Γ1325975 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種影像顯示裝置,尤有關一種同時具 平面二維(2D)及立體三維(3D)顯示模式之影像顯示裝置。 【先前技術】Γ1325975 IX. Description of the Invention: [Technical Field] The present invention relates to an image display device, and more particularly to an image display device having both a planar two-dimensional (2D) and a stereoscopic three-dimensional (3D) display mode. [Prior Art]
圖1為示意P ’顯示利用視差光件(para 11 ax opt i c) 自動·產生立體影像之一習知影像顯示裝置100。如圖i所 示,該影像顯示裝置100包含一液晶面板102及一視差障 壁基板(parallax barrier plate)104。視差障壁基板 1〇4 係由一玻璃基板118及形成於該玻璃基板118上之複數條 紋式遮光部1 20所構成,其與液晶面板1 02表面接觸作為 分離左右眼影像之光分離元件。Fig. 1 is a view showing a conventional image display device 100 in which P' is used to automatically generate a stereoscopic image using a parallax light member (para 11 ax opt i c). As shown in FIG. 1, the image display device 100 includes a liquid crystal panel 102 and a parallax barrier plate 104. The parallax barrier substrate 1〇4 is composed of a glass substrate 118 and a plurality of stripe-type light-shielding portions 120 formed on the glass substrate 118, and is in contact with the surface of the liquid crystal panel 102 as a light separating element for separating left and right eye images.
液晶面板102於玻璃基板1 06及108之間形成—液晶 層110。觀察者122側(光出射側)之玻璃基板1〇6設置有 偏光板112,背光116側(光入射側)設置有偏光板114。 如圖1所示,習知自動產生立體影像的方式,係將左眼用 影像及右眼用影像於液晶層中以交互間隔之方式顯示,當 光線由背光116發出後,穿透左眼用影像及右眼用影像之 光線可藉由視差障壁基板104相互分離,使觀察者122之 左眼僅觀察到左眼用影像而右眼僅觀察到右眼用影像,產 生視差效果而使觀察者122自動感知一立體影像。然而, 由於觀察者之左眼僅能觀察到左眼用影像,而右眼僅能觀察 到右眼用影像,因此觀察者感知的立體影像其橫向解析度僅 為原像素配列的一半。換言之,因為立體影像顯示需要兩個水 6 1325975 平子像素的鄰接,一個子 給右眼看,所以3D顯干二;眼看,另一鄰接子像素 '楱式之杈向解析度與2D顯示模式 之杈向解析度相較之下將只剩下一半。 、 因此’為提高3D顯示模式之橫 像顯示能達到全解析(fullresGluti〇n)的程度,日本= 广二發展出水平雙倍密度像素(h〇riz〇ntaUy double density pixels. y eiS,HDDP)架構。如圖£Λ所示,該 架構係採-橫向條紋式配列之rgb子像素佈局即相同 的原色子像素(R、G或B子像素)沿水平橫向(χ方向)排 列,而相異的原色子像素沿垂直縱向(γ方向)排歹,卜於該, _Ρ架構下’液晶面板之彩色像素佈局區域劃分為複數彼 此鄰接之矩形像素區塊128,該矩形像素區塊128如圖2Α 例示為兩組RGB子像素(R1、G1、B1、R2、G2、Β2)所構成。接著, 矩形像素II塊128沿垂直縱向均分為分別接收左眼影像資 料及右眼影像資料的矩形像素128Α(包含r1gi、bi)及 矩形像素圓(包含^⑻’使整體像素佈局的水 平像素毪度為垂直像素密度的兩倍。再者如圖之陰 影斜線所示,於該HDDP架構下,視差光件之光分離單Z 係為沿垂直縱向(Y方向)連續形成之條紋式設計。因此, 藉由此一像素佈局及視差光件配置方式,當供左右眼的影 像分別經由視差光件126A及126B分離後,因一個矩形像 素給左眼看而另一水平鄰接之矩形像素給右眼看,故如圖 2B所示,左眼可觀察到縱列M1、N1而右眼可觀察到縱列 M2、N2,如此3D顯示模式下的橫向解析度可保持與顯 1325975 示模式之橫向解析度相等β 換吕之’ HDDP架構下的橫向解析度於2D與3D顯示模 式上均相同,左右眼個別看到的是一個矩形像素,而雙眼 同時看到的像素為一合成的矩形像素區塊。 然而,基於該HDDP架構所獲得的解析度及影像品質 仍有極大的改善空間。舉例而言,當吾人欲採用子像素成 色技術(sub-pixel rendering; SPR)來進一步提高解析度 及影像顯示品質時,必須具有子像素R及子像素G同時交 錯出現在每一個水平及垂直配列之像素佈局,以提供全彩 平衡(color balance)能力,例如圖3所示之PentUe像 素佈局130。然而,清再參考圖2B,於該HDDP架構下之 像素佈局及視差光件配置方式,會使左右眼所視影像均為 條紋式像素配列,亦即其水平橫列均由相同的原色子像素 構成,因此即使搭配子像素成色技術亦無法提高其調制轉 換函數值(modulation transfer functi〇n)及定址能力 (addressability)來進一步提升其解析度及影像品質= 【發明内容】 因此,本發明之目的在提供一種影像顯示裝置及用於 該影像顯示裝置之立體影像產生結構,其能提供於水平雙 倍密度像素(HDDP)架構下搭配子像素成色技術 (SUb-pixel rendering)運用之能力,而可大幅提升影像 解析度及顯示品質。 依本發明之設計,-種影像顯示裝置包含―顯示面板 及-視差光件。顯示面板之彩色像素佈局區域分為複數彼 8 1325975 此鄰接之矩形像素區i鬼,且各矩形像素區冑沿垂直縱向均 分為分別接收左眼影像資料及右眼像素資料之兩矩形像 素,使水平像素密度為垂直像素密度的兩倍。各個左眼矩 形像素及右眼矩形像素均至少包含—組紅(R)、綠(G)及藍 (B)色子像素,且所有子像素於該顯示面板上配置形成複 數道橫列及縱列。視差光件係、設置於顯示面板之__侧且 其上形成有產生視覺分離效果之複數光分離單元。複數光 刀離單元係對應子像素橫列及縱列分布形成複數道橫列 及縱列,其中分別位於兩相鄰橫列中之兩鄰接光分離單元 於水平橫向上錯開設置,使觀察者單眼所視為呈三角式配 列之紅(R)、綠(G)及藍(B)色子像素佈局。 藉由本發明之設計,觀察者左眼及右眼即可分別看到 子像素R及子像素G同時交錯出現在每一個水平及垂直配 列的三角式配列子像素影I,該2角式配列像素佈局即可 作為實化子像素成像技術之驅動架構,而可大幅提升影像 解析度及顯示品質。 再者,本發明之立體影像產生結構包含一基板及形成 於其上具視覺分離效果之複數光分離單元。複數光分離單 元係相對一呈條紋式配列之子像素陣列設置,該子像素陣 ^係由兩相鄰子像素其色彩相同之橫列、及兩相鄰子像素 二色彩相異之縱列所構成。複數光分離單元對應該子像素 檢列及縱列分布形成複數道橫列及縱列且位於兩相鄰橫 列2之兩鄰接光分離單元於水平橫向上錯開設置,使觀察 者單眼所視為呈三角式配列之子像素佈局。 9 1325975 【實施方式] 圖4A及圖4B為示意 m in ·4不依本發明一實施例之影 示面板12乃 影像顯示裝置10包含一顯 面板12及一液晶光閥(1 ss - 4c 1 〇 qu d Cl*ystal shutter)14。 这顯不面板12例如可為一 ,± 日日顯示面板,且其彩色傻音· 佈局與_P架構相 -夂色像素 者饮& ^ . A 丨妹橫向條紋式配列之RGB子像 素佈局,其中相同的原色子傻 卞1豕 ^ , rY _ ,.. ’、 象素(R、G或B子像素)沿水平 才κ向(X方向)排列,而The liquid crystal panel 102 forms a liquid crystal layer 110 between the glass substrates 106 and 108. The polarizing plate 112 is provided on the glass substrate 1〇6 on the observer 122 side (light exit side), and the polarizing plate 114 is provided on the backlight 116 side (light incident side). As shown in FIG. 1 , the conventional method for automatically generating a stereoscopic image is to display the left-eye image and the right-eye image in the liquid crystal layer in an interactive manner, and when the light is emitted by the backlight 116, penetrate the left eye. The light of the image and the right-eye image can be separated from each other by the parallax barrier substrate 104, so that only the left-eye image is observed by the left eye of the observer 122, and only the right-eye image is observed by the right eye, and the parallax effect is generated to make the observer 122 automatically perceives a stereoscopic image. However, since the left eye of the observer can only observe the image for the left eye, and the image for the right eye can only be observed for the right eye, the stereoscopic image perceived by the observer has only a half resolution of the original pixel arrangement. In other words, because the stereoscopic image display requires two water 6 1325975 flat sub-pixels adjacent to each other, one sub-right is seen by the right eye, so the 3D display is dry; in the eye, the other adjacent sub-pixels are the same as the resolution and 2D display mode. Only half of the resolution will be left. Therefore, 'the horizontal image display for improving the 3D display mode can achieve full resolution (fullresGluti〇n) degree, Japan = Kwong second developed horizontal double density pixels (h〇riz〇ntaUy double density pixels. y eiS, HDDP) Architecture. As shown in Fig. ,, the architecture is a rgb sub-pixel layout with a horizontal stripe arrangement, that is, the same primary color sub-pixels (R, G, or B sub-pixels) are arranged in a horizontal horizontal direction (χ direction), and different primary colors are arranged. The sub-pixels are arranged in the vertical direction (γ direction), and the color pixel layout area of the liquid crystal panel is divided into a plurality of rectangular pixel blocks 128 adjacent to each other, and the rectangular pixel block 128 is illustrated as FIG. Two sets of RGB sub-pixels (R1, G1, B1, R2, G2, Β2) are formed. Next, the rectangular pixel II block 128 is equally divided into vertical pixels 128 Α (including r1gi, bi) and rectangular pixel circles (including ^ (8)' that respectively receive the left eye image data and the right eye image data, and the horizontal pixel of the overall pixel layout. The twist is twice the vertical pixel density. Further, as shown by the hatched diagonal line, in the HDDP architecture, the light separation single Z of the parallax light is a stripe design continuously formed in the vertical direction (Y direction). Therefore, by means of the pixel layout and the parallax light arrangement, when the images for the left and right eyes are separated by the parallax light members 126A and 126B, respectively, one rectangular pixel is seen to the left eye and the other horizontally adjacent rectangular pixel is displayed to the right eye. Therefore, as shown in FIG. 2B, the columns M1 and N1 can be observed in the left eye and the columns M2 and N2 can be observed in the right eye, so that the horizontal resolution in the 3D display mode can be maintained and the horizontal resolution of the display mode is 1325975. The horizontal resolution under the HDDP architecture is the same in both the 2D and 3D display modes. The left and right eyes individually see a rectangular pixel, while the pixels seen by both eyes are a composite moment. Shaped pixel blocks. However, there is still much room for improvement based on the resolution and image quality obtained by the HDDP architecture. For example, when we want to use sub-pixel rendering (SPR) to further improve the resolution For image and image display quality, it is necessary to have sub-pixels R and sub-pixels G interleaved at each horizontal and vertical arrangement of pixels to provide full color balance, such as the PentUe pixel layout shown in Figure 3. 130. However, referring to FIG. 2B, the pixel layout and the parallax light arrangement in the HDDP architecture will make the images viewed by the left and right eyes are striped pixels, that is, the horizontal rows are all the same primary colors. Since the sub-pixel is configured, even if the sub-pixel color forming technique is used, the modulation transfer function and the addressability cannot be improved to further improve the resolution and image quality. [Invention] Accordingly, the present invention The object of the invention is to provide an image display device and a stereoscopic image generating structure for the image display device, which can For the use of SUb-pixel rendering in horizontal double-density pixel (HDDP) architecture, the image resolution and display quality can be greatly improved. According to the design of the present invention, the image display device includes ―Display panel and parallax light. The color pixel layout area of the display panel is divided into a plurality of 8 1325975 adjacent rectangular pixel areas i ghosts, and each rectangular pixel area is vertically divided into vertical eye image data and The two rectangular pixels of the right eye pixel data make the horizontal pixel density twice the vertical pixel density. Each of the left-eye rectangular pixels and the right-eye rectangular pixels includes at least a set of red (R), green (G), and blue (B) color sub-pixels, and all the sub-pixels are disposed on the display panel to form a plurality of horizontal rows and verticals. Column. The parallax light element is disposed on the __ side of the display panel and has a plurality of light separating units for generating a visual separation effect. The plurality of optical knives are spaced apart from the sub-pixel row and the column to form a plurality of courses and columns, wherein two adjacent light separating units respectively located in two adjacent rows are staggered in the horizontal direction, so that the observer is monocular Red (R), green (G), and blue (B) color sub-pixel layouts are considered to be triangular. With the design of the present invention, the observer's left and right eyes can respectively see that the sub-pixel R and the sub-pixel G are simultaneously interleaved in each horizontal and vertical arrangement of the triangular-arranged sub-pixels I, the two-cornered array of pixels. The layout can be used as a driving structure for realizing sub-pixel imaging technology, which can greatly improve image resolution and display quality. Furthermore, the stereoscopic image generating structure of the present invention comprises a substrate and a plurality of light separating units formed thereon for visual separation. The plurality of light separating units are disposed relative to a sub-pixel array arranged in a stripe pattern, wherein the sub-pixel array is composed of two adjacent sub-pixels having the same color row and two adjacent sub-pixels having two different colors. . The plurality of light separating units are arranged in a horizontal direction and laterally corresponding to the sub-pixel array and the column distribution to form a plurality of courses and columns and the adjacent light separating units located in the two adjacent rows 2, so that the observer is regarded as a single eye A sub-pixel layout in a triangular arrangement. [FIG. 4A] FIG. 4A and FIG. 4B are diagrams showing a display panel 12 according to an embodiment of the present invention. The image display device 10 includes a display panel 12 and a liquid crystal light valve (1 ss - 4c 1 〇). Qu d Cl*ystal shutter) 14. This display panel 12 can be, for example, a ± day display panel, and its color silly sound · layout and _P architecture phase - 像素 color pixel drink & ^ . A sister horizontal stripe type RGB sub-pixel layout , in which the same primary dice are silly 1豕^, rY _ , .. ', pixels (R, G or B sub-pixels) are horizontally aligned in the κ direction (X direction), and
異的原色子像素沿垂直縱向(Y方 向)排列。該顯示 乃 t 极/之知色像素佈局區域係由複數彼 此鄰接之矩形像音P* @ 1 p 16 a、B°塊所構成,且各個矩形像素區塊 1 b沿垂直縱向均公盔八 ,"、刀接收左眼影像資料及右眼影像 資料的矩形像素1 6A及拓开彡# | , Dn 及矩形像素1 6B,使整體彩色像素佈 局的水平像素密度為垂直像素密度的兩倍。The different primary color sub-pixels are arranged in the vertical direction (Y direction). The display is a t pole / the color pixel layout area is composed of a plurality of rectangular image sounds P* @ 1 p 16 a, B° blocks adjacent to each other, and each rectangular pixel block 1 b is vertically horizontally oriented. , ", the knife receives the left eye image data and the right eye image data rectangular pixels 1 6A and extension 彡 # | , Dn and rectangular pixels 16 6 , so that the overall color pixel layout horizontal pixel density is twice the vertical pixel density .
…本實包例用以產生左右眼視覺分離效果之視差光件 二、為液SB光閥14,圖4A顯示液晶光閥J 4關閉狀態(〇FF), 當液晶錢14關閉時,光線可完全透過液晶光閥而為一 平面一維(2D)顯不模式。圖4B顯示液晶光閥開啟狀態 (ON)田液日日光閥14開啟時,施加電壓會改變液晶分子 的配列狀態形成複數不透光區塊18,藉由該不透光區塊 18產生之視差效果而形成—立體三維(3d)影像顯示模 式。如圖4B所示,不透光區塊與透光區塊2〇係對應 子像素外形而形成為矩形,且其對應每個R、G或Β子像 素設置而形成複數道水平橫列及垂直縱列。再者,不透光 區塊18與透光區塊2〇不論於水平橫列或於垂直縱列上皆 10 父替出現’而形成一類似西洋棋盤(checkerboard)之分 佈。換言之,兩相鄰水平橫列中的兩鄰接不透光區塊18 係於水平橫向上錯開設置。 另方面’請參考圖4B中不透光區塊p於像素佈局 j的投影虛線,及圖5A沿圖48之z方向觀察之俯視示意 簡圖’可清楚看出不透光區塊18相對R、G或B子像素的 相對配置。由圖中可看出,各個不透光區&工8並非以疊 。子像素區塊方式配置,而是相對子像素區塊沿水平橫向 X偏移疋位移量方式配置,即不透光區塊之投影位置位 於兩相鄰縱列子像素的交界上藉以產生視差效果。 藉由本發明的設計,因不透光區塊18與透光區塊20 不論於水平橫列或於垂直縱列上皆交替出現,而形成一類 似西洋棋盤(checkerboard)之分佈,故觀察者左眼及右眼 可分別看到如圖5B左方及右方所示的三角式配列(del ta t〇P〇l〇gy)RGB子像素影像。因三角式配列的rGB子像素佈 局’子像素R及子像素G可同時交錯出現在每一個水平及 垂直配列上’故藉由本發明視差光件設計所產生的三角式 配列佈局’使各子像素得以相互分享,達到於HDDP架構下可 採用子像素成色技術(sub_pixei ren(jeri ng)來進一步提 咼解析度及影像品質的目的。 如圖6A及6B所示,當採用子像素成色技術時,藉由 將相鄰的R、G、B實體子像素(physical sub-pixels)取 點加以演算可獲得大量的邏輯子像素(1〇gic sub-pixels) ’而可大幅提高影像的視覺解析度(visual resolution) ’進而使其顯示立體影像時更為細緻,並有效改善立體 影像顯示時所產生之鋸齒狀現象而進_步提高影像品質。如圖7所 不,本發明於HDDP架構下之三角式配列設計可搭配子像素成 色技術,在相同尺寸之液晶顯示面板下本發明之汕及3D顯示解析 度均為HDDP條紋式配列架構的3倍。 圖8A及圖8B為顯示本發明另一實施例之示意圖,於 其中用以產生立體影像之視差光件係採用一柱狀透鏡 (lenticular lens)22,柱狀透鏡22上形成有複數個柱狀 部24,每個柱狀部24對應顯示面板上沿水平橫向分別分 配給左右眼之兩相鄰子像素(如B丨、B2)設置,而形成複數 道柱狀部水平橫列及垂直縱列。 依本發明之設計,分別位於兩相鄰柱狀部橫列中的兩 相鄰柱狀部,係於水平橫向上彼此錯開設置。如圖8A及 圖8 B所示,位於兩相鄰柱狀部橫列中,分別對應子像素...the actual package example is used to generate the parallax light component of the left and right eye vision separation effect, and is the liquid SB light valve 14, and FIG. 4A shows the liquid crystal light valve J 4 off state (〇FF). When the liquid crystal money 14 is closed, the light can be It is a one-plane one-dimensional (2D) display mode that passes through the liquid crystal light valve. 4B shows that when the liquid crystal light valve is turned on (ON), when the daylight valve is turned on, the applied voltage changes the arrangement state of the liquid crystal molecules to form a plurality of opaque blocks 18, and the parallax generated by the opaque block 18 is generated. The effect is formed - a stereoscopic three-dimensional (3d) image display mode. As shown in FIG. 4B, the opaque block and the light-transmissive block 2 are formed into a rectangular shape corresponding to the sub-pixel shape, and are formed corresponding to each R, G or Β sub-pixel to form a plurality of horizontal rows and verticals. Column. Furthermore, the opaque block 18 and the light transmissive block 2, regardless of the horizontal course or the vertical column, form a distribution similar to a checkerboard. In other words, two adjacent opaque blocks 18 of two adjacent horizontal rows are staggered in horizontal horizontal direction. On the other hand, please refer to the projection dashed line of the opaque block p in the pixel layout j in FIG. 4B, and the top view schematic view of FIG. 5A viewed in the z direction of FIG. 48. It can be clearly seen that the opaque block 18 is opposite to the R. , G or B sub-pixel relative configuration. As can be seen from the figure, the respective opaque areas & work 8 are not stacked. The sub-pixel block mode is configured, but is arranged relative to the sub-pixel block in the horizontal horizontal X offset , displacement amount, that is, the projection position of the opaque block is located at the boundary of two adjacent column sub-pixels to generate a parallax effect. With the design of the present invention, since the opaque block 18 and the light transmissive block 20 alternately appear on the horizontal course or on the vertical column to form a distribution similar to a checkerboard, the observer left The eye and the right eye can respectively see the triangular arrangement (del ta t〇P〇l〇gy) RGB sub-pixel image as shown on the left and right of FIG. 5B. Because the triangular-arranged rGB sub-pixel layout 'sub-pixel R and sub-pixel G can be interleaved simultaneously on each horizontal and vertical arrangement', the triangular arrangement arrangement generated by the parallax light design of the present invention makes each sub-pixel It can be shared with each other, and the sub-pixel color forming technology (sub_pixei ren) can be used to further improve the resolution and image quality under the HDDP architecture. As shown in FIGS. 6A and 6B, when sub-pixel color forming technology is adopted, A large number of logical sub-pixels can be obtained by taking adjacent R, G, and B physical sub-pixels, and the visual resolution of the image can be greatly improved ( Visual resolution) 'There is a more detailed display of the stereo image, and effectively improve the jagged phenomenon generated when the stereo image is displayed, and further improve the image quality. As shown in Fig. 7, the triangle of the present invention under the HDDP architecture The layout design can be matched with the sub-pixel color forming technology, and the resolution and 3D display resolution of the present invention are three times that of the HDDP striped type arrangement structure under the same size liquid crystal display panel. 8A and FIG. 8B are schematic views showing another embodiment of the present invention, wherein a parallax light element for generating a stereoscopic image adopts a lenticular lens 22, and a plurality of columnar portions are formed on the lenticular lens 22. 24, each of the columnar portions 24 is disposed corresponding to two adjacent sub-pixels (such as B丨, B2) respectively allocated to the left and right eyes in the horizontal and horizontal directions on the display panel, and forms a plurality of columnar horizontal rows and vertical columns. According to the design of the present invention, two adjacent columnar portions respectively located in the rows of two adjacent columnar portions are arranged offset from each other in the horizontal direction. As shown in FIGS. 8A and 8B, they are located in two adjacent columns. Corresponding sub-pixels in the horizontal row
Bl、B2之柱狀部丨及對應子像素G1、G2之柱狀部】係於 水平橫向上彼此錯開設置。藉由此一設計,位於同一縱列 之子像素B1及子像素(;2可分別藉由錯排之柱狀部I及柱 狀部J分別折射進入觀察者的右眼及左眼,獲得使觀察者 單眼所視為呈二角式配列(del ta topol 〇gy )之子像素影像 的效果。 圖9為顯示本發明另一實施例之示意圖,於其中用以 自動產生立體影像之視差光件係採用一視差障壁基板 26。視差障壁基板26係於一玻璃基板28上利用如油墨 等不透光材料塗佈形成錯排之遮光區塊30來產生視覺分 1325975 離效果。圖9例示之遮光區塊係呈矩形,且兩相鄰水平橫 列中的兩相鄰遮光區塊3 〇於水平橫向上錯開設置。 基於上述之例示可知,本發明用以產生視覺分離效果 之光分離單π可為液晶光閥之不透光區塊、柱狀透鏡之柱 狀部、或視差障壁基板之遮光區塊,然而,本發明之視差 光件及用以產生視覺分離效果之複數光分離單元並不限 定為上述元件,其選擇僅需能達到使觀察者單眼所視為呈 二角式配列之RGB子像素影像的效果即可。The columnar portions of Bl and B2 and the columnar portions of the corresponding sub-pixels G1 and G2 are arranged to be shifted from each other in the horizontal direction. With this design, the sub-pixels B1 and sub-pixels located in the same column (; 2 can be respectively refracted into the right and left eyes of the observer by the staggered columnar portion I and the columnar portion J, respectively, to obtain observation The single eye is regarded as the effect of a sub-pixel image of a delta col to 〇 gy. FIG. 9 is a schematic view showing another embodiment of the present invention, in which a parallax light piece for automatically generating a stereo image is used. A parallax barrier substrate 26. The parallax barrier substrate 26 is coated on a glass substrate 28 by using an opaque material such as ink to form a staggered shading block 30 to produce a visual separation effect of 1325975. The shading block illustrated in FIG. The two adjacent light-shielding blocks 3 of the two adjacent horizontal rows are arranged offset in the horizontal direction. Based on the above examples, the light separation single π used to generate the visual separation effect of the present invention may be liquid crystal. The opaque block of the light valve, the columnar portion of the lenticular lens, or the opaque block of the parallax barrier substrate, however, the parallax light device of the present invention and the plurality of light separating units for generating a visual separation effect are not limited The above-mentioned elements, which can reach the viewer choose simply to form two single-eye effect Angle arranging the RGB sub-pixels of the considered image.
再,本發明於_ρ架構下具有分別接收左眼影像 貝料及右眼像素資料之兩矩形像素的設計,可進行平面二 維(2D)及立體三維(3D)顯示模式之切換。亦即,當送入左 眼矩形像素與右眼矩形像素㈣像資料相同時該影像顯:裝置mm⑽顯示,當送人左眼矩形像素 與右眼矩形像素的圖像資料不同時,該影像顯示裝置可呈 現 立體三維(3D)顯示Furthermore, the present invention has a design of two rectangular pixels respectively receiving the left-eye image and the right-eye pixel data under the _ρ architecture, and can perform switching between the planar two-dimensional (2D) and stereoscopic three-dimensional (3D) display modes. That is, when the image sent to the left-eye rectangular pixel and the right-eye rectangular pixel (4) is the same, the image display: the device mm (10) displays, when the image data of the left-eye rectangular pixel and the right-eye rectangular pixel are different, the image display The device can present a stereoscopic three-dimensional (3D) display
以上所述僅為舉例性,而北A *丨t 而非為限制性者。任何未脫離 本發明之精神與範疇,而斟盆 而對其進仃之等效修改或變更,均 應包含於後附之申請專利範 例。 4祀固〒’而非限定於上述之實施 【圖式簡單說明】 圖1為不意圖》甚畐千士丨田,a Μ ..Μ不利用視差光件自 之一習知影像顯示裝置。 動產生立體影像 圖2Α為示意圖 Θ條紋式子像素配列 顯不一水平雙倍密度像素架構之橫 1325975 圖2B為不意圖’顯示圖2a之像素佈局經視覺分離後左眼及 右眼分別觀察到之子像素影像。 圖3為示意圖’顯示用於子像素成色技術之pentile 像素佈局。 圖4A及圖4B為示意圖,顯示依本發明一實施例之影 像顯示裝置。 圖5A沿圖4B之Z方向觀察之俯視示意簡圖。 圖5B為示意圖’顯示依本發明之設計經視覺分離後左眼及 右眼分別可觀察到之子像素影像。 圖6A及6B為示意圖,顯示依本發明之三角式子像素 配列採用子像素成色技術之取點方式。 圖7顯示於HDDP架構下本發明之三角式配列設計與習知 條紋式配列之解析度比較。 圖8A及圖8B為顯示本發明另一實施例之示意圖。 圖9為顯示本發明另一實施例之示意圖。 【主要元件符號說明】 10 影像顯示裝置 12 顯示面板 14 液晶光閥 16 矩形像素區塊 16A ' 16B 矩形像素 18 不透光區塊 20 透光區塊 22 枉狀透鏡 14 1325975 24 柱狀部 26 視差障壁基板 28 玻璃基板 30 遮光區塊 100 影像顯示裝置 10 2 液晶面板 104 視差障壁基板 106 ' 108 玻璃基板The above description is for illustrative purposes only, and North A*丨t is not a limitation. Any equivalent modifications or variations that do not depart from the spirit and scope of the invention, and which are included in the scope of the invention, should be included in the appended patent application. 4 祀 〒 〒 而非 而非 而非 限定 上述 上述 上述 【 简单 简单 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图Figure 3B is a schematic diagram of a striped sub-pixel with a horizontal double-density pixel structure. Figure 2B is not intended to show the pixel layout of Figure 2a. After visual separation, the left and right eyes are observed separately. Sub-pixel image. Figure 3 is a schematic view showing a pentile pixel layout for sub-pixel color forming techniques. 4A and 4B are schematic views showing an image display device according to an embodiment of the present invention. Fig. 5A is a schematic plan view of the plan taken along the Z direction of Fig. 4B. Fig. 5B is a schematic view showing a sub-pixel image observable by the left eye and the right eye after visual separation according to the design of the present invention. 6A and 6B are schematic views showing the manner in which the sub-pixel color forming technique is employed in the triangular sub-pixel arrangement according to the present invention. Figure 7 shows a comparison of the resolution of the triangular arrangement design of the present invention with the conventional striped arrangement under the HDDP architecture. 8A and 8B are schematic views showing another embodiment of the present invention. Figure 9 is a schematic view showing another embodiment of the present invention. [Main component symbol description] 10 Image display device 12 Display panel 14 Liquid crystal light valve 16 Rectangular pixel block 16A '16B Rectangular pixel 18 Light-transmissive block 20 Light-transmissive block 22 Lens-shaped lens 14 1325975 24 Columnar portion 26 Parallax Barrier substrate 28 Glass substrate 30 Light blocking block 100 Image display device 10 2 Liquid crystal panel 104 Parallax barrier substrate 106 ' 108 Glass substrate
110 液晶層 112、114 偏光板 116 背光 118 玻璃基板 120 遮光部 122 觀察者 126A > 126B 視差光件 128 矩形像素區塊 128A、128B 矩形像素110 Liquid crystal layer 112, 114 Polarizer 116 Backlight 118 Glass substrate 120 Shading portion 122 Observer 126A > 126B Parallax light 128 Rectangular pixel block 128A, 128B Rectangular pixel
13 0 Pentile像素佈局 I、J 柱狀部 子像素 R 、 G 、 B 、 Rl 、 Gl 、 Bl 、 R2 、 G2 、 B2 Ml、M2、Nl、N2 .縱歹4 P 不透光區塊 1513 0 Pentile pixel layout I, J columnar sub-pixels R, G, B, Rl, Gl, Bl, R2, G2, B2 Ml, M2, Nl, N2. Vertical 歹 4 P opaque block 15