero is the only one showing amplification above input (3-fold increase). All other viruses did not amplify higher than the input, but there was a large difference between MVA-HLR and MVA-BN and MVA-575. MVA-HLR is a wide range of n (less than 1 fold reduction in input), such as MVA-BN showing a minimum reduction (less than 40 300 times the input), followed by MVA-575 (below input 59) Double reduction). In short, MVA-BN is superior in terms of reduction in human 143B cells. Furthermore, regarding replication in HeLa cells (human cervical cancer cells), it was shown that MVA-HLR amplifies well in this cell line, even better than in tolerant BHK cells (Hela = higher than input) A 125-fold increase; BHK = an 88-fold increase over the input), MVA-Vero was also amplified in this cell line (a 27-fold increase over the input). However, MVA-BN and a smaller range of MVA-575 were reduced in these cells (MVA-BN = a 29-fold decrease from the input, while MVA-575 = a 6-fold decrease from the input). Regarding replication in HaCat cells (human keratinocyte cell line), it was shown that MVA-HLR amplifies well in this cell (a 55-fold increase over the input). Both MVA-Vero and MVA-575 showed amplification in this cell line (1.2 and 1.1 fold higher than the input, respectively). However, MVA-BN is the only reduction in presentation (a 5-fold reduction from the input). The results indicate that MVA-BN is the most reduced virus species in this group of viruses: by the human embryonic kidney cells (293: ECACC No. 85120602) showing an amplification ratio of 0.05 to 0.2 (data not incorporated) In Table 1), MVA-BN showed an extreme decrease in human cell lines. Further, it shows an amplification ratio of about 0.0 in 143B cells; an amplification ratio of about 0.04 in HeLa cells; and an amplification ratio of about 0.22 in HaCat cells. Further, the MVA-BN showed an amplification ratio of about 0.0 in CV1. In Vero cells alone, amplification was observed (ratio 2.33), however, when it was in tolerant cell lines such as BHK and CEF, it was not necessarily the same extension (Comparative Table 1). Therefore, it is only known that MVA-BN shows an amplification ratio of less than 1 in all human cell lines (143B, Hela, HaCat, and 293). 41 1336626 Rate 0 MVA-575 shows a similar quantitative curve to MVA-ΒΝ, but not like MVA-BN-like reduction. MVA-HLR amplifies well in all tested cells (except for 143] B cells). Therefore, it is considered to be sufficient for replication in all tested cell lines (except for 14 cells). In some cases, its amplification in human cell lines (HeLa) is even better than in tolerant cell lines (BHK). "MVA-Vero did show amplification in all cell lines, however it was smaller than the range shown by MVA-HLR (ignoring the results of 143B). However, in terms of reduction, it cannot be considered to be the same as MVA-BN or MVA-575. "Reproduction in vivo. If some MVA varieties are clearly replicated in vivo, for different MVA Reproduction of the cultivar in vivo can be detected by using the genetically engineered mouse model AGR129. This mouse cultivar has been disrupted in the IFN receptor type I (IFN-α/β) and type II (IFN-γ) genes and RAG. The gene. Due to such damage, the mouse has no IFN-based filling and is unable to produce mature 8 and T cells, so it is severely immune to abandonment and is very resistant to replication. MVA-BN, MVA-HLR or MVA572 at 10〇7pfu To immunize (i, p.) six groups of mice (used in Germany on 120, sputum individuals) and monitor clinical symptoms daily. All mice vaccinated with MVA HLR or MVA 572 died within 28 to 60 days respectively. In the necropsy test, there is a common phenomenon of serious viral infection in the main organs, and MVA (l〇8pfu) can be found again from the ovary by standard plaque analysis. Conversely, the same dose of MVA-BNC corresponds. For the registered variety ECACC V 00083008) Rats after vaccination survived for more than 90 days and were not re-discovered from organs or tissues without MVA. 42 1336626 When data on in vitro and in vivo were obtained together, studies have shown that MVA-BN is more than maternal and commercial The MVA_HLR variety is more severely reduced. 4. The MVA of different varieties is also different in stimulating immune response. The vaccination of a sufficient variety of vaccinia induces an immune response in mice, while the high dose is fatal. Although the MVA is highly reduced And there is a - reducing ability in the replication of mammalian cells, however, there is a difference in the reduction of MVA between different varieties. Indeed, MVA BN has more reduction than other MVA varieties' even the parent variety MVA 575. To determine whether differences in reduction would affect the efficacy of MVA in inducing a protective immune response, different doses of MVA BN and MVA 575 were compared in a lethal vaccinia stimulation model. The level of protection was measured by stimulation for 4 days. After that, the titer determined in the ovarian vaccinia is reduced, and this allows quantitative evaluation of MVA of different doses and different varieties. The lethal stimulation model MVA BN or MVA 575 at different doses (102, 104 or 〇6TCID5D/ml) immunized (ip) 6-8-week-old females with specific pathogen-free (n=5). MVA-BN and MVA-575 were CEF cells were propagated and purified by sucrose and formulated into 7.4 in Tris. After three weeks, the rats received an increase in the same dose of MVA and MVA varieties, followed by a vaccinated variety of vaccinia two weeks later. Lethal stimulation (i_pj. The WR-L929 TK+ or IHD-J variety can be used as a fully replicated vaccinia virus (abbreviated “rVV”). Rats in the control group received a placebo. The protective effect can be measured by the amount of decrease in titer determined in the ovary by standard spot analysis after 4 days of stimulation. Here, mice were sacrificed on the 4th day after stimulation, and the ovaries were removed, homogenized in PBS (1 ml) and VERO cells were used to determine viral titer by standard spot analysis (Thomson et al., 1998, 43 1336626).

Immunol. 160: 1717)° 在刺激4天後,藉由在卵巢rVV效價上100%的減少的評 斷,以10或10 TCIDso/ml之MVA-BN或MVA-575二種免疫接種 的老鼠係完全被保護的(第2圖)。該刺激病毒被清除了。然而, 在低劑量下可觀察到,MVA-BN或MVA-575所提供之保護的層度 不同。接受lOlCH^/ml之MVA 575二種免疫之老鼠無法受到 保護,其以高卵巢rVV效價來評價(平均3.7xl〇7pfu+/-2. 11 χίο7)。相反的,以相同劑量之MVA-BN接種之老鼠,在高卵巢 rVV效價方面(平均〇 21 xl〇7pfu +/-〇. 287 xl〇7)會誘導產生 明顯的減少(96%)。接受安慰劑之控制組老鼠具平均病毒效價 5· 11 xl07pfu (+/- 3.59 xlO7)(第 2 圖)。 兩種MVA菌種在老鼠中均誘導產生對抗致死Γνν刺激之保 護性免疫反應。雖然兩種MVA菌種在較高劑量下的效力均相 當,但低於最佳劑量時其等之效力明顯的不同。在誘導對抗致 死rVV刺激之保護性免疫反應上,MVA-BN之強度大於其親本 品種MVA-575 ’此可由比較MVA-575與MVA-BN之增加的減少 而明白關係。 4. MVA-BN於初次-推升接種療法 5. 1.:以不同天花疫苗接種老鼠後,對mva產生抗體 將MVA-BN的效力與其它MVA以及之前在根除天花時所用 的痘菌株比較。這些包括使用於CEF所產生和透過尾部割痕所 給的之Elstree和Wyeth vaccinia品種以及使用之前德國在 根除天彳t·時所用MVA 572來單一免疫。此外,比較MVA-BN和 MVA 572兩者之疫苗前,接著以Elstree進行割痕。每一群使 44 1336626 用8隻BALB/C老鼠,且全部的MVAClxlO7 TCID5d)在第0週與 第3週時以皮下接種給予。推升免疫2週後,以牛痘(IHD-J) 刺激該老鼠且於刺激4天後測定卵巢中之效價。所有疫苗和療 法引起100%保護。 使用該等不同疫苗或療法所誘導出之免疫反應,於動物中 刺激之前量測。使用量測中和抗體、Τ細胞增生、細胞激素產 物(IFN-γ與IL-4)和由Τ細胞產生之IFN-γ分析法。由MVA-BN 誘導之Τ細胞反應的位準,以EL I spot量測時一般係相等於其 它MVA和牛痘病毒,顯示生物-等效。在不同接種療法之後, 每週分析針對MVA之抗體的效價展現出,相較於其它接種療 法,以MVA-BN接種明顯地提高抗體的速度與大小(第η圖)。 的確,相較於以MVA 572接種之老鼠,當以MVA-BN接種時, 對MVA之抗體效價在第2、4與5週(在第4週推升後1週)時 明顯較高(ρ>0· 05)。在第4週推升接種之後,相較於接受痘菌 株Elstree或Wyeth之單一接種,於MVA-BN群中之抗體效量 亦明顯較高。此等結果清楚地顯示出,相較於以傳統的牛癌菌 株(Elstree和Wyeth)所作之典型單一接種,2個以MVA_BN接 種者誘導較高的抗體反應,以及從區域丨5證實此發現,MVA— 比其它MVA菌株更具致免疫性。 5.2.:在流行性感冒刺激模型中,抓^初次和推升療法產生與 DNA-初次MVA-推升療法相同位準的保護 將用以產生高活動性CTL反應之MVA初次_推升療法與已 被報導為最好的DMA初次/MVA推升療法相比較。使用以由⑽八 載體或MVA-BN編碼之鼠類多面體結構來評估不同療法且以 45 1336626 ELISPOT來比較CTL誘導的位準,同時將所量測得之反應活動 性作為以流行性感冒刺激之後所提供保護的程度。 結果 編碼鼠類多面體(10 CTL抗原決定位,包括流行性感冒、 卵白蛋白)之DNA質趙已於前面說明(Th〇ms〇n等人,i998,] Imnmnol. 160: 1717)。此鼠類多面體被插入MVA BN的缺失位 置II,於CEF細胞中增長,以蔗糖存化且於Tris中配方成讪 7· 4 〇 疫苗接種步驟 於目前的研究中,使用無特定病毒之6_8週大的雌性 BALB/c (H-2d)老鼠。5隻老鼠群被用於Eusp〇T分析而每群 6隻老鼠被用於供流行性感冒刺激實驗。以不同的初次_推升療 法,使用MVA或如於結果中詳述之編碼鼠類多面體之DNA來接 種該老鼠。在以DNA接種方面,先麻醉老鼠,再於麻醉下,於 四頭肌中注射50 gg之無内毒素的質體DNA (配於50 μΐ之pbs 中)。使用之初次免疫的進行係以靜脈内投與每隻老鼠1〇7 pfu 之MVA-BN或以皮下投與每隻老鼠107pfu或i〇8pfu之mva-BN。 推升免疫是於初次免疫3週後給予。質體DNA之推升係用與使 用DNA之初次免疫相同的方式來進行(參見上述内容)。為了要 建立CTL反應,於在使用流行性感冒CTL抗原決定位胜肽 (TYQRTRALV)、P. Berghei 抗原決定位胜肽(SYIPSAEKI)、巨大 細胞病毒胜肽抗原決定位(YPHFMPTNL)和/或LCV胜肽抗原決 定位(RPQASGVYM)做最後的推升免疫之2週後,於脾細胞上進 行標準的 ELISPOT 分析(Schneider 等人,1998,Nat. Med. 4; 46 1336626 397-402)。在刺激實驗方面,將老鼠麻醉,以次-致死劑量之常 用的流行性感冒病毒,Mem71 (配置於50 ml之PBS中4.5 xlO 5 pfu)i.n.感染老鼠。感染後第5天,將肺移除且使用標準流行 性感冒斑分析法,於Mad i n-Darby氏狗腎小管細胞株中決定一 式二份之病毒效價。 結果:Immunol. 160: 1717) ° After 4 days of stimulation, with a 100% reduction in ovarian rVV titers, 10 or 10 TCIDso/ml of MVA-BN or MVA-575 immunized mouse strains Fully protected (Figure 2). The stimulating virus was cleared. However, it can be observed at low doses that the protection provided by MVA-BN or MVA-575 is different. MVA 575 mice immunized with lOlCH^/ml were unprotected and were evaluated with high ovarian rVV titers (mean 3.7xl 〇 7pfu +/- 2.11 χίο7). In contrast, mice vaccinated with the same dose of MVA-BN induced a significant reduction (96%) in terms of high ovarian rVV titers (mean 〇 21 x l 〇 7 pfu +/- 〇 287 x 〇 7). Control group mice receiving placebo had an average viral titer of 5·11 xl07pfu (+/- 3.59 xlO7) (Figure 2). Both MVA strains induced a protective immune response against lethal Γνν stimulation in mice. Although the efficacy of the two MVA strains at the higher doses is comparable, the efficacy of the two MVA strains is significantly different when compared to the optimal dose. On the protective immune response induced to combat lethal rVV stimulation, the intensity of MVA-BN is greater than that of its parental variety MVA-575', which is clearly related to the decrease in the increase in MVA-575 and MVA-BN. 4. MVA-BN in the first-push-inoculation therapy 5. 1. After inoculation of mice with different smallpox vaccines, antibody production against mva compares the efficacy of MVA-BN with other MVA and the previously used pox strains used in the eradication of smallpox. These include the use of the Elstree and Wyeth vaccinia varieties produced by CEF and transmitted through the tail cuts and the single immunization of MVA 572 used in Germany before eradication. In addition, before the vaccines of both MVA-BN and MVA 572 were compared, the cuts were followed by Elstree. Each group used 44 1336626 with 8 BALB/C mice, and all MVAClxlO7 TCID5d) were administered subcutaneously at weeks 0 and 3. Two weeks after the immunization was boosted, the mice were stimulated with vaccinia (IHD-J) and the titer in the ovaries was measured 4 days after the stimulation. All vaccines and treatments cause 100% protection. The immune response elicited using these different vaccines or therapies is measured prior to stimulation in the animals. Neutralizing antibodies, sputum cell proliferation, cytokine products (IFN-γ and IL-4) and IFN-γ assays produced by sputum cells were used. The level of sputum cell response induced by MVA-BN is generally equivalent to other MVA and vaccinia virus when measured by EL I spot, showing bio-equivalent. After different vaccination therapies, the weekly titer of antibodies against MVA showed that the rate and size of the antibody were significantly increased by MVA-BN vaccination compared to other inoculation methods (pn). Indeed, compared to mice vaccinated with MVA 572, the antibody titer against MVA was significantly higher at 2, 4, and 5 weeks (1 week after the 4th week of boost) when vaccinated with MVA-BN ( ρ>0· 05). After the booster vaccination at week 4, the antibody titer in the MVA-BN population was also significantly higher than the single vaccination with the vaccinia strain Elstree or Wyeth. These results clearly show that two of the MVA_BN vaccinates induced a higher antibody response compared to the typical single vaccination with traditional bovine cancer strains (Elstree and Wyeth), and confirmed this finding from the region 丨5, MVA - more immunogenic than other MVA strains. 5.2. In the influenza stimuli model, the initial and push-up therapy produces the same level of protection as the DNA-first MVA-push therapy, which will be used to generate a highly active CTL response for the first time. It has been reported as the best DMA initial/MVA push therapy comparison. Different therapies were evaluated using a murine polyhedral structure encoded by (10) eight vectors or MVA-BN and the CTL induced levels were compared at 45 1336626 ELISPOT, while the measured reactivity was measured as influenza-stimulated The extent of protection provided. Results The DNA quality of the murine polyhedra (10 CTL epitope, including influenza, ovalbumin) has been previously described (Th〇ms〇n et al, i998,] Imnmnol. 160: 1717). This murine polyhedron was inserted into the deletion position II of MVA BN, grown in CEF cells, stored in sucrose and formulated in Tris to form a 讪7·4 〇 vaccination step in the current study, using a specific virus for 6-8 weeks. Large female BALB/c (H-2d) mice. Five mouse populations were used for Eusp〇T analysis and 6 mice per group were used for influenza stimulation experiments. The mice were inoculated with MVA or DNA encoding a murine polyhedron as detailed in the results, using different initial _ push-ups. In the case of DNA vaccination, the mice were anesthetized and then under anesthesia, 50 gg of endotoxin-free plastid DNA (in 50 μM of pbs) was injected into the quadriceps. The primary immunization used was performed by intravenously administering 1〇7 pfu of MVA-BN per mouse or subcutaneously administering 107 pfu or i〇8 pfu of mva-BN per mouse. Push-up immunity was given 3 weeks after the initial immunization. The push-up of plastid DNA is carried out in the same manner as the primary immunization using DNA (see above). In order to establish a CTL response, the influenza CTL epitope peptide (TYQRTRALV), P. Berghei epitope peptide (SYIPSAEKI), giant cell virus peptide epitope (YPHFMPTNL) and/or LCV are used. Two weeks after the final boosting of the peptide epitope (RPQASGVYM), a standard ELISPOT assay was performed on splenocytes (Schneider et al., 1998, Nat. Med. 4; 46 1336626 397-402). In the stimulation experiment, the mice were anesthetized, and the mice were infected with a sub-lethal dose of the commonly used influenza virus, Mem71 (4.5 x lO 5 pfu in 50 ml of PBS) i.n. On day 5 post-infection, the lungs were removed and the virus titer in duplicate was determined in the Mad i n-Darby dog tubular cell line using standard epidemic plaque assay. result:

單獨使用DNA疫苗,以老鼠多面體編碼的4H-2 d抗原決 定位所誘導之CTL係不足的,且對於P.Berghei (SYIPSAEKI) 之抗原決定位以及淋巴脈絡叢腦膜病毒(RPQASGVYM)兩者僅可 偵測到微量的反應。相反的,使用DNA初次MVA推升療法(皮 下給予107 pfu MVA-BN),所誘導CTL明顯較高,對於SLY (8-倍的增加)而對RPQ (3-倍的增加),以及亦可觀察到對於鼠類 巨大細胞病毒(YPHFMPTNL)之第3抗原決定位的反應(第3A 圖)。然而,於一同型初次推升療法中皮下給予107ρίϋΜνΐβΜ 會誘導與採用MVA-BN之DNA相同的反應(第3Α圖)。令人驚_ 地’當使用一種MVA-BN (107 TCID50)免疫時,對於三個抗原 決定位所誘導之CTL的數目沒有明顯地不同,顯示出以 之第二次免疫不會明顯地增加CTL反應。 之前已顯示,對於使用其它菌株之MVA來接種時,特別若 與靜脈内免疫相較時,皮下投與1〇7 pfu MVA是最無效率之途 徑與病毒濃度(Schneider等人1998)。為了界定最佳免疫療 法’上述實驗以改變病毒數量或改變投與摸式來重覆進行。於 一實驗中,107 pfu之MVA-BN疫苗係以靜脈内投與(第3B圖)。 於另一實驗中,108 pfu之MVA-BN係以皮下投與(第3C圖)。 47 1336626 於該等實驗中,相較於DNA初次MVA推升療法,MVA-ΒΝ初次 -推升免疫對全部三種CTL抗原決定位誘導較高的平均CTL數 目。且,不像皮下投與1〇7 pfu之MVA-BN,以靜脈内投與107pfu 之MVA-BN的免疫以及皮下投與1〇8 pfu明顯地提高CTL反應。 此清楚地指出,在事先對該載體具有免疫力的存在下,MVA-BN 可被用於提高CTL反應。 參考文獻The DNA vaccine alone was used, and the CTL line induced by the 4H-2 d epitope encoded by the mouse polyhedron was insufficient, and only the epitope of P. Berghei (SYIPSAEKI) and the lymphatic plexus meningeal virus (RPQASGVYM) were only available. A small amount of reaction was detected. Conversely, the use of DNA initial MVA push-up therapy (subcutaneous administration of 107 pfu MVA-BN) resulted in significantly higher CTL induction, for SLY (8-fold increase) versus RPQ (3-fold increase), and A response to the third epitope of the murine giant cell virus (YPHFMPTNL) was observed (Fig. 3A). However, subcutaneous administration of 107ρίϋΜνΐβΜ in the same initial push-up therapy induces the same reaction as the DNA using MVA-BN (Fig. 3). Surprisingly, when immunized with an MVA-BN (107 TCID50), there was no significant difference in the number of CTLs induced by the three epitopes, indicating that the second immunization did not significantly increase CTL. reaction. It has previously been shown that subcutaneous administration of 1〇7 pfu MVA is the most inefficient route and virus concentration when inoculated with MVA from other strains, especially when compared to intravenous immunization (Schneider et al. 1998). In order to define the optimal immunotherapy, the above experiments were repeated to change the number of viruses or change the mode of administration. In one experiment, 107 pfu of the MVA-BN vaccine was administered intravenously (Fig. 3B). In another experiment, 108 pfu of MVA-BN was administered subcutaneously (Fig. 3C). 47 1336626 In these experiments, the MVA-ΒΝ initial-push-immunization induced a higher average number of CTLs for all three CTL epitopes than the initial MVA push-up therapy for DNA. Furthermore, unlike subcutaneous administration of 1〇7 pfu of MVA-BN, immunization with intravenous administration of 107 pfu of MVA-BN and subcutaneous administration of 1〇8 pfu significantly increased the CTL response. This clearly indicates that MVA-BN can be used to increase the CTL response in the presence of immunity to the vector in advance. references

Nimmannitya S、Kalayanaroo S、Nisalak A 和 Innes B. 1990。 登革熱出血熱之第二次發作。Southeast Asian Journal of Tropical Medicine and Public Health, 21:699Nimmannitya S, Kalayaranaro S, Nisalak A and Innes B. 1990. The second episode of dengue hemorrhagic fever. Southeast Asian Journal of Tropical Medicine and Public Health, 21:699

Burke DS和Monath TP. 2001,黃病毒。病毒領域,第四版, 由 David M Knipe 和 Peter M Howley 編輯。由 LippincottBurke DS and Monath TP. 2001, Flavivirus. The Virus, Fourth Edition, edited by David M Knipe and Peter M Howley. By Lippincott

Williams 和 Wilkins 發表,費城。第 1043-1 125 頁Published by Williams and Wilkins, Philadelphia. Page 1043-1 125

Flamand Μ、Megret F、Mathieu Μ、LePault、Rey FA 和 Deubel V.,1999。登革熱病毒類型1非結構性的糖蛋白NS1係由哺乳 細胞所分泌,於糖化-依賴的形態中為可溶性的六聚體。J. Virol., 73:6104-6110Flamand Μ, Megret F, Mathieu Μ, LePault, Rey FA, and Deubel V., 1999. The dengue virus type 1 non-structural glycoprotein NS1 is secreted by mammalian cells and is a soluble hexamer in the glycosylation-dependent form. J. Virol., 73:6104-6110

Jang SK ' Davies MV、Kaufman RJ 和 Wimmer E.,1989。藉由 於活體内,核糖體内入腦心肌炎病毒RNA之5,非轉譯區域來起 始蛋白質合成。J· Virol., 63:1651-60 48 1336626Jang SK 'Davies MV, Kaufman RJ and Wimmer E., 1989. By in vivo, the ribosome enters the 5, non-translated region of the encephalomyocarditis virus RNA to initiate protein synthesis. J. Virol., 63:1651-60 48 1336626

Lindenbach BD和Rice CM.,2001,黃病毒與其複製。於病毒 領域’第四版。由David M Knipe與Peter M Howley編輯。Lindenbach BD and Rice CM., 2001, flavivirus and its replication. In the field of viruses, the fourth edition. Edited by David M Knipe and Peter M Howley.

Lippincott Williams 與 Wilkins 發行,費城。第 991-1041 頁Lippincott Williams and Wilkins, Philadelphia. Page 991-1041

Schlesinger JJ、Brandriss MW 和 Walsh EE.,1987。藉由以 登革熱2病毒非-結構性的蛋白NS1免疫來保護老鼠免於罹患 登革熱 2 病毒腦炎。J. Gen. Virol., 68:853-7 Schesinger JJ、Foltzer Μ 和 Chapman S·,1993。對於黃熱 病毒NS1,抗體之Fc部分係保護老鼠免於罹患黃熱腦炎之決定 部位。Virology. 192: 132-41 本發明所述之技術與程序係熟悉分子生物與病毒,特別是有關 黃病毒病毒學與痘病毒之基因操作方面之從業人員所熟悉 者。所述之技術與程序之詳細内容可於下列文獻來源中找到:Schlesinger JJ, Brandriss MW and Walsh EE., 1987. The mice were protected from dengue 2 viral encephalitis by immunization with the dengue 2 virus non-structural protein NS1. J. Gen. Virol., 68: 853-7 Schesinger JJ, Foltzer Μ and Chapman S., 1993. For the yellow fever virus NS1, the Fc portion of the antibody protects the mouse from the decisive site of yellow fever encephalitis. Virology. 192: 132-41 The techniques and procedures described herein are familiar to molecular organisms and viruses, particularly those familiar with the genetic manipulation of flaviviruses and poxviruses. The details of the techniques and procedures described can be found in the following literature sources:

分子選殖,實驗室手冊。第二版。由J. Sambrook, E. F. Fritsch 與 T. Maniatis 出版。Cold Spring Harbor Laboratory Press. 1989 病毒學方法手冊。由Brian WJ Mahy與Hi 1 lar 0 Kangro編輯。 Academic Press. 1996 分子病毒學··實用入門。由AJ Davison和RM Elliott編輯。 49 1336626 實用入門系列。IRL Press at Oxford University Press.Molecular selection, laboratory manual. second edition. Published by J. Sambrook, E. F. Fritsch and T. Maniatis. Cold Spring Harbor Laboratory Press. 1989 Handbook of Virology Methods. Edited by Brian WJ Mahy and Hi 1 lar 0 Kangro. Academic Press. 1996 Molecular Virology · Practical Introduction. Edited by AJ Davison and RM Elliott. 49 1336626 Practical entry series. IRL Press at Oxford University Press.

Oxford 1993. Chapter 9 :牛痘病毒載體之基因表現 分子生物目前的規則。發行人:John Wiley和Son Inc. 1998。 第16章,第IV節:於°翁乳動物中使用牛癌病毒載鱧之蛋白質 的表現。抗體,實驗室手冊。由Har 1 ow和David Lane編輯。 Cold Spring Harbor Laboratory 出版,1988。 C圖式簡單說明3 第1A圖:作為本發明之一實施例之登革熱NGC品種"訊 號序列+NSl"cDNA蛋白質編碼序列。在自然内文中之NS1基因 的開頭以一箭頭指示。重要之特徵係添加一 ATG起始密碼子和 一終止密碼子(於此實施例中為"TAG")。核苷酸序列數目參照 NGC品種基因組之位置(基因資料庫登錄號AF038403)。在第 1A圖中之核苷酸與胺基酸對應於序列編號5。該胺基酸分開示 於序列編號6。 第1B圖:含該登革熱NGC品種“訊號序列+NS1”蛋白質 編碼序列之質體PAF7NS1的圖表。 第1C圖:在質體pAF7内之NS1卡匣的核苷酸序列顯示 出,以OBN345和oBN338來PCR擴增此卡匣的起動子鍵結位置。 於第1C圖中之核苷酸與胺基酸序列對應於序列編號7。該胺基 酸分開示為序列編號8。 第1D圖:上面:登革熱NGC品種NS1胺基酸序列之 Kyte-Doolittle親水性墨點圖(登革熱NCG多蛋白基因資料庫 登錄號AF038403之胺基酸776至1127)。值高於零=疏水性。 50 1336626 下面:含有衍生自E蛋白質之C-端的最後28個胺基酸之訊號 序列之登革熱NCG品種NS1胺基酸序列的Kyte-Doolittle親 水性墨點圖(胺基酸748至775)。全部之胺基酸序列代表登革 熱NCG多蛋白之胺基酸748至1127(基因資料庫登錄號 AF038403),此品種以“ATG”起始密碼子作為起始,但缺少終止 密碼子。Sig =訊號序列。值高於零=疏水性。 第2圖··"痘病毒起動子+訊號序列+NS1M表現卡匣之核苷 酸序列。於第2圖中之核苷酸和胺基酸序列對應於序列編號9。 胺基酸分開示於序列編號10。簡言之,最小痘病毒早期/晚期 起動子要素控制登革熱病毒血清類型2之NS1蛋白的表現,其 中該NS1蛋白之N-端融合至E-蛋白質之28個C-端胺基酸。轉 譯終止於己插入核酸序列中之TAG終止密碼子。 第3A圖:將NS1表現卡匣選殖進入pBNX07之平口終止的 Xh〇 I位置(平α的鈍端選殖),以產生選殖株pBN41。PPr =痘 病毒起動子,D2F1 =缺失2之側面1,NPT II =新黴素抗性基 因,IRES =核糖體内結合位置,EGFP =提升的綠螢光蛋白, NS1(於PBN41中)=訊號序列+NS1,D2F2=缺失2之側面2,Sig =訊號序列。AmpR =氨比西林抗性基因。 第3B圖:MVA (基因資料庫U94848)之Hind III圖,顯 示MVA的六個缺失的位址(-J-=缺失的接合點)。"PPr+NPT II + IRES+EGFP+PPr+NSl"卡匣被插入MVA之缺失2位置。PPr = 痘病毒起動子,NPT II二新黴素抗性基因(蛋白質編碼序列), IRES =核糖體内結合位置以及NS1=訊號序列+登革熱2 NGC品 種之NS1蛋白編碼序列。 51 1336626 第4圖:顯示具未感染細胞控制組之mBN07和真正登革熱 病毒血清類型2之免疫墨點圖,其以對抗登革熱病毒NS1蛋白 之單株抗體來探察。左邊之箭頭指天然NS1二聚物,而右邊之 箭頭指NS1單體,其於樣品沸騰後觀看。2ME = 2毓基乙醇。 第5圖:稀釋成1:200之血清被測試於,在無還原且無加 熱之情況下,以SDS PAGE所分離之登革熱病毒血清類型2抗 原之免疫墨點條帶上以及未受感染之C6/36細胞之控制條帶 上。 條帶1 =登革熱病毒血清類型2抗原條帶; 條帶2 =控制條帶;a =免疫前的血清,而b =血疫後的血 清。 第6圖:免疫後之血清被滴定至1:1000、1:2000、 1:4000、1:10_4、1:1(Γ5、1:10_6,且被測試於在無還原與無加 熱情況下,以SDS PAGE分離之後登革熱2病毒抗原之免疫墨 點條帶上以及未被感染之C6/36細胞的控制條帶上。注意:對 於兔子#1和#2,稀釋10_4之NS1帶雖然無法在掃描的照片上觀 察到,然而實際的條帶可由肉眼觀察到。1 =登革熱病毒血清 類型2抗原條帶,2 =控制條帶,A =兔子#1,B =兔子#2, 且C =兔子#3。 第7圖:對於全部三隻免子之免疫後的血清滴定量測之 ELISA吸收讀數的點。 第8圖:每隻被稀釋成1:1000之兔子血清被測試於,在 無還原與無加熱情況下,以SDS PAGE分離之登革熱1、2、3、 4+JE病毒抗原之免疫墨點條帶上以及未受感染之C6/36細胞的 52 1336626 控制條帶上。注意··對於具兔子#2血清之登革熱3與4之MSI 帶雖然無法在掃描的照片上觀察到,然而實際的條帶可由肉眼 觀察到。1 =登革熱病毒血清類型1抗原條帶,2=登革熱病毒血 清類型3抗原條帶,3=登革熱病毒血清類型4抗原,4=JE病毒 抗原條帶,而5=控制組。 【主要元件符號說明】 (無)Oxford 1993. Chapter 9: Gene Expression of Vaccinia Virus Vectors Current rules for molecular biology. Issuer: John Wiley and Son Inc. 1998. Chapter 16, Section IV: Performance of proteins used in bovine cancer virus-borne animals. Antibody, laboratory manual. Edited by Har 1 ow and David Lane. Published by Cold Spring Harbor Laboratory, 1988. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1A is a diagram showing a dengue NGC variety "signal sequence + NSl" cDNA protein coding sequence as an embodiment of the present invention. The beginning of the NS1 gene in the natural text is indicated by an arrow. An important feature is the addition of an ATG start codon and a stop codon ("TAG") in this example. The number of nucleotide sequences refers to the position of the NGC genomic genome (Gene Database Accession No. AF038403). The nucleotide in Figure 1A corresponds to the amino acid of SEQ ID NO: 5. The amino acid is shown separately in SEQ ID NO: 6. Figure 1B: A graph of the plastid PAF7NS1 containing the protein coding sequence for the dengue NGC variety "signal sequence + NS1". Figure 1C: The nucleotide sequence of the NS1 cassette in plastid pAF7 shows that the promoter linkage position of this cassette was PCR amplified with OBN345 and oBN338. The nucleotide and amino acid sequence in Figure 1C corresponds to SEQ ID NO: 7. The amino acid is shown separately as SEQ ID NO: 8. Figure 1D: Top: Kyte-Doolittle hydrophilic dot map of the NS1 amino acid sequence of the dengue NGC variety (dengue NCG polyprotein gene library Amino acid 776 to 1127 of accession number AF038403). The value is higher than zero = hydrophobic. 50 1336626 B: Kyte-Doolittle hydrophilic dot map (amino acid 748 to 775) of the dengue NCG NS1 amino acid sequence containing the signal sequence of the last 28 amino acids derived from the C-terminus of the E protein. The entire amino acid sequence represents the amino acid 748 to 1127 of the dengue NCG polyprotein (Gene Database Accession No. AF038403), which starts with the "ATG" start codon but lacks a stop codon. Sig = signal sequence. The value is higher than zero = hydrophobic. Fig. 2··"pox virus promoter + signal sequence + NS1M shows the nucleotide sequence of the cardinal. The nucleotide and amino acid sequences in Figure 2 correspond to SEQ ID NO: 9. The amino acid is shown separately in SEQ ID NO: 10. Briefly, the minimal/pox virus early/late promoter element controls the expression of the NS1 protein of dengue virus serotype 2, wherein the N-terminus of the NS1 protein is fused to the 28 C-terminal amino acids of the E-protein. The translation terminates in the TAG stop codon in the inserted nucleic acid sequence. Figure 3A: The NS1 expression cassette was cloned into the Xh〇 I position of the flat end of pBNX07 (blunt end blunt end) to generate the selected strain pBN41. PPr = poxvirus promoter, D2F1 = side 2 of deletion 2, NPT II = neomycin resistance gene, IRES = ribosome binding site, EGFP = elevated green fluorescent protein, NS1 (in PBN41) = signal Sequence + NS1, D2F2 = side 2 of deletion 2, Sig = signal sequence. AmpR = ampicillin resistance gene. Figure 3B: Hind III map of MVA (Gene Library U94848) showing six missing addresses of MVA (-J- = deleted junction). "PPr+NPT II + IRES+EGFP+PPr+NSl" The cassette is inserted into the missing 2 position of MVA. PPr = poxvirus promoter, NPT II dimycin resistance gene (protein coding sequence), IRES = ribosome binding site and NS1 = signal sequence + dengue 2 NGC species NS1 protein coding sequence. 51 1336626 Figure 4: Immunoblot map showing mBN07 and true dengue virus serotype 2 with uninfected cell control group, probed with monoclonal antibodies against dengue virus NS1 protein. The arrow on the left refers to the natural NS1 dimer, and the arrow on the right refers to the NS1 monomer, which is viewed after the sample has boiled. 2ME = 2 mercaptoethanol. Figure 5: Serum diluted to 1:200 was tested on a strip of immune dots of dengue virus serotype 2 antigen isolated by SDS PAGE without reduction and without heating, and uninfected C6 /36 cells on the control strip. Band 1 = dengue virus serotype 2 antigen band; band 2 = control band; a = pre-immune serum, and b = post-epidemic serum. Figure 6: Serum after immunization was titrated to 1:1000, 1:2000, 1:4000, 1:10_4, 1:1 (Γ5, 1:10_6, and tested in the absence of reduction and no heating, Isolation of the dengue 2 virus antigen on the control strip after SDS PAGE and on the control strip of uninfected C6/36 cells. Note: For rabbits #1 and #2, the NS1 band diluted 10_4 cannot be scanned. Observed on the photograph, however, the actual band can be observed by the naked eye. 1 = dengue virus serotype 2 antigen band, 2 = control band, A = rabbit #1, B = rabbit #2, and C = rabbit# 3. Figure 7: Point of ELISA absorption reading for serum titration after immunization of all three exons. Figure 8: Rabbit serum diluted to 1:1000 each was tested, without reduction and On heating, strips of dengue 1, 2, 3, 4+JE virus antigens on SDS PAGE and 52 1336626 control strips on uninfected C6/36 cells without heating. Note · For The MSI band with rabbit #2 serum dengue 3 and 4 can not be observed on scanned photos, but the actual band can be Observed by the naked eye. 1 = dengue virus serotype 1 antigen band, 2 = dengue virus serotype 3 antigen band, 3 = dengue virus serotype 4 antigen, 4 = JE virus antigen band, and 5 = control group. [Main component symbol description] (none)

53 1336626 序列表53 1336626 Sequence Listing

<110> Bavarian Nordic A/S<110> Bavarian Nordic A/S

Venture Technologies Sdn Bhd <12〇>黃病毒NS1次單元疫苗 <130> NS1登革熱 <140> 0000 <141> 2001-12-04 <160> 10 <170> Patentln Ver. 2.1Venture Technologies Sdn Bhd <12〇> Flavivirus NS1 subunit vaccine <130> NS1 dengue <140> 0000 <141> 2001-12-04 <160> 10 <170> Patentln Ver. 2.1

<210> 1 <211> 30 <212> DNA <213>人工合成序列 <220> <223> Description of Artificial Sequence: primer <400> 1 30 ttgttagcag ccggatcgta gacttaatta <210> 2 <211> 62 <212> DNA <213>人工合成序列<210> 1 <211> 30 <212> DNA <213> Synthetic sequence <220><223> Description of Artificial Sequence: primer <400> 1 30 ttgttagcag ccggatcgta gacttaatta <210> 2 <211> 62 <212> DNA <213> Synthetic sequence

<220> <223> Description of Artificial Sequence:primer <400> 2 caaaaaattg aaattttatt tttttttttt ggaatataaa taaaaacacg ataataccat 60 QQ 62 <210> 3 <211> 33 <212> DNA <213>人工合成序^ <220> <223> Description of Artificial Sequence: primer 1 1336626 <400> 3 aatagatctc tactaggctg tgaccaagga gtt 33<220><223> Description of Artificial Sequence:primer <400> 2 caaaaaattg aaattttatt tttttttttt ggaatataaa taaaaacacg ataataccat 60 QQ 62 <210> 3 <211> 33 <212> DNA <213> ^ <220><223> Description of Artificial Sequence: primer 1 1336626 <400> 3 aatagatctc tactaggctg tgaccaagga gtt 33

<210> 4 <211> 33 <212> DNA <213 >人工合成序列Sequence <220> <223>人工合成序列之說明:引子. <400> 4 acaagatctg gaatgaattc acgtagcacc tea 33<210> 4 <211> 33 <212> DNA <213 > Synthetic sequence Sequence <220><223> Description of synthetic sequence: primer. <400> 4 acaagatctg gaatgaattc acgtagcacc tea 33

<210> 5 <211> 1143 <212> DNA <213>登革熱病毒麵2 <220> <221> CDS <222> (1) . . (1140) <223> E蛋白之訊鲚序列+NS1編碼序列 <400> 5 atg aat tea ege age acc tea ctg tet gtg tea eta gta ttg gtg gga 48<210> 5 <211> 1143 <212> DNA <213> Dengue Virus Noodle 2 <220><221> CDS <222> (1) . (1140) <223> E protein Signal sequence + NS1 code sequence <400> 5 atg aat tea ege age acc tea ctg tet gtg tea eta gta ttg gtg gga 48

Met Asn Ser Arg Ser Thr Ser Leu Ser Val Ser Leu Val Leu Val Gly 1 5 10 15 gtc gtg aeg ctg tat ttg gga gtt atg gtg cag gee gat agt ggt tgc 96Met Asn Ser Arg Ser Thr Ser Leu Ser Val Ser Leu Val Leu Val Gly 1 5 10 15 gtc gtg aeg ctg tat ttg gga gtt atg gtg cag gee gat agt ggt tgc 96

Val Val Thr Leu Tyr Leu Gly Val Met Val Gin Ala Asp Ser Gly Cys 20 25 30 gtt gtg age tgg aaa aac aaa gaa ctg aag tgt ggc agt ggg att ttc 144Val Val Thr Leu Tyr Leu Gly Val Met Val Gin Ala Asp Ser Gly Cys 20 25 30 gtt gtg age tgg aaa aac aaa gaa ctg aag tgt ggc agt ggg att ttc 144

Val Val Ser Trp Lys Asn Lys Glu Leu Lys Cys Gly Ser Gly lie Phe 35 40 45 ate aca gac aac gtg cac aca tgg aca gaa caa tac aag ttc caa cca 192 lie Thr Asp Asn Val His Thr Trp Thr Glu Gin Tyr Lys Phe Gin Pro 50 55 60 gaa tee cct tea aag eta get tea get ate cag aaa get cat gaa gag 240Val Val Ser Trp Lys Asn Lys Glu Leu Lys Cys Gly Ser Gly lie Phe 35 40 45 ate aca gac aac gtg cac aca tgg aca gaa caa tac aag ttc caa cca 192 lie Thr Asp Asn Val His Thr Trp Thr Glu Gin Tyr Lys Phe Gin Pro 50 55 60 gaa tee cct tea aag eta get tea get ate cag aaa get cat gaa gag 240

Glu Ser Pro Ser Lys Leu Ala Ser Ala lie Gin Lys Ala His Glu Glu 65 7 0 75 80 ggc att tgt gga ate ege tea gta aca aga ctg gaa aat ctg atg tgg 288 Giy lie Cys Gly lie Arg Ser Val Thr Arg Leu Glu Asn Leu Met Trp 85 90 95 aaa caa ata aca cca gaa ttg aat cac att eta tea gaa aat gag gtg 336 Lys Gin He Thr Pro Glu Leu Asn His lie Leu Ser Glu Asn Glu Val 100 105 110 aag ttg act att atg aca gga gac ate aaa gga ate atg cag gca gga 384 Lys Leu Thr lie Met Thr Gly Asp lie Lys Gly lie Met Gin Ala Gly 115 120 125 aaa ega tet ctg cag ccc cag ccc act gag ctg aag tat tea tgg aaa 432 Lys Arg Ser Leu Gin Pro Gin Pro Thr Glu Leu Lys Tyr Ser Trp Lys 130 135 140 aca tgg ggc aaa geg aaa atg etc tet aca gag tet cat aac cag acc 480 Thr Trp Gly Lys Ala Lys Met Leu Ser Thr Glu Ser His Asn Gin Thr 145 150 155 160 ttt etc att gat ggc ccc gaa aca gca gaa tgc ccc aac aca aac aga 528 Phe Leu lie Asp Gly Pro Glu Thr Ala Glu Cys Pro Asn Thr Asn Arg 165 170 175 get tgg aat teg ctg gaa gtt gaa gac tat ggc ttt gga gta ttc acc 576 Ala Trp Asn Ser Leu Glu Val Glu Asp Tyr Gly Phe Gly Val Phe Thr 180 185 190 acc aat ata tgg eta aag ttg aga gaa aag cag gat gta ttc tgc gac 624 Thr Asn lie Trp Leu Lys Leu Arg Glu Lys Gin Asp Val Phe Cys Asp 195 200 205 tea aaa etc atg tea geg gee ata aaa gac aac aga gee gtc cat gee 672 Ser Lys Leu Met Ser Ala Ala lie Lys Asp Asn Arg Ala Val His Ala 210 215 220 gat atg ggt tat tgg ata gaa agt gca etc aat gac aca tgg aag ata 720 Asp Met Gly Tyr Trp He Glu Ser Ala Leu Asn Asp Thr Trp Lys lie 225 230 235 240 gag aaa gee tet ttc ate gaa gtt aaa age tgc cac tgg cca aag tea 768 Glu Lys Ala Ser Phe lie Glu Val Lys Ser Cys His Trp Pro Lys Ser 245 250 255 cac acc etc tgg agt aat gga gtg tta gaa agt gag atg ata att cca 816 His Thr Leu Trp Ser Asn Gly Val Leu Glu Ser Glu Met lie lie Pro 260 265 270 I3J6626 aag aat ttc get gga cca gtg tea caa cac aac tac aga cca ggc tac 864 Lys Asn Phe Ala Gly Pro Val Ser Gin His Asn Tyr Arg Pro Gly Tyr 275 280 285 cat aca caa aca gca gga cca tgg cat eta ggt aag ett gag atg gac 912 His Thr Gin Thr Ala Gly Pro Trp His Leu Gly Lys Leu Glu Met Asp 290 295 300 ttt gat ttc tgc gaa gga acc aca gtg gtg gtg act gag gac tgt gga 960 Phe Asp Phe Cys Glu Gly Thr Thr Val Val Val Thr Glu Asp Cys Gly 305 310 315 320 aat aga gga ccc tet tta aga aca act act gcc tet gga aaa etc ata 1008 Asn Arg Gly Pro Ser Leu Arg Thr Thr Thr Ala Ser Gly Lys Leu He 325 330 335 aca gaa tgg tgc tgc ega tet tgc aca tta cca ccg eta aga tac aga 1056 Thr Glu Trp Cys Cys Arg Ser Cys Thr Leu Pro Pro Leu Arg Tyr Arg 340 345 350 ggt gag gac gga tgc tgg tac ggg atg gaa ate aga cca ttg aaa gag 1104 Gly Glu Asp Gly Cys Trp Tyr Gly Met Glu lie Arg Pro Leu Lys Glu 355 360 365 aaa gaa gag aat ttg gtc aac tcc ttg gtc aca gcc tag 1143 Lys Glu Glu Asn Leu Val Asn Ser Leu Val Thr Ala 370 375 380Glu Ser Pro Ser Lys Leu Ala Ser Ala lie Gin Lys Ala His Glu Glu 65 7 0 75 80 ggc att tgt gga ate ege tea gta aca aga ctg gaa aat ctg atg tgg 288 Giy lie Cys Gly lie Arg Ser Val Thr Arg Leu Glu Asn Leu Met Trp 85 90 95 aaa caa ata aca cca gaa ttg aat cac att eta tea gaa aat gag gtg 336 Lys Gin He Thr Pro Glu Leu Asn His lie Leu Ser Glu Asn Glu Val 100 105 110 aag ttg act att atg aca gga Gac ate aaa gga ate atg cag gca gga 384 Lys Leu Thr lie Met Thr Gly Asp lie Lys Gly lie Met Gin Ala Gly 115 120 125 aaa ega tet ctg cag ccc cag ccc act gag ctg aag tat tea tgg aaa 432 Lys Arg Ser Leu Gin Pro Gin Pro Thr Glu Leu Lys Tyr Ser Trp Lys 130 135 140 aca tgg ggc aaa geg aaa atg etc tet aca gag tet cat aac cag acc 480 Thr Trp Gly Lys Ala Lys Met Leu Ser Thr Glu Ser His Asn Gin Thr 145 150 155 160 ttt etc att gat ggc ccc gaa aca gca gaa tgc ccc aac aca aac aga 528 Phe Leu lie Asp Gly Pro Glu Thr Ala Glu Cys P Ro Asn Thr Asn Arg 165 170 175 get tgg aat teg ctg gaa gtt gaa gac tat ggc ttt gga gta ttc acc 576 Ala Trp Asn Ser Leu Glu Val Glu Asp Tyr Gly Phe Gly Val Phe Thr 180 185 190 acc aat ata tgg eta aag Ttg aga gaa aag cag gat gta ttc tgc gac 624 Thr Asn lie Trp Leu Lys Leu Arg Glu Lys Gin Asp Val Phe Cys Asp 195 200 205 tea aaa etc atg tea geg gee ata aaa gac aac aga gee gtc cat gee 672 Ser Lys Leu Met Ser Ala Ala lie Lys Asp Asn Arg Ala Val His Ala 210 215 220 gat atg ggt tat tgg ata gaa agt gca etc aat gac aca tgg aag ata 720 Asp Met Gly Tyr Trp He Glu Ser Ala Leu Asn Asp Thr Trp Lys lie 225 230 235 240 gag aaa gee tet ttc ate gaa gtt aaa age tgc cac tgg cca aag tea 768 Glu Lys Ala Ser Phe lie Glu Val Lys Ser Cys His Trp Pro Lys Ser 245 250 255 cac acc etc tgg agt aat gga gtg tta gaa agt Gag atg ata att cca 816 His Thr Leu Trp Ser Asn Gly Val Leu Glu Ser Glu Met lie lie Pro 26 0 265 270 I3J6626 aag aat ttc get gga cca gtg tea caa cac aac tac aga cca ggc tac 864 Lys Asn Phe Ala Gly Pro Val Ser Gin His Asn Tyr Arg Pro Gly Tyr 275 280 282 cat aca caa aca gca gga cca tgg cat eta Ggt aag ett gag atg gac 912 His Thr Gin Thr Ala Gly Pro Trp His Leu Gly Lys Leu Glu Met Asp 290 295 300 ttt gat ttc tgc gaa gga acc aca gtg gtg gtg act gag gac tgt gga 960 Phe Asp Phe Cys Glu Gly Thr Thr Val Val Val Thr Glu Asp Cys Gly 305 310 315 320 aat aga gga ccc tet tta aga aca act act gcc tet gga aaa etc ata 1008 Asn Arg Gly Pro Ser Leu Arg Thr Thr Thr Ala Ser Gly Lys Leu He 325 330 335 aca Gaa tgg tgc tgc ega tet tgc aca tta cca ccg eta aga tac aga 1056 Thr Glu Trp Cys Cys Arg Ser Cys Thr Leu Pro Pro Leu Arg Tyr Arg 340 345 350 ggt gag gac gga tgc tgg tac ggg atg gaa ate aga cca ttg aaa Gag 1104 Gly Glu Asp Gly Cys Trp Tyr Gly Met Glu lie Arg Pro Leu Lys Glu 355 360 365 Aaa gaa gag aat ttg gtc aac tcc ttg gtc aca gcc tag 1143 Lys Glu Glu Asn Leu Val Asn Ser Leu Val Thr Ala 370 375 380

<210> 6 <211> 380 <212> PRT<210> 6 <211> 380 <212> PRT

<213>登革熱病毒類型2 <400> 6<213> Dengue virus type 2 <400> 6

Met Asn Ser Arg Ser Thr Ser Leu Ser Val Ser Leu Val Leu Val Gly 1 5 10 15Met Asn Ser Arg Ser Thr Ser Leu Ser Val Ser Leu Val Leu Val Gly 1 5 10 15

Val Val Thr Leu Tyr Leu Gly Val Met Val Gin Ala Asp Ser Gly Cys 20 25 30Val Val Thr Leu Tyr Leu Gly Val Met Val Gin Ala Asp Ser Gly Cys 20 25 30

Val Val Ser Trp Lys Asn Lys Glu Leu Lys Cys Gly Ser Gly lie Phe 35 40 45 lie Thr Asp Asn Val His Thr Trp Thr Glu Gin Tyr Lys Phe Gin Pro 50 55 60Val Val Ser Trp Lys Asn Lys Glu Leu Lys Cys Gly Ser Gly lie Phe 35 40 45 lie Thr Asp Asn Val His Thr Trp Thr Glu Gin Tyr Lys Phe Gin Pro 50 55 60

Glu Ser Pro Ser Lys Leu Ala Ser Ala lie Gin Lys Ala His Glu Glu 4 1336626 65 70 75 80 Gly He Cys Gly lie Arg Ser Val Thr Arg Leu Glu Asn Leu Met Trp 85 90 95 Lys Gin lie Thr Pro Glu Leu Asn His lie Leu Ser Glu Asn Glu Val 100 105 no Lys Leu Thr lie Met Thr Gly Asp lie Lys Gly lie Met Gin Ala Gly 115 120 125 Lys Arg 130 Ser Leu Gin Pro Gin Pro Thr Glu Leu Lys Tyr Ser Trp Lys 135 140 Thr Trp Gly Lys Ala Lys Met Leu Ser Thr Glu Ser His Asn Gin Thr 145 150 155 160 Phe Leu lie Asp Gly Pro Glu Thr Ala Glu Cys Pro Asn Thr Asn Arg 165 170 175 Ala Trp Asn Ser Leu Glu Val Glu Asp Tyr Gly Phe Gly Val Phe Thr 180 185 190 Thr Asn lie Trp Leu Lys Leu Arg Glu Lys Gin Asp Val Phe Cys Asp 195 200 205 Ser Lys Leu Met Ser Ala Ala lie Lys Asp Asn Arg Ala Val His Ala 210 215 220 Asp Met Gly Tyr Trp lie Glu Ser Ala Leu Asn Asp Thr Trp Lys lie 225 230 235 240 Glu Lys Ala Ser Phe 工le Glu Val Lys Ser Cys His Trp Pro Lys Ser 245 250 255 His Thr Leu Trp Ser Asn Gly Val Leu Glu Ser Glu Met lie lie Pro 260 265 270 Lys Asn Phe Ala Gly Pro Val Ser Gin His Asn Tyr Arg Pro Gly Tyr 275 280 285 His Thr Gin Thr Ala Gly Pro Trp His Leu Gly Lys Leu Glu Met Asp 290 295 300 Phe Asp Phe Cys Glu Gly Thr Thr Val Val Val Thr Glu Asp Cys Gly 305 310 315 320 Asn Arg Gly Pro Ser Leu Arg Thr Thr Thr Ala Ser Gly Lys Leu lie 5 1336626 一 325 330 335Glu Ser Pro Ser Lys Leu Ala Ser Ala lie Gin Lys Ala His Glu Glu 4 1336626 65 70 75 80 Gly He Cys Gly lie Arg Ser Val Thr Arg Leu Glu Asn Leu Met Trp 85 90 95 Lys Gin lie Thr Pro Glu Leu Asn His Lie Leu Ser Glu Asn Glu Val 100 105 no Lys Leu Thr lie Met Thr Gly Asp lie Lys Gly lie Met Gin Ala Gly 115 120 125 Lys Arg 130 Ser Leu Gin Pro Gin Pro Thr Glu Leu Lys Tyr Ser Trp Lys 135 140 Thr Trp Gly Lys Ala Lys Met Leu Ser Thr Glu Ser His Asn Gin Thr 145 150 155 160 Phe Leu lie Asp Gly Pro Glu Thr Ala Glu Cys Pro Asn Thr Asn Arg 165 170 175 Ala Trp Asn Ser Leu Glu Val Glu Asp Tyr Gly Phe Gly Val Phe Thr 180 185 190 Thr Asn lie Trp Leu Lys Leu Arg Glu Lys Gin Asp Val Phe Cys Asp 195 200 205 Ser Lys Leu Met Ser Ala Ala lie Lys Asp Asn Arg Ala Val His Ala 210 215 220 Asp Met Gly Tyr Trp lie Glu Ser Ala Leu Asn Asp Thr Trp Lys lie 225 230 235 240 Glu Lys Ala Ser Phe work le Glu Val Lys Ser Cys His Trp Pro Lys Ser 245 250 255 His Thr Leu Trp Ser Asn Gly Val Leu Glu Ser Glu Met lie li e Pro 260 265 270 Lys Asn Phe Ala Gly Pro Val Ser Gin His Asn Tyr Arg Pro Gly Tyr 275 280 285 His Thr Gin Thr Ala Gly Pro Trp His Leu Gly Lys Leu Glu Met Asp 290 295 300 Phe Asp Phe Cys Glu Gly Thr Thr Val Val Val Thr Glu Asp Cys Gly 305 310 315 320 Asn Arg Gly Pro Ser Leu Arg Thr Thr Thr Ala Ser Gly Lys Leu lie 5 1336626 a 325 330 335

Thr Glu Trp Cys Cys Arg Ser Cys Thr Leu Pro Pro Leu Arg Tyr Arg 340 345 350Thr Glu Trp Cys Cys Arg Ser Cys Thr Leu Pro Pro Leu Arg Tyr Arg 340 345 350

Gly Glu Asp Gly Cys Trp Tyr Gly Met Glu lie Arg Pro Leu Lys Glu 355 360 365Gly Glu Asp Gly Cys Trp Tyr Gly Met Glu lie Arg Pro Leu Lys Glu 355 360 365

Lys Glu Glu Asn Leu Val Asn Ser Leu Val Thr Ala 370 375 380 <210> 7 <211> 1296 <212> DNA <213>登革熱病 <220>Lys Glu Glu Asn Leu Val Asn Ser Leu Val Thr Ala 370 375 380 <210> 7 <211> 1296 <212> DNA <213> Dengue Fever <220>

<221> CDS <222> (50) ·. (1189) <220> <221> 引子_結合5. <222> (12) . . (32) <220> <221>引子_結合 <222> (1243) . . (1273) <400> 7 ttttcctttg aaaaacacga taataccatg ggaattcccc cgatctgga atg aat tea<221> CDS <222> (50) · (1189) <220><221> Introduction_Combination 5. <222> (12) . . (32) <220><221>引__合合<222> (1243) . . (1273) <400> 7 ttttcctttg aaaaacacga taataccatg ggaattcccc cgatctgga atg aat tea

Met Asn Ser 1 ege age acc tea ctg tet gtg tea eta gta ttg gtg gga gtc gtg aegMet Asn Ser 1 ege age acc tea ctg tet gtg tea eta gta ttg gtg gga gtc gtg aeg

Arg Ser Thr Ser Leu Ser Val Ser Leu Val Leu Val Gly Val Val Thr 5 10 15 ctg tat ttg gga gtt atg gtg cag gcc gat agt ggt tgc gtt gtg ageArg Ser Thr Ser Leu Ser Val Ser Leu Val Leu Val Gly Val Val Thr 5 10 15 ctg tat ttg gga gtt atg gtg cag gcc gat agt ggt tgc gtt gtg age

Leu Tyr Leu Gly Val Met Val Gin Ala Asp Ser Gly Cys Val Val Ser 20 25 30 35 tgg aaa aac aaa gaa ctg aag tgt ggc agt ggg att ttc ate aca gacLeu Tyr Leu Gly Val Met Val Gin Ala Asp Ser Gly Cys Val Val Ser 20 25 30 35 tgg aaa aac aaa gaa ctg aag tgt ggc agt ggg att ttc ate aca gac

Trp Lys Asn Lys Glu Leu Lys Cys Gly Ser Gly lie Phe lie Thr Asp 40 45 50 aac gtg cac aca tgg aca gaa caa tac aag ttc caa cca gaa tcc cct 58 106 154 202 250 298 1336626Trp Lys Asn Lys Glu Leu Lys Cys Gly Ser Gly lie Phe lie Thr Asp 40 45 50 aac gtg cac aca tgg aca gaa caa tac aag ttc caa cca gaa tcc cct 58 106 154 202 250 298 1336626

Asn Val His Thr Trp Thr Glu Gin Tyr Lys Phe Gin Pro Glu Ser Pro 55 60 65 tea aag eta get tea get ate cag aaa get cat gaa gag ggc att tgt Ser Lys Leu Ala Ser Ala lie Gin Lys Ala His Glu Glu Gly lie Cys 70 75 80 346 gga ate ege tea gta aca aga ctg gaa aat ctg atg tgg aaa caa ata Gly lie Arg Ser Val Thr Arg Leu Glu Asn Leu Met Trp Lys Gin lie 85 90 95 394 aca cca gaa ttg aat cac att eta tea gaa aat gag gtg aag ttg act Thr Pro Glu Leu Asn His lie Leu Ser Glu Asn Glu Val Lys Leu Thr 100 105 110 115Asn Val His Thr Trp Thr Glu Gin Tyr Lys Phe Gin Pro Glu Ser Pro 55 60 65 tea aag eta get tea get ate cag aaa get cat gaa gag ggc att tgt Ser Lys Leu Ala Ser Ala lie Gin Lys Ala His Glu Glu Gly lie Cys 70 75 80 346 gga ate ege tea gta aca aga ctg gaa aat ctg atg tgg aaa caa ata Gly lie Arg Ser Val Thr Arg Leu Glu Asn Leu Met Trp Lys Gin lie 85 90 95 394 aca cca gaa ttg aat cac att eta tea Gaa aat gag gtg aag ttg act Thr Pro Glu Leu Asn His lie Leu Ser Glu Asn Glu Val Lys Leu Thr 100 105 110 115

att atg aca gga lie Met Thr Gly ctg cag ccc cag Leu Gin Pro Gin 135 gac ate aaa gga ate atg Asp lie Lys Gly lie Met 120 125 ccc act gag ctg aag tat Pro Thr Glu Leu Lys Tyr 140 cag gca gga aaa ega tet Gin Ala Gly Lys Arg Ser 130 tea tgg aaa aca tgg ggc Ser Trp Lys Thr Trp Gly 145 442 490 aaa geg aaa atg etc tet aca gag tet cat aac cag acc ttt etc att Lys Ala Lys Met Leu Ser Thr Glu Ser His Asn Gin Thr Phe Leu lie 150 155 160 gat ggc ccc gaa aca gca gaa tgc ccc aac aca aac aga get tgg aat Asp Gly Pro Glu Thr Ala Glu Cys Pro Asn Thr Asn Arg Ala Trp Asn 165 170 175 538 586 teg ctg gaa gtt gaa gac tat ggc ttt gga gta ttc acc acc aat ata Ser Leu Glu Val Glu Asp Tyr Gly Phe Gly Val Phe Thr Thr Asn lie 180 185 190 195 634 tgg eta aag ttg aga gaa aag cag gat gta ttc tgc gac tea aaa etc Trp Leu Lys Leu Arg Glu Lys Gin Asp Val Phe Cys Asp Ser Lys Leu 200 205 210 atg tea geg gee ata aaa gac aac aga gee gtc cat gee gat atg ggt Met Ser Ala Ala lie Lys Asp Asn Arg Ala Val His Ala Asp Met Gly 215 220 225 682 730 tat tgg ata gaa agt gca etc aat gac aca tgg aag ata gag aaa gee Tyr Trp lie Glu Ser Ala Leu Asn Asp Thr Trp Lys lie Glu Lys Ala 230 235 240 778 tet ttc ate gaa gtt aaa age tgc cac tgg cca aag tea cac acc etc 826 7 1336626Att atg aca gga lie Met Thr Gly ctg cag ccc cag Leu Gin Pro Gin 135 gac ate aaa gga ate atg Asp lie Lys Gly lie Met 120 125 ccc act gag ctg aag tat Pro Thr Glu Leu Lys Tyr 140 cag gca gga aaa ega tet Gin Ala Gly Lys Arg Ser 130 tea tgg aaa aca tgg ggc Ser Trp Lys Thr Trp Gly 145 442 490 aaa geg aaa atg etc tet aca gag tet cat aac cag acc ttt etc att Lys Ala Lys Met Leu Ser Thr Glu Ser His Asn Gin Thr Phe Leu lie 150 155 160 gat ggc ccc gaa aca gca gaa tgc ccc aac aca aac aga get tgg aat Asp Gly Pro Glu Thr Ala Glu Cys Pro Asn Thr Asn Arg Ala Trp Asn 165 170 175 538 586 teg ctg gaa gtt gaa gac Tat ggc ttt gga gta ttc acc acc aat ata Ser Leu Glu Val Glu Asp Tyr Gly Phe Gly Val Phe Thr Thr Asn lie 180 185 190 195 634 tgg eta aag ttg aga gaa aag cag gat gta ttc tgc gac tea aaa etc Trp Leu Lys Leu Arg Glu Lys Gin Asp Val Phe Cys Asp Ser Lys Leu 200 205 210 atg tea geg gee ata aaa gac aac aga gee gtc cat gee gat atg ggt Met Ser Ala Ala lie Lys Asp Asn Arg Ala Val His Ala Asp Met Gly 215 220225 682 730 tat tgg ata gaa agt gca etc aat gac aca tgg aag ata gag aaa gee Tyr Trp lie Glu Ser Ala Leu Asn Asp Thr Trp Lys lie Glu Lys Ala 230 235 240 778 tet ttc ate gaa gtt aaa age tgc cac tgg cca Aag tea cac acc etc 826 7 1336626

Ser Phe lie Glu Val Lys Ser Cys His Trp Pro Lys Ser His Thr Leu 245 250 255 tgg agt aat gga gtg tta gaa agt gag atg ata att cca aag aat ttc 874Ser Phe lie Glu Val Lys Ser Cys His Trp Pro Lys Ser His Thr Leu 245 250 255 tgg agt aat gga gtg tta gaa agt gag atg ata att cca aag aat ttc 874

Trp Ser Asn Gly Val Leu Glu Ser Glu Met lie lie Pro Lys Asn Phe 260 265 270 275 get gga cca gtg tea caa cac aac tac aga cca ggc tac cat aca caa 922Trp Ser Asn Gly Val Leu Glu Ser Glu Met lie lie Pro Lys Asn Phe 260 265 270 275 get gga cca gtg tea caa cac aac tac aga cca ggc tac cat aca caa 922

Ala Gly Pro Val Ser Gin His Asn Tyr Arg Pro Gly Tyr His Thr Gin 280 285 290 aca gca gga cca tgg cat eta ggt aag ett gag atg gac ttt gat ttc 970Ala Gly Pro Val Ser Gin His As Tyr Arg Pro Gly Tyr His Thr Gin 280 285 290 aca gca gga cca tgg cat eta ggt aag ett gag atg gac ttt gat ttc 970

Thr Ala Gly Pro Trp His Leu Gly Lys Leu Glu Met Asp Phe Asp Phe 295 300 305 tgc gaa gga acc aca gtg gtg gtg act gag gac tgt gga aat aga gga 1018Thr Ala Gly Pro Trp His Leu Gly Lys Leu Glu Met Asp Phe Asp Phe 295 300 305 tgc gaa gga acc aca gtg gtg gtg act gag gac tgt gga aat aga gga 1018

Cys Glu Gly Thr Thr Val Val Val Thr Glu Asp Cys Gly Asn Arg Gly 310 315 320 ecc tet tta aga aca act act gcc tet gga aaa etc ata aca gaa tgg 1066Cys Glu Gly Thr Thr Val Val Val Thr Glu Asp Cys Gly Asn Arg Gly 310 315 320 ecc tet tta aga aca act act gcc tet gga aaa etc ata aca gaa tgg 1066

Pro Ser Leu Arg Thr Thr Thr Ala Ser Gly Lys Leu lie Thr Glu Trp 325 330 335 tgc tgc ega tet tgc aca tta cca ccg eta aga tac aga ggt gag gac 1114Pro Ser Leu Arg Thr Thr Thr Ala Ser Gly Lys Leu lie Thr Glu Trp 325 330 335 tgc tgc ega tet tgc aca tta cca ccg eta aga tac aga ggt gag gac 1114

Cys Cys Arg Ser Cys Thr Leu Pro Pro Leu Arg Tyr Arg Gly Glu Asp 340 345 350 355 gga tgc tgg tac ggg atg gaa ate aga cca ttg aaa gag aaa gaa gag 1162Cys Cys Arg Ser Cys Thr Leu Pro Pro Leu Arg Tyr Arg Gly Glu Asp 340 345 350 355 gga tgc tgg tac ggg atg gaa ate aga cca ttg aaa gag aaa gaa gag 1162

Gly Cys Trp Tyr Gly Met Glu lie Arg Pro Leu Lys Glu Lys Glu Glu 360 365 370Gly Cys Trp Tyr Gly Met Glu lie Arg Pro Leu Lys Glu Lys Glu Glu 360 365 370

aat ttg gtc aac tcc ttg gtc aca gcc tagtagggat cgggggagct 1209Aat ttg gtc aac tcc ttg gtc aca gcc tagtagggat cgggggagct 1209

Asn Leu Val Asn Ser Leu Val Thr Ala 375 380 cactagtgga tccctccagc tegagaggne taattaatta agtetaegat ccggctgcta 1269 acaaagcccg aaaggaaget gagttgg 1296Asn Leu Val Asn Ser Leu Val Thr Ala 375 380 cactagtgga tccctccagc tegagaggne taattaatta agtetaegat ccggctgcta 1269 acaaagcccg aaaggaaget gagttgg 1296

<210> 8 <211> 380 <212> PRT <213〉登革熱病毒類型2 <400> 8<210> 8 <211> 380 <212> PRT < 213 > dengue virus type 2 <400>

Met Asn Ser Arg Ser Thr Ser Leu Ser Val Ser Leu Val Leu Val Gly 15 10 15 8 1336626Met Asn Ser Arg Ser Thr Ser Leu Ser Val Ser Leu Val Leu Val Gly 15 10 15 8 1336626

Val Val Thr Leu Tyr Leu Gly Val Met Val Gin Ala Asp Ser Gly Cys 20 25 30Val Val Thr Leu Tyr Leu Gly Val Met Val Gin Ala Asp Ser Gly Cys 20 25 30

Val Val Ser Trp Lys Asn Lys Glu Leu Lys Cys Gly Ser Gly lie Phe 35 40 45 lie Thr Asp Asn Val His Thr Trp Thr Glu Gin Tyr Lys Phe Gin Pro 50 55 60Val Val Ser Trp Lys Asn Lys Glu Leu Lys Cys Gly Ser Gly lie Phe 35 40 45 lie Thr Asp Asn Val His Thr Trp Thr Glu Gin Tyr Lys Phe Gin Pro 50 55 60

Glu Ser Pro Ser Lys Leu Ala Ser Ala lie Gin Lys Ala His Glu Glu 65 70 75 80Glu Ser Pro Ser Lys Leu Ala Ser Ala lie Gin Lys Ala His Glu Glu 65 70 75 80

Gly lie Cys Gly lie Arg Ser Val Thr Arg Leu Glu Asn Leu Met Trp 85 90 95Gly lie Cys Gly lie Arg Ser Val Thr Arg Leu Glu Asn Leu Met Trp 85 90 95

Lys Gin lie Thr Pro Glu Leu Asn His lie Leu Ser Glu Asn Glu Val 100 105 noLys Gin lie Thr Pro Glu Leu Asn His lie Leu Ser Glu Asn Glu Val 100 105 no

Lys Leu Thr lie Met Thr Gly Asp He Lys Gly He Met Gin Ala Gly 115 120 125Lys Leu Thr lie Met Thr Gly Asp He Lys Gly He Met Gin Ala Gly 115 120 125

Lys Arg Ser Leu Gin Pro Gin Pro Thr Glu Leu Lys Tyr Ser Trp Lys 130 135 140Lys Arg Ser Leu Gin Pro Gin Pro Thr Glu Leu Lys Tyr Ser Trp Lys 130 135 140

Thr Trp Gly Lys Ala Lys Met Leu Ser Thr Glu Ser His Asn Gin Thr 145 150 155 160Thr Trp Gly Lys Ala Lys Met Leu Ser Thr Glu Ser His Asn Gin Thr 145 150 155 160

Phe Leu lie Asp Gly Pro Glu Thr Ala Glu Cys Pro Asn Thr Asn Arg 165 170 175Phe Leu lie Asp Gly Pro Glu Thr Ala Glu Cys Pro Asn Thr Asn Arg 165 170 175

Ala Trp Asn Ser Leu Glu Val Glu Asp Tyr Gly Phe Gly Val Phe Thr 180 185 190Ala Trp Asn Ser Leu Glu Val Glu Asp Tyr Gly Phe Gly Val Phe Thr 180 185 190

Thr Asn lie Trp Leu Lys Leu Arg Glu Lys Gin Asp Val Phe Cys Asp 195 200 205Thr Asn lie Trp Leu Lys Leu Arg Glu Lys Gin Asp Val Phe Cys Asp 195 200 205

Ser Lys Leu Met Ser Ala Ala lie Lys Asp Asn Arg Ala Val His Ala 210 215 220Ser Lys Leu Met Ser Ala Ala lie Lys Asp Asn Arg Ala Val His Ala 210 215 220

Asp Met Gly Tyr Trp lie Glu Ser Ala Leu Asn Asp Thr Trp Lys lie 225 230 235 240Asp Met Gly Tyr Trp lie Glu Ser Ala Leu Asn Asp Thr Trp Lys lie 225 230 235 240

Glu Lys Ala Ser Phe lie Glu Val Lys Ser Cys His Trp Pro Lys Ser 245 250 255Glu Lys Ala Ser Phe lie Glu Val Lys Ser Cys His Trp Pro Lys Ser 245 250 255

His Thr Leu Trp Ser Asn Gly Val Leu Glu Ser Glu Met lie lie Pro 260 265 270 9 1336626His Thr Leu Trp Ser Asn Gly Val Leu Glu Ser Glu Met lie lie Pro 260 265 270 9 1336626

Lys Asn Phe Ala Gly Pro Val Ser Gin His Asn Tyr Arg Pro Gly Tyr 275 280 285Lys Asn Phe Ala Gly Pro Val Ser Gin His As Tyr Arg Pro Gly Tyr 275 280 285

His Thr Gin Thr Ala Gly Pro Trp His Leu Gly Lys Leu Glu Met Asp 290 295 300His Thr Gin Thr Ala Gly Pro Trp His Leu Gly Lys Leu Glu Met Asp 290 295 300

Phe Asp Phe Cys Glu Gly Thr Thr Val Val Val Thr Glu Asp Cys Gly 305 310 315 320Phe Asp Phe Cys Glu Gly Thr Thr Val Val Val Thr Glu Asp Cys Gly 305 310 315 320

Asn Arg Gly Pro Ser Leu Arg Thr Thr Thr Ala Ser Gly Lys Leu lie 325 330 335Asn Arg Gly Pro Ser Leu Arg Thr Thr Thr Ala Ser Gly Lys Leu lie 325 330 335

Thr Glu Trp Cys Cys Arg Ser Cys Thr Leu Pro Pro Leu Arg Tyr Arg 340 345 350Thr Glu Trp Cys Cys Arg Ser Cys Thr Leu Pro Pro Leu Arg Tyr Arg 340 345 350

Gly Glu Asp Gly Cys Trp Tyr Gly Met Glu He Arg Pro Leu Lys Glu 355 360 365Gly Glu Asp Gly Cys Trp Tyr Gly Met Glu He Arg Pro Leu Lys Glu 355 360 365

Lys Glu Glu Asn Leu Val Asn Ser Leu Val Thr Ala 370 375 380Lys Glu Glu Asn Leu Val Asn Ser Leu Val Thr Ala 370 375 380

<210> 9 <211> 1227 <212> DNA <213>登革熱病毒類型2 <220> <221>起動子 <222> (5)..(48}<210> 9 <211> 1227 <212> DNA <213> Dengue virus type 2 <220><221> promoter <222> (5).. (48}

<223>最小痘病毒起動子要素 <220><223> minimal poxvirus promoter element <220>

<221> CDS <222> (85) (1224) <223> NS1 <400> 9 ctcgacaaaa aattgaaatt ttattttttt tttttggaat ataaataaaa acacgataat 60 accatgggaa ttccccgatc tgga atg aat tea ege age acc tea ctg tet 111<221> CDS <222> (85) (1224) <223> NS1 <400> 9 ctcgacaaaa aattgaaatt ttattttttt tttttggaat ataaataaaa acacgataat 60 accatgggaa ttccccgatc tgga atg aat tea ege age acc tea ctg tet 111

Met Asn Ser Arg Ser Thr Ser Leu Ser 1 5 gtg tea eta gta ttg gtg gga gtc gtg aeg ctg tat ttg gga gtt atg 159Met Asn Ser Arg Ser Thr Ser Leu Ser 1 5 gtg tea eta gta ttg gtg gga gtc gtg aeg ctg tat ttg gga gtt atg 159

Val Ser Leu Val Leu Val Gly Val Val Thr Leu Tyr Leu Gly Val Met 10 10 15 20 25 gtg cag gcc gat agt ggt tgc gtt gtg age tgg aaa aac aaa gaa ctgVal Ser Leu Val Leu Val Gly Val Val Thr Leu Tyr Leu Gly Val Met 10 10 15 20 25 gtg cag gcc gat agt ggt tgc gtt gtg age tgg aaa aac aaa gaa ctg

Val Gin Ala Asp Ser Gly Cys Val Val Ser Trp Lys Asn Lys Glu Leu 30 35 40 aag tgt ggc agt ggg att ttc ate aca gac aac gtg cac aca tgg acaVal Gin Ala Asp Ser Gly Cys Val Val Ser Trp Lys Asn Lys Glu Leu 30 35 40 aag tgt ggc agt ggg att ttc ate aca gac aac gtg cac aca tgg aca

Lys Cys Gly Ser Gly lie Phe lie Thr Asp Asn Val His Thr Trp Thr 45 50 55 gaa caa tac aag ttc caa cca gaa tcc cct tea aag eta get tea getLys Cys Gly Ser Gly lie Phe lie Thr Asp Asn Val His Thr Trp Thr 45 50 55 gaa caa tac aag ttc caa cca gaa tcc cct tea aag eta get tea get

Glu Gin Tyr Lys Phe Gin Pro Glu Ser Pro Ser Lys Leu Ala Ser Ala 60 65 70 ate cag aaa get cat gaa gag ggc att tgt gga ate ege tea gta aca lie Gin Lys Ala His Glu Glu Gly lie Cys Gly lie Arg Ser Val Thr 75 80 85 aga ctg gaa aat ctg atg tgg aaa caa ata aca cca gaa ttg aat cacGlu Gin Tyr Lys Phe Gin Pro Glu Ser Pro Ser Lys Leu Ala Ser Ala 60 65 70 ate cag aaa get cat gaa gag ggc att tgt gga ate ege tea gta aca lie Gin Lys Ala His Glu Glu Gly lie Cys Gly lie Arg Ser Val Thr 75 80 85 aga ctg gaa aat ctg atg tgg aaa caa ata aca cca gaa ttg aat cac

Arg Leu Glu Asn Leu Met Trp Lys Gin lie Thr Pro Glu Leu Asn His 90 95 100 105 att eta tea gaa aat gag gtg aag ttg act att atg aca gga gac ate lie Leu Ser Glu Asn Glu Val Lys Leu Thr lie Met Thr Gly Asp lie 110 115 120 aaa gga ate atg cag gca gga aaa ega tet ctg cag ccc cag ccc actArg Leu Glu Asn Leu Met Trp Lys Gin lie Thr Pro Glu Leu Asn His 90 95 100 105 att eta tea gaa aat gag gtg aag ttg act att atg aca gga gac ate lie Leu Ser Glu Asn Glu Val Lys Leu Thr lie Met Thr Gly Asp lie 110 115 120 aaa gga ate atg cag gca gga aaa ega tet ctg cag ccc cag ccc act

Lys Gly lie Met Gin Ala Gly Lys Arg Ser Leu Gin Pro Gin Pro Thr 125 130 135 gag ctg aag tat tea tgg aaa aca tgg ggc aaa geg aaa atg etc tetLys Gly lie Met Gin Ala Gly Lys Arg Ser Leu Gin Pro Gin Pro Thr 125 130 135 gag ctg aag tat tea tgg aaa aca tgg ggc aaa geg aaa atg etc tet

Glu Leu Lys Tyr Ser Trp Lys Thr Trp Gly Lys Ala Lys Met Leu Ser 140 145 150 aca gag tet cat aac cag acc ttt etc att gat ggc ccc gaa aca gcaGlu Leu Lys Tyr Ser Trp Lys Thr Trp Gly Lys Ala Lys Met Leu Ser 140 145 150 aca gag tet cat aac cag acc ttt etc att gat ggc ccc gaa aca gca

Thr Glu Ser His Asa Gin Thr Phe Leu lie Asp Gly Pro Glu Thr Ala 155 160 165 gaa tgc ccc aac aca aac aga get tgg aat teg ctg gaa gtt gaa gacThr Glu Ser His Asa Gin Thr Phe Leu lie Asp Gly Pro Glu Thr Ala 155 160 165 gaa tgc ccc aac aca aac aga get tgg aat teg ctg gaa gtt gaa gac

Glu Cys Pro Asn Thr Asn Arg Ala Trp Asn Ser Leu Glu Val Glu Asp 170 175 180 185 tat ggc ttt gga gta ttc acc acc aat ata tgg eta aag ttg aga gaaGlu Cys Pro Asn Thr Asn Arg Ala Trp Asn Ser Leu Glu Val Glu Asp 170 175 180 185 tat ggc ttt gga gta ttc acc acc aat ata tgg eta aag ttg aga gaa

Tyr Gly Phe Gly Val Phe Thr Thr Asn lie Trp Leu Lys Leu Arg Glu 190 195 200 aag cag gat gta ttc tgc gac tea aaa etc atg tea geg gee ata aaaTyr Gly Phe Gly Val Phe Thr Thr Asn lie Trp Leu Lys Leu Arg Glu 190 195 200 aag cag gat gta ttc tgc gac tea aaa etc atg tea geg gee ata aaa

Lys Gin Asp Val Phe Cys Asp Ser Lys Leu Met Ser Ala Ala lie Lys 11 1336626 205 210 215 gac aac aga gee gtc cat gee gat atg ggt tat tgg ata gaa agt gca 783 Asp Asn Arg Ala Val His Ala Asp Met Gly Tyr Trp lie Glu Ser Ala 220 225 230 etc aat gac aca tgg aag ata gag aaa gee tet ttc ate gaa gtt aaa 831 Leu Asn Asp Thr Trp Lys lie Glu Lys Ala Ser Phe lie Glu Val Lys 235 240 245 age tgc cac tgg cca aag tea cac acc etc tgg agt aat gga gtg tta 879 Ser Cys His Trp Pro Lys Ser His Thr Leu Trp Ser Asn Gly Val Leu 250 255 260 265 gaa agt gag atg ata att cca aag aat ttc get gga cca gtg tea caa 927 Glu Ser Glu Met lie lie Pro Lys Asn Phe Ala Gly Pro Val Ser Gin 270 275 280 cac aac tac aga cca ggc tac cat aca caa aca gca gga cca tgg cat 975 His Asn Tyr Arg Pro Gly Tyr His Thr Gin Thr Ala Gly Pro Trp His 285 290 295 eta ggt aag ett gag atg gac ttt gat ttc tgc gaa gga acc aca gtg 1023 Leu Gly Lys Leu Glu Met Asp Phe Asp Phe Cys Glu Gly Thr Thr Val 300 305 310 gtg gtg act gag gac tgt gga aat aga gga ccc tet tta aga aca act 1071 Val Val Thr Glu Asp Cys Gly Asn Arg Gly Pro Ser Leu Arg Thr Thr 315 320 325 act gee tet gga aaa etc ata aca gaa tgg tgc tgc ega tet tgc aca 1119 Thr Ala Ser Gly Lys Leu lie Thr Glu Trp Cys Cys Arg Ser Cys Thr 330 335 340 345 tta cca ccg eta aga tac aga ggt gag gac gga tgc tgg tac ggg atg 1167 Leu Pro Pro Leu Arg Tyr Arg Gly Glu Asp Gly Cys Trp Tyr Gly Met 350 355 360 gaa ate aga cca ttg aaa gag aaa gaa gag aat ttg gtc aac tee ttg 1215 Glu lie Arg Pro Leu Lys Glu Lys Glu Glu Asn Leu Val Asn Ser Leu 365 370 375 gtc aca gee tag 1227 Val Thr Ala 380Lys Gin Asp Val Phe Cys Asp Ser Lys Leu Met Ser Ala Ala lie Lys 11 1336626 205 210 215 gac aac aga gee gtc cat gee gat atg ggt tat tag ata gaa agt gca 783 Asp Asn Arg Ala Val His Ala Asp Met Gly Tyr Trp Lie Glu Ser Ala 220 225 230 etc aat gac aca tgg aag ata gag aaa gee tet ttc ate gaa gtt aaa 831 Leu Asn Asp Thr Trp Lys lie Glu Lys Ala Ser Phe lie Glu Val Lys 235 240 245 age tgc cac tgg cca aag tea Cac acc etc tgg agt aat gga gtg tta 879 Ser Cys His Trp Pro Lys Ser His Thr Leu Trp Ser Asn Gly Val Leu 250 255 260 265 gaa agt gag atg ata cca aag aat ttc get gga cca gtg tea caa 927 Glu Ser Glu Met lie lie Pro Lys Asn Phe Ala Gly Pro Val Ser Gin 270 275 280 cac aac tac aga cca ggc tac cat aca caa aca gca gga cca tgg cat 975 His Asn Tyr Arg Pro Gly Tyr His Thr Gin Thr Ala Gly Pro Trp His 285 290 295 eta ggt aag ett gag atg gac ttt gat ttc tgc gaa gga acc aca gtg 1023 Leu Gly Lys Leu Gl u Met Asp Phe Asp Phe Cys Glu Gly Thr Thr Val 300 305 310 gtg gtg act gag gac tgt gga aat aga gga ccc tet tta aga aca act 1071 Val Val Thr Glu Asp Cys Gly Asn Arg Gly Pro Ser Leu Arg Thr Thr 315 320 325 act gee tet gga aaa etc ata aca gaa tgg tgc tgc ega tet tgc aca 1119 Thr Ala Ser Gly Lys Leu lie Thr Glu Trp Cys Cys Arg Ser Cys Thr 330 335 340 345 tta cca ccg eta aga tac aga ggt gag gac gga tgc Tgg tac ggg atg 1167 Leu Pro Pro Leu Arg Tyr Arg Gly Glu Asp Gly Cys Trp Tyr Gly Met 350 355 360 gaa ate aga cca ttg aaa gag aaa gaa gag aat ttg gtc aac tee ttg 1215 Glu lie Arg Pro Leu Lys Glu Lys Glu Glu Asn Leu Val Asn Ser Leu 365 370 375 gtc aca gee tag 1227 Val Thr Ala 380

<210> 10 12 1336626<210> 10 12 1336626

<211> 380 <212> PRT <213> Dengue virus type 2 <400> 10<211> 380 <212> PRT <213> Dengue virus type 2 <400>

Met Asn Ser Arg Ser Thr Ser Leu Ser Val Ser Leu Val Leu Val Gly 15 10 15Met Asn Ser Arg Ser Thr Ser Leu Ser Val Ser Leu Val Leu Val Gly 15 10 15

Val Val Thr Leu Tyr Leu Gly Val Met Val Gin Ala Asp Ser Gly Cys 20 25 30Val Val Thr Leu Tyr Leu Gly Val Met Val Gin Ala Asp Ser Gly Cys 20 25 30

Val Val Ser Trp Lys Asn Lys Glu Leu Lys Cys Gly Ser Gly lie Phe 35 40 45 lie Thr Asp Asn Val His Thr Trp Thr Glu Gin Tyr Lys Phe Gin Pro 50 55 60Val Val Ser Trp Lys Asn Lys Glu Leu Lys Cys Gly Ser Gly lie Phe 35 40 45 lie Thr Asp Asn Val His Thr Trp Thr Glu Gin Tyr Lys Phe Gin Pro 50 55 60

Glu Ser Pro Ser Lys Leu Ala Ser Ala lie Gin Lys Ala His Glu Glu 65 70 75 80Glu Ser Pro Ser Lys Leu Ala Ser Ala lie Gin Lys Ala His Glu Glu 65 70 75 80

Gly lie Cys Gly lie Arg Ser Val Thr Arg Leu Glu Asn Leu Met Trp 85 90 95Gly lie Cys Gly lie Arg Ser Val Thr Arg Leu Glu Asn Leu Met Trp 85 90 95

Lys Gin lie Thr Pro Glu Leu Asn His 工le Leu Ser Glu Asn Glu Val 100 105 110Lys Gin lie Thr Pro Glu Leu Asn His work Leu Ser Glu Asn Glu Val 100 105 110

Lys Leu Thr lie Met Thr Gly Asp lie Lys Gly lie Met Gin Ala Gly 115 120 125Lys Leu Thr lie Met Thr Gly Asp lie Lys Gly lie Met Gin Ala Gly 115 120 125

Lys Arg Ser Leu Gin Pro Gin Pro Thr Glu Leu Lys Tyr Ser Trp Lys 130 135 140Lys Arg Ser Leu Gin Pro Gin Pro Thr Glu Leu Lys Tyr Ser Trp Lys 130 135 140

Thr Trp Gly Lys Ala Lys Met Leu Ser Thr Glu Ser His Asn Gin Thr 145 150 155 160Thr Trp Gly Lys Ala Lys Met Leu Ser Thr Glu Ser His Asn Gin Thr 145 150 155 160

Phe Leu lie Asp Gly Pro Glu Thr Ala Glu Cys Pro Asn Thr Asn Arg 165 170 175Phe Leu lie Asp Gly Pro Glu Thr Ala Glu Cys Pro Asn Thr Asn Arg 165 170 175

Ala Trp Asn Ser Leu Glu Val Glu Asp Tyr Gly Phe Gly Val Phe Thr 180 185 190Ala Trp Asn Ser Leu Glu Val Glu Asp Tyr Gly Phe Gly Val Phe Thr 180 185 190

Thr Asn lie Trp Leu Lys Leu Arg Glu Lys Gin Asp Val Phe Cys Asp 195 200 205Thr Asn lie Trp Leu Lys Leu Arg Glu Lys Gin Asp Val Phe Cys Asp 195 200 205

Ser Lys Leu Met Ser Ala Ala lie Lys Asp Asn Arg Ala Val His Ala 210 215 220Ser Lys Leu Met Ser Ala Ala lie Lys Asp Asn Arg Ala Val His Ala 210 215 220

Asp Met Gly Tyr Trp lie Glu Ser Ala Leu Asn Asp Thr Trp Lys lie 13 Ι33ύ626 " 225 230 235 240Asp Met Gly Tyr Trp lie Glu Ser Ala Leu Asn Asp Thr Trp Lys lie 13 Ι33ύ626 " 225 230 235 240

Glu Lys Ala Ser phe He Glu Val Lys Ser Cys His Trp Pro Lys Ser 245 250 255Glu Lys Ala Ser phe He Glu Val Lys Ser Cys His Trp Pro Lys Ser 245 250 255

His Thr Leu Trp Ser Asn Gly Val Leu Glu Ser Glu Met lie He Pro 260 265 270His Thr Leu Trp Ser Asn Gly Val Leu Glu Ser Glu Met lie He Pro 260 265 270

Lys Asn Phe Ala Gly Pro Val Ser Gin His Asn Tyr Arg Pro Gly Tyr 275 280 285Lys Asn Phe Ala Gly Pro Val Ser Gin His As Tyr Arg Pro Gly Tyr 275 280 285

His Thr Gin Thr Ala Gly Pro Trp His Leu Gly Lys Leu Glu Met Asp 290 295 300His Thr Gin Thr Ala Gly Pro Trp His Leu Gly Lys Leu Glu Met Asp 290 295 300

Phe Asp Phe Cys Glu Gly Thr Thr Val Val Val Thr Glu Asp Cys Gly 305 310 315 320Phe Asp Phe Cys Glu Gly Thr Thr Val Val Val Thr Glu Asp Cys Gly 305 310 315 320

Asn Arg Gly Pro Ser Leu Arg Thr Thr Thr Ala Ser Gly Lys Leu lie 325 330 335Asn Arg Gly Pro Ser Leu Arg Thr Thr Thr Ala Ser Gly Lys Leu lie 325 330 335

Thr Glu Trp Cys Cys Arg Ser Cys Thr Leu Pro Pro Leu Arg Tyr Arg 340 345 350Thr Glu Trp Cys Cys Arg Ser Cys Thr Leu Pro Pro Leu Arg Tyr Arg 340 345 350

Gly Glu Asp Gly Cys Trp Tyr Gly Met Glu lie Arg Pro Leu Lys Glu 355 360 365Gly Glu Asp Gly Cys Trp Tyr Gly Met Glu lie Arg Pro Leu Lys Glu 355 360 365

Lys Glu Glu Asn Leu Val Asn Ser Leu Val Thr Ala 370 375 380 14Lys Glu Glu Asn Leu Val Asn Ser Leu Val Thr Ala 370 375 380 14

Claims (1)

1336626 ) ㈣影‘ |第098133581號專利申言- 衆 利範 p修正本99年11月 公告Ϊ f ir -r 七、申請專利範 :年月 11. 補无 1. 一種用以於一動物丨台療防黃病毒感染之藥學組成 物,該藥學組成物包含一經修飾的牛痘病毒安柯拉株 (MVA)病毒載體,該MVA病毒載體帶有一表現卡匣, 5 其中該表現卡S包含一轉錄調節要素和一核酸序 列,該核酸序列編碼一登革病毒血清型2之完整的黃病 毒NS1蛋白質或其一抗原性抗原決定位並且選擇性地編 碼另一胜肽/蛋白質,且其中該另一胜肽/蛋白質不是一 完整的黃病毒E-蛋白質,且 10 其中該黃病毒感染係由選自於登革病毒血清型1、 登革病毒血清型3、登革病毒血清型4、日本腦炎病毒, 以及西尼羅河病毒之黃病毒所致之感染。 2. 如申請專利範圍第1項之藥學組成物,其中該組成物係 用於治療或預防該動物以額外地對抗一種由衍生出該 15 核酸序列、該NS1蛋白質或其抗原性抗原決定位的登革 病毒血清型2所致之黃病毒感染。 3. 如申請專利範圍第1或2項之藥學組成物,其中該黃病毒 感染係由一種經蚊子傳播之黃病毒所致。 4. 如申請專利範圍第3項之藥學組成物,其中該經蚊子傳 20 播之黃病毒係為一登革病毒。 5. 如申請專利範圍第4項之藥學組成物,其中該經蚊子傳 播之黃病毒係為登革病毒企清型2。 6. 如申請專利範圍第1或2項之藥學組成物,其中該編碼黃 病毒之NS1蛋白質或其抗原性抗原決定位之核酸序列的 1 前面係有一個ATG密碼子和一編碼糖化訊號序列之序 列’以及其中該編碼序列係由一轉譯終止密碼子所終 止。 7♦如申請專利範圍第1或2項之藥學組成物,其中該轉錄調 節要素係為一痘病毒啟動子。 8·如申請專利範圍第1或2項之藥學組成物,其中該MVA病 毒載體被冷凍-乾燥。 9. 如申請專利範圍第1或2項之藥學組成物,其中該組成物 係供應用於初次接種或追加接種,或者初次接種及追加 接種兩者。 10. 如申請專利範圍第1或2項之藥學組成物,其中該組成物 係被配製作為一套組,該套組包含該MVA病毒載體,其 位在一供用於第一次接種(初次接種)的第一小瓶/容器 中且位在一供用於第二次接種(追加接種)的第二小瓶/ 容器中。 U.如申凊專利範圍第丨或2項之藥學組成物,其中該表現卡 匣編碼一蛋白質,該蛋白質包含有如序列編號:1〇之胺 基酸序列。 12·:申請專利範圍第阳項之藥學組成物,其中該MVA病 母載體特徵在於能在雞胚胎纖維母細胞(CEF)與幼倉鼠 腎細胞株BHK中複製,但在人類角質細胞細胞株就心 中無複製能力。 13·二種包含—表現卡£之魏病錢體於製備—用以於 ―動物治療或肋黃病毒❹之_或疫苗的用途, 1336626 其中該表現卡s包含有一轉錄調節要素和一核酸 序列,該核酸序列編碼一登革病毒血清型2之完整的黃 病毒NS1蛋白質或其一抗原性抗原決定位,並且選擇性 地編碼另一胜肽/蛋白質,且其中該另一胜肽/蛋白質不 5 是一完整的黃病毒E-蛋白質, 其中該黃病毒感染係由選自於登革病毒血清型1、 登革病毒血清型3、登革病毒血清型4、曰本腦炎病毒, 以及西尼羅河病毒之黃病毒所致之感染。 14. 如申請專利範圍第13項之用途,其中該藥劑或疫苗係用 10 於治療或預防該動物以額外地對抗一種由衍生出該核 酸序列、該NS1蛋白質或其抗原性抗原決定位的登革病 毒血清型2所致之黃病毒感染。 15. 如申請專利範圍第13或14項之用途,其中該黃病毒感染 丨係由一種經蚊子傳播之黃病毒所致。 15 16.如申請專利範圍第15項之用途,其中該經蚊子傳播之黃 病毒係為一登革病毒。 17. 如申請專利範圍第16項之用途,其中該經蚊子傳播之黃 病毒係為登革病毒血清型2。 18. 如申請專利範圍第13或14項之用途,其中該編碼黃病毒 20 之NS1蛋白質或其抗原性抗原決定位之序列的前面有一 個ATG密碼子和一編碼糖化訊號序列之序列,以及其中 該編碼序列係由一轉譯終止密碼子所終止。 19. 如申請專利範圍第13或14項之用途,其中該轉錄調節要 素係為一痘病毒啟動子。 3 20. 如申請專利範圍第13或14項之用途其中該mva病毒載 體被冷凍-乾燥。 21. 如申請專利範圍第13或14項之用途,其中該藥劑或疫苗 係供用於初次接種或追加接種,或者初次接#及追加接 種兩者。 22·如申請專利範圍第13或14項之用途,其中該藥劑或疫苗 係被配製作為一套組,該套組包含該MVA病毒載體其 係位在一供應用於第一次接種(初次接種)的第一小瓶/ 容器中且位在一供應用於第二次接種(追加接種)的第二 小瓶/容器。 23·如申請專利範圍第13或14項之用途,其中該表現卡匡編 碼一蛋白質,該蛋白質包含有如序列編號:1〇之胺基酸 序列。 24.如申請專利範圍第13或14項之用途,其中該MVA病毒載 體特徵在於能在雞胚胎纖維母細胞(CEF)與幼倉鼠腎細 胞株BHK中複製,但在人類角質細胞細胞株HaCaT中無 複製能力。1336626 ) (4) Shadow ' | Patent No. 098133581 - Zhongli Fan p revised this November 1999 announcement Ϊ f ir -r VII, application for patent model: year 11. 11. No. 1. Used for an animal platform a pharmaceutical composition for preventing flavivirus infection, the pharmaceutical composition comprising a modified vaccinia virus Ankera strain (MVA) viral vector, the MVA viral vector carrying a performance cassette, 5 wherein the expression card S comprises a transcriptional regulation And a nucleic acid sequence encoding a complete flavivirus NS1 protein of dengue virus serotype 2 or an antigenic epitope thereof and selectively encoding another peptide/protein, and wherein the other is successful The peptide/protein is not a complete flavivirus E-protein, and 10 wherein the flavivirus infection is selected from the group consisting of dengue virus serotype 1, dengue virus serotype 3, dengue virus serotype 4, Japanese encephalitis virus , and infections caused by the West Nile virus's flavivirus. 2. The pharmaceutical composition of claim 1, wherein the composition is for treating or preventing the animal to additionally combat a derivation of the 15 nucleic acid sequence, the NS1 protein or an antigenic epitope thereof. A flavivirus infection caused by dengue virus serotype 2. 3. The pharmaceutical composition according to claim 1 or 2, wherein the flavivirus infection is caused by a mosquito-borne flavivirus. 4. The pharmaceutical composition according to claim 3, wherein the mosquito-borne yellow virus is a dengue virus. 5. The pharmaceutical composition according to claim 4, wherein the mosquito-transmitted flavivirus is a dengue virus. 6. The pharmaceutical composition according to claim 1 or 2, wherein the nucleic acid sequence encoding the NS1 protein of the flavivirus or an antigenic epitope thereof is preceded by an ATG codon and a sequence encoding a glycation signal. The sequence 'and wherein the coding sequence is terminated by a translation stop codon. 7 ♦ A pharmaceutical composition according to claim 1 or 2, wherein the transcription regulating element is a poxvirus promoter. 8. The pharmaceutical composition of claim 1 or 2, wherein the MVA viral vector is freeze-dried. 9. The pharmaceutical composition according to claim 1 or 2, wherein the composition is supplied for initial vaccination or additional vaccination, or both primary vaccination and additional vaccination. 10. The pharmaceutical composition according to claim 1 or 2, wherein the composition is formulated as a set, the set comprising the MVA viral vector, which is used for the first vaccination (first time) Inoculated) in the first vial/container and in a second vial/container for the second inoculation (additional inoculation). U. The pharmaceutical composition of claim 2, wherein the performance card encodes a protein comprising an amino acid sequence such as SEQ ID NO: 1. 12: The pharmaceutical composition of the patent application scope, wherein the MVA carrier vector is characterized in that it can replicate in chicken embryonic fibroblasts (CEF) and baby hamster kidney cell line BHK, but in human keratinocyte cell lines. There is no ability to copy in the heart. 13. The use of two types of inclusions, which are used for the treatment of "animal treatment or ribovirus" or the use of vaccines, 1336626, wherein the expression card contains a transcriptional regulatory element and a nucleic acid sequence. The nucleic acid sequence encodes a complete flavivirus NS1 protein of dengue virus serotype 2 or an antigenic epitope thereof, and selectively encodes another peptide/protein, and wherein the other peptide/protein is not 5 is a complete flavivirus E-protein, wherein the flavivirus infection is selected from the group consisting of dengue virus serotype 1, dengue virus serotype 3, dengue virus serotype 4, sputum encephalitis virus, and west Infection caused by the yellow virus of the Nile virus. 14. The use of claim 13 wherein the agent or vaccine is for treating or preventing the animal to additionally combat a derivation of the nucleic acid sequence, the NS1 protein or an antigenic epitope thereof. Flavivirus infection caused by virion 2 of leather virus. 15. For the use of claim 13 or 14, wherein the flavivirus infection is caused by a mosquito-borne flavivirus. 15 16. The use of claim 15 wherein the mosquito-borne flavivirus is a dengue virus. 17. For the use of claim 16, wherein the mosquito-borne flavivirus is a dengue virus serotype 2. 18. The use of claim 13 or 14, wherein the sequence encoding the NS1 protein of flavivirus 20 or an antigenic epitope thereof is preceded by an ATG codon and a sequence encoding a glycation signal sequence, and wherein The coding sequence is terminated by a translation stop codon. 19. The use of claim 13 or claim 14, wherein the transcriptional regulatory element is a poxvirus promoter. 3 20. The use of claim 13 or 14 wherein the mva viral vector is freeze-dried. 21. For the use of claim 13 or 14, wherein the medicament or vaccine is for use in a primary or additional vaccination, or both initial and additional. 22. The use of claim 13 or 14, wherein the medicament or vaccine is formulated as a set comprising the MVA viral vector in a supply for the first vaccination (first time) Inoculated) in the first vial/container and in a second vial/container for the second inoculation (additional inoculation). 23. The use of claim 13 or claim 14, wherein the performance card encodes a protein comprising an amino acid sequence such as SEQ ID NO: 1. 24. The use of claim 13 or 14, wherein the MVA viral vector is characterized by replication in chicken embryonic fibroblasts (CEF) and baby hamster kidney cell line BHK, but in human keratinocyte cell line HaCaT No replication capability.
TW098133581A 2001-12-04 2001-12-04 Flavivirus ns1 subunit vaccine TWI336626B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DKPA200101804 2001-12-04
MYPI20015513 2001-12-04

Publications (2)

Publication Number Publication Date
TW201002343A TW201002343A (en) 2010-01-16
TWI336626B true TWI336626B (en) 2011-02-01

Family

ID=44825161

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098133581A TWI336626B (en) 2001-12-04 2001-12-04 Flavivirus ns1 subunit vaccine

Country Status (1)

Country Link
TW (1) TWI336626B (en)

Also Published As

Publication number Publication date
TW201002343A (en) 2010-01-16

Similar Documents

Publication Publication Date Title
CA2466413C (en) Flavivirus ns1 subunit vaccine
US8088391B2 (en) West nile virus vaccine
US10227385B2 (en) Chimeric poly peptides and the therapeutic use thereof against a flaviviridae infection
JP2005511042A5 (en)
US11638750B2 (en) Methods for generating a Zikv immune response utilizing a recombinant modified vaccina Ankara vector encoding the NS1 protein
KR20010022452A (en) Recombinant dimeric envelope vaccine against flaviviral infection
US20180185466A1 (en) Recombinant modified vaccinia virus ankara (mva) foot and mouth disease virus (fmdv) vaccine
TWI336626B (en) Flavivirus ns1 subunit vaccine
US20230233670A1 (en) A Recombinant Modified Vaccinia Virus (MVA) Vaccine Against Coronavirus Disease
TWI354560B (en) Flavivirus ns1 subunit vaccine
US20040254365A1 (en) Immunization against flavivirus
WO2007103565A2 (en) Wnv dna vaccine incorporating a cmv/r backbone and expressing wnv prm and e proteins

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees