TWI308644B - Hochaperturiges objektiv mlt obskurierter pupille - Google Patents
Hochaperturiges objektiv mlt obskurierter pupille Download PDFInfo
- Publication number
- TWI308644B TWI308644B TW94146344A TW94146344A TWI308644B TW I308644 B TWI308644 B TW I308644B TW 94146344 A TW94146344 A TW 94146344A TW 94146344 A TW94146344 A TW 94146344A TW I308644 B TWI308644 B TW I308644B
- Authority
- TW
- Taiwan
- Prior art keywords
- mirror
- objective lens
- objective
- lithographic projection
- plane
- Prior art date
Links
Landscapes
- Lenses (AREA)
Description
1308644 九、發明說明: 本專利申請依據35 U.S.C §i19(e) (1)主張擁有us暫時 專利申請60/665036 (2005年3月24曰)、US暫時專利申請 60/695455(2005年6月30日)、以及us暫時專利申請 60/698909(2005年7月13日)之利益,以及依據35 usc § 119主張擁有德國專利申請de 1〇 2004 063 313.4(2004年12 月23曰)及德國專利申請DE 1〇 2〇〇5 〇42 〇〇5 2(2〇〇5年9月 5曰)之優先權。1308644 IX. INSTRUCTIONS: This patent application claims to have US Provisional Patent Application 60/665036 (March 24, 2005) and US Provisional Patent Application 60/695455 (June 2005) in accordance with 35 USC §i19(e)(1). 30th), and the interest of the US provisional patent application 60/698909 (July 13, 2005), and the German patent application de 1〇2004 063 313.4 (December 23, 2004) and Germany according to 35 usc § 119 Patent application DE 1〇2〇〇5 〇42 〇〇5 2 (2〇〇595曰5) priority.
本發明係、冑物鏡,尤其是一種投影物鏡,而且最好是一種 微影投影物鏡。本發明的物鏡亦可作為顯微技術及檢驗系統 用的物鏡。本發_物鏡可應料整個波長範圍,也就是說 在大於193 nm的波長範圍亦可應用。作為微影投影曝光設 備之微影投影減是本發日狀物鏡的—難為㈣的應用The present invention is a projection objective, especially a projection objective, and is preferably a lithographic projection objective. The objective lens of the present invention can also be used as an objective lens for microscopic techniques and inspection systems. The present invention can be applied to the entire wavelength range, that is, in the wavelength range greater than 193 nm. The lithographic projection reduction as a lithographic projection exposure device is the application of the Japanese-style object-difficult (4) application.
= (i_並非唯一的應用方式),尤其是以應用在光波長^ 193 nm的範圍最為有利。 言可以將投影物鏡區分成3個不同的等級,也就是所 用拆Γ光物鏡、反光物鏡、以及反屈光物鏡。屈光物鏡是利 光It件(例如透鏡)將光線從物平面成像在像平面内。反 利用反射元件(例如反射鏡)將光線從物平面成像 將光Π内。反屈光物鏡則是同時利用折射元件及反射元件 f先線攸物平面成像在像平面内。 6 1308644 在使用鬲孔隙投影物鏡(尤其是超紫外線(EUV)微影用的高 孔隙投影物鏡)時’至少在高孔隙投影物鏡的若干反射鏡Z 會出現很大的入射角。入射角太大不但會導致反射損耗過 大,而且會導致s極化光線及p極化光線的相差無法修正戈 極難修正。尤其是會在微影投影物鏡的高孔隙部分的反射鏡 上方出現很大的入射角及/或很大的入射角變化。 之所以會如此’最主要的原因是按照現有技術設計的投影物 > 鏡系統的最後兩個反射鏡為符合遠心要求所採用的幾何形 狀。 乂 在US 5686728提出的投影物鏡系統中,成像側光程上的最 後兩個反射鏡是由一個凸面反射鏡及一個凹面反射鏡所組 成。雖然經由這種由一個凸面反射鏡及一個凹面反射鏡構成 的反射鏡組合可以滿足成像側的遠心要求,但是出現在光程 上倒數第二個反射鏡上的入射角及入射角變化仍然是非常 > 的大。 這個美國專利(US 5686728)是以像平面内的一個場(例如— 個環形場)的中心場點的主光束在反射鏡上的入射角大小來 代表在反射鏡上的入射角的大小。這個入射角稱為㊀cr。如 果是像EP 1434093提出的投影物鏡系統在最靠近像平面的 反射鏡的物理位置有一個中間像,雖然能夠達到一個復高的 像側孔隙(ΝΑ=0.5),但是入射角仍然是非常的大,以致於在 7 1308644 從物平面到像平面的光程上倒數第二個反射鏡的位置叙可 避免的會出現很大的光損失。 為了消除這個缺點,Us 675G948 B2提出—種微影投影系 統’在這種系統中至少有—個反射鏡具有-個開Π,故能形 成一個遮蔽光瞳。 US 675_提出的微影投影系統是以接受光瞳造成的遮蔽 作用為彳’以達到缩物鏡(尤其是光程上倒數第二個反 射鏡)的尚孔隙部分的入射角的目的。 US 675G948提出的微影投影系統的最大缺點是其工作距離 非常小’也就是現小到含倒數第二個反射鏡的厚度計算在内 的工作距離最多只有12mm。 尤其是從反射鏡的曝來看,這麼小的玉作轉會造成很大 的問題。 但是US 67頻8提出的微影投影系統的工作距離是無法再 加大的’這是因為只要心作轉加大,光瞳錢的作用就 會因為光程上倒㈣二個反射鏡的直徑彳㈠、而急速變大。 US 2004/0114217提出一種在像側具有很高孔隙的遮蔽系 1308644 這種遮蔽系統的缺點是,根據US 2004/0114217的方式,第 一個部分物鏡的反射鏡是破裂的反射鏡,也就是說是帶有一 個開口的反射鏡。 這種在第一個部分物鏡中帶有破裂的反射鏡的遮蔽系統的 缺點是不適用於大面積的場,例如不適用於超紫外線(EUV) 微影所需的大面積的場,這是因為所有的反射鏡都是設置在 光瞳附近,所以無法修正與場有關的像差(例如遠心及圖像 • 失真)。 上述以現有技術設計的所有已知物鏡系統的一個共同缺點 是它們對小於50 nm的圖形的辨識率都無法提供足夠的反 射性及角度帶寬。 上述以現有技術設計的所有已知物鏡系統(尤其是應用於微 影的投影系統)的另外一個共同缺點是為了修正及/或減少 色像差,必須使用不同種類的玻璃,或是必須配合窄寬光源 使用昂貴的雷射設備。 由於寬帶光源(例如發光二極體,也就是所謂的LED,包括 紫外線範圍的發光二極體)所產生的色像差太大,因此不能 作為一般折射微影系統的光源。發出藍光、尤其是紫外線範 圍(例如波長365 nm、280 nm、或是227 m)的發光二極體(也 就是所謂的LED)的帶寬介於+/-20nm及+/-50nm之間,光 9 1308644 輸出功率最大達100 mW。 本發明的目的是克服現有技術的上述缺點。 從第一個觀點來看,本發明提出的高孔隙物鏡(尤其是一種 投影物鏡)一方面要具有入射角小的特點,另一方面在本發 明的一種特別有利的實施方式中,最靠近像平面的反射鏡要 具有足夠的工作距離。最好是具有像侧遠心的光束導向。 從第二個觀點來看,本發明提出的物鏡系統還要能夠辨識出 小於50 nm的圖形。尤其是以波長S 193 nm(尤其是S 157 nm,或最好是S 100 nm)的光線運作的物鏡系統一定要能夠 辨識出小於50 nm的圖形。 從第三個觀點來看,本發明提出的物鏡系統還要能夠使用寬 帶光源(例如LED),及/或能夠使用不同的不連續光波長, ® 例如 633 nm 及 248 nm。 最好是將依據本發明的方式設計的微影投影物鏡區分為至 少具有一個反射鏡的第一個部分物鏡及至少具有兩個反射 鏡的第二個部分物鏡。 從第一個觀點來看,本發明提出的由兩個部分物鏡構成的物 鏡(尤其是微影投影物鏡)就可以達成上述的任務,其中第一 10 1308644 個部分物鏡至少具有一個反射鏡’第二個部分物鏡具有—個 一次凹面反射鏡及一個二次凹面反射鏡。第一個部分物鏡的 反射鏡並不帶有供從物侧到像侧通過投影物鏡的光束通過 的開口。第二個部分物鏡所具有的至少兩面凹面反射鏡(也 就是一次凹面反射鏡及二次凹面反射鏡)則帶有供光束通過 的開口。在本專利說明中,所謂,,反射鏡”是指反射鏡表面上 的光學利用區域。所謂光學利用區域是指被從物平面到像平 面通過物鏡的光線照到的區域。由於第二個部分物鏡的兩個 反射鏡都是凹面反射鏡,因此一次凹面反射鏡到像平面的工 作距離可以達到大於12 nm(尤其是大於15 nm)的程度。 一次凹面反射鏡到像平面之間具有這麼大的距離有兩個好 處,其一是在像面内待曝光的實物(例如晶圓)會變得比較容 易被處理’其二是由於在反射鏡及像平面之間有足夠的空 間’因此可以使用具有足夠厚度的反射鏡,這對於提高反射 鏡的穩定性有很大的幫助。所謂一次凹面反射鏡到像平面之 間的距離是指一次凹面反射鏡的反射面的頂點到像平面之 間的距離。 這個距離以大於12 rnn為佳,大於15 nm更好,大於3 0 nm 又更好’能夠大於60 nm則最好。 由於投影物鏡的一次凹面反射鏡具有一個供通過投影物鏡 的光束通過的開口而產生光瞳的遮蔽作用,使投影系統具有 11 1308644 一個像侧數值孔隙(ΝΑ),且以NA>0.4為佳,NA>〇.5更 好’ NA> 0.6又更好,NA> 0.7則最好。 可以用曼金(1^1^11)反射鏡作為波長2 15711111的¥11\^投 影物鏡、深紫外線(DUV)投影物鏡、以及紫外線(UV)投影物 鏡的一次凹面反射鏡。入射光束會通過曼金反射鏡的透鏡材 料(例如波長為157 nm的光束會通過透鏡材料CaF2,波長 為193 nm的光束會通過透鏡材料Si〇2),並在透鏡的背面(此 • 處可以塗上一個反射塗層)被反射。經由這種方式就可以構 成一個厚度很大、很穩定的反射鏡,這個反射鏡與放置待曝 光的實物的像平面之間僅間隔一很小的距離。 在本發明的一種特別有利的實施方式中,第一個部分物鏡具 有的至少一個反射鏡具有一個反射面,從物平面到像平面通 過微影投影物鏡的光束會照射在這個反射鏡上,且這個反射 面會形成第一個軸外段。 本發明的物鏡(尤其是微影投影物鏡)具有一個對稱軸(又稱 為光學轴)。在本發明的一種有利的實施方式中,反射鏡之 間係以這個光學轴呈旋轉對稱的關係。在本發明中,所謂反 射鏡的軸外段(〇FF-Axis-Segment)是指僅包括繞光學軸旋轉 對稱的反射面的一部分的反射鏡段,也就是僅包括反射鏡的 軸外部分的反射鏡段。 12 1308644 在本發明的一種有利的實施方式中,除了第一個部分物鏡 (又稱為場組物鏡)及第二個部分物鏡(又稱為中繼組物鏡) 外,微影投影物鏡還具有第三個部分物鏡,在物平面到像平 面之間的光程上,第三個部分物鏡係位於第一個部分物鏡之 後,但是位於第二個部分物鏡之前。 第三個部分物鏡又稱為轉換組物鏡。 在本發明的一種特別有利的實施方式中,投影物鏡是由總共 3個部分物鏡所構成,且第一個部分物鏡(也就是所謂的場組 物鏡)會將實物成像在第一個中間像上。 由於第一個部分物鏡係位於整個物鏡中孔隙較小的部分,因 此應用軸外(off-axis)反射段也可以達到無遮蔽的光束導 向。由於轴外反射鏡段可以被設置在很靠近場的位置,因此 在第一個部分物鏡中使用軸外反射鏡段可以達到修正與場 有關的像差(例如遠心及失真)的目的。 此外,還可以在第一個部分物鏡内設置一個可接近的光瞳平 面,可以將這個光瞳平面直接設置在一個反射鏡上,也可以 設置在第一個部分物鏡的兩個反射鏡之間,且在這個光瞳平 面内可以設置一個孔隙光圈及一個定義光瞳遮蔽的遮蔽 段。為光瞳平面内的光瞳遮蔽設置遮蔽元件的方式可以獲得 一個與場無關的光瞳遮蔽。如果遮蔽元件不是設置在光瞳平 13 遮t會形成—個與場有關的光瞳遮蔽。但是與場所關的 適者的敝對投影物鏡在微影技術中微影成像上的應用是不 t田、’原因是辨識能力會因此而產生與場有關的變化。 在一種特別有利的實施方式中,第一個部分物鏡具有兩個以 上的反射鏡(正確的說是具有4個的反射鏡),這4個反射鏡 的種特別有利的排列順序是凹面反射鏡〜凸面反射鏡— 凸面反射鏡一凹面反射鏡。= (i_ is not the only application), especially in applications where the wavelength of light is 193 nm. It is possible to divide the projection objective into three different levels, that is, the use of the split objective, the reflective objective, and the inverse refractive objective. A refractive objective is a piece of light (such as a lens) that images light from the object plane into the image plane. Anti-reflection elements (such as mirrors) are used to image light from the object plane into the pupil. The inverse refractive objective lens is simultaneously imaged in the image plane by using the refractive element and the reflective element f. 6 1308644 When using a 鬲 aperture projection objective (especially a high-pitched projection objective for ultra-ultraviolet (EUV) lithography), at least some of the mirrors Z of the high-porosity projection objective appear to have a large angle of incidence. Too large an incident angle will not only cause excessive reflection loss, but also cause the phase difference between s-polarized light and p-polarized light to be uncorrectable. In particular, large incident angles and/or large angles of incidence change occur above the mirrors in the high-porosity portion of the lithographic projection objective. The reason for this is that the most important reason is that the projections designed according to the prior art > the last two mirrors of the mirror system are in conformity with the telecentric requirements.乂 In the projection objective system proposed in US 5,686,728, the last two mirrors on the imaging side optical path are composed of a convex mirror and a concave mirror. Although the combination of mirrors consisting of a convex mirror and a concave mirror can satisfy the telecentric requirements of the imaging side, the incident angle and incident angle change appearing on the penultimate mirror on the optical path is still very > big. This U.S. patent (US 5,686,728) represents the magnitude of the incident angle on the mirror by the angle of incidence of the main beam of the central field of a field (e.g., a circular field) in the image plane on the mirror. This angle of incidence is called a cr. If the projection objective system proposed in EP 1434093 has an intermediate image at the physical position of the mirror closest to the image plane, although a complex image side aperture (ΝΑ = 0.5) can be achieved, the angle of incidence is still very large. Therefore, at 7 1308644, the position of the penultimate mirror on the optical path from the object plane to the image plane can avoid a large loss of light. In order to eliminate this drawback, the Us 675G948 B2 proposes a lithographic projection system in which at least one of the mirrors has an opening, so that a shadowing aperture can be formed. The lithographic projection system proposed by US 675_ aims to achieve the angle of incidence of the aperture portion of the shrink mirror (especially the penultimate mirror on the optical path) by the shielding effect caused by the aperture. The biggest drawback of the lithography projection system proposed by US 675G948 is that its working distance is very small, that is, the working distance from the small to the second most inversion mirror is only 12mm. Especially from the perspective of the mirror, such a small jade transfer caused a big problem. However, the working distance of the lithography projection system proposed by US 67 frequency 8 can no longer be increased. 'This is because as long as the heart is turned, the effect of light money will be due to the optical path (4) the diameter of the two mirrors.彳 (1), and suddenly become bigger. US 2004/0114217 proposes a shielding system 1308644 having a very high aperture on the image side. This shielding system has the disadvantage that, according to the manner of US 2004/0114217, the mirror of the first partial objective lens is a broken mirror, that is to say It is a mirror with an opening. A disadvantage of such a screening system with a broken mirror in the first partial objective is that it is not suitable for large-area fields, such as large-area fields that are not suitable for ultra-ultraviolet (EUV) lithography, which is Because all mirrors are placed near the pupil, field-related aberrations (such as telecentricity and image distortion) cannot be corrected. A common disadvantage of all known objective systems described above in the prior art is that they do not provide sufficient reflectivity and angular bandwidth for patterns of less than 50 nm. Another common disadvantage of all known objective systems designed in the prior art (especially projection systems for lithography) is that in order to correct and/or reduce chromatic aberrations, different types of glass must be used or must be narrowed. Wide light sources use expensive laser equipment. Since a broadband light source (e.g., a light-emitting diode, that is, a so-called LED, including a light-emitting diode in the ultraviolet range) produces a chromatic aberration that is too large, it cannot be used as a light source for a general refracting lithography system. Light-emitting diodes (also known as LEDs) emitting blue light, especially in the ultraviolet range (eg wavelengths 365 nm, 280 nm, or 227 m), have a bandwidth between +/- 20 nm and +/- 50 nm, light 9 1308644 Output power up to 100 mW. It is an object of the present invention to overcome the above disadvantages of the prior art. From a first point of view, the high-pore objective lens (especially a projection objective) proposed by the invention has on the one hand the characteristic of a small angle of incidence, and on the other hand in a particularly advantageous embodiment of the invention, the closest image Planar mirrors must have sufficient working distance. It is preferable to have a beam steering like a side telecentric. From the second point of view, the objective lens system proposed by the present invention is also capable of recognizing a pattern of less than 50 nm. In particular, an objective system that operates with light at a wavelength of S 193 nm (especially S 157 nm, or preferably S 100 nm) must be able to recognize patterns smaller than 50 nm. From a third point of view, the objective system proposed by the present invention is also capable of using a broadband source (e.g., LED) and/or capable of using different wavelengths of discontinuous light, such as 633 nm and 248 nm. Preferably, the lithographic projection objective designed in accordance with the teachings of the present invention is divided into a first partial objective having at least one mirror and a second partial objective having at least two mirrors. From the first point of view, the objective lens (especially a lithographic projection objective lens) composed of two partial objective lenses proposed by the present invention can achieve the above task, wherein the first 10 1308644 partial objective lenses have at least one mirror 'the first The two partial objective lenses have a primary concave mirror and a secondary concave mirror. The mirror of the first partial objective lens does not have an opening through which the light beam passing through the projection objective lens passes from the object side to the image side. The second partial objective lens has at least two concave mirrors (i.e., a primary concave mirror and a secondary concave mirror) with an opening through which the light beam passes. In the description of the patent, the term "mirror" refers to the area of optical utilization on the surface of the mirror. The so-called optical utilization area refers to the area illuminated by the light passing through the objective lens from the object plane to the image plane. The two mirrors of the objective lens are concave mirrors, so the working distance of the primary concave mirror to the image plane can reach more than 12 nm (especially greater than 15 nm). One concave mirror has such a large distance from the image plane. The distance has two advantages. One is that the object to be exposed in the image plane (such as a wafer) will become easier to handle, and the other is because there is enough space between the mirror and the image plane. The use of a mirror with sufficient thickness is very helpful for improving the stability of the mirror. The distance between the concave mirror and the image plane refers to the apex of the reflective surface of the primary concave mirror to the image plane. The distance is preferably greater than 12 rnn, more preferably greater than 15 nm, greater than 30 nm and better 'capacity greater than 60 nm. The face mirror has a shadowing effect for the aperture through which the light beam passing through the projection objective passes, so that the projection system has an image side numerical aperture (ΝΑ) of 11 1308644, preferably NA > 0.4, NA > Better 'NA> 0.6 is better, NA> 0.7 is the best. You can use Mankin (1^1^11) mirror as the ¥11\^ projection objective of wavelength 2 15711111, deep ultraviolet (DUV) projection objective, And a concave mirror of the ultraviolet (UV) projection objective. The incident beam passes through the lens material of the Mankin mirror (for example, a beam with a wavelength of 157 nm passes through the lens material CaF2, and a beam with a wavelength of 193 nm passes through the lens material Si〇). 2), and reflected on the back of the lens (this can be coated with a reflective coating). In this way, a very thick and stable mirror can be constructed, which is placed with the object to be exposed. The image planes are only spaced apart by a small distance. In a particularly advantageous embodiment of the invention, the first partial objective lens has at least one mirror having a reflective surface, from the object plane to the image The beam passing through the lithographic projection objective will illuminate the mirror, and the reflecting surface will form the first outer axis. The objective lens of the present invention (especially the lithographic projection objective) has an axis of symmetry (also known as optics). In an advantageous embodiment of the invention, the mirrors are in a rotationally symmetrical relationship between the mirrors. In the present invention, the off-axis section of the mirror (〇FF-Axis-Segment) is Refers to a mirror segment that includes only a portion of the reflective surface that is rotationally symmetric about the optical axis, that is, a mirror segment that includes only the off-axis portion of the mirror. 12 1308644 In an advantageous embodiment of the invention, except for the first In addition to the objective lens (also known as the field group objective lens) and the second partial objective lens (also known as the relay group objective lens), the lithographic projection objective lens also has a third partial objective lens, the optical path between the object plane and the image plane. Above, the third partial objective is located behind the first partial objective, but before the second partial objective. The third part of the objective lens is also called the conversion group objective lens. In a particularly advantageous embodiment of the invention, the projection objective is composed of a total of three partial objective lenses, and the first partial objective lens (also known as the field group objective lens) images the object on the first intermediate image. . Since the first partial objective is located in the smaller aperture of the entire objective, an off-axis reflection can also be used to achieve unshielded beam steering. Since the off-axis mirror segments can be placed in close proximity to the field, the use of off-axis mirror segments in the first partial objective can be used to correct field-related aberrations such as telecentricity and distortion. In addition, an accessible pupil plane can be placed in the first partial objective, which can be placed directly on a mirror or between the two mirrors of the first partial objective. And in this pupil plane, an aperture aperture and a shielding section defining the pupil shielding can be provided. A field-independent pupil mask can be obtained by providing a masking element for the pupil mask in the pupil plane. If the shielding element is not placed in the pupil level, it will form a field-dependent pupil mask. However, the application of the 适 to the projection of the objective lens to the lithography of lithography is not the case, because the recognition ability will cause field-related changes. In a particularly advantageous embodiment, the first partial objective has more than two mirrors (correctly four mirrors), a particularly advantageous arrangement of the four mirrors is a concave mirror ~ convex mirror - convex mirror - concave mirror.
1308644 第一個部分物鏡的4個反射鏡的排列順序也可以是凸面反 射鏡一凹面反射鏡—凸面反射鏡—凹面反射鏡。—種特別有 利的實施方式是第一個反射鏡的曲率半徑特別的大,尤其是 大於10000 mm。此外,這4個反射鏡的排列順序也可以是 平面反射鏡一凹面反射鏡一凸面反射鏡一凹面反射鏡,或是 凹面反射鏡一凹面反射鏡一凸面反射鏡一凹面反射鏡。 在一種經進一步改良的實施方式中,第一個部分物鏡具有6 個反射鏡。第一個部分物鏡的這6個反射物鏡可以有不同的 排列順序。其中第一種可能的排列順序是凸面反射鏡一凹面 反射鏡一凸面反射鏡一凹面反射鏡一凹面反射鏡一凸面反 射鏡,第二種可能的排列順序是凸面反射鏡一凹面反射鏡一 凹面反射鏡一凸面反射鏡一凸面反射鏡—凹面反射鏡’第三 種可能的排列順序是凹面反射鏡一凹面反射鏡—凸面反射 鏡凹面反射鏡一凸面反射鏡一凹面反射鏡’第四種可能的 14 1308644 排列順序是凹面反射鏡一凸面反射鏡一凹面反射鏡一凹面 反射鏡一凸面反射鏡一凹面反射鏡,第五種可能的排列順序 是凹面反射鏡一凸面反射鏡一凹面反射鏡一凸面反射鏡一 凸面反射鏡一凹面反射鏡。 在一種特別有利的實施方式中,第一個部分物鏡的第一個反 射鏡的曲率半徑特別的大(尤其是大於10000 mm),由於曲 率半徑很大,因此第一個反射鏡可以是平面、凸面、或是凹 面反射鏡,因此第一個部分物鏡的反射鏡可以有下列的排列 順序: 凹面反射鏡一凹面反射鏡一凸面反射鏡一凹面反射鏡一凹 面反射鏡一凸面反射鏡 平面反射鏡一凹面反射鏡一凸面反射鏡一凹面反射鏡一凹 面反射鏡一凸面反射鏡 凸面反射鏡一凹面反射鏡一凸面反射鏡一凹面反射鏡一凸 面反射鏡—凹面反射鏡 平面反射鏡一凹面反射鏡一凸面反射鏡一凹面反射鏡一凸 面反射鏡一凹面反射鏡 凸面反射鏡一凸面反射鏡一凹面反射鏡一凹面反射鏡一凸 面反射鏡一凹面反射鏡 平面反射鏡一凸面反射鏡一凹面反射鏡一凹面反射鏡一凸 面反射鏡一凹面反射鏡 凸面反射鏡一凸面反射鏡一凹面反射鏡一凸面反射鏡一凸 面反射鏡一凹面反射鏡 15 1308644 平面反射鏡一凸面反射鏡〜凹面反射鏡—凸面反射鏡—凸 面反射鏡一凹面反射鏡 為了使第一個部分物鏡位於從物平面到像平面的光程上的 第二個反射鏡上的入射角較小,第一個部分物鏡位於從物平 面到像平面的光程上的第二個反射鏡最好是凹面反射鏡。 本發明的物鏡(尤其是微影投影物鏡)的一種改良的實施方 式具有第三個部分物鏡(又稱為轉換組物鏡)。第三個部分物 鏡是由至少兩個反射鏡構成。—種特別有利的實施方式是第 三個部分物鏡是由兩個物鏡構成。第三個部分物鏡的任務是 將小孔隙的物鏡部分轉換成高孔隙的物鏡部分,也就是說調 整投影比例尺或投影係數。一種特別有利的方式是轉換組物 鏡的兩個反射鏡中有一個反射鏡是凸面反射鏡,另外一個反 射鏡是凹面反射鏡。如果將轉換組物鏡的兩個反射鏡命名為 第二個反射鏡及第四個反射鏡,這就表示第三個反射鏡是凸 面反射鏡,而第四個反射鏡是凹面反射鏡,或是表示第三個 反射鏡是凹面反射鏡,而第四個反射鏡是凸面反射鏡。 在微影投影系統的一種有利的實施方式中,第一個部分物鏡 將物平面成像在第一個中間像上,第三個部分物鏡將第一個 中間像成像在第二個中間像上,第二個部分物鏡將第二個中 間像成像在像平面内。為了盡可能縮小反射鏡穿孔,以便 將必要的遮蔽(尤其是光瞳遮蔽)保持在很低的程度,最好是 16 1308644 將開口(也就是反射鏡穿孔)盡可能的縮小。這樣做的好處是 在本發明的一種具有多個反射鏡的微影投影物鏡内,系統的 中間像會在各個部分物鏡間被成像在反射鏡穿孔附近。一種 特別有利的方式是在物理上第一個中間像位於第四個反射 鏡附近’以及在物理上第二個中間像位於第三個反射鏡附 近。所謂”在物理上位於附近”是指中間像到反射鏡表面頂點 沿著光學軸測得的距離小於物鏡的構造長度的1 /10。所謂物 鏡的構造長度是指沿著光學軸從物平面到像平面的距離。 如前所述’第三個部分物鏡會產生第二個中間像,由於第二 個中間像最好是位於第三個反射鏡附近,因此對像平面而言 通常是無法接近的。在考量必要的反射鏡厚度的前提下,第 二個中間像經由第二個部分物鏡被成像在像平面内的方式 要能夠維持在像平面之前具有足夠的工作距離。 第三個反射鏡的直徑及二次凹面反射鏡的直徑不應如US 2004/0114217 A1所述有很大的差異,而應該是屬於同一個 數量級。一種有利的實施方式是這兩個反射鏡的直徑大小僅 相差兩倍。 如果將第三個反射鏡的直徑及二次凹面反射鏡的直徑設計 成一樣大或是幾乎一樣大,則一種特別有利的實施方式是二 次凹面反射鏡的直徑dl、第三個反射鏡的直徑d2、第二個 中間像到二次凹面反射鏡的表面的距離zl、以及第二個中 17 1308644 間像到第三個反射鏡的表面的距離z2符合以下的比例關 係: dl/d2 与 zl/z2 也就是說dl/d2的比值與zl/z2的比值大致上是相等的。 上式中dl代表二次凹面反射鏡的直徑,d2代表第三個反射 鏡的直徑,zl代表第二個中間像到二次凹面反射鏡的表面 的距離,z2代表第二個中間像到第三個反射鏡的表面的距 離0 發明人發現,只要符合上面的比例條件,則系統的遮蔽就會 降到最低。尤其是可以防止光瞳遮蔽被放大的不利情況出 現。 本發明的一種特別有利的實施方式是將從物平面到像平面 的光程上倒數第四個反射鏡及最後一個反射鏡的鏡面設計 成雙鏡。這種雙鏡會用到一片基片的具有反光性的正面及反 面,並在雙鏡中置入一個孔隙開口(或是穿孔)。在這種雙鏡 中,基片的正面及反面都有蒸鍍上一個具有40個Mo/Si薄 膜組的高反光性(例如用於波長λ =13 nm之X射線微影)的 鑛層。在一個具有3個部分物鏡的系統中,倒數第四個反射 鏡就是第三個反射鏡,最後一個反射鏡就是從物平面到像平 18 1308644 面的光程上的二次凹面反射鏡。 這種雙鏡的優點是可以像透鏡一樣被生產及嵌入。雖然理論 上也可以使用由兩個反射鏡構成的設計,但是這兩個反射鏡 都必須以一種剛性很大的材料(例如碳化矽)製成。 一種有利的實施方式是將雙鏡的孔隙開口(也就是穿孔)製 作成圓錐形,以便達到盡可能縮小遮蔽的目的。 雙鏡構造的一個優點是可以達到很高的力學穩定性。 為了確保與像平面保持足夠的距離,在紫外線(uv)、深紫外 線(DUV)、以及VUV等波長範圍也可以使用一種曼金反射 鏡。 曼金反射鏡的構造可參見’’Lexikon der Optik”(光學百科全 籲書)第223頁的說明。 本發明的一種特別有利的實施方式是將從物平面到像平面 的光程上的第二個反射鏡製作成凹面反射鏡,以達到縮小光 線在反射鏡上的入射角的目的。 在本發明的另外一種特別有利的實施方式中,系統的孔隙光 圈及遮蔽光圈並非設置在同一個位置,而是設置在兩個彼此 19 1308644 共軛的光圈平面上,而且這兩個光圈平面同時又是投影物鏡 的入射光瞳的共軛平面(也就是所謂的光瞳平面)。 將遮蔽光圈及孔隙光圈設置在遠離反射鏡的位置的作法不 只可以產生光學上的優點,也可以產生機械學上的優點。直 接設置在反射鏡前面的孔隙光圈或遮蔽光圈會被光束穿過 兩次,因此無可避免的會出現光圈阻的現象,這對於成像品 質會造成不良的影響。從機械學的觀點來看,要將孔隙光圈 或遮蔽光圈設置在靠近反射鏡的位置是一件很困難的事,其 中一個原因是可供使用的空間十分狹窄,另外一個原因是設 置位置必須十分精確(也就是說公差極小)。如果是以在反射 鏡上鍍上一層抗反射膜的方式製作遮蔽光圈(如US 6750648 提出的方法),則如果要更換遮蔽光圈就必須將所有的反射 鏡一起換掉,這樣不但費事而且十分昂貴。孔隙光圈限定光 束的外緣及確定外半徑(也就是所謂的孔隙半徑),而與場無 關的遮蔽則是被遮蔽光圈定義,也就是光束的内半徑(從物 平面到像平面穿過投影系統的半徑)。 在本發明的一種特別有利的實施方式中,投影微影物鏡具有 第一個部分物鏡(就是所謂的場組物鏡)及第二個部分物 鏡,其中場組物鏡僅具有所謂的軸外反射鏡段,而第二個部 分物鏡則具有兩個凹面反射鏡。這種物鏡沒有第三個部分物 鏡,也就是說沒有具有供光束通過用的開口的反射鏡的轉換 組物鏡。這種物鏡的優點是由於沒有第三個部分物鏡,因此 20 1308644 可以省掉兩個反射鏡。這樣不但透光率會變大,而且也可以 降低製造的複雜度及生產成本。在這種物鏡中,轉換組的功 能是由場組物鏡及孔隙組物鏡本身來完成,也就是說由場組 物鏡及孔隙組物鏡自行完成從低孔隙的場組物鏡傳送到高 孔隙的孔隙組物鏡的工作。在這種實施方式中,場組物具= 有6個反射鏡,這6個反射鏡的一種可能的排列順序是凹面 反射鏡一凸面反射鏡一凹面反射鏡—凸面反射鏡—凸面反 射鏡一凹面反射鏡。這種物鏡的特別有利的實施方式可以達 到縮小主光線角及數值孔隙(NA)=:0.7的目的。 根據本發明的第二個觀點,本發明提出的物鏡系統要能夠辨 識出小於50 nm的圖形,尤其是以波長^193 nm(尤其是^ 157 nm,或最好是$100 rnn)的光線運作的物鏡系統要能夠 辨識出小於50 nm的圖形。為達到本發明的第二個觀點提出 的要求,因此本發明提出一種像側數值孔隙(NA)大於〇.7的 物鏡糸統。如果物鏡糸統的孔隙(NA)大於0.72更好,大於 0.80又更好,最好是大於0.90。 根據本發明的第二個觀點設計的物鏡至少具有8個反射 鏡,若是至少具有10個反射鏡則更好。此外,根據本發明 的第二個觀點設計的物鏡還可以具有一個像場尺寸大於〇1 mm的像場。 在一種特別有利的貝施方式中,一種具有高數值孔隙的物鏡 Ϊ308644 系統的特徵為主光線與中央場點所失的最大入射角在所有 的反射鏡上均小於30度。 根據本發明的第二個觀點設計的一種特別有利的物鏡系統 具有兩個部分物鏡系統,也就是第〜個部分物鏡系統及第二 個部分物鏡系統。 第一個部分物鏡系統的反射鏡最好都沒有中央開口,而且最 好是設置在投影物鏡的主軸外的位置。因此這些反射鏡都是 所謂的軸外反射鏡段。第一個部分物鏡系統也被稱為場組物 鏡0 第二個部分物鏡系統至少具有一個帶有中央開口的反射 鏡。第二個部分物鏡系統也被稱為孔隙組物鏡。 根據本發明的第二個觀點設計的第一種實施方式,場組物鏡 具有8個反射鏡,其中有6個反射鏡屬於第一個部分物鏡= 系統,2個反射鏡屬於第二個部分物鏡子系統。場組物^的 這8個反射鏡的一種有利的排列順序是凹面反射鏡一2面 反射鏡一凸面反射鏡一凹面反射鏡一凹面反射鏡一凸面反 射鏡一凸面反射鏡一凹面反射鏡。由於場組物鏡具有8個反 射鏡’因此與場有關的像差能夠獲得很好的修正。 根據本發明的第二個觀點設計的第一種實施方式,孔隙組物 22 1308644 鏡具有2個反射鏡。 根據本發明的第二個觀點設計的第二種實施方式,場組物鏡 具有6個反射鏡’其排列順序為凹面反射鏡—凹面反射鏡— 凸面反射鏡—凹面反射鏡—凸面反射鏡—凹面反射鏡。場組 物鏡分為具有4個反射鏡的第―個部分物鏡子系統及且有2 個反射鏡的卜個部分物鏡m孔隙組物鏡分為具有2 個凹面反射鏡的第-個部分物鏡部分系統及具有2個凹面 春 反射鏡的第二個部分物鏡部分系統。在根據本發明的第二個 觀點設計的第二種實施方式的物鏡中總共會形成3個中間 像。根據本發_第二個觀點設計㈣二種實财式的物鏡 的-個特徵是可以在入射角很小的情況下達到很高的數值 孔隙。在根據本發明的第二個觀點設計的第二種實施方式的 物鏡中,主光線與中央場點所失的入射角小於3〇度。此外, 根據本發明的第二個觀點設計的第二種實施方式的物鏡的 I 另外一個特徵是反射鏡之間的漂移段很長。 根據本發明的第二個觀點設計的物鏡的第三種實施方式,場 組物鏡具有6個反射鏡,其排列順序為凸面反射鏡—凹面反 射鏡一凹面反射鏡一凸面反射鏡—凸面反射鏡一凹面反射 鏡。孔隙組物鏡分為第一個部分物鏡部分系統及第二個部分 物鏡部分系統。在孔隙組物鏡中的反射鏡的排列順序是凸面 反射鏡〜凹面反射鏡一凹面反射鏡—凹面反射鏡。第三種實 施方式的物鏡總共會形成3個中間像。第三種實施方式的物 23 1308644 鏡的特徵是具有很高的數值孔隙。 根據本發明的第三個觀點設計的物鏡系統至少具有8個反 射鏡,且其像側數值孔隙(NA)大於0.5(最好是大於0.7),且 在從物平面到像平面的光程上最多形成一個中間像。 根據本發明的第三個觀點設計的另外一種實施方式,物鏡系 統具有兩個部分物鏡,且第二個部分物鏡系統至少具有一個 I 具有供光束通過用的開口的反射鏡。根據本發明的第三個觀 點設計的一種特別有利的實施方式,物鏡系統的特徵是主光 線與中央場點所夾的最大入射角在所有的反射鏡上均小於 30度,且最好是小於26度。 根據本發明的第三個觀點設計的物鏡的一種實施方式,第一 個部分物鏡系統只具有一個沒有中央開口的反射鏡,而且這 個反射鏡最好是設置在投影物鏡的主軸外的位置。因此這種 > 反射鏡就是所謂的軸外反射鏡段。第一個部分物鏡系統也被 稱為場組物鏡。 第二個部分物鏡至少具有一個有中央開口的反射鏡。第二個 部分物鏡系統也被稱為孔隙組物鏡。 在一種有利的實施方式中,場組物鏡具有6個反射鏡,其排 列順序為凸面反射鏡一凹面反射鏡一凹面反射鏡一凸面反 24 1308644 射鏡一凸面反射鏡一凹面反射鏡,且在光瞳内有一個中央遮 蔽,其所佔面積小於整個被照亮的光瞳面積的12%。這種實 施方式的一個優點是光瞳遮蔽很小,另外一個優點是入射光 瞳的頂焦距是負的。 因此這種實施方式可以讓照明系統少用兩個反射鏡,以提高 整個系統的透光率。 在另外一種有利的實施方式中,場組物鏡具有6個反射鏡, 其排列順序為凹面反射鏡一凹面反射鏡一凸面反射鏡一凹 面反射鏡一凹面反射鏡一凸面反射鏡,其中第一個反射鏡的 曲率半徑大到可以將第一個反射鏡製作成平面反射鏡或凸 面反射鏡。在這種實施方式中,入射光瞳的頂焦距是負的, 因此在場組物鏡内的反射鏡表面上會出現很小的入射角(小 於26度)。 利用現有技術(不需要有發明行為)也可以製造出主光線在 光柵沿著平行於光學轴的方向前進的系統。為了能夠為這種 系統提供照明,必須應用一種傳輸掩膜,如果是應用一種反 光掩膜,則必須在光程上設置一個分光器或半透明的反射 鏡。 在一種有利的實施方式中,孔隙組物鏡具有兩個反射鏡,其 中第一個反射鏡最好是凸面反射鏡,第二個反射鏡最好是凹 面反射鏡。 25 1308644 間像正好位於場組物 本發明的一種特別有利的方式是使中 鏡及孔隙組物鏡之間。 -種特別有利的方式是在將光圈設置在孔隙組物鏡的第一 個反射鏡(域是第七個反射鏡)及孔隙組物鏡的第二個反 射鏡(也就是第八個反射鏡)之間。經由這_置方式就可以 將光圈以孔#光_方式安裝,原因是此時有足㈣安裝空 間可供使用。 另外種可㈣方式是將光圈設置在場組物鏡内靠近一個 反射鏡的位置,或是設置在一個反射鏡上。 本發明之物鏡(尤其是微影投影物鏡)的其他有㈣實施方 式及應用方式均記載於申請專利範圍之附屬項及其所屬的 圖式中。 • ,、、、 本說明描述的物鏡尤其適於作為微影投影曝光設備中的投 影物鏡。在微影投影曝光設備中,一個照明系統會照亮一個 帶有圖形的掩膜(光柵),然後再由投影物鏡將這個掩膜成像 在一片光敏基片上。這種微影投影曝光設備在現有文獻中已 有詳細的說明’例如 US 5212588、US 5003567、US645266卜 以及US 6195201中有關於超紫外線(EUV)微影用的微影投 影曝光設備的描述,US 6512641及EP 1069448中有關於波 長$193 nm用的微影投影曝光設備的描述。 26 1308644 微影投影曝光設備使用的照明系統以雙稜面照明系統為 佳’尤其是使用場稜面反射鏡的場棱面具有在光柵面上待照 冗的場的形狀的照明系統,也就是說如果在場稜面上待照亮 的場是一個環形場,則場稜面就是環形的。在這種系統中不 需要用到能夠形成場形狀的反射鏡。 微結構半導體元件的製造必須經過許多複雜的步驟。其中一 個十分重要的步驟是對光敏基片(晶圓)進行曝光,例如對塗 有光敏抗钱劑的矽基片進行曝光。在製造各個所謂的鍍膜或 鍍層時,投影物鏡會將相應的光柵成像在晶圓上。 本發明提出的物鏡(尤其是投影物鏡)具有以下說明的優 點,本發明的物鏡可以具有其中的一項優點或是同時具有數 項優點。 反光投影物鏡的優點是其像側數值孔隙很大。投影物鏡可以 具有很大的像侧數值孔隙,同時又能夠將照射在投影物鏡的 反光元件上的光線的入射角控制在相當小的程度。因此可以 降低反光元件反射的光線的強度變化,而不會像光線以較大 的入射角照射在一個或數個反光元件上的投影物鏡一樣,反 光元件反射的光線強度會有报大的變化。降低光線強度的變 化可以產生改善成像品質的效果。此外,在本說明書中描述 的若干種特定的貫施方式具有很大的像侧數值孔隙及相當 大的工作距離,因此能夠提供足夠的安裝空間(例如供設置 27 1308644 晶圓台用的空間),而且也很容易接近像平面。例如像側工 作距離可以達到15 mm或甚至更大。 此外’在若干種實施方式中,投影物鏡是像側遠心的。在若 干種特定的實施方式中,投影物鏡的反射鏡可以具有供光束 通過用的開口,因而能夠將光瞳遮蔽降到很低的程度。有若 干種知*定的實施方式的特徵是具有很高的辨識率。例如投影 物鏡可以辨識圖形寬度^ 5〇 nm的圖形。本發明的投影物鏡 不但可以達到這麼高的辨識率,Μ還可以具有很高的像: 數值孔隙。此種物鏡尤其適用於波長較短的光線範圍,例如 波長在lOnin至3〇mn之間的光線。 實施方式中, 度。 投影物鏡能夠提供像差很小的成像品質。在若干種實施方 中,投影物鏡有一個10 m又或更小的波前像差。在若^ 成像失真的情況能夠被修正到小於 "b *ίτ «4^ rl-» * 丨々里 nm的程 投影物鏡可以具有一個或多個光瞳平面, 遮蔽光圈帶入光瞳平面成為可能。1308644 The arrangement of the four mirrors of the first partial objective lens may also be a convex mirror-concave mirror-convex mirror-concave mirror. A particularly advantageous embodiment is that the radius of curvature of the first mirror is particularly large, especially greater than 10,000 mm. In addition, the arrangement order of the four mirrors may be a plane mirror-concave mirror-convex mirror-concave mirror, or a concave mirror-concave mirror-convex mirror-concave mirror. In a further improved embodiment, the first partial objective has six mirrors. The six reflective objectives of the first partial objective lens can be arranged in different order. The first possible order of arrangement is a convex mirror, a concave mirror, a convex mirror, a concave mirror, a concave mirror, and a convex mirror. The second possible order is a convex mirror, a concave mirror, and a concave surface. Mirror-convex mirror-convex mirror-concave mirror' The third possible order of arrangement is concave mirror-concave mirror-convex mirror concave mirror-convex mirror-concave mirror' fourth possibility The order of 14 1308644 is a concave mirror, a convex mirror, a concave mirror, a concave mirror, a convex mirror, and a concave mirror. The fifth possible order is a concave mirror, a convex mirror, and a concave mirror. Convex mirror - convex mirror - concave mirror. In a particularly advantageous embodiment, the first mirror of the first partial objective has a particularly large radius of curvature (especially greater than 10000 mm), and since the radius of curvature is large, the first mirror can be planar, Convex or concave mirror, so the mirror of the first partial objective can have the following order: concave mirror-concave mirror-convex mirror-concave mirror-concave mirror-convex mirror plane mirror Concave mirror-convex mirror-concave mirror-concave mirror-convex mirror convex mirror-concave mirror-convex mirror-concave mirror-convex mirror-concave mirror plane mirror-concave mirror A convex mirror a concave mirror a convex mirror a concave mirror convex mirror a convex mirror a concave mirror a concave mirror a convex mirror a concave mirror plane mirror a convex mirror a concave mirror a concave mirror, a convex mirror, a concave mirror, a convex mirror, a convex mirror Face mirror - convex mirror - convex mirror - concave mirror 15 1308644 plane mirror - convex mirror ~ concave mirror - convex mirror - convex mirror - concave mirror in order to make the first partial objective lens The angle of incidence on the second mirror of the plane to the optical path of the image plane is small, and the second mirror of the first partial objective lens located on the optical path from the object plane to the image plane is preferably a concave mirror. An improved embodiment of the objective lens (especially a lithographic projection objective) of the present invention has a third partial objective (also known as a conversion set objective). The third partial objective is made up of at least two mirrors. A particularly advantageous embodiment is that the third partial objective lens consists of two objective lenses. The third part of the objective lens is to convert the objective part of the small aperture into a high-porosity part of the objective, that is to say to adjust the projection scale or projection factor. A particularly advantageous way is that one of the two mirrors of the conversion group objective is a convex mirror and the other mirror is a concave mirror. If the two mirrors of the conversion group objective are named as the second mirror and the fourth mirror, this means that the third mirror is a convex mirror, and the fourth mirror is a concave mirror, or Indicates that the third mirror is a concave mirror and the fourth mirror is a convex mirror. In an advantageous embodiment of the lithography projection system, the first partial objective lens images the object plane on the first intermediate image, and the third partial objective lens images the first intermediate image on the second intermediate image. The second partial objective image images the second intermediate image in the image plane. In order to minimize mirror perforations to keep the necessary shading (especially pupil obscuration) to a low level, it is preferable that 16 1308644 minimize the opening (ie, the mirror perforation). This has the advantage that in a lithographic projection objective having multiple mirrors of the present invention, an intermediate image of the system is imaged between the respective partial objectives near the mirror perforations. A particularly advantageous way is that physically the first intermediate image is located near the fourth mirror and the second physically intermediate image is located near the third mirror. By "physically located nearby" is meant that the distance from the intermediate image to the apex of the mirror surface along the optical axis is less than 1/10 of the construction length of the objective lens. The structural length of the objective lens refers to the distance from the object plane to the image plane along the optical axis. As mentioned earlier, the third partial objective produces a second intermediate image. Since the second intermediate image is preferably located near the third mirror, the image plane is usually inaccessible. The second intermediate image is imaged in the image plane via the second partial objective lens to maintain a sufficient working distance before the image plane, taking into account the necessary mirror thickness. The diameter of the third mirror and the diameter of the secondary concave mirror should not be as large as described in US 2004/0114217 A1, but should be of the same order of magnitude. An advantageous embodiment is that the diameters of the two mirrors differ only by a factor of two. If the diameter of the third mirror and the diameter of the secondary concave mirror are designed to be as large or nearly as large, a particularly advantageous embodiment is the diameter dl of the secondary concave mirror, the third mirror The diameter d2, the distance zl of the second intermediate image to the surface of the secondary concave mirror, and the distance z2 between the 17 1308644 and the surface of the third mirror in the second one are in accordance with the following proportional relationship: dl/d2 and Zl/z2 means that the ratio of dl/d2 is roughly equal to the ratio of zl/z2. In the above formula, dl represents the diameter of the secondary concave mirror, d2 represents the diameter of the third mirror, zl represents the distance from the second intermediate image to the surface of the secondary concave mirror, and z2 represents the second intermediate image to the first The distance of the surface of the three mirrors 0 The inventors have found that the shielding of the system is minimized as long as the above ratio conditions are met. In particular, it is possible to prevent the occurrence of an unfavorable situation in which the pupil mask is enlarged. A particularly advantageous embodiment of the invention is to design the mirror of the fourth and last mirrors from the object plane to the plane of the image plane into a double mirror. This double mirror uses the reflective front and back sides of a substrate and places a void opening (or perforation) in the double mirror. In this double mirror, both the front and back sides of the substrate are vapor deposited with a highly reflective layer of 40 Mo/Si film groups (e.g., X-ray lithography for wavelength λ = 13 nm). In a system with three partial objectives, the fourth mirror is the third mirror, and the last mirror is the quadratic mirror from the object plane to the optical path of the flat 18 1308644. The advantage of this dual mirror is that it can be produced and embedded like a lens. Although it is theoretically possible to use a design consisting of two mirrors, both mirrors must be made of a very rigid material such as tantalum carbide. An advantageous embodiment is to make the aperture opening (i.e., the perforation) of the double mirror into a conical shape in order to minimize the shielding. One advantage of the dual mirror construction is that it achieves high mechanical stability. To ensure a sufficient distance from the image plane, a Mankin mirror can also be used in the wavelength range of ultraviolet (UV), deep ultraviolet (DUV), and VUV. The construction of a Mankin mirror can be found in the description of ''Lexikon der Optik') on page 223. A particularly advantageous embodiment of the invention is the optical path from the object plane to the image plane. The two mirrors are formed as concave mirrors for the purpose of reducing the angle of incidence of the light on the mirror. In a further particularly advantageous embodiment of the invention, the aperture aperture and the aperture of the system are not arranged in the same position. Rather, it is placed on two aperture planes conjugated to each other 19 1308644, and these two aperture planes are simultaneously the conjugate plane of the entrance pupil of the projection objective (also known as the pupil plane). The arrangement of the aperture stop at a position away from the mirror not only produces an optical advantage, but also a mechanical advantage. The aperture aperture or the aperture aperture directly placed in front of the mirror is passed twice by the beam, so no Can avoid the phenomenon of aperture resistance, which will have an adverse effect on the quality of the image. From a mechanical point of view, It is difficult to locate the aperture aperture or the aperture aperture near the mirror. One reason is that the space available is very narrow, and the other reason is that the position must be very precise (that is, the tolerance is very small). The masking aperture is made by plating an anti-reflection film on the mirror (as proposed in US 6750648). If the mask aperture is to be replaced, all the mirrors must be replaced together, which is not only troublesome but also expensive. The aperture aperture defines the outer edge of the beam and defines the outer radius (also known as the aperture radius), while the field-independent mask is defined by the masked aperture, ie the inner radius of the beam (from the object plane to the image plane through the projection) In a particularly advantageous embodiment of the invention, the projection lithography objective has a first partial objective lens (so-called field group objective lens) and a second partial objective lens, wherein the field group objective lens has only a so-called The off-axis mirror segment, while the second partial objective has two concave mirrors. This objective has no third Part of the objective lens, that is to say the conversion group objective lens without a mirror for the opening for the light beam to pass through. The advantage of this objective lens is that since there is no third partial objective lens, 20 1308644 can save two mirrors. The light rate will become larger, and the manufacturing complexity and production cost can also be reduced. In this objective lens, the function of the conversion group is performed by the field group objective lens and the aperture group objective lens itself, that is, the field group objective lens and the aperture. The set objective lens performs its own work from the low-porosity field group objective to the high-porosity aperture group objective. In this embodiment, the field set object = there are 6 mirrors, a possible arrangement of the 6 mirrors The sequence is a concave mirror - a convex mirror - a concave mirror - a convex mirror - a convex mirror - a concave mirror. A particularly advantageous embodiment of this objective lens can achieve a reduction of the chief ray angle and numerical aperture (NA) =: 0.7 the goal of. According to a second aspect of the present invention, the objective lens system proposed by the present invention is capable of recognizing a pattern of less than 50 nm, especially at a wavelength of 193 nm (especially ^ 157 nm, or preferably $100 rnn). The objective system should be able to recognize patterns smaller than 50 nm. In order to meet the requirements set forth in the second aspect of the present invention, the present invention therefore proposes an objective lens system having an image side numerical aperture (NA) greater than 〇.7. If the aperture (NA) of the objective lens system is more than 0.72, more preferably greater than 0.80, and most preferably greater than 0.90. The objective lens designed according to the second aspect of the present invention has at least eight mirrors, and more preferably at least 10 mirrors. Furthermore, the objective lens designed according to the second aspect of the invention may also have an image field having an image field size larger than 〇1 mm. In a particularly advantageous Beth mode, an objective lens with a high numerical aperture Ϊ 308644 system features a maximum incident angle at which the main ray and the central field point are lost less than 30 degrees on all mirrors. A particularly advantageous objective system designed in accordance with the second aspect of the invention has two partial objective systems, namely a first partial objective system and a second partial objective system. Preferably, the mirrors of the first partial objective system have no central opening and are preferably disposed outside of the main axis of the projection objective. Therefore these mirrors are all so-called off-axis mirror segments. The first partial objective system is also referred to as field group objective 0. The second partial objective system has at least one mirror with a central opening. The second partial objective system is also known as the aperture group objective. According to a first embodiment of the second aspect of the present invention, the field group objective lens has eight mirrors, of which six mirrors belong to the first partial objective lens = system, and two mirrors belong to the second component Mirror system. An advantageous arrangement of the eight mirrors is a concave mirror, a two-sided mirror, a convex mirror, a concave mirror, a concave mirror, a convex mirror, a convex mirror, and a concave mirror. Since the field group objective lens has 8 mirrors', the field-related aberrations can be well corrected. According to a first embodiment of the second aspect of the invention, the aperture group 22 1308644 has two mirrors. According to a second embodiment of the second aspect of the present invention, the field group objective lens has six mirrors, the order of which is a concave mirror-concave mirror-convex mirror-concave mirror-convex mirror-concave surface Reflector. The field group objective lens is divided into a first partial mirror system with 4 mirrors and a partial objective lens with 2 mirrors. The aperture group objective lens is divided into a first partial objective portion system with 2 concave mirrors. And a second partial objective portion system having two concave spring mirrors. A total of three intermediate images are formed in the objective lens of the second embodiment designed according to the second aspect of the present invention. According to the present invention, the second objective is to design a high-value objective lens with a small angle of incidence. In the objective lens of the second embodiment designed according to the second aspect of the present invention, the incident angle at which the chief ray and the central field point are lost is less than 3 degrees. Further, another feature of the objective lens of the second embodiment designed according to the second aspect of the present invention is that the drift period between the mirrors is long. According to a third embodiment of the objective lens designed according to the second aspect of the present invention, the field group objective lens has six mirrors arranged in a convex mirror-concave mirror-concave mirror-convex mirror-convex mirror A concave mirror. The aperture group objective lens is divided into a first partial objective portion system and a second partial objective portion system. The arrangement of the mirrors in the aperture group objective lens is a convex mirror - a concave mirror - a concave mirror - a concave mirror. The objective lens of the third embodiment forms a total of three intermediate images. The object of the third embodiment 23 1308644 is characterized by a high numerical aperture. The objective lens system designed according to the third aspect of the present invention has at least eight mirrors, and has an image side numerical aperture (NA) of more than 0.5 (preferably greater than 0.7) and an optical path from the object plane to the image plane. Form at most one intermediate image. According to another embodiment of the third aspect of the present invention, the objective lens system has two partial objective lenses, and the second partial objective lens system has at least one mirror having an opening for the light beam to pass through. According to a particularly advantageous embodiment of the third aspect of the invention, the objective lens system is characterized in that the maximum angle of incidence of the chief ray and the central field point is less than 30 degrees on all mirrors, and preferably less than 26 degrees. According to an embodiment of the objective lens designed according to the third aspect of the invention, the first partial objective system has only one mirror without a central opening, and the mirror is preferably disposed outside the main axis of the projection objective. This > mirror is therefore the so-called off-axis mirror segment. The first partial objective system is also referred to as a field group objective. The second partial objective has at least one mirror with a central opening. The second part of the objective system is also called the aperture group objective. In an advantageous embodiment, the field group objective lens has six mirrors arranged in the order of a convex mirror, a concave mirror, a concave mirror, a convex surface, a rear surface, a convex mirror, a convex mirror, a concave mirror, and There is a central shadow in the aperture that occupies less than 12% of the area of the entire illuminated aperture. One advantage of this embodiment is that the pupil shielding is small, and another advantage is that the top focal length of the entrance pupil is negative. This embodiment therefore allows the illumination system to use fewer than two mirrors to increase the light transmission of the overall system. In another advantageous embodiment, the field group objective lens has six mirrors arranged in the order of a concave mirror, a concave mirror, a convex mirror, a concave mirror, a concave mirror and a convex mirror, the first one of which The radius of curvature of the mirror is large enough to make the first mirror a planar mirror or a convex mirror. In this embodiment, the top focal length of the entrance pupil is negative, so that a small angle of incidence (less than 26 degrees) occurs on the mirror surface within the field group objective. It is also possible to fabricate a system in which the chief ray is advanced in a direction parallel to the optical axis using the prior art (without requiring inventive action). In order to be able to illuminate such a system, a transmission mask must be applied, and if a reflective mask is applied, a beam splitter or translucent mirror must be placed on the optical path. In an advantageous embodiment, the aperture group objective has two mirrors, the first of which is preferably a convex mirror and the second of which is a concave mirror. 25 1308644 The image is located exactly in the field group. A particularly advantageous way of the invention is to position the mirror between the mirror and the aperture group. a particularly advantageous way of placing the aperture in the first mirror of the aperture group objective (the domain is the seventh mirror) and the second mirror of the aperture group objective (ie the eighth mirror) between. Through this method, the aperture can be installed in the hole #光_ mode, because there is a foot (4) installation space available at this time. Another way to do this is to set the aperture in the field group objective near a mirror or on a mirror. Other embodiments of the objective lens (especially the lithographic projection objective lens) of the present invention are described in the appended claims and their associated drawings. • , , , , The objective lens described in this description is particularly suitable as a projection objective in a lithographic projection exposure apparatus. In a lithographic projection exposure apparatus, an illumination system illuminates a mask (raster) with a pattern that is then imaged by a projection objective onto a sheet of photosensitive substrate. Such a lithographic projection exposure apparatus has been described in detail in the prior art. For example, US 5212588, US Pat. No. 5,003, 567, US Pat. No. 6, 266, 266, and US Pat. No. 6,195,201, the disclosure of the lithographic projection exposure apparatus for ultra-ultraviolet (EUV) lithography, US A description of a lithographic projection exposure apparatus for wavelengths of $193 nm is provided in 6512641 and EP 1069448. 26 1308644 The illumination system used in the lithographic projection exposure apparatus is preferably a double-sided illumination system, in particular the illumination system using the field facet of the field facet mirror to have a field that is to be redundant on the grating surface, ie Said that if the field to be illuminated on the field face is an annular field, the facet is circular. It is not necessary to use a mirror capable of forming a field shape in such a system. The fabrication of microstructured semiconductor components has to go through many complicated steps. One of the most important steps is to expose a photosensitive substrate (wafer), such as a ruthenium substrate coated with a photosensitive anti-money agent. When manufacturing so-called coatings or coatings, the projection objective will image the corresponding grating onto the wafer. The objective lens (especially the projection objective lens) proposed by the present invention has the advantages described below, and the objective lens of the present invention may have one of the advantages or a plurality of advantages at the same time. The advantage of a reflective projection objective is that its image side numerical aperture is large. The projection objective can have a large image side numerical aperture while at the same time controlling the angle of incidence of the light impinging on the retroreflective elements of the projection objective to a relatively small extent. Therefore, the intensity variation of the light reflected by the retroreflective element can be reduced, and the intensity of the light reflected by the retroreflective element can be greatly changed, unlike a projection objective in which the light is incident on one or several reflective elements at a large incident angle. Reducing the change in light intensity can produce an effect that improves image quality. In addition, the several specific embodiments described in this specification have large image side numerical apertures and considerable working distances, thus providing sufficient mounting space (eg, for space for 27 1308644 wafer fabs) And it's also very easy to get close to the image plane. For example, the image side working distance can reach 15 mm or even larger. Further, in several embodiments, the projection objective is image side telecentric. In a particular embodiment, the mirror of the projection objective can have an opening for the beam to pass through, thereby reducing the pupil shadow to a very low level. There are several embodiments that are characterized by a high recognition rate. For example, a projection objective can recognize a graphic with a width of ^ 5 〇 nm. The projection objective lens of the present invention can not only achieve such a high recognition rate, but also has a high image: numerical aperture. Such an objective lens is particularly suitable for light of a shorter wavelength, such as light having a wavelength between lOnin and 3 〇mn. In the embodiment, degree. Projection objectives provide image quality with minimal aberrations. In several implementations, the projection objective has a wavefront aberration of 10 m or less. In the case of imaging distortion, it can be corrected to less than "b *ίτ «4^ rl-» * The projection objective of nm can have one or more pupil planes, and the shadow aperture is brought into the pupil plane. may.
這使將孔隙光圈或 本5兒明書描述的投影物鏡可適用於許多不 =可見光的波長範圍或紫外線(uv)的波長 1308644 適用於某一個波長範圍。 在投影物鏡的若干種特㈣實施方式中,光線照在光柵上的 角度可以降到很小,同時又具有相當大的像側數值孔隙。例 如,照明系統照射在光栅上的角度可以小於1〇度(或更小), 例如以與光學軸僅失7度的小角度射入,而投影物鏡的像侧 數值孔隙則是0.4或更大。This allows the aperture lens or the projection objective described in the book to be applicable to many wavelength ranges that are not = visible light or ultraviolet (uv) wavelengths 1308644 for a certain wavelength range. In several special embodiments of the projection objective, the angle of the light on the grating can be reduced to a small extent while having a relatively large image side numerical aperture. For example, the illumination system may be illuminated on the grating at an angle of less than 1 degree (or less), for example at a small angle of only 7 degrees from the optical axis, while the image side numerical aperture of the projection objective is 0.4 or greater. .
在若干種特定的實施方式中,投影物鏡具有可以降低照明系 統的複雜度的特性。例如在光程上投影物鏡的入射光瞳可以 位於物平面之前。換句話說就是從不同的場點發出的主光線 不淪是從主光線本來看或是從光學軸來看都是彼此分岔 的。因此投影物鏡的入射光瞳或照明系統的出射光瞳是可以 進入的’而無需在照明系統中另外設置一個將照明系統的出 射光瞳成像在&影減的人射光瞳所在位置上的光學組件 (例如望遠鏡系統)。 在^干種的實施方式中’投影物鏡在靠近光學軸與物平 =交會之處可以具有相當大的卫作m這個工作空間可供 安裝兀件之用’尤其是供安裝照明系統靠近光柵的元件之 4用。由於這個工作空間的存在,在若干種實施方式中可以將 投影物鏡在物理上最靠近物平面的反射料置在盘光學轴 的位置。在這一類的實施方式中,從光栅射向投 衫物鏡的弟-個反射鏡的光束可能會與從投影物鏡的第二 29 1308644 個反射鏡射向第三個反射鏡的光束相交 本發明的範圍亦包括以上所述所有特徵的組合,即 徵在前面的說財並未明確提及其與其他魏可能的= 方式’亦不影響這些可能的組合方式亦屬於本發明 σ 第la圖至第lp圖為在許多實施例中都有被用到的一般性定 義,以下將逐一說明其詳細内容。 第la圖顯示一個微影投影曝光設備(21〇〇)。微影投影曝光 設備(2100)具有一個光源(2110)、一個照明系統(212〇)、一個 投影物鏡(2101)、以及一個支承結構或工作面(213〇)。在第 la圖中還顯示一個卡氏標系統。光源(211〇)發出的光線進入 照明系統(2120)。照明系統(2120)會對來自光源(211 〇)的光線 施加影響,例如使光線均勻化,或是將光線的一道光束(2〗22) 轉向到一個設置在物平面(2103)内的掩膜(2140)上。投影物 鏡(2101)將從掩膜(2140)反射過來的光線成像在一個設置在 像平面(2102)内的基片表面(2150)上。光束(2152)位於投影物 鏡(2101)的像側。基片(2150)被放置在一個支承結構(2130) 上,其中支承結構(2130)可以使基片(2150)對投影物鏡(2101) 作相對移動,因此投影物鏡(2101)能夠將掩膜(2140)成像在 基片(2150)上的不同區域。 30 1308644 投影物鏡(2101)具有一個光學軸(2105)。如第1 a圖所示,投 影物鏡(2103)將掩膜(2140)未包括投影物鏡(21〇1)的光學軸 的部分成像在物平面(2102)内。在圖式中繪出的另外一種實 施方式也可以將位於投影物鏡的光學軸(HA)上的實物成像 在像平面(2102)内。光源(2110)發出的電磁輻射的工作波長 λ必須是微影投影曝光設備(2100)所應用的波長。在若干種 貫施方式中,光源(2100)是一種雷射光源,例如發出超紫外 線(EUV)輻射的雷射等離子體光源、發出波長248 nm的輻 射的KrF雷射、或是發出波長193 nm的輕射的ArF雷射。 另外一種可行的方式是使用非雷射光源,例如發出的光線在 電磁光譜的藍光或紫外線範圍(例如波長365 nm、280 nm、 或是227 nm)的發光二極體(LED)。 微景彡投影曝光設備的工作波長又位於電磁光譜的紫外線 (UV)或超紫外線(EUV)範圍。工作波長可以是$4〇〇 nm、$ 30〇nm、$200 nm、或最好是g100nm。例如本實施方式的 工作波長可以是193 nm、157 mn、或最好是13 nm(在超紫 外線的範圍)。 最好是能夠使用波長特別短的光線,原因是投影物鏡的辨識 率大致與所使用的工作波長成正比。如此同樣的投影物鏡只 要使用較短的工作波長就可以辨識出比使用較長的工作波 長時所能辨識的圖形更小的圖形。 31 1308644 照明系統(2120)具有能夠提供強度分佈十分均勻的准直光 線的光學元件。照明系統(2120)還具有能夠將光束(2122)轉 向到掩膜(2140)上的光學鏡組。在一種特別有利的實施方式 中’照明系統(2120)還具有能夠提供特定極化分佈的光束的 元件。 像平面(2103)到物平面(2102)的距離為L,這個距離又稱為 投影物鏡(2101)的構造長度BL。一般而言構造長度是由投 影物鏡(2101)的造型及投影曝光設備(21〇〇)所使用的工作波 長決定。在此處描述的實施方式中,構造長度大致在lm到 3 m之間,而且最好是在1 5m到2.5m之間。 若干種特定的實施方式的構造長度小於2 m、小於1.9 m、 小於1.8 m、小於1·7 m、小於1.6 m、或最好是小於1.5 m。 投影物鏡(2101)的投影係數相當於在物平面(2103)内的場的 尺寸與相應的在像平面(2102)内被成像的場的尺寸的比 值。在微影設備中被使用的投影物鏡通常都是縮小投影物 鏡,也就是說,成像的尺寸小於實物的尺寸。因此在若干種 實施方式中,投影物鏡(2101)可以在像平面(2102)内形成— 個尺寸被縮小的場,與在物平面内(2103)的尺寸相比,這個 場的尺寸被縮小的倍數為22倍、23倍、^4倍、-5倍、 ^6倍、27倍、28倍、29倍、或最好是g 1〇倍。當然 也可以設計出能夠將實物放大成像的投影物鏡,或是設計出 32 1308644 將實物以1比1的比例成像的投影物 鏡0 (U:顯像在像平 面 NA= n〇 * Sin0 max 〜Ί表^近基片(2150)的介質的折射指數。例如可能是 =II氣水、或疋真空等介質。㊀職代表投影物鏡⑺叫 的邊緣光線定義的角度。 才又办物鏡(2101)通常具有一個相當大的像侧數值孔隙 (NA)。例如在本發明的若干種實施方式中,投影物鏡(2ΐ〇ι) 的像侧數值孔隙(NA)大於0.4、尤其是大於〇 45、尤其是大 於0.5、尤其是大於〇.55、尤其是大於〇 6、尤其是大於〇 65、 尤其是大於0.7、尤其是大於0.75、尤其是大於〇 8、尤其是 大於0.85、尤其是大於〇.9。投影物鏡(21〇1)的辨識率通常 會隨著波長义及像側數值孔隙(NA)而改變。 投影物鏡的辨識率可以利用一個含有波長及像側數值孔隙 的關係式來估計. 33 1308644 R=k · λ/ ΝΑ 其中R代表投影物鏡能夠被辨識的最小尺寸,k代表一個被 稱為過程係數的無因次常數。過程係數k的大小受到不同因 素(例如抗蝕材料的極化特性)的影響,其大小通常介於0.4 至0.8之間,但是特殊應用的情況下,k也可能是小於0.4 或大於0.8。 在本發明的若干種實施方式中,投影物鏡(2101)具有相當高 的辨識率,也就是說,R的值相當的小’例如R小於或等於 150 nm、尤其是小於或等於130 nm、尤其是小於或等於100 nm、尤其是小於或等於75 nm、尤其是小於或等於50 nm、 小於或等於40 nm、尤其是小於或等於35 nm、尤其是小於 或等於32 nm、尤其是小於或等於30 nm、尤其是小於或等 於28 nm、尤其是小於或等於25 nm、尤其是小於或等於22 nm、尤其是小於或等於20 nm、尤其是小於或等於18 nm、 尤其是小於或等於17 nm、尤其是小於或等於160 nm、尤其 是小於或等於15 nm、尤其是小於或等於14 nm、尤其是小 於或等於13 nm、尤其是小於或等於12 nm、尤其是小於或 等於11 nm、或最好是小於或等於10 nm。 有多種不同的量化指標可以被用來描述投影物鏡(2101)產 生的圖像品質。 34 1308644 =如可以用測量或計算所產生的圖像與在理想的條件下以 高斯光學鏡組所能得到的圖像的偏差的方式來描述或量化 所產生的圖像品質。這種偏差通常被稱為像差。被用來描述 實際波剞與理想波前之間的偏差的一種量化指標是所謂的” 均方根”波前誤差,也就是所謂的RMS值WRMS。例如在” 光學系統手冊第2版第1冊,出版商:Michael Bass (McGraw Hill),Inc. 1995,第 35.3 頁)就有關於 wRMS 的定 義。通常物鏡的WRMS值愈小,實際波前與理想波前之間的 偏差就愈小,因此圖像的品質就愈好。 在本發明的若干種有利的實施方式中,投影物鏡(2101)在像 平面内的Wrms值很小。例如投影物鏡(21〇丨)的Wrms值約 小於或等於0.1 λ、尤其是小於0.07又、尤其是小於〇 〇6入、 尤其是小於〇·〇5又、尤其是小於0.045又、尤其是小於〇 〇4 λ、尤其是小於0.035又、尤其是小於0 〇3又、尤其是小於 0.025又、尤其是小於0.02 λ、尤其是小於〇 〇15又、或最好 是小於0.015 λ。 另外一種可以被用來描述圖像品質的量化指標是所謂的像 場曲率(或稱為像場彎曲)。像場曲率的定義是隨場點而變化 的軸向焦平面位置的峰谷值(peak-t〇-valley-Wert)。在發明的 若干種有利的實施方式中,投影物鏡(21〇1)在像平面(21〇2) 内的成像具有相當小的像場曲率。例如投影物鏡(2丨〇丨)的像 侧像場曲率小於20nm、尤其是小於15 nm、尤其是小於12 35 1308644 nm、尤其是小於10 nm、 尤其疋小於9 nm、尤其是小於8 nm、尤其疋小於7 nm、尤复a ,认^ ^ +甘3丨^ 尤其疋小於6mn、尤其是小於5nm、 尤其疋小於4 nm、尤复县丨从, ,、 ’、於3 nm、尤其是小於2 nm、或 最好疋小於1 nm。 另卜種可以被用來描述投影物鏡的光學性In several specific embodiments, the projection objective has characteristics that can reduce the complexity of the illumination system. For example, the entrance pupil of the projection objective on the optical path can be located before the object plane. In other words, the chief rays emitted from different field points are not separated from the main ray or from the optical axis. Thus the entrance pupil of the projection objective or the exit pupil of the illumination system is accessible' without the need to additionally provide an illumination in the illumination system that images the exit pupil of the illumination system at the location of the <RTIgt; Components (such as telescope systems). In the embodiment of the stem type, the projection objective lens can have a considerable working space near the optical axis and the level of the intersection = the working space can be used for the installation of the workpiece, especially for installing the illumination system close to the grating. 4 for components. Due to the presence of this workspace, in several embodiments the projection objective, which is physically closest to the object plane, can be placed at the optical axis of the disc. In this type of embodiment, the beam from the grating to the mirror of the lens objective may intersect the beam from the second 29 1308644 mirror of the projection objective to the third mirror. The scope also includes the combination of all the features described above, that is, the preceding claim that the financial statement does not explicitly mention it and other possible ways of 'may not affect these possible combinations also belong to the present invention σ first to first The lp diagram is a general definition that has been used in many embodiments, the details of which will be explained below. Figure la shows a lithographic projection exposure device (21〇〇). The lithographic projection exposure apparatus (2100) has a light source (2110), an illumination system (212 〇), a projection objective (2101), and a support structure or work surface (213 〇). A Cartesian system is also shown in Figure la. Light from the source (211〇) enters the illumination system (2120). The illumination system (2120) affects light from the source (211 〇), such as homogenizing the light, or diverting a beam of light (2) 22 into a mask disposed in the object plane (2103) (2140). The projection objective (2101) images the light reflected from the mask (2140) onto a surface (2150) of the substrate disposed in the image plane (2102). The beam (2152) is located on the image side of the projection objective (2101). The substrate (2150) is placed on a support structure (2130), wherein the support structure (2130) can move the substrate (2150) relative to the projection objective (2101), so that the projection objective (2101) can mask ( 2140) Imaging different regions on the substrate (2150). 30 1308644 Projection objective (2101) has an optical axis (2105). As shown in Fig. 1a, the projection objective (2103) images a portion of the mask (2140) that does not include the optical axis of the projection objective (21〇1) in the object plane (2102). Another embodiment depicted in the drawings can also image a solid object located on the optical axis (HA) of the projection objective in the image plane (2102). The operating wavelength λ of the electromagnetic radiation emitted by the source (2110) must be the wavelength applied by the lithographic projection exposure apparatus (2100). In several modes, the light source (2100) is a laser source such as a laser plasma source that emits ultra-ultraviolet (EUV) radiation, a KrF laser that emits radiation at a wavelength of 248 nm, or a wavelength of 193 nm. Light shot of the ArF laser. Another possible way is to use a non-laser source, such as a light-emitting diode (LED) that emits light in the blue or ultraviolet range of the electromagnetic spectrum (eg, wavelengths 365 nm, 280 nm, or 227 nm). The operating wavelength of the micro-zoom projection exposure device is again in the ultraviolet (UV) or ultra-ultraviolet (EUV) range of the electromagnetic spectrum. The operating wavelength can be $4 〇〇 nm, $30 〇 nm, $200 nm, or preferably g100 nm. For example, the operating wavelength of the present embodiment may be 193 nm, 157 mn, or preferably 13 nm (in the range of the super violet). It is preferable to be able to use light with a particularly short wavelength because the resolution of the projection objective is roughly proportional to the operating wavelength used. Such a same projection objective can identify a smaller pattern than a pattern that can be recognized using a longer working wavelength by using a shorter operating wavelength. 31 1308644 The illumination system (2120) has optical components that provide collimated light with a very uniform intensity distribution. The illumination system (2120) also has an optical lens set that is capable of redirecting the beam (2122) onto the mask (2140). In a particularly advantageous embodiment the illumination system (2120) also has an element capable of providing a beam of a particular polarization distribution. The distance from the plane (2103) to the object plane (2102) is L, which is also referred to as the construction length BL of the projection objective (2101). In general, the length of the structure is determined by the shape of the projection objective (2101) and the operating wavelength used by the projection exposure equipment (21〇〇). In the embodiments described herein, the construction length is generally between lm and 3 m, and preferably between 15 and 2.5 m. The construction length of several specific embodiments is less than 2 m, less than 1.9 m, less than 1.8 m, less than 1.7 m, less than 1.6 m, or preferably less than 1.5 m. The projection factor of the projection objective (2101) corresponds to the ratio of the size of the field within the object plane (2103) to the corresponding size of the field imaged within the image plane (2102). Projection objectives that are used in lithography equipment are typically reduced projection objects, that is, the size of the image is smaller than the size of the object. Thus, in several embodiments, the projection objective (2101) can form a field of reduced size within the image plane (2102), which is reduced in size compared to the size in the object plane (2103). The multiple is 22 times, 23 times, ^4 times, -5 times, ^6 times, 27 times, 28 times, 29 times, or preferably g 1 times. Of course, it is also possible to design a projection objective that can magnify the object, or to design a projection objective 0 that images the object in a ratio of 1 to 1 (U: image in the image plane NA = n〇* Sin0 max ~ Ί Table 2. The refractive index of the medium near the substrate (2150). For example, it may be medium such as =II gas water, or helium vacuum. The position represents the angle defined by the edge of the projection objective (7). The objective lens (2101) is usually Having a relatively large image side numerical aperture (NA). For example, in several embodiments of the invention, the image side numerical aperture (NA) of the projection objective (2 ΐ〇) is greater than 0.4, especially greater than 〇45, especially It is greater than 0.5, in particular greater than 55.55, in particular greater than 〇6, in particular greater than 〇65, in particular greater than 0.7, in particular greater than 0.75, in particular greater than 〇8, in particular greater than 0.85, in particular greater than 〇.9. The recognition rate of the projection objective (21〇1) usually changes with the wavelength and image side numerical aperture (NA). The recognition rate of the projection objective can be estimated by a relational expression containing the wavelength and the image side numerical aperture. 33 1308644 R=k · λ/ ΝΑ R represents the minimum size at which the projection objective can be recognized, and k represents a dimensionless constant called the process coefficient. The magnitude of the process coefficient k is affected by different factors (such as the polarization characteristics of the resist material), and its size is usually Between 0.4 and 0.8, but in the case of special applications, k may also be less than 0.4 or greater than 0.8. In several embodiments of the invention, the projection objective (2101) has a relatively high recognition rate, that is to say , the value of R is rather small 'for example R is less than or equal to 150 nm, in particular less than or equal to 130 nm, in particular less than or equal to 100 nm, in particular less than or equal to 75 nm, in particular less than or equal to 50 nm, less than or Equal to 40 nm, in particular less than or equal to 35 nm, in particular less than or equal to 32 nm, in particular less than or equal to 30 nm, in particular less than or equal to 28 nm, in particular less than or equal to 25 nm, in particular less than or equal to 22 The nm, in particular less than or equal to 20 nm, in particular less than or equal to 18 nm, in particular less than or equal to 17 nm, in particular less than or equal to 160 nm, in particular less than or equal to 15 nm, in particular small Or equal to 14 nm, in particular less than or equal to 13 nm, in particular less than or equal to 12 nm, in particular less than or equal to 11 nm, or preferably less than or equal to 10 nm. A variety of different quantitative indicators can be used to describe Image quality produced by the projection objective (2101) 34 1308644 = Described or quantified as measured or calculated by deviation of the image produced by the Gaussian optics under ideal conditions The resulting image quality. This deviation is often referred to as aberration. A quantitative indicator used to describe the deviation between the actual wavefront and the ideal wavefront is the so-called "root mean square" wavefront error, also known as the RMS value WRMS. For example, in the Optical Systems Handbook, 2nd Edition, Volume 1, Publisher: Michael Bass (McGraw Hill), Inc. 1995, page 35.3, there is a definition of wRMS. Generally, the smaller the WRMS value of the objective lens, the actual wavefront and The smaller the deviation between the ideal wavefronts, the better the quality of the image. In several advantageous embodiments of the invention, the projection objective (2101) has a small Wrms value in the image plane. For example, a projection objective The Wrms value of (21 〇丨) is less than or equal to 0.1 λ, in particular less than 0.07, in particular less than 〇〇6, especially less than 〇·〇5, especially less than 0.045, in particular less than 〇〇4 λ, in particular less than 0.035, in particular less than 0 〇3, in particular less than 0.025, in particular less than 0.02 λ, in particular less than 〇〇15 again, or preferably less than 0.015 λ. Alternatively can be used The quantified indicator describing image quality is the so-called curvature of field (or called field curvature). The definition of curvature of field is the peak-to-valley of the position of the axial focal plane that varies with the field point (peak-t〇-valley) -Wert). Several advantageous realities in the invention In the mode, the imaging of the projection objective (21〇1) in the image plane (21〇2) has a relatively small field curvature. For example, the image side curvature of the projection objective (2丨〇丨) is less than 20 nm, especially less than 15 nm, especially less than 12 35 1308644 nm, especially less than 10 nm, especially 疋 less than 9 nm, especially less than 8 nm, especially 疋 less than 7 nm, especially complex a, recognized ^ ^ + 甘 3 丨 ^ especially 疋 less than 6mn, especially less than 5nm, especially 疋 less than 4 nm, Yufu County 丨, , , ', at 3 nm, especially less than 2 nm, or preferably 疋 less than 1 nm. Another species can be used to describe the projection Optical properties of the objective lens
==失真(或稱為投影偏差)。圖像失真的定義是像 〜、理想的像點位置之間隨場點而變化的偏移量 的最大絕對值。在發明的若干種有利的實施方式中,投影物 鏡的圖像失A相當的小,例如小於或等於1()邮、尤立是小 於或等於9譲、尤其是小於或等於8nm、尤其是小於或等 於7 n日m、尤其是小於或等於6nm、尤其是小於或等於5腿、 尤其是小於或等於4 nm、尤其是小於或等於3 nm、尤其是 小於或等於2 nm、或最好是小於或等於1 nm。 如果使用的物鏡是一種反光式光學系統,則投影物鏡(21〇1) 具有許多反射鏡’這些反射鏡的設置方式是能夠反射從掩膜 (2140)通往基片(2150)的光線,以便將掩膜(2140)的圖像成像 在基片(2150)的表面上。下面描述的投影物鏡是一種具有特 殊構造方式的投影物鏡。一般而言反射鏡的數量、尺寸、以 及結構是由希望具有的投影物鏡(2101)的光學特性及投影 曝光設備(2100)的物理邊界條件所決定。 投影物鏡(2101)具有的反射鏡數量是可以改變的。通常反射 鏡的數量是隨者吾人對物鏡的光學特性的要求而改變。 36 1308644 在本發明的若干種特定的貫施方式中,投影物鏡(21 〇 1)至少 具有4個反射鏡、至少具有5個反射鏡、至少具有6個反射 鏡、至少具有7個反射鏡、至少具有8個反射鏡、至少具有 9個反射鏡、至少具有1〇個反射鏡、至少具有u個反射鏡、 或最好是至少具有12個反射鏡。在本發明的特別有利的實 施方式中,物鏡具有的反射鏡都是設置在物平面及條平面之 間’而且投影物鏡(2101)具有的反射鏡數量是偶數的,例如 4個反射鏡、6個反射鏡、8個反射鏡、或是1〇個反射鏡。 投影物鏡(2101)通常具有一個或數個具有正光焦度的反射 鏡。也就是說,反射鏡的反射段(也就是反射鏡的有用範圍) 具有一個凹面,因此這樣的反射鏡被稱為凹面反射鏡。投影 物鏡(2101)可以具有2個、3個、4個、5個、6個、或是更 多個凹面反射鏡。投影物鏡(2101)也可以有一個或數個具有 負光焦度的反射鏡,也就是說有一個或數個反射鏡的反射段 (也就是反射鏡的有用範圍)具有一個凸面,因此這樣的反射 鏡被稱為凸面反射鏡。在本發明的若干實施方式中,投影物 鏡(2101)可以具有2個、3個、4個、5個、6個、或是更多 個凸面反射鏡。 在本發明的若干種特定的實施方式中,投影物鏡(2101)内的 反射鏡的設置方式是能夠使從物平面(2103)發出的光線形 成一個或數個中間像。 1308644 本發明的實施方式具有一個或數個中間像及2個或數個光 瞳平面。本發明的一種有利的實施方式是在這些光瞳平面中 至少有一個光瞳平面是設置在物理上很靠近一個孔隙光圈 的位置。 通常反射鏡的構造是要能夠將投影物鏡工作波長為λ且以 某一個角度或是某一個角度範圍照射在反射鏡表面的光線 大部分反射回去。例如能夠將50%以上、尤其是60%以上、 尤其是70%以上、尤其是80%以上、或最好是90%以上照 射在反射鏡表面工作波長為λ的光線反射回去。本發明的若 干種實施方式中的反射鏡都具有一個多層層堆,這個層堆的 每一個層都是由不同的材料構成。這個層堆的構造方式是能 夠將照射在反射鏡表面的波長為λ的光線大部分反射回 去。這個層堆的每一層都具有約等於;1/4的光學厚度。這個 多層層堆的層數可以是大於或等於20、尤其是大於或等於 30、尤其是大於或等於40、或最好是大於或等於50。 通常是從適於微影設備的工作波長λ的材料中挑選製作多 層層堆的材料。例如由钥及梦或是由钥及鈹構成的交變的多 層層堆構成多層系統,以便使反射鏡能夠反射波長範圍在 10 nm至3 0 nm之間的光線(例如波長λ等於13 nm或11 nm 的光線)。 本發明的若干種特定的實施方式中的反射鏡是由石英玻璃 製作而成,這些反射鏡都只帶有一個鋁鍍層。在這個唯一的 38 1308644 域層上還覆蓋若干個介電層,這些介電層含有啦2、 LaF2、或是Al2〇3等適於波長約193 〇111之光線的材料。 通常被反射鏡反射回去的光線關是光線照射在反射鏡表 面的入射角的-個函數。由於成像光線會穿過反光投影物鏡 沿著許多不同的路徑傳播’因此光線在每—個反射鏡上的入 射角都疋可以邊化的。如第lc圖所示的反射鏡(23〇〇)的一 個子午線截面,也就是反射鏡(2300)的子午面。子午面是投 影物鏡的一個具有光學軸的面。反射鏡(2300)具有一個下凹 的反射鏡表面(2 3 01)。沿著不同路徑照射在反射鏡表面(2 3 〇 i) 上的成像光線包括如光線(2310,2320,2330)顯示的路徑。 光線(2310,2320,2330)各自照射在反射鏡表面(23〇1)上的 某一個部分。在反射鏡表面(2301)在這個範圍上的表面法線 具有不同的方向。在反射鏡表面(2301)在這個範圍上相對於 光線(2310,2320,2330)的表面法線方向是以直線(2311, 232卜 2331)表示。光線(2310,2320,2330)各自以 θ231〇、 © 2320、0 2330的角度照射在反射鏡表面上。 成像光線在投影物鏡(2100)内每一個反射鏡上的入射角度 都可以由許多不同的路徑來表示。其中一個可能的表示方式 是照射在投影物鏡(2101)的子午線截面内每一個反射鏡上 的光線的最大角度Θ max。這個最大角度㊀max通常會隨著投 影物鏡(2101)的不同反射鏡而變化。在本發明的若干種實施 方式中,投影物鏡的所有反射鏡的最大角度emax的最大值 39 1308644 Θ maximax}小於或4於乃度、尤其是小於或等於%度、尤其 疋小於或等於65度、尤其是小於或等於6〇度、尤其是小於 或等於55度、尤其是小於或等於%度、或最好是小於或等 =45度。在本發明的若干種實施方式中,最大角度㊀職的 最大值Θ max(max}相當的小,例如㊀max(max)可以是小於或等於 4〇度、尤其是小於或等於35度、尤其是小於或等於3〇度、 尤其是小於或等於25度、尤其是小於或等於2〇度、尤其是 小於或等於15度、尤其是小於或等於13度、或最好是小於 或等於10度。 另外-種描述特徵的可能方式是以在物平面内要照亮的場 的中央場點的主光束 在子午線截面内每-個反射鏡上的人射角‘來描述。在本 5兄明書的開頭部分 也有關於主光線角度eeR的說明。同樣的也可以將投影物鏡 内的一個最大角度 ㊀⑶加㈣定義為中央場點的最大主光線角度。這個最大角度 ㊀CR(max)可以是相當的 小。例如投影物鏡内的最大角度ecR㈣可以是小於35度、 尤其是小於30度、 尤其是小於25度、尤其是小於i5度、尤其是小於13度、 尤其是小於10度、尤 其是小於8度、或最好是小於5度。 40 1308644 此外’也可以用投影物鏡(2101)的子午線截面内的入射角度 的一個變化範圍來描 述投影物鏡(2101)内每一個反射鏡的特徵。入射角度㊀在每 一個反射鏡上可以 變化的範圍稱為ΑΘ。對每一個反射鏡而言,^㊀的定義都 疋角度㊀(max)及㊀(min) 之間的差,其中Θ扣⑷代表入射的成像光線在投影物鏡(2 的子午線截面内的一 個反射鏡表面上的最小入射角,㊀加叫代表入射的成像光線 在投影物鏡(2101)的子 午線截面内的一個反射鏡表面上的最大入射角。ΑΘ通常會 隨著投影物鏡(2101) 的不同反射鏡而變化。投影物鏡内的若干反射鏡的ΑΘ可以 是相當的小,例如 △ Θ小於1〇度、尤其是小於8度、尤其是小於5度、尤其 是小於3度、或最好 是小於2度。另外一種可能的情況是,投影物鏡内的若干反 射鏡的△Θ可以是相 當的大,例如△ θ大於等於20度、尤其是大於等於25度、 尤其是大於等於30 度、尤其是大於等於35度、或最好是大於等於40度。在本 發明的若干種實施方 式中,ΛΘ的最大值八㊀max可以是相當的小,也就是說入 射角度在投影物鏡(2101) 41 1308644 以是相當的 中所有反射鏡上的變化範圍Δθ的最大值可 小,例如△ emax小於25 於 度、尤其是小於12度、尤其是小於1〇度尤其日 度、尤其是小於7度、 ^疋 尤其是小於6度、尤其是小於5度、或最好是小於4度。 一般而言反光投影物鏡的構造要考慮反光元件對光程造成== Distortion (or called projection deviation). Image distortion is defined as the absolute maximum value of the offset between ~ and the ideal pixel position as a function of the field point. In several advantageous embodiments of the invention, the image loss A of the projection objective is relatively small, for example less than or equal to 1 (), yup is less than or equal to 9 譲, in particular less than or equal to 8 nm, in particular less than Or equal to 7 n days m, in particular less than or equal to 6 nm, in particular less than or equal to 5 legs, in particular less than or equal to 4 nm, in particular less than or equal to 3 nm, in particular less than or equal to 2 nm, or preferably Less than or equal to 1 nm. If the objective used is a reflective optical system, the projection objective (21〇1) has a number of mirrors. These mirrors are arranged to reflect light from the mask (2140) to the substrate (2150) so that An image of the mask (2140) is imaged onto the surface of the substrate (2150). The projection objective described below is a projection objective having a special configuration. In general, the number, size, and configuration of the mirrors are determined by the optical characteristics of the desired projection objective (2101) and the physical boundary conditions of the projection exposure apparatus (2100). The number of mirrors that the projection objective (2101) has can be varied. Usually the number of mirrors varies with the optical characteristics of the objective lens. 36 1308644 In several specific embodiments of the invention, the projection objective (21 〇 1) has at least 4 mirrors, at least 5 mirrors, at least 6 mirrors, at least 7 mirrors, There are at least 8 mirrors, at least 9 mirrors, at least 1 mirror, at least u mirrors, or preferably at least 12 mirrors. In a particularly advantageous embodiment of the invention, the objective lens has mirrors which are arranged between the object plane and the strip plane 'and the projection objective (2101) has an even number of mirrors, for example 4 mirrors, 6 Mirrors, 8 mirrors, or 1 mirror. The projection objective (2101) typically has one or several mirrors with positive power. That is to say, the reflective segment of the mirror (i.e., the useful range of the mirror) has a concave surface, so such a mirror is called a concave mirror. The projection objective (2101) can have two, three, four, five, six, or more concave mirrors. The projection objective (2101) may also have one or several mirrors with negative power, that is to say, the reflection section of one or several mirrors (that is, the useful range of the mirror) has a convex surface, thus such a The mirror is called a convex mirror. In some embodiments of the invention, the projection objective (2101) can have 2, 3, 4, 5, 6, or more convex mirrors. In several particular embodiments of the invention, the mirrors within the projection objective (2101) are arranged in such a way that light rays emerging from the object plane (2103) are formed into one or several intermediate images. 1308644 Embodiments of the invention have one or several intermediate images and two or more pupil planes. An advantageous embodiment of the invention is that at least one of the pupil planes in these pupil planes is disposed at a location physically close to an aperture aperture. Typically, the mirror is constructed such that the projection objective operates at a wavelength of λ and most of the light that illuminates the surface of the mirror at an angle or an angular extent is reflected back. For example, more than 50%, especially 60% or more, especially 70% or more, especially 80% or more, or preferably 90% or more, of the light having a working wavelength of λ on the mirror surface can be reflected back. The mirrors of the various embodiments of the present invention each have a multi-layer stack, each of which is constructed of a different material. This layer stack is constructed in such a way that most of the light of the wavelength λ that illuminates the surface of the mirror is reflected back. Each layer of this layer stack has an optical thickness of approximately equal to 1/4. The number of layers of this multilayer stack may be greater than or equal to 20, especially greater than or equal to 30, especially greater than or equal to 40, or preferably greater than or equal to 50. The material from which the multi-layer stack is made is typically selected from materials suitable for the operating wavelength λ of the lithographic apparatus. For example, an alternating multi-layer stack consisting of a key and a dream or a key and a cymbal constitutes a multi-layer system to enable the mirror to reflect light having a wavelength in the range of 10 nm to 30 nm (eg, the wavelength λ is equal to 13 nm or 11 nm light). The mirrors in several specific embodiments of the present invention are fabricated from quartz glass, each having only one aluminum coating. The only 38 1308644 domain layer is also covered with a plurality of dielectric layers containing materials such as 2, LaF2, or Al2〇3 suitable for light having a wavelength of about 193 〇111. The light that is normally reflected back by the mirror is a function of the angle of incidence of the light on the surface of the mirror. Since the imaging light travels through many different paths through the reflective projection objective, the angle of incidence of the light on each of the mirrors can be marginalized. A meridian section of the mirror (23〇〇) shown in Figure lc, which is the meridian plane of the mirror (2300). The meridian plane is a face of the projection objective with an optical axis. The mirror (2300) has a concave mirror surface (23 01). The imaged light that illuminates the mirror surface (2 3 〇 i) along different paths includes paths as shown by light (2310, 2320, 2330). Light rays (2310, 2320, 2330) each illuminate a portion of the mirror surface (23〇1). The surface normals over this range of mirror surface (2301) have different orientations. The surface normal direction of the mirror surface (2301) relative to the light rays (2310, 2320, 2330) in this range is represented by a straight line (2311, 232b 2331). The rays (2310, 2320, 2330) are each illuminated on the surface of the mirror at an angle of θ231〇, © 2320, 0 2330. The angle of incidence of the imaging ray on each of the mirrors in the projection objective (2100) can be represented by a number of different paths. One possible representation is the maximum angle Θ max of the light illuminating each of the mirrors in the meridian section of the projection objective (2101). This maximum angle -max typically varies with the different mirrors of the projection objective (2101). In several embodiments of the invention, the maximum value 39 1308644 Θ maximax} of the maximum angle emax of all mirrors of the projection objective is less than or equal to 4 degrees, in particular less than or equal to % degrees, in particular less than or equal to 65 degrees. In particular, it is less than or equal to 6 degrees, in particular less than or equal to 55 degrees, in particular less than or equal to % degrees, or preferably less than or equal to 45 degrees. In several embodiments of the present invention, the maximum value Θ max(max) of the maximum angle job is relatively small, for example, a max(max) may be less than or equal to 4 degrees, especially less than or equal to 35 degrees, especially Less than or equal to 3 degrees, in particular less than or equal to 25 degrees, in particular less than or equal to 2 degrees, in particular less than or equal to 15 degrees, in particular less than or equal to 13 degrees, or preferably less than or equal to 10 degrees. Another possible way of describing the features is to describe the main beam of the central field of the field to be illuminated in the object plane, the angle of the person on each mirror in the meridian section. The beginning part also has a description of the chief ray angle eeR. Similarly, a maximum angle of one (3) plus (four) in the projection objective can be defined as the maximum chief ray angle of the central field point. This maximum angle - CR (max) can be quite small. For example, the maximum angle ecR (four) in the projection objective can be less than 35 degrees, in particular less than 30 degrees, in particular less than 25 degrees, in particular less than i5 degrees, in particular less than 13 degrees, in particular less than 10 degrees, in particular small 8 degrees, or preferably less than 5 degrees. 40 1308644 In addition, a variation of the angle of incidence in the meridian section of the projection objective (2101) can also be used to describe the characteristics of each mirror in the projection objective (2101). The range in which the angle can vary on each mirror is called ΑΘ. For each mirror, the definition of 一 is the difference between angles (max) and one (min), where the buckle (4) represents The incident imaging ray is at the minimum incident angle of the projection objective (a mirror surface in the meridian section of 2, and the addition represents the maximum of the incident imaging ray on a mirror surface within the meridian section of the projection objective (2101) The angle of incidence. ΑΘ usually varies with the different mirrors of the projection objective (2101). The ΑΘ of several mirrors in the projection objective can be quite small, for example △ Θ less than 1 、, especially less than 8 degrees, especially It is less than 5 degrees, especially less than 3 degrees, or preferably less than 2 degrees. Another possibility is that the ΔΘ of several mirrors in the projection objective can be quite large, such as Δ θ It is equal to 20 degrees, in particular greater than or equal to 25 degrees, in particular greater than or equal to 30 degrees, in particular greater than or equal to 35 degrees, or preferably greater than or equal to 40 degrees. In several embodiments of the invention, the maximum value of ΛΘ is eight A max can be quite small, that is to say the angle of incidence can be small at the maximum of the range of variation Δθ on all mirrors in the projection objective (2101) 41 1308644, for example, Δ emax is less than 25 degrees, in particular less than 12 degrees, in particular less than 1 degree, especially a day, in particular less than 7 degrees, in particular less than 6 degrees, in particular less than 5 degrees, or preferably less than 4 degrees. In general, the construction of a reflective projection objective is Consider the reflective component causing the optical path
的遮蔽’這和在雙極㈣統巾使用的透光元件騎2反 的。 反射鏡的構造和設置要讓穿過投影物鏡在光程内傳播的光 線能夠被引導通過一個反射鏡的開口(例如_個穿孔),或是 被引‘從個反射鏡的角洛通過。因此投影物鏡(2101)内的 反射鏡可以分成以下兩類: --帶有一個供光束通過用的開口的反射鏡 --沒有開口的反射鏡 例如第Id圖中的反射鏡(2600)就是帶有一個供光束通過用 的開口(2610)的反射鏡。反射鏡(2600)在投影物鏡(2101)内的 設置方式可以讓光學轴(2105)穿過開口(2610)。反射鏡(2600) 的形狀為圓形,直徑為D。直徑D的大小通常是由投影物 鏡(2101)的設計決定。在本發明的若干種實施方式中,直徑 D小於或等於15〇〇 mm、尤其是小於或等於1400 mm、尤其 42 1308644 是小於或等於1300 mm、尤其是小於或等於1200 mm、尤其 是小於或等於1100mm、尤其是小於或等於1000 mm、尤其 是小於或等於900 mm、尤其是小於或等於800 mm、尤其是 小於或等於700 mm、尤其是小於或等於600 mm、尤其是小 於或等於500 mm、尤其是小於或等於400 mm、尤其是小於 或等於300 mm、尤其是小於或等於200 mm、或最好是小於 或等於100 mm。 一般而言,投影物鏡(2101)内帶有開口的反射鏡的形狀可以 是圓形的,也可以是非圓形的。 非圓形的反射鏡的最大尺寸可以是小於1500 mm、尤其是小 於1400 mm、尤其是小於1300 mm、尤其是小於12〇〇 mm、 尤其是小於1100 mm、尤其是小於1000 mm、尤其是小於 900 mm、尤其是小於800 mm、尤其是小於700 mm、尤其 是小於600 mm、尤其是小於500 mm、尤其是小於4〇〇 mm、 尤其是小於300 mm、尤其是小於200 mm、或最好是小於 100 mm。 例如開口(2610)是一個直徑為D〇的圓形開口。直徑為d〇的 大小是由投影物鏡(2101)的設計決定。開口(261〇)的尺寸要 能夠讓從物平面(2103)到像平面(2102)的光線通過。 也可以將開口設計成一個非圓形的開口,例如設計成一個多 43 1308644 邊形開口、正方形開口、四方形開口、六邊形開口、或是八 邊形開口。也可以將開口設計成一個非圓形的彎曲形開口, 例如設計成一個橢圓形開口或是不規則彎曲的開口。 #圓形的開口的最大直徑可以是小於或等於0.75D、尤其是 小於或等於0.5D、尤其是小於或等於〇,4D、尤其是小於或 等於0.3D、尤其是小於或等於0.2D、尤其是小於或等於 0.1D、或最好是小於或等於〇.〇5D 〇在本發明的若干種實施 • 方式中’反射鏡帶有的非圓形開口的最大尺寸可以是小於或 等於50 mm、尤其是小於或等於45 mm、尤其是小於或等於 40 mm、尤其是小於或等於35 mm、尤其是小於或等於30 mm、尤其是小於或等於25 mm、尤其是小於或等於2〇 mm、 尤其是小於或等於15 mm、尤其是小於或等於10 min、或最 好是小於或等於5 mm。 如果投影物鏡(2101)具有一個以上帶有開口的反射鏡,不同 ® 反射鏡帶有的開口可以是相同形狀的開口,也可以是不同形 狀的開口。此外,在不同的反射鏡上供光線通過的開口可以 具有相同的尺寸,也可以具有不同的尺寸。 第le圖中的反射鏡(2660)是一個沒有開口的反射鏡。反射 鏡(2660)具有環形段的形狀。反射鏡(2660)的形狀相當於一 個假想的直徑為D的反射鏡(2670)的一個環形段。反射鏡 (2660)的最大尺寸(在X方向上的尺寸)為Μ X。在本發明的 44 1308644 若干種實施方式中,Mx可以是小於或等於i5〇〇mm、尤其 是小於或等於1400 mm、尤其是小於或等於i3〇〇mm、尤其 是小於或等於1200 mm、尤其是小於或等於11〇〇 mm、尤其 是小於或等於1000 mm、尤其是小於或等於900 mm、尤其 是小於或等於800 mm、尤其是小於或等於700 mm、尤其是 小於或等於600 mm、尤其是小於或等於5〇〇 mm、尤其是小 於或等於400 mm、尤其是小於或等於3〇〇 mm、 尤其是小於或等於200 mm、或最好是小於或等於1〇〇 mm。 反射鏡(2660)以子午線(2675)為中心呈現對稱關係。反射鏡 (2660)在沿著子午線(2675)方向上的尺寸為My。My可以是 大於Μ x,也可以是小於μ x。在本發明的若干種實施方式 中’ My大於或等於〇.imx、尤其是大於或等於〇 2 μ x、 尤其是大於或等於0.3 Μ x、尤其是大於或等於〇 4 μ x、尤 其是大於或等於0.5The shadowing 'this is the opposite of the light-transmitting element used in the bipolar (four) towel. The mirrors are constructed and arranged such that the light propagating through the projection objective in the optical path can be directed through an opening of a mirror (e.g., a perforation) or can be referred to as 'passing through the corners of the mirror. Therefore, the mirrors in the projection objective (2101) can be divided into the following two categories: - a mirror with an opening for the light beam to pass through - a mirror without an opening, such as the mirror (2600) in the Id diagram. There is a mirror for the beam to pass through the opening (2610). The mirror (2600) is placed within the projection objective (2101) such that the optical axis (2105) passes through the opening (2610). The mirror (2600) is circular in shape and has a diameter D. The size of the diameter D is usually determined by the design of the projection objective (2101). In several embodiments of the invention, the diameter D is less than or equal to 15 mm, in particular less than or equal to 1400 mm, in particular 42 1308644 is less than or equal to 1300 mm, in particular less than or equal to 1200 mm, in particular less than or 1100 mm, in particular less than or equal to 1000 mm, in particular less than or equal to 900 mm, in particular less than or equal to 800 mm, in particular less than or equal to 700 mm, in particular less than or equal to 600 mm, in particular less than or equal to 500 mm In particular, it is less than or equal to 400 mm, in particular less than or equal to 300 mm, in particular less than or equal to 200 mm, or preferably less than or equal to 100 mm. In general, the shape of the mirror with an opening in the projection objective (2101) may be circular or non-circular. The maximum dimension of the non-circular mirrors can be less than 1500 mm, in particular less than 1400 mm, in particular less than 1300 mm, in particular less than 12 mm, in particular less than 1100 mm, in particular less than 1000 mm, in particular less than 900 mm, in particular less than 800 mm, in particular less than 700 mm, in particular less than 600 mm, in particular less than 500 mm, in particular less than 4 mm, in particular less than 300 mm, in particular less than 200 mm, or preferably It is less than 100 mm. For example, the opening (2610) is a circular opening having a diameter D〇. The size of the diameter d〇 is determined by the design of the projection objective (2101). The opening (261〇) is sized to allow light from the object plane (2103) to the image plane (2102) to pass. It is also possible to design the opening as a non-circular opening, for example as a multi-shaped 43 1308644 edge opening, a square opening, a square opening, a hexagonal opening, or an octagonal opening. It is also possible to design the opening as a non-circular curved opening, for example as an elliptical opening or an irregularly curved opening. The maximum diameter of the circular opening may be less than or equal to 0.75D, in particular less than or equal to 0.5D, in particular less than or equal to 〇, 4D, in particular less than or equal to 0.3D, in particular less than or equal to 0.2D, in particular Is less than or equal to 0.1D, or preferably less than or equal to 〇.〇5D 〇 In several implementations of the invention, the maximum size of the non-circular opening carried by the mirror may be less than or equal to 50 mm, In particular, it is less than or equal to 45 mm, in particular less than or equal to 40 mm, in particular less than or equal to 35 mm, in particular less than or equal to 30 mm, in particular less than or equal to 25 mm, in particular less than or equal to 2 mm, in particular It is less than or equal to 15 mm, especially less than or equal to 10 min, or preferably less than or equal to 5 mm. If the projection objective (2101) has more than one mirror with an opening, the openings of the different ® mirrors may be openings of the same shape or openings of different shapes. In addition, the openings through which the light can pass through the different mirrors may have the same size or different sizes. The mirror (2660) in the first diagram is a mirror without an opening. The mirror (2660) has the shape of a ring segment. The shape of the mirror (2660) corresponds to an annular segment of an imaginary mirror (2670) of diameter D. The maximum size (size in the X direction) of the mirror (2660) is Μ X. In several embodiments of the invention 44 1308644, Mx may be less than or equal to i5〇〇mm, in particular less than or equal to 1400 mm, in particular less than or equal to i3〇〇mm, in particular less than or equal to 1200 mm, in particular Is less than or equal to 11〇〇mm, in particular less than or equal to 1000 mm, in particular less than or equal to 900 mm, in particular less than or equal to 800 mm, in particular less than or equal to 700 mm, in particular less than or equal to 600 mm, in particular It is less than or equal to 5 〇〇 mm, in particular less than or equal to 400 mm, in particular less than or equal to 3 〇〇 mm, in particular less than or equal to 200 mm, or preferably less than or equal to 1 〇〇 mm. The mirror (2660) exhibits a symmetrical relationship centered on the meridian (2675). The size of the mirror (2660) in the direction along the meridian (2675) is My. My can be greater than Μ x or less than μ x. In several embodiments of the invention, 'My is greater than or equal to 〇.imx, especially greater than or equal to 〇2 μx, especially greater than or equal to 0.3 Μ x, especially greater than or equal to 〇4 μ x, especially greater than Or equal to 0.5
Mx、尤其是大於或等於〇.6 Mx、尤其是大於或等於〇.7 Μ • X、尤其疋大於或等於0.8ΜΧ、或最好是大於或等於〇.9Μχ。 另外一種可能的情況是在本發明的若干種特定的實施方式 中,My大於或等於Μ μ χ、尤其是大於或等於μ χ、 或是在2 Μ χ至1〇 Μ χ之間。M y可以是小於或等於1000 mm、尤其是小於或等於900 mm、尤其是小於或等於800 mm、尤其是小於或等於700 mm、尤其是小於或等於600 mm、尤其是小於或等於500 mm、尤其是小於或等於400 mm、尤其是小於或等於300 mm、尤其是小於或等於200 45 1308644 mm、或最好是小於或等於1 〇〇 mm。 沒有開口的反射鏡可以設置在被光學軸(2105)穿過的位 置,也可以設置在未被光學轴(2105)的位置。 一般而言在設計投影物鏡(2100)時可以將投影物鏡(2100)設 計成具有不同形狀及不同尺寸的反射鏡。在本發明的若干種 實施方式中’投影物鏡的每一個反射鏡的最大尺寸可以是小 於或等於1500 mm、尤其是小於或等於14〇〇 mm、尤其是小 於或等於1300 mm、尤其是小於或等於uoomm、尤其是小 於或等於1100mm、尤其是小於或等於、尤其是小 於或等於900 mm、尤其是小於或等於8〇〇mm、或最好是小 於或等於700 mm。 在本發明的若干種特定的實施方式中,投影物鏡(21〇1)具有 2個、3個、4個、5個、6個、或是更多個沒有開口的反射 鏡,而且這些反射鏡的設置方式能夠將實物成像,例如將實 物成像於-個像平面(2關或成像於—個中間像平面。如果 投影物鏡(21〇1)具有-個或一個以上的反射鏡組,則稱這些 反射鏡組為部分物鏡或部分系統。 一 投影物鏡(2101)可以具 鏡可以具有1個部分物 或是更多個部分物鏡。 在本發明的若干特定的實施方式中, 有一個以上的部分物鏡。例如投影物 鏡、3個部分物鏡、4個部分物鏡、 46 1308644 第If圖的部分物鏡(2400)就是部分物鏡的一個例子。部分物 鏡(2400)具有反射鏡(2410,2420,2430,2440),反射鏡 (2410,2420’ 2430’ 2440)的設置方式使相應於物平面(2103) 或一個中間物平面的物平面(2403)的光線能夠成像到一個 相應於像平面(2102)或一個中間像平面的像平面(2402)内。 反射鏡(2410 ’ 2420,2430,2440)的反射面是反射鏡軸向對 稱的表面的部分,也就是將反射鏡的其餘表面部分去除後剩 下的部分,之所以要將其餘的表面去除是為了要讓出一條供 成像光線通過的路徑。反射鏡的反射面就是光線照射在反射 鏡上的部分’這個部分又稱為反射鏡的有效範圍。在穿過投 影物鏡的光線的路徑(也就是光程)上的第一個反射鏡是設 置在最靠近像平面(2402)的反射鏡(2420) ’在光程上的第二 個反射鏡是設置在最靠近物平面(2403)的反射鏡(2410)。 在第lg圖顯示的另外一種可行的實施方式中,部分物鏡 (2450)具有反射鏡(2460,2470,2480,2490),反射鏡(2460, 2470,2480,2490)的設置方式使相應於物平面(21〇3)或一個 中間物平面的物平面(2453)的光線能夠成像到一個相應於 像平面(2102)或一個中間像平面的像平面(2452)内。構成部 分物鏡(2400)的反射鏡(2460,2470,2480,2490)是反射鏡 軸向對稱的表面的部分,也就是將反射鏡的其餘表面部分去 除後剩下的部分,之所以要將其餘的表面去除是為了要讓出 一條供成像光線通過的路徑,也就是說圖式中僅繪出反射鏡 的反射面(也就是所謂的有效範圍)。在光程上的第三個反射 47 1308644 鏡(2480)是設置在最靠近像平面(2405)的反射鏡,在光程上 的第二個反射鏡(2460)是設置在最靠近物平面(2453)的反射 鏡。 部分物鏡(400)及部分物鏡(450)都是由沒有開口的反射鏡所 構成。另外一種部分物鏡則是由帶有開口的反射鏡所構成。 第lh圖中的部分物鏡(2500)是由反射鏡(2510, 2520)所構 成,其中反射鏡(2510)帶有一個開口(2511)。部分物鏡(2500) 的構造方式能夠將光線成像在相應於像平面(210 2)或一個 中間像平面的像平面(2502)内。 第Π圖中的部分物鏡(2550)也是由帶有開口的反射鏡所構 成。部分物鏡(2550)具有反射鏡(2560,2570),其中反射鏡 (2560)帶有一個開口(2561),反射鏡(2570)帶有一個開口 (2571)。部分物鏡(2550)的構造方式能夠將光線成像在相應 於像平面(2102)或一個中間像平面的像平面(2552)内。 有使用帶有開口的反射鏡的部分物鏡會造成部分物鏡的部 分光曈被遮蔽。因此具有—備這種部分物鏡的投影物鏡 (2101)具有_個遮蔽光瞳。投影物鏡⑽⑽光瞳被遮蔽程 度可以用RQbs來表不’ 4代表投影物鏡⑽丨)的孔隙半徑 在投影物鏡(2UM)的-個子午線截面内或子午面内被遮蔽 的4刀。由於系統對光學軸具有旋轉對稱性,因此只需計算 在子午面内的親半徑。在具有—個或數個帶有開口的反= 48 1308644 鏡的實施方式中’投影物鏡(21〇1)的光瞳遮 敝極低。例如尺0bs 與孔隙半彳空的比例可以是小於或等於3〇%、尤其是小於或等 於25%、尤其是小於或等於22%、尤其是小於或等於20%、 尤其是小於或等於18%、尤其是小於或等於15%、尤其是小 於或等於12%、尤其是小於或等於10〇/〇 在本發明的若干種實施方式中,投影物鏡(21〇1)具有一個或 數個光瞳平面,這些光瞳平面在物理上具有可接近性,也就 是說可以將一個遮光元件(例如遮光板)設置在光瞳平面 内’而且光學軸(21〇5)會穿過光瞳平面。 在光曈平面内設置一個遮光元件或遮光板可以形成一個與 場無關的光瞳遮蔽。 遮光板最好是由一種不會反射波長為工作波長λ的光線的 材料或鍍模構成,也就是說,這種材料或鍍膜會吸收波長為 工作波長λ的入射光線。遮光板的設置最好能夠防止任何散 射光線進入系統内。第lj圖中的反射鏡(2910)係設置在投影 物鏡(2101)的一個光瞳平面内,且在其反射鏡表面上有一個 遮光板(2912),例如由一種不會反射波長為λ的光線的鍍層 構成的遮光板(2912)。遮光板(2912)會阻斷沿著特定路徑傳 播的光線。第lj圖中共對有3道光線(2921,2922,2923)。 光線(2921,2923)照射在反射鏡(2910)的反射部分,而光線 (2922)則照射在遮光板(2912)上。因此反射鏡(2910)會將沿著 49 1308644 路fe(292卜2923)傳播的光線反射到設置在絲上的另外〜 個反射鏡(292G)。沿著路經(2922)傳播的光線則會被遮光板 (2912)阻斷。 本發明的若干種特定的實施方式是將遮光板設置在投影物 鏡(2101)内的反射鏡之間。例如可以將遮光板設置在一個未 與投影物鏡内的其他反射鏡表面重合的光瞳平面内。如第 lk圖所示,遮光板(2926)係設置在反射鏡(2910)及反射鏡 (2920)之間,其作是阻斷沿著反射鏡之間的特定路徑傳播的 光線。可以利用一道穿過反射鏡(2910)的開口(2924)的辅助 光線(292 8)確定遮光板的位置。 第11圖及lm顯示設置遮光板的另外一種方式。這種方式是 將遮光板(2930)設置在反射鏡(2910)及反射鏡(2920)之間,並 由一個内徑大於投影物鏡的孔隙的固定環(2932)將遮光板 (2930)固定在其所在的光瞳平面内。遮光板(2930)是經由徑 向懸掛裝置(2934)被固定在一個環形的框架單元(2932)上。 懸掛裝置(2934)的設置及構造方式並不會阻斷主要光線。 本發明的若干特定的實施方式可以在不必更換投影物鏡内 的反射鏡的情況下,將設置在光瞳平面内的遮光板移除,或 是更換其他的的遮光板。 本發明的若干特定的實施方式可以將遮光板設置在透光的 50 1308644 光學元件上。例如可以將遮光板固定在一個以對工作波長具 有足夠的透光性且具有足夠的機械強度 的材料製成的透光的平面元件上。 例如可以將這種處理遮光板的方式應用在工作波長λ位於 電磁光譜的可見光範圍内的實施方式中°在這種波長位於電 磁光譜的可見光範圍内的情況下’可以經由在一個具有足夠 尺寸的平坦玻璃元件上加上鍍層或設置一個遮光板的方式 • 形成所需的遮光板,此平坦的玻璃元件係固定在物鏡(2101) 的本體上。 例如可以將這種遮光板應用在投影物鏡(2101)的反射鏡中 至少有一個反射鏡帶有一個供光線通過的開口的實施方式 中。一般而言,遮光板的尺寸是可以變化的。本發明的若干 種特定的實施方式是盡可能選擇最小尺寸的遮光板,以便能 夠提供一個與場無關的投影物鏡的出射光瞳的遮蔽作用。在 若干實施方式中,遮光板的徑向尺寸與光瞳孔隙的半徑的比 值可以是小於或等於60%、尤其是小於或等於55%、尤其是 小於或等於50%、尤其是小於或等於45%、尤其是小於或等 於4〇%、尤其是小於或等於35%、尤其是小於或等於30%、 尤其是小於或等於25%、或最好是小於或等於20%。 S投影物鏡(2101)的場的形狀是可以改變的。在本發 、右干種實施方式中,場的形狀可以是圓弧狀的,例如一 51 1308644 個裱形奴的形狀,也就是所謂的環形場。例如一個具有由沒 $開口的反射鏡構成的部分物鏡的投影物鏡可以具有一個 %形%。例如前面提及的具有部分物鏡(24〇〇,245〇)的投影 =鏡可以具有—個環形場。第lf圖顯示—個環形場或環形 段(2700)。環形段(27〇〇)可以用在X方向上的尺寸ο"在y 方向上的尺寸Dy、以及一個徑向尺寸Dr來描述。Dx及Dy 代表場的尺寸’也就是說分別代表場沿著 X方向及y方向的 尺寸。Dx、Dy、以及Dr的大小將在以下的描述中說明。例 如,平面内一個DX=18 mm及Dy=l mm的場的尺寸為18x1 mm。Dr代表環形段的半徑,也就是從光學軸(21〇5)到環形 段(2700)的内邊界的距離。環形段(2700)以一個與y-z平面 的平行的平面(也就是線(2710)代表的平面)為中心呈對稱關 係。一般而言,Dx、Dy、以及Dr的大小是可以變化的,主 要是視投影物鏡(2101)的設計而定。,Dx通常大於Dy。Dx、 Dy、以及Dr在物平面(2103)及像平面(2102)内的相對大小會 隨著投影物鏡(2101)的放大或縮小而改變。在若干種實施方 式中’在像平面(2103)内的Dx相當的大。例如在像平面(2102) 内的Dx可以是大於1 mm、尤其是大於3 mm、尤其是大於 4 mm、尤其是大於5 mm、尤其是大於6 mm、尤其是大於7 mm、尤其是大於8 mm、尤其是大於9 mm、尤其是大於10 mm、尤其是大於11 mm、尤其是大於12 mm、尤其是大於 13 mm、尤其是大於14 mm、尤其是大於15 mm、尤其是大 於18 mm、尤其是大於20 mm、或最好是大於25 mm。在像 平面(2102)内的Dx可以是介於0.5 mm至5 mm之間,例如 52 1308644 小於或專於1 mm、尤其是小於或等於2 mm、尤其是小於或 等於3 mm、或最好是小於或等於4 mm。在像平面(2102)内 的Dr通常是介於〇1〇 mm至5 0 mm之間,例如大於或等於 15 mm、尤其是大於或等於2〇 mm、尤其是大於或等於25 mm、或最好是大於或等於mm。此外,在第in圖中還顯 示環形段(2700)的中央場點(2705)。 一般而言如果採用其他形狀的場,投影物鏡(21〇1)在像平面 (2102)内的場尺寸可以是大於1 mm、尤其是大於3 mm、尤 其是大於4 mm、尤其是大於5 mm、尤其是大於6 mm、尤 其是大於7 mm、尤其是大於8 mm、尤其是大於9 mm、尤 其是大於10 mm、尤其是大於11 mm、尤其是大於12 mm、 尤其是大於13 mm、尤其是大於14 mm、尤其是大於15 mm、尤其是大於18 mm、尤其是大於20 mm、或最好是大 於 25 mm。 投影物鏡(2102)的實施方式具有一個相當大的像侧自由工 作距離。所謂像侧自由工作距離是指像平面(2102)及幾何位 置最靠近像平面(2102)的反射鏡的反射面之間的最短距 離。如第1〇圖顯示的反射鏡(2810)就是幾何位置最靠近像 平面(2102)的反射鏡。光射會資反射鏡(2810)的表面(2811) 被反射回去。在本發明的若干種實施方式中,像側自由工作 距離(Dw)大於或等於25 mm、尤其是大於或等於30 mm、尤 其是大於或等於35 mm、尤其是大於或等於40 mm、尤其是 53 1308644 大於或等於45 mm、尤其是大於或等於5〇mm、尤其是大於 或等於55 mm、尤其是大於或等於60 mm、或最好是大於或 等於65 mm。工作距離夠大是一個有利的條件’因為工作距 離夠大就可以將基片(2150)的表面設置在像平面(2102)内’ 而不會觸及反射鏡(2810)朝向像平面(2120)的那個面。 同樣的,物侧自由工作距離是指物平面(2103)及投影物鏡 (2101)内幾何位置最靠近物平面(2103)的反射鏡的反射面之 間的最短距離。在本發明的若干種實施方式中’投影物鏡 (2101)具有一個相當大的物側自由工作距離。例如投影物鏡 (2101)的物側自由工作距離大於或等於50 mm、尤其是大於 或等於100 mm、尤其是大於或等於150 mm、尤其是大於或 等於200 mm、尤其是大於或等於250 mm、尤其是大於或等 於300 mm、尤其是大於或等於350 mm、尤其是大於或等於 400 mm、尤其是大於或等於450 mm、尤其是大於或等於500 mm、尤其是大於或等於550 mm、尤其是大於或等於600 mm、尤其是大於或等於650 mm、尤其是大於或等於700 mm、尤其是大於或等於750 mm、尤其是大於或等於800 mm、尤其是大於或等於850 mm、尤其是大於或等於900 mm、尤其是大於或等於950 mm、或最好是大於或等於1000 mm。對必須能夠進入投影物鏡(2101)及物平面(2103)之間的 空間的實施方式而言,具有相當大的物側工作距離夠大是一 個有利的條件。例如在掩膜(2140)具有反射性的實施方式 中’由於必須將掩膜(2140)朝向投影物鏡(21〇1)的那個面照 54 1308644 亮,因此在投影物鏡(2101)及物平面之間需要有足夠的空 間,以便讓掩膜(2140)能夠在一個特定的照明角度下被照明 系統(2120)照党。此外’在萬計微影投影物鏡的其他部分 日守’較大的物侧自由工作距離還可以讓設計工作且有較大的 彈性’例如有足夠的空間可以用來固定投影物鏡(2 1 〇 1)的其 他元件’以及能夠提供掩膜(2140)的支承結構足夠的空間。 在本發明的若干種實施方式中’幾何位置最靠近物平面 (2103)的反射鏡的定位方式是使其與光學軸(2105)之間相隔 一較大的距離。也就是說’光學軸(2105)不會穿過幾何位置 最靠近物平面P103)的反射鏡。第lp圖顯示的就是這種實 施方式。第lp圖中的系統具有4個反射鏡(2941,2942, 2943,2944),其中反射鏡(2941)被設置在最靠近物平面(21〇3) 的位置。從第lp圖可看出,距離(2946)為反射鏡(2941)與光 學軸(2105)之間的最小距離。 在本發明的若干種實施方式中’距離(2496)可以是大於或等 於50 mm、尤其是大於或等於60 mm、尤其是大於或等於 70 mm、尤其是大於或等於80 mm、尤其疋大於或等於90 mm、尤其是大於或等於100 mm、尤其是大於或等於11〇 mm、尤其是大於或等於120 mm、尤其疋大於或等於130 mm、尤其是大於或等於140 mm、尤其疋大於或等於150 mm、尤其是大於或等於160 mm、尤其是大於或等於170 mm、尤其是大於或等於180 mm、尤其是大於或等於190 55 1308644 mm、尤其是大於或等於2〇〇 mm、尤其是大於或等於220 mm、尤其是大於或等於24〇 mm、尤其是大於或等於26〇 mm、尤其是大於或等於28〇 mm、或最好是大於或等於3〔 mm、尤其是大於或等於210 mm、尤其是大於或等於230 mm、尤其是大於或等於250 mm、尤其是大於或等於270 mm、尤其是大於或等於290 )mm ° 反射鏡與光常轴之間隔著一個相當大的距離(2494)是一個 很有利的條件’因為這樣可以為靠近光學軸(21〇5)穿過物平 面(2103)的位置提供很大的空間。這個空間可以被用來設置 曝光設備或微影設備的其他元件,例如設置照明系統的一個 或多個光學元件,或是設置一個增光投射反射鏡(也就是所 謂的增光投射元件)。被投影物鏡成像的若干光線沿著光程 (2947)傳播。這些光線是按照以下的順序穿過反射鏡或照射 在反射鏡上:反射鏡(2942)—反射鏡(2941)—反射鏡(2943— 反射鏡(2944))。在子午面内光程(2947)在反射鏡(2942)上被 反射之前會先在反射鏡(2941)及反射鏡(2943)之間與本身相 交。 投影物鏡(2101)的構造方式通常是要使掩膜(2140)的主光線 聚焦到光學軸(2105)、從光學軸(2105)發散、或是平行於光 學軸(2105)。換句話説就是可以根據投影物鏡的設計改變投 影物鏡(2101)的入射光瞳相對於物平面(2103)的位置。在本 發明的若干種實施方式中,物平面(21〇3)係位於投影物鏡 56 1308644 (2101)及及投影物鏡(2101)的入射光瞳之間。另外一種可行 的實施方式則是將投影物鏡(2101)的入射光瞳設置在物= 面(2103)及投影物鏡(2101)之間。 可以將照明系統(2120)的出射光瞳設置在投影物鏡(21〇1)的 入射光瞳的位置。在本發明的若干種特定的實施方式中,照 明系統(2120)具有一個望遠鏡系統,這個望遠鏡系統能夠將 照明系統(2120)的出射光瞳投影在投影物鏡(21〇1)的入射光 瞳所在的位置上。另外一種可行的實施方式則是將照明系統 (2120)的出射光瞳設置在投影物鏡(2101)的入射光瞳的範圍 内,因此照明系統(2101)不需要擁有望遠鏡系統。例如將物 平面(2103)設置在投影物鏡(2101)及投影物鏡(2101)的入射 光瞳之間,使照明系統(2120)的出射光瞳與投影物鏡(2101) 的入射光瞳重合,因此就無需在照明系統内設置一個望遠鏡 系統。 通常可以利用市售的光學設計軟體(例如ZEMAX、OSLO 、 Code V)來設計投影物鏡(2101)。設計步驟是先確定波長、 場量、以及數值孔隙’以便將投影物鏡需要的光學特性最優 化,例如波前誤差、遠心性、均勻性、以及失真性等。以下 將以本發明的實施方式為例對本發明的内容作進一步的說 明。 第lq圖顯示的第一種實施方式是一個具有8個反射鏡的系 57 1308644 統,數值孔隙(NA)=0.54,工作波長13.4nm。投影比例尺為 6 ’也就是說在像平面内的圖像與實物相比被縮小了 6倍, 辨識率為15 nm。 像場在像平面内的尺寸為13 X 1 mm2,也就是說Dx==i3 mm,Dy=l mm,Dr=20 mm。像側 WRMS=〇.〇24 又,像側場— 曲(也就是像場曲率)=3 nm。系統的結構長度為1475 mm。 第lq圖還繪出座標系統的X、y、以及z方向。第lq圖的 圖面為座標系統的y-z平面,由於y-z平面(圖面)將投影物 鏡的光學轴包括在内,因此y-z平面(圖面)是一個子午面。 本發明的這種實施方式的投影物鏡具有3個部分物鏡,也就 是第一個部分投影物鏡(100)、第二個部分投影物鏡(2〇〇)、 以及第三個部分投影物鏡(300)。第一個部分投影物鏡(1 〇〇) 具有4個反射鏡(SI,S2,S5,S6)。從物平面(1〇)到像平面 (20)的光程看過去,反射鏡(S1)是一個凹面反射鏡,反射鏡 (S2)是一個凸面反射鏡’反射鏡(S5)是一個凸面反射鏡,反 射鏡(S6)是一個凹面反射鏡。第一個部分物鏡的投影係數是 1.77倍。一個孔隙光圈B設置在反射鏡(S5)上。光栅置於物 平面(10)内。各反射鏡段以均以光學軸(HA)中心呈現旋轉對 稱的關係’糸統的總長度(也就是從物平面(10)到像平面(2〇) 的距離)稱為結構長度(BL)。第一個部分物鏡(又稱為場組物 鏡)至少具有2個反射鏡,也就是反射鏡(si)及反射鏡(S2)。 58 1308644 第lq圖中僅繪出反射鏡(S1)及反射鏡(S2)的軸外段部分,也 就是容許修正與場有關的像差的轴外反射鏡段。在第lq圖 的實施方式中’第一個部分物鏡(1〇0)連接一個轉換組物 鏡,也就是第三個部分物鏡(300)。第三個部分物鏡具有2 個反射鏡,也就是反射鏡(S3)及反射鏡(S4),其中反射鏡(S3) 是一個凸面反射鏡,反射鏡(S4)是一個凹面反射鏡。 這種實施方式會在凹面反射鏡(S4)内或附近形成投影物鏡 的一個中間像(Z1),以及在凸面反射鏡(S3)附近形成投影物 鏡的一個中間像(Z2)。 第三個部分物鏡(轉換組物鏡)的投影係數為2 88倍。第三個 部分物鏡連接一個所謂的中斷組物鏡,也就是第二個部分物 鏡(200)。第二個部分物鏡(200))的投影係數為倍。 第一個部分物鏡(2〇〇)具有2個反射鏡,而且這2個反射鏡 都是凹面反射鏡。第二個部分物鏡(200)具有的2個反射鏡 分別疋一次凹面反射鏡(SK1)及二次凹面反射鏡(sk2)。反射 鏡(S3)具有一個孔隙開口(A1)’二次凹面反射鏡(SK2)具有一 個孔隙開口(A2),一次凹面反射鏡(SK1)具有一個孔隙開口 (A3),反射鏡(S4)具有一個孔隙開口(A4)。因此第lq圖顯示 的投影物鏡的反射鏡(S3,S4,SKI,SK2)均為本發明所謂 的帶有一個供光束通過用的開口的反射鏡。此外,反射鏡 (S3,S4,SKI,SK2)也構成本發明所謂的第二個子物鏡, 59 1308644 第一個子物鏡的所有反射鏡都帶有一個供光束通過用的開 口的物鏡。因此而形成的可供使用的與場無關的遮蔽半徑相 當於孔隙半徑的43%。 反射鏡(SI ’ S2,S5,S6)構成本發明所謂的第一個子物鏡, 也就是所有的反射鏡都沒有供光束通過用的開口的物鏡,也 就是說是由沒有開口的反射鏡所構成的物鏡。Mx, especially greater than or equal to 6.6 Mx, especially greater than or equal to 〇.7 Μ • X, especially 疋 greater than or equal to 0.8 ΜΧ, or preferably greater than or equal to 〇.9 Μχ. Another possibility is that in several specific embodiments of the invention, My is greater than or equal to Μ μ χ, especially greater than or equal to μ χ, or between 2 Μ χ to 1 〇 χ 。. M y can be less than or equal to 1000 mm, in particular less than or equal to 900 mm, in particular less than or equal to 800 mm, in particular less than or equal to 700 mm, in particular less than or equal to 600 mm, in particular less than or equal to 500 mm, In particular, it is less than or equal to 400 mm, in particular less than or equal to 300 mm, in particular less than or equal to 200 45 1308644 mm, or preferably less than or equal to 1 〇〇mm. The mirror without the opening may be disposed at a position to be passed by the optical axis (2105) or may be disposed at a position not to be the optical axis (2105). In general, the projection objective (2100) can be designed to have mirrors of different shapes and sizes when designing the projection objective (2100). In several embodiments of the invention, the maximum dimension of each mirror of the projection objective may be less than or equal to 1500 mm, in particular less than or equal to 14 mm, in particular less than or equal to 1300 mm, in particular less than or It is equal to uoomm, in particular less than or equal to 1100 mm, in particular less than or equal to, in particular less than or equal to 900 mm, in particular less than or equal to 8 mm, or preferably less than or equal to 700 mm. In several specific embodiments of the present invention, the projection objective (21〇1) has two, three, four, five, six, or more mirrors without openings, and the mirrors The way of setting can be to image the object, for example, to image the object in the image plane (2 or image to the intermediate image plane. If the projection objective (21〇1) has one or more mirror groups, then These mirror sets are part of the objective or partial system. A projection objective (2101) may have one or more partial objectives with a mirror. In some particular embodiments of the invention, there is more than one part Objective lens, such as projection objective, 3 partial objective, 4 partial objective, 46 1308644 Part of the objective (2400) is an example of a partial objective. Part of the objective (2400) has a mirror (2410, 2420, 2430, 2440) The mirrors (2410, 2420' 2430' 2440) are arranged such that light rays corresponding to the object plane (2103) or an object plane (2403) of the intermediate plane can be imaged to correspond to an image plane (2102) or a in In the image plane of the image plane (2402). The reflecting surface of the mirror (2410 ' 2420, 2430, 2440) is the part of the surface of the mirror that is axially symmetrical, that is, the remaining part of the remaining surface of the mirror is removed. The reason why the remaining surface is removed is to make a path for the imaging light to pass through. The reflecting surface of the mirror is the part of the light that is incident on the mirror. This part is also called the effective range of the mirror. The first mirror on the path of the light passing through the projection objective (ie, the optical path) is the mirror (2420) placed closest to the image plane (2402). The second mirror on the optical path is placed at Mirror (2410) closest to the object plane (2403). In another possible implementation shown in Figure lg, a portion of the objective lens (2450) has mirrors (2460, 2470, 2480, 2490), mirrors (2460) , 2470, 2480, 2490) are arranged such that light rays corresponding to the object plane (21〇3) or an object plane (2453) of an intermediate plane can be imaged to correspond to an image plane (2102) or an intermediate image plane. Image plane (2 452) The mirror (2460, 2470, 2480, 2490) constituting the partial objective lens (2400) is a portion of the surface of the mirror that is axially symmetrical, that is, the remaining portion after removing the remaining surface portion of the mirror, Therefore, the remaining surface is removed in order to make a path for the imaging light to pass through, that is, only the reflecting surface of the mirror (that is, the effective range) is drawn in the drawing. The third in the optical path. Reflections 47 1308644 The mirror (2480) is the mirror placed closest to the image plane (2405), and the second mirror (2460) on the optical path is the mirror placed closest to the object plane (2453). Part of the objective lens (400) and part of the objective lens (450) are composed of mirrors without openings. Another type of objective lens consists of a mirror with an opening. The partial objective lens (2500) in Fig. lh is constituted by a mirror (2510, 2520) with an opening (2511). Part of the objective lens (2500) is constructed in such a way that the light is imaged in an image plane (2502) corresponding to the image plane (210 2) or an intermediate image plane. Part of the objective lens (2550) in the second diagram is also constructed of a mirror with an opening. A portion of the objective lens (2550) has a mirror (2560, 2570) in which the mirror (2560) has an opening (2561) and the mirror (2570) has an opening (2571). Part of the objective lens (2550) is constructed in such a way that the light is imaged in an image plane (2552) corresponding to the image plane (2102) or an intermediate image plane. Part of the objective lens using a mirror with an opening causes partial apertures of some of the objective lenses to be obscured. Therefore, the projection objective (2101) having such a partial objective lens has _ a shielding aperture. Projection objective (10) (10) The degree of aperture obscuration can be represented by RQbs. 4 represents the aperture radius of the projection objective (10) 丨. 4 knives that are obscured within the meridian section of the projection objective (2UM) or in the meridional plane. Since the system has rotational symmetry to the optical axis, it is only necessary to calculate the pro-radius in the meridional plane. In embodiments with one or several anti-48 1308644 mirrors with openings, the projection of the objective lens (21〇1) is extremely low. For example, the ratio of the ruler 0bs to the semi-hollow of the pores may be less than or equal to 3%, in particular less than or equal to 25%, in particular less than or equal to 22%, in particular less than or equal to 20%, in particular less than or equal to 18%. In particular, less than or equal to 15%, in particular less than or equal to 12%, in particular less than or equal to 10 〇/〇 In several embodiments of the invention, the projection objective (21〇1) has one or several apertures Plane, these pupil planes are physically accessible, that is to say a shading element (for example a visor) can be placed in the pupil plane and the optical axis (21〇5) will pass through the pupil plane. A shading element or visor can be placed in the pupil plane to form a field-independent pupil mask. Preferably, the visor is constructed of a material or plating that does not reflect light having a wavelength of the operating wavelength λ, that is, the material or coating absorbs incident light having a wavelength of the operating wavelength λ. The visor is preferably positioned to prevent any scattered light from entering the system. The mirror (2910) in Fig. 1j is disposed in a pupil plane of the projection objective (2101) and has a visor (2912) on the surface of the mirror, for example, a wavelength λ which does not reflect. A visor (2912) made of a layer of light. The visor (2912) blocks light that travels along a specific path. In the lj picture, there are 3 rays (2921, 2922, 2923). Light (2921, 2923) illuminates the reflective portion of the mirror (2910), and light (2922) illuminates the visor (2912). The mirror (2910) therefore reflects the light propagating along the 49 1308644 road fe (292 b 2923) to the other ~ mirror (292G) placed on the wire. Light propagating along the path (2922) is blocked by the visor (2912). Several particular embodiments of the invention are such that the visor is disposed between mirrors within the projection objective (2101). For example, the visor can be placed in a pupil plane that does not coincide with the other mirror surfaces in the projection objective. As shown in Figure lk, a visor (2926) is disposed between the mirror (2910) and the mirror (2920) to block light propagating along a particular path between the mirrors. The position of the visor can be determined by an auxiliary ray (292 8) that passes through the opening (2924) of the mirror (2910). Figure 11 and lm show another way to set the visor. In this way, the visor (2930) is disposed between the mirror (2910) and the mirror (2920), and the visor (2930) is fixed by a fixing ring (2932) having an inner diameter larger than the aperture of the projection objective. It is in the plane of the pupil. The visor (2930) is secured to an annular frame unit (2932) via a radial suspension (2934). The suspension device (2934) is arranged and constructed in such a way that it does not block the primary light. Several particular embodiments of the present invention can remove the visor disposed in the pupil plane, or replace other visors, without having to replace the mirrors within the projection objective. Several specific embodiments of the present invention can provide a visor on a light transmissive 50 1308644 optical component. For example, the visor can be attached to a light transmissive planar member made of a material that is sufficiently transmissive to the operating wavelength and has sufficient mechanical strength. For example, such a method of processing the visor can be applied in an embodiment in which the operating wavelength λ is in the visible range of the electromagnetic spectrum. In the case where the wavelength is in the visible range of the electromagnetic spectrum, it can be via a sufficient size. The plating of a flat glass element or the provision of a visor • Forms the desired visor that is attached to the body of the objective (2101). For example, such a visor can be applied to a mirror of a projection objective (2101) in which at least one of the mirrors has an opening for light to pass through. In general, the size of the visor can vary. A number of particular embodiments of the present invention are to select a mask of the smallest size as much as possible in order to provide a masking effect of the exit pupil of a field-independent projection objective. In several embodiments, the ratio of the radial dimension of the visor to the radius of the pupil aperture may be less than or equal to 60%, in particular less than or equal to 55%, in particular less than or equal to 50%, in particular less than or equal to 45. %, in particular less than or equal to 4%, in particular less than or equal to 35%, in particular less than or equal to 30%, in particular less than or equal to 25%, or preferably less than or equal to 20%. The shape of the field of the S projection objective (2101) can be changed. In the present and right-dry embodiments, the shape of the field may be arcuate, such as the shape of a 51 1308644 scorpion slave, also known as a circular field. For example, a projection objective having a partial objective lens composed of a mirror having no opening may have a % shape %. For example, the aforementioned projection with a partial objective lens (24 〇〇, 245 〇) = mirror can have a ring field. The lf diagram shows a ring field or a ring segment (2700). The ring segment (27〇〇) can be described by the dimension ο" dimension Dy in the y direction, and a radial dimension Dr in the X direction. Dx and Dy represent the size of the field', that is, the size of the field along the X and y directions, respectively. The sizes of Dx, Dy, and Dr will be described in the following description. For example, a field with DX = 18 mm and Dy = 1 mm in the plane has a size of 18 x 1 mm. Dr represents the radius of the ring segment, that is, the distance from the optical axis (21〇5) to the inner boundary of the ring segment (2700). The ring segment (2700) is symmetrically centered on a plane parallel to the y-z plane (i.e., the plane represented by line (2710)). In general, the sizes of Dx, Dy, and Dr can vary, depending on the design of the projection objective (2101). , Dx is usually greater than Dy. The relative sizes of Dx, Dy, and Dr in the object plane (2103) and the image plane (2102) may vary as the projection objective (2101) is enlarged or reduced. In several embodiments, the Dx within the image plane (2103) is quite large. For example, the Dx in the image plane ( 2102 ) can be greater than 1 mm, in particular greater than 3 mm, in particular greater than 4 mm, in particular greater than 5 mm, in particular greater than 6 mm, in particular greater than 7 mm, in particular greater than 8 Mm, in particular greater than 9 mm, in particular greater than 10 mm, in particular greater than 11 mm, in particular greater than 12 mm, in particular greater than 13 mm, in particular greater than 14 mm, in particular greater than 15 mm, in particular greater than 18 mm, Especially greater than 20 mm, or preferably greater than 25 mm. The Dx in the image plane (2102) may be between 0.5 mm and 5 mm, for example 52 1308644 is less than or exclusively for 1 mm, in particular less than or equal to 2 mm, in particular less than or equal to 3 mm, or preferably Is less than or equal to 4 mm. Dr in the image plane (2102) is typically between 〇1〇mm and 50mm, for example greater than or equal to 15mm, in particular greater than or equal to 2〇mm, especially greater than or equal to 25mm, or most Good is greater than or equal to mm. In addition, the central field point (2705) of the ring segment (2700) is also shown in the in-figure. In general, if fields of other shapes are used, the field size of the projection objective (21〇1) in the image plane (2102) can be greater than 1 mm, in particular greater than 3 mm, in particular greater than 4 mm, in particular greater than 5 mm. In particular, greater than 6 mm, in particular greater than 7 mm, in particular greater than 8 mm, in particular greater than 9 mm, in particular greater than 10 mm, in particular greater than 11 mm, in particular greater than 12 mm, in particular greater than 13 mm, in particular It is greater than 14 mm, in particular greater than 15 mm, in particular greater than 18 mm, in particular greater than 20 mm, or preferably greater than 25 mm. The embodiment of the projection objective (2102) has a relatively large image side free working distance. The image side free working distance refers to the shortest distance between the image plane (2102) and the reflecting surface of the mirror whose geometric position is closest to the image plane (2102). The mirror (2810) shown in Figure 1 is the mirror with the geometrical position closest to the image plane (2102). The surface (2811) of the light-emitting mirror (2810) is reflected back. In several embodiments of the invention, the image side free working distance (Dw) is greater than or equal to 25 mm, in particular greater than or equal to 30 mm, in particular greater than or equal to 35 mm, in particular greater than or equal to 40 mm, in particular 53 1308644 is greater than or equal to 45 mm, in particular greater than or equal to 5 mm, in particular greater than or equal to 55 mm, in particular greater than or equal to 60 mm, or preferably greater than or equal to 65 mm. A large working distance is an advantageous condition 'Because the working distance is large enough, the surface of the substrate (2150) can be placed in the image plane (2102) without touching the mirror (2810) toward the image plane (2120). That side. Similarly, the object side free working distance is the shortest distance between the object plane (2103) and the reflecting surface of the mirror closest to the object plane (2103) in the projection objective (2101). In several embodiments of the invention, the projection objective (2101) has a substantial object side free working distance. For example, the object side free working distance of the projection objective ( 2101 ) is greater than or equal to 50 mm, in particular greater than or equal to 100 mm, in particular greater than or equal to 150 mm, in particular greater than or equal to 200 mm, in particular greater than or equal to 250 mm, In particular, it is greater than or equal to 300 mm, in particular greater than or equal to 350 mm, in particular greater than or equal to 400 mm, in particular greater than or equal to 450 mm, in particular greater than or equal to 500 mm, in particular greater than or equal to 550 mm, in particular Greater than or equal to 600 mm, in particular greater than or equal to 650 mm, in particular greater than or equal to 700 mm, in particular greater than or equal to 750 mm, in particular greater than or equal to 800 mm, in particular greater than or equal to 850 mm, in particular greater than or Equal to 900 mm, especially greater than or equal to 950 mm, or preferably greater than or equal to 1000 mm. For embodiments that must be able to enter the space between the projection objective (2101) and the object plane (2103), it is an advantageous condition to have a relatively large object side working distance. For example, in the embodiment in which the mask (2140) is reflective, 'because the mask (2140) must be illuminated toward the surface of the projection objective (21〇1) 54 1308644, so in the projection objective (2101) and the object plane There is a need for sufficient space between the masks (2140) to be illuminated by the lighting system (2120) at a particular illumination angle. In addition, 'the other part of the illuminating projection objective lens is 'the larger object side free working distance can also make the design work and have greater flexibility'. For example, there is enough space for fixing the projection objective (2 1 〇 The other elements of 1) and the support structure capable of providing the mask (2140) have sufficient space. In several embodiments of the invention, the mirror having the geometrical position closest to the object plane (2103) is positioned such that it is spaced a greater distance from the optical axis (2105). That is to say the 'optical axis (2105) does not pass through the mirror with the geometrical position closest to the object plane P103). The lp diagram shows this implementation. The system in the lp diagram has four mirrors (2941, 2942, 2943, 2944) in which the mirror (2941) is placed closest to the object plane (21〇3). As can be seen from the lp map, the distance (2946) is the minimum distance between the mirror (2941) and the optical axis (2105). In several embodiments of the invention, the distance (2496) may be greater than or equal to 50 mm, in particular greater than or equal to 60 mm, in particular greater than or equal to 70 mm, in particular greater than or equal to 80 mm, in particular greater than or equal to Equal to 90 mm, in particular greater than or equal to 100 mm, in particular greater than or equal to 11 mm, in particular greater than or equal to 120 mm, in particular greater than or equal to 130 mm, in particular greater than or equal to 140 mm, in particular greater than or equal to 150 mm, in particular greater than or equal to 160 mm, in particular greater than or equal to 170 mm, in particular greater than or equal to 180 mm, in particular greater than or equal to 190 55 1308644 mm, in particular greater than or equal to 2 mm, in particular greater than Or equal to 220 mm, in particular greater than or equal to 24 mm, in particular greater than or equal to 26 mm, in particular greater than or equal to 28 mm, or preferably greater than or equal to 3 [mm, in particular greater than or equal to 210 mm In particular, greater than or equal to 230 mm, in particular greater than or equal to 250 mm, in particular greater than or equal to 270 mm, in particular greater than or equal to 290) mm °. The mirror is separated from the optical axis by a considerable distance (2494 ) is a very favorable condition' because it provides a large space for the position near the optical axis (21〇5) through the object plane (2103). This space can be used to set up exposure or other components of the lithography device, such as one or more optical components of the illumination system, or a grace-increasing projection mirror (also known as a grace-increasing projection element). A number of rays imaged by the projection objective propagate along the optical path (2947). These rays pass through the mirror or illuminate the mirror in the following order: mirror (2942) - mirror (2941) - mirror (2943 - mirror (2944)). The optical path (2947) in the meridional plane intersects itself between the mirror (2941) and the mirror (2943) before being reflected on the mirror (2942). The projection objective (2101) is typically constructed such that the chief ray of the mask (2140) is focused to the optical axis (2105), diverged from the optical axis (2105), or parallel to the optical axis (2105). In other words, the position of the entrance pupil of the projection objective (2101) relative to the object plane (2103) can be changed depending on the design of the projection objective. In several embodiments of the invention, the object plane (21〇3) is located between the projection objective 56 1308644 (2101) and the entrance pupil of the projection objective (2101). Another possible implementation is to place the entrance pupil of the projection objective (2101) between the object = surface (2103) and the projection objective (2101). The exit pupil of the illumination system (2120) can be placed at the position of the entrance pupil of the projection objective (21〇1). In several particular embodiments of the invention, the illumination system (2120) has a telescope system that projects the exit pupil of the illumination system (2120) onto the entrance pupil of the projection objective (21〇1) The location. Another possible implementation is to place the exit pupil of the illumination system (2120) within the range of the entrance pupil of the projection objective (2101) so that the illumination system (2101) does not need to have a telescope system. For example, the object plane (2103) is disposed between the projection objective (2101) and the entrance pupil of the projection objective (2101), so that the exit pupil of the illumination system (2120) coincides with the entrance pupil of the projection objective (2101), There is no need to have a telescope system in the lighting system. The projection objective (2101) can usually be designed using commercially available optical design software (eg ZEMAX, OSLO, Code V). The design step is to first determine the wavelength, the amount of field, and the numerical aperture' to optimize the optical characteristics required for the projection objective, such as wavefront error, telecentricity, uniformity, and distortion. The contents of the present invention will be further described below by taking an embodiment of the present invention as an example. The first embodiment shown in Figure lq is a system with 8 mirrors, 57 1308644, with a numerical aperture (NA) = 0.54 and an operating wavelength of 13.4 nm. The projection scale is 6 ‘that is, the image in the image plane is reduced by 6 times compared with the real object, and the recognition rate is 15 nm. The size of the image field in the image plane is 13 X 1 mm2, that is to say Dx==i3 mm, Dy=l mm and Dr=20 mm. Image side WRMS=〇.〇24 Again, like side field—curve (that is, field curvature) = 3 nm. The system has a structural length of 1475 mm. Figure lq also plots the X, y, and z directions of the coordinate system. The picture of the lq figure is the y-z plane of the coordinate system. Since the y-z plane (picture surface) includes the optical axis of the projection objective, the y-z plane (picture surface) is a meridional plane. The projection objective lens of this embodiment of the invention has three partial objective lenses, namely a first partial projection objective lens (100), a second partial projection objective lens (2〇〇), and a third partial projection objective lens (300). . The first partial projection objective (1 〇〇) has 4 mirrors (SI, S2, S5, S6). Looking from the object plane (1〇) to the optical path of the image plane (20), the mirror (S1) is a concave mirror, and the mirror (S2) is a convex mirror. The mirror (S5) is a convex reflection. Mirror, mirror (S6) is a concave mirror. The projection coefficient of the first partial objective lens is 1.77 times. A aperture stop B is disposed on the mirror (S5). The grating is placed in the object plane (10). Each mirror segment is in a rotationally symmetric relationship with the center of the optical axis (HA). The total length of the system (that is, the distance from the object plane (10) to the image plane (2〇) is called the structural length (BL). . The first partial objective lens (also known as the field group objective) has at least two mirrors, namely a mirror (si) and a mirror (S2). 58 1308644 In Fig. lq, only the off-axis section of the mirror (S1) and the mirror (S2), that is, the off-axis mirror section that allows correction of the field-related aberrations, is depicted. In the embodiment of the lqth diagram, the first partial objective lens (1〇0) is connected to a conversion group objective lens, that is, a third partial objective lens (300). The third partial objective has two mirrors, namely a mirror (S3) and a mirror (S4), wherein the mirror (S3) is a convex mirror and the mirror (S4) is a concave mirror. This embodiment forms an intermediate image (Z1) of the projection objective in or near the concave mirror (S4) and an intermediate image (Z2) of the projection objective near the convex mirror (S3). The projection coefficient of the third partial objective lens (conversion group objective lens) is 2 88 times. The third part of the objective is connected to a so-called interrupt group objective, the second partial objective (200). The projection coefficient of the second partial objective lens (200) is doubled. The first partial objective (2〇〇) has 2 mirrors, and both mirrors are concave mirrors. The second partial objective lens (200) has two mirrors, a primary concave mirror (SK1) and a secondary concave mirror (sk2). The mirror (S3) has a pore opening (A1)' quadratic concave mirror (SK2) having a pore opening (A2), the primary concave mirror (SK1) has a pore opening (A3), and the mirror (S4) has A pore opening (A4). Therefore, the mirrors (S3, S4, SKI, SK2) of the projection objective shown in Fig. lq are all so-called mirrors having an opening for the light beam to pass through. In addition, the mirrors (S3, S4, SKI, SK2) also constitute the so-called second sub-objective lens of the present invention, 59 1308644. All of the mirrors of the first sub-objective lens have an objective lens for the passage of the light beam. The field-independent shading radius thus formed is equivalent to 43% of the pore radius. The mirrors (SI ' S2, S5, S6) form the first sub-objective lens of the invention, that is to say that all mirrors have no objective lens for the passage of the beam, that is to say by a mirror without an opening. The objective lens.
從第lq圖可以清楚的看出’由於最靠近像平面(2〇)的反射 鏡(SK1)是一個凹面反射鏡,因此一次凹面尺μ (V3)及像平面(20)之間的距離(A)就是像側 工作距離大於12 mm、尤其是大於15 mm、 40 mm。物侧自由工作距離為1 〇〇 點 久射鏡(SKI)的頂 作距離。像側 或最好是大於 mmIt can be clearly seen from the lq diagram that 'the mirror (SK1) closest to the image plane (2〇) is a concave mirror, so the distance between the primary concave surface μ (V3) and the image plane (20) ( A) The image side working distance is greater than 12 mm, especially greater than 15 mm, 40 mm. The free working distance of the object side is 1 〇〇. The distance of the long-range mirror (SKI). Image side or preferably greater than mm
第二個部分物鏡(200)將第二個 内0 中間像吻成像在像平面(2〇) 從投影比例尺的相對大小可以清楚的看出在第 —卜 方式中,第三個部分物鏡將低孔隙物鏡部分爲< " ^ v ± t 吐 刀及鬲孔隙物鏡部 /刀連接在一起。因此第三個部分物鏡又稱為轉換組物鏡。 在中央場點傳播的主光線在反射鏡(S1,S2,ο; S3 , S4 , S5 , S6,SKI,SK2)中的一個反射鏡上的最大入射 ^ ^ 、,,, 啊角度 Θ CR(max) 為33.8度。母一道光線在各反射鏡(SI,S2, , S4 , S5 , 60 1308644 圖式簡單說明 以下配合圖式及若干種實施方式對本發明的内容作進一步 的說明,但是本發明的範圍絕非僅限於以下說明的實施方 式。從以下舉例說明的實施方式中也可以看出本發明的其他 優點及特性。 第la圖:一種微影投影曝光設備的示意圖。 第lb圖:照射在像平面的一個實物上的光線錐體。 第lc圖:反射鏡表面的一個截面,穿過投影物鏡的光線有 多道光束照射在這個截面上。 第Id圖:具有一個供光束通過用的開口的反射鏡的一個例 子。 第le圖:沒有供光束通過用的開口的反射鏡的一個例子。 第If圖:在子午面上的部分物鏡的一個例子。 第lg圖:在子午面上的部分物鏡的另外一個例子。 第lh圖:由在子午面上有一個開口的反射鏡構成的部分物 鏡的一個例子。 第li圖:由在子午面上有一個開口的反射鏡構成的部分物 鏡的另外一個例子。 第lj圖:在一個反射鏡上具有遮蔽光圈的投影物鏡的構造。 第lk圖:具有位於光程上兩個反射鏡之間的遮蔽光圈的投 影物鏡的構造。 第11圖一第m圖:具有位於光程上兩個反射鏡之間的遮蔽 光圈的投影物鏡的構造及固定裝置。 161 1308644 第ln圖:環形場的-個例子,例如在像平面内的-個環形 場。 第1〇圖:像側自由工作距離的定義。 第lp圖·在-個物鏡部分内具有交叉絲的投影物鏡的構 造。 第lq圖.8個反射鏡系統的第一種實施方式,數值孔隙 (ΝΑ)=0·54,放大倍數6。 第2圖:8個反射鏡系統的第二種實施方式’數值孔隙 (ΝΑ)=0.5,放大倍數4。 第3圖:8個反射鏡系統的第三種實施方式,數值孔隙 (ΝΑ)=0.5,放大倍數5。 第4圖:8個反射鏡系統的第四種實施方式,數值孔隙 (ΝΑ)=0.5,放大倍數6。 第5圖.8個反射鏡系統的第五種實施方式,數值孔隙 (ΝΑ)=0.5,放大倍數8。 第6a圖:8個反射鏡系統的第六種實施方式,數值孔隙 (NA)=0.6,放大倍數8。 第6b圖:8個反射鏡糸統的第七種實施方式,數值孔隙 (NA)=0.6,放大倍數8。 第6c圖:8個反射鏡糸統的第八種實施方式,數值孔隙 (NA)=0.6,放大倍數8。 弟6d圖.8個反射鏡糸統的弟九種實施方式,數值孔隙 (ΝΑ)=0·6,放大倍數8。 第6e圖:8個反射鏡糸統的第十種實施方式,數值孔隙 162 1308644 (NA)=0.7,放大倍數8。 第7圖:10個反射鏡系統的第一種實施方式,數值孔隙 (NA)=0.75,放大倍數8。 第8圖:10個反射鏡系統的第二種實施方式,數值孔隙 (NA)=0.75,放大倍數8。 第9圖:10個反射鏡系統的第三種實施方式,具有兩個中 間像。 第10圖:10個反射鏡系統的第四種實施方式,數值孔隙 (NA)=0.72,放大倍數8。 第11圖:10個反射鏡系統的第五種實施方式,數值孔隙 (NA)=0.70,放大倍數8。 第12圖:10個反射鏡系統的第六種實施方式,數值孔隙 (ΝΑ)=0·72,放大倍數8 〇 第13圖:第二個中間像在第二個部分物鏡或第三個部分物 鏡内的位置。 第14圖:中間像在第二個部分物鏡及第三個部分物鏡之雙 鏡内的最佳位置。 第15圖:具有曼金反射鏡的第二個部分物鏡的一種實施方 式。 第16圖:10個反射鏡系統的第七種實施方式,數值孔隙 (ΝΑ)=0·7,放大倍數8。 第17圖:6個反射鏡系統的第一種實施方式,數值孔隙 (ΝΑ)=0.5,放大倍數8,第二個反射鏡(是一個凹面反射鏡) 位於從物平面到像平面的光程上。 163 1308644 第18圖:6個反射鏡系統的另外一種實施方式,數值孔隙 (NA)=0.5,放大倍數8。 第19圖:具有一個帶有遮蔽光瞳的微影投影物鏡的照明系 統。 第20圖:10個反射鏡物鏡的第一種實施方式,數值孔隙 (ΝΑ)=0·72,可以將小於50 nm的圖形成像。 第21圖:10個反射鏡物鏡的第二種實施方式,數值孔隙 (ΝΑ)=0·85,可以將小於50 nm的圖形成像。 第22圖:10個反射鏡物鏡的第三種實施方式,數值孔隙 (NA)=0.90,可以將小於50 nm的圖形成像。 第23圖:8個反射鏡系統的第一種實施方式,像側數值孔 隙(NA)=0.7,放大倍數8。 第24圖:8個反射鏡系統的第二種實施方式,像側數值孔 隙(NA)=0.7, 放大倍數8。 元件符號說明 B 孔隙光圈 BL 構造長度 HA、2105 光學轴 CR 主光線 SUB01 第一個子物鏡 SUB02 第二個子物鏡 AB 遮蔽光圈 D 、 2946 距離 dl、d2 直徑 2103 平面 1100 光學元件 2675 子午線 2110 光源 3030 光圈 164 1308644The second partial objective lens (200) images the second inner zero kiss image on the image plane (2〇). From the relative size of the projection scale, it can be clearly seen that in the first mode, the third partial objective lens will be low. The aperture mirror section is connected to the <" ^ v ± t squeegee and 鬲 aperture mirror section/knife. Therefore, the third partial objective lens is also called the conversion group objective lens. The maximum incidence of the chief ray propagating at the central field at one of the mirrors (S1, S2, ο; S3, S4, S5, S6, SKI, SK2) ^ ^ , , , , ah angle Θ CR ( Max) is 33.8 degrees. The light of the mother is further described in the mirrors (SI, S2, S4, S5, 60 1308644). The following description of the present invention will be further described in conjunction with the drawings and several embodiments, but the scope of the present invention is not limited thereto. Embodiments described below. Other advantages and features of the present invention will also be apparent from the embodiments exemplified below. Figure la: A schematic view of a lithographic projection exposure apparatus. Figure lb: an object illuminated in the image plane The ray cone on the top. Figure lc: A section of the surface of the mirror through which multiple beams of light illuminate the projection objective. Figure Id: A mirror with an opening for the beam to pass through. Example: Figure l: An example of a mirror without an opening for the beam to pass. Fig. If an example of a partial objective lens on the meridional plane. Figure lg: another example of a partial objective lens on the meridional plane Figure lh: An example of a partial objective lens consisting of a mirror with an opening on the meridian plane. Lith diagram: by opening on the meridian plane Another example of a partial objective lens formed by a mirror. Figure lj: Construction of a projection objective having a shadow aperture on a mirror. Figure lk: Projection of a shadow aperture with two mirrors located on the optical path The construction of the objective lens. Fig. 11 - m: a construction and fixing device of a projection objective having a shadow aperture between two mirrors on the optical path. 161 1308644 ln diagram: an example of an annular field, for example in An annular field in the image plane. Figure 1 : Definition of the image side free working distance. lp picture · Construction of a projection objective with crossed wires in an objective lens section. lq picture. 8 mirror systems The first embodiment, numerical aperture (ΝΑ) = 0.54, magnification factor 6. Figure 2: Second embodiment of eight mirror systems 'numerical aperture (ΝΑ) = 0.5, magnification 4. Figure 3: A third embodiment of an eight mirror system with numerical aperture (ΝΑ) = 0.5 and magnification of 5. Figure 4: Fourth embodiment of an eight mirror system with numerical aperture (ΝΑ) = 0.5 , magnification 6. Figure 5. Eight mirror systems In a fifth embodiment, the numerical aperture (ΝΑ) = 0.5, magnification 8. Figure 6a: Sixth embodiment of eight mirror systems, numerical aperture (NA) = 0.6, magnification 8. Figure 6b: A seventh embodiment of eight mirror systems, numerical aperture (NA) = 0.6, magnification 8. Figure 6c: Eighth embodiment of eight mirror systems, numerical aperture (NA) = 0.6, Magnification 8. Brother 6d picture. Nine implementations of 8 mirrors, numerical aperture (ΝΑ) = 0.6, magnification 8. Figure 6e: Tenth implementation of eight mirrors Mode, numerical aperture 162 1308644 (NA) = 0.7, magnification 8. Figure 7: First embodiment of a 10 mirror system with numerical aperture (NA) = 0.75 and magnification of 8. Figure 8: A second embodiment of a 10 mirror system with numerical aperture (NA) = 0.75 and magnification of 8. Figure 9: A third embodiment of a 10 mirror system with two intermediate images. Figure 10: A fourth embodiment of a 10 mirror system with numerical aperture (NA) = 0.72 and magnification of 8. Figure 11: A fifth embodiment of a 10 mirror system with numerical aperture (NA) = 0.70 and magnification of 8. Figure 12: Sixth embodiment of a ten mirror system, numerical aperture (ΝΑ) = 0.72, magnification 8 〇 Figure 13: second intermediate image in the second partial objective or third part The position inside the objective lens. Figure 14: The best position of the intermediate image in the double mirror of the second partial objective and the third partial objective. Figure 15: An embodiment of a second partial objective with a Mankin mirror. Figure 16: Seventh embodiment of a ten mirror system with numerical aperture (ΝΑ) = 0.77 and magnification of 8. Figure 17: A first embodiment of a six-mirror system with numerical aperture (ΝΑ) = 0.5, magnification of 8, and a second mirror (which is a concave mirror) located in the optical path from the object plane to the image plane on. 163 1308644 Figure 18: Another embodiment of a six mirror system with numerical aperture (NA) = 0.5 and magnification of 8. Figure 19: Illumination system with a lithographic projection objective with a shadow stop. Figure 20: A first embodiment of a 10 mirror objective with a numerical aperture (ΝΑ) = 0.72, which can image a pattern of less than 50 nm. Figure 21: A second embodiment of a 10 mirror objective with a numerical aperture (ΝΑ) = 0.85, which can image a pattern of less than 50 nm. Figure 22: A third embodiment of a 10 mirror objective with a numerical aperture (NA) = 0.90, which can image a pattern of less than 50 nm. Figure 23: A first embodiment of an eight mirror system with image side numerical aperture (NA) = 0.7 and magnification of 8. Figure 24: A second embodiment of an eight mirror system with image side numerical aperture (NA) = 0.7 and magnification of 8. Component symbol description B aperture aperture BL construction length HA, 2105 optical axis CR chief ray SUB01 first sub-objective SUB02 second sub-objective lens AB shadow aperture D, 2946 distance dl, d2 diameter 2103 plane 1100 optics 2675 meridian 2110 light source 3030 aperture 164 1308644
2101 投影物鏡 3040 場稜面 2140 掩膜 2928 輔助光線 2152 邊緣光線 2150 鄰近基片 2932 固定環 2934 徑向懸掛裝置 2705 中央場點 2811 表面 2947 光程 2122 ' 3050 光束 2120 、 3000 照明系統 SKI 一次凹面反射鏡 SK2 二次凹面反射鏡 VSK1、V3 反射鏡(SK1)的頂點 V600 反射鏡(S 600)的頂點 V200 反射鏡(S200)的頂點 V300 反射鏡(S300)的頂點 D600 反射鏡(S600)的直徑 AUF1 > AUF2 相交點 100 第一個部分投影物鏡 200 第二個部分投影物鏡 300 第三個部分投影物鏡 700 、 704 光圈平面 2100 微影投影曝光設備 2130 支承結構或工作面 2301 反射鏡表面 2912 、 2926 、 2930 遮光板 165 13086442101 Projection Objective 3040 Field Face 2140 Mask 2928 Auxiliary Light 2152 Edge Light 2150 Adjacent Substrate 2932 Retaining Ring 2934 Radial Suspension 2705 Central Field 2811 Surface 2947 Optical Path 2122 ' 3050 Beam 2120 , 3000 Lighting System SKI One Concave Reflection Mirror SK2 Quadratic Concave Mirror VSK1, V3 Vertex of mirror (SK1) V600 Vertex of mirror (S 600) V200 Vertex of mirror (S200) V300 Vertex of mirror (S300) D600 Diameter of mirror (S600) AUF1 > AUF2 intersection point 100 first partial projection objective 200 second partial projection objective 300 third partial projection objective 700, 704 aperture plane 2100 lithography projection exposure apparatus 2130 support structure or working surface 2301 mirror surface 2912, 2926, 2930 visor 165 1308644
2924 3020 3010 8100 8200 29000 29010 30000 30002 30004 > 30006 2311 ' 2331 > 2321 A1、A2、A3、A4 2310 ' 2320 ' 2330 2610、2511、2561 2400、2450、2500 2402 、 2452 、 2502 2403 、 2453 、 3100 10000 20000 > 2000 穿過反射鏡(2910)的開口 光譜滤光元件 切線入射集光器 第一個部分物鏡 第二個部分物鏡 第一個子物鏡 第二個子物鏡 第一個部分物鏡子系統 第二個部分物鏡子系統 部分物鏡子系統 直線 孔隙開口 2921 ' 2922 > 2923 2571 2550 2552 、 8020 、 20 8010、2102、10 光線 開口 部分物鏡 像平面 物平面 中間像 Z 卜 Z2、Z3、zwn、ZWI2、ZWI3、ZQ S1-S6、SP1-SP8、S10-S80、MIR1-MIR10、1000、1010、1020、 1030、S100-S600、2300、2600、2670、2660、2410-2440、 2460-2490、2510-2520、2560-2570、2910、2920、2810、 2941-2944 反射鏡 1662924 3020 3010 8100 8200 29000 29010 30000 30002 30004 > 30006 2311 ' 2331 > 2321 A1, A2, A3, A4 2310 ' 2320 ' 2330 2610, 2511, 2561 2400, 2450, 2500 2402, 2452, 2502 2403, 2453, 3100 10000 20000 > 2000 through the mirror (2910) opening spectral filter element tangential incident concentrator first part objective second part objective first first objective second second objective first part mirror system The second part of the mirror system part mirror system linear aperture opening 2921 ' 2922 > 2923 2571 2550 2552 , 8020 , 20 8010 , 2102 , 10 light opening part object mirror plane object plane intermediate image Z Z Z2 , Z3 , zwn , ZWI2, ZWI3, ZQ S1-S6, SP1-SP8, S10-S80, MIR1-MIR10, 1000, 1010, 1020, 1030, S100-S600, 2300, 2600, 2670, 2660, 2410-2440, 2460-2490, 2510 -2520, 2560-2570, 2910, 2920, 2810, 2941-2944 mirror 166
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW94146344A TWI308644B (en) | 2004-12-23 | 2005-12-23 | Hochaperturiges objektiv mlt obskurierter pupille |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004063313 | 2004-12-23 | ||
US66503605P | 2005-03-24 | 2005-03-24 | |
US69545505P | 2005-06-30 | 2005-06-30 | |
US69890905P | 2005-07-13 | 2005-07-13 | |
DE102005042005A DE102005042005A1 (en) | 2004-12-23 | 2005-09-05 | Objective lens esp. as micro-lithography projection objective, has objective divided into first part-objective with single mirror and second part-objective with primary and secondary mirror |
TW94145641 | 2005-12-21 | ||
TW94146344A TWI308644B (en) | 2004-12-23 | 2005-12-23 | Hochaperturiges objektiv mlt obskurierter pupille |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200632372A TW200632372A (en) | 2006-09-16 |
TWI308644B true TWI308644B (en) | 2009-04-11 |
Family
ID=45071868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW94146344A TWI308644B (en) | 2004-12-23 | 2005-12-23 | Hochaperturiges objektiv mlt obskurierter pupille |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI308644B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI490539B (en) * | 2010-05-19 | 2015-07-01 | Zeiss Carl Smt Gmbh | Projection objective with diaphragms |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007031271A1 (en) | 2005-09-13 | 2007-03-22 | Carl Zeiss Smt Ag | Microlithography projection optical system, method for manufacturing a device and method to design an optical surface |
CN101416117B (en) | 2006-04-07 | 2014-11-05 | 卡尔蔡司Smt有限责任公司 | Microlithography projection optical system, tools and manufacturing method |
EP1950594A1 (en) | 2007-01-17 | 2008-07-30 | Carl Zeiss SMT AG | Imaging optical system, projection illumination unit for microlithography with such an optical system, method for manufacturing a microstructured component with such a projection illumination unit, microstructured component produced by the manufacturing method and use of such an optical system |
US7929114B2 (en) | 2007-01-17 | 2011-04-19 | Carl Zeiss Smt Gmbh | Projection optics for microlithography |
DE102007045396A1 (en) | 2007-09-21 | 2009-04-23 | Carl Zeiss Smt Ag | Bundle-guiding optical collector for detecting the emission of a radiation source |
KR101904541B1 (en) | 2009-03-30 | 2018-10-04 | 칼 짜이스 에스엠티 게엠베하 | Imaging optics and projection exposure installation for microlithography with an imaging optics of this type |
DE102009030501A1 (en) | 2009-06-24 | 2011-01-05 | Carl Zeiss Smt Ag | Imaging optics for imaging an object field in an image field and illumination optics for illuminating an object field |
WO2012013241A1 (en) | 2010-07-30 | 2012-02-02 | Carl Zeiss Smt Gmbh | Imaging optical system and projection exposure installation for microlithography with an imaging optical system of this type |
-
2005
- 2005-12-23 TW TW94146344A patent/TWI308644B/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI490539B (en) * | 2010-05-19 | 2015-07-01 | Zeiss Carl Smt Gmbh | Projection objective with diaphragms |
TWI615630B (en) * | 2010-05-19 | 2018-02-21 | 卡爾蔡司Smt有限公司 | Projection objective with diaphragms |
Also Published As
Publication number | Publication date |
---|---|
TW200632372A (en) | 2006-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9304407B2 (en) | Catoptric objectives and systems using catoptric objectives | |
JP5996892B2 (en) | High numerical aperture objective optical system with a light-shielding pupil | |
JP5883778B2 (en) | Projection objective and projection exposure apparatus with negative back focus of entrance pupil | |
TWI243256B (en) | 8-Mirror microlithography projection objective | |
EP2177934B1 (en) | High transmission, high aperture catadioptric projection objective and projection exposure apparatus | |
JP2005258457A (en) | Lithography apparatus, method for manufacturing device and device manufactured by the method | |
US10101569B2 (en) | Mirror, in particular collector mirror for microlithography | |
JP2007288188A (en) | Illumination system equipped with zooming objective optical system | |
TWI308644B (en) | Hochaperturiges objektiv mlt obskurierter pupille | |
CN100582861C (en) | High-aperture objectives with darkening pupils | |
WO2024208849A1 (en) | Imaging euv optical unit for imaging an object field into an image field | |
TW493109B (en) | Microlithography projection objective and projection exposure apparatus | |
WO2023247238A1 (en) | Imaging euv optical unit for imaging an object field into an image field | |
EP1936421A1 (en) | Catadioptric optical system and catadioptric optical element | |
TWI805619B (en) | Imaging optical unit for imaging an object field into an image field | |
CN102621825B (en) | Comprise the projection objective of the mirror element with reflectance coating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |