TWI265976B - Ag base alloy thin film and sputtering target for forming Ag base alloy thin film - Google Patents

Ag base alloy thin film and sputtering target for forming Ag base alloy thin film Download PDF

Info

Publication number
TWI265976B
TWI265976B TW94121903A TW94121903A TWI265976B TW I265976 B TWI265976 B TW I265976B TW 94121903 A TW94121903 A TW 94121903A TW 94121903 A TW94121903 A TW 94121903A TW I265976 B TWI265976 B TW I265976B
Authority
TW
Taiwan
Prior art keywords
film
alloy
atom
atomic
reflectance
Prior art date
Application number
TW94121903A
Other languages
Chinese (zh)
Other versions
TW200536949A (en
Inventor
Yuuki Tauchi
Katsutoshi Takagi
Junichi Nakai
Toshiki Sato
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002361117A external-priority patent/JP3655907B2/en
Priority claimed from JP2003003643A external-priority patent/JP4105956B2/en
Priority claimed from JP2003122314A external-priority patent/JP3997177B2/en
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Publication of TW200536949A publication Critical patent/TW200536949A/en
Application granted granted Critical
Publication of TWI265976B publication Critical patent/TWI265976B/en

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

The present invention relates to an Ag alloy film. Particularly, it is preferably used as a reflective film or semi-transmissive reflective film for an optical information recording medium having high thermal conductivity/high reflectance/high durability in the field of optical information recording media, an electromagnetic-shielding film excellent in Ag aggregation resistance, and an optical reflective film on the back of a reflection type liquid crystal display device, or the like. The Ag alloy film of the present invention comprises an Ag base alloy containing Bi and/or Sb in a total amount of 0.005 to 10% (in terms of at%). Further, the present invention relates to a sputtering target used for the deposition of such an Ag alloy film.

Description

1265976 (1) 九、發明說明 【發明所屬之技術領域】 本發明涉及Ag合金膜,其尤其是適合用於光學資訊 記錄介質領域中具有高導熱係數、高反射率、高耐久性的 光學資訊記錄介質用反射膜和半透過反射膜、耐Ag凝集 性優異的電磁波遮罩用膜、或反射型液晶顯示元件等的背 面上的光學反射膜。本發明進而涉及用於沉積該Ag合金 膜的濺射靶。 【先前技術】 光學資訊記錄介質(光碟)具有的反射膜或半透過反 射膜中,從導熱係數 '反射率及耐久性之角度出發,,已一 直廣泛使用Au、Al、Ag、或含彼爲主要成分的合金。 含有Ag爲主要成分的Ag底質反射膜因具有用於下 一代光碟的對於青紫色鐳射的高反射率、可.寫一次型/重 寫型碟要求的高導熱係數,及原料費用低於Au底質反射 膜的特徵’所以其是有希望作爲反射膜或半透過反射膜的 材料。但是,從耐久性方面來看,雖然其比A1底質反射 膜佳,但並不具備與Au底質反射膜相當的高耐久性。爲 實際作爲光碟的反射膜或半透過反射膜,需要在不損傷 Ag原有的高反射率和高導熱係數的情況下改善耐久性。 對於這種提高Ag底質反射膜耐久性的方法,已有報 告如下之改良方法。例如,根據美國專利第60078 89號, 藉由對 Ag 添力口 Au、Pd、Cu、Rh、Ru、Os、Ir 及 Pt,或 (2) (2)1265976 (1) EMBODIMENT OF THE INVENTION [Technical Field] The present invention relates to an Ag alloy film, which is particularly suitable for use in optical information recording media, and has optical information recording with high thermal conductivity, high reflectivity, and high durability. A reflective film for a medium, a semi-transmissive reflective film, an electromagnetic wave shielding film excellent in Ag aggregation resistance, or an optical reflection film on the back surface of a reflective liquid crystal display element or the like. The invention further relates to a sputtering target for depositing the Ag alloy film. [Prior Art] In a reflective film or a semi-transmissive reflective film of an optical information recording medium (disc), Au, Al, Ag, or a combination thereof has been widely used from the viewpoint of thermal conductivity 'reflectance and durability. The alloy of the main ingredients. Ag-based reflective film containing Ag as a main component has high thermal conductivity for high-reflectivity for blue-violet lasers for next-generation optical discs, writeable/rewriteable discs, and raw material costs lower than Au The characteristic of the underlying reflective film is therefore a material that is promising as a reflective film or a semi-transmissive reflective film. However, from the viewpoint of durability, although it is superior to the A1 substrate reflective film, it does not have high durability comparable to that of the Au substrate reflective film. In order to actually be a reflective film or a semi-transmissive reflective film of an optical disk, it is necessary to improve durability without damaging the high reflectance and high thermal conductivity of Ag. For such a method of improving the durability of the Ag substrate reflective film, the following improved method has been reported. For example, according to U.S. Patent No. 6007889, by adding a force to Au, Pd, Cu, Rh, Ru, Os, Ir, and Pt, or (2) (2)

1265976 根據美國專利第5948497號,藉由對Ag添加Pd 以各自地提高耐久性(化學穩定性)。另外,本1 在日本特開2002 — 1 5464號公報中提到藉由對Ag 土金屬元素以提高其耐久性(結晶粒成長的抑制等 性)的方法。 但是,在高倍速記錄DVD或下一代光碟中, 膜的要求之特性進一步提高,要求比目前更高水準 性、導熱係數及反射率。 尤其關於耐久性,要求對包括氯的鹵元素的S 性。該要求對含有鹵元素的有機染料記錄膜、保護 接劑層等與反射膜直接層疊的可寫一次型光碟的惰 顯著。另外,下一代光碟與DVD不同,其具有如 式所製備之反向層疊構型:在透明塑膠基板上先形 膜,然後在其上層疊成介電體保護膜/記錄膜/力 護膜。因此,爲抑制記錄和再生特性的惡化,必須 低反射膜的表面粗糙度,進而要求即使受到熱負荷 夠維持表面粗糙度的穩定性。 另外’對於導熱係數’需要迅速擴散經由鐳 生於記錄膜極微小區域內的熱。反射膜要求高導 以同時具有作爲熱擴散膜的功能。 進而’關於反射膜’要求對用於高倍速記錄 下一代光碟的青紫色鐳射也要具有高反射率。 但是,滿足所有這些要求的Ag底質合金尙 要確保作爲高倍速記錄DVD或下一代光碟使用 和Cu, ^明人也 添加稀 ;熱穩定 對反射 〖的耐久 ί耐腐蝕 ΐ膜、黏 ί況尤爲 ]下述方 丨成反射 〜電體保 ί極度降 f,也能 f照射産 》係數, DVD或 i出現。 J高可靠 (3) 1265976 性’強烈要求具備高導熱係數、高反射率及高耐久性等全 • 部要求特性的Ag底質合金。 另一方面,至今Ag膜因可見光透過率高、紅外線遮 •罩性優異而用於各種用途。如爲了改善室內的加熱和冷卻 ^ 效率’使用藉由濺射等方式在玻璃等之透明基體上形成1265976 According to U.S. Patent No. 5,948,497, Pd is added to Ag to individually improve durability (chemical stability). In addition, Japanese Laid-Open Patent Publication No. 2002-15524 refers to a method of improving durability (inhibition of crystal grain growth, etc.) by using an Ag earth metal element. However, in high-speed recording DVDs or next-generation optical discs, the required characteristics of the film are further improved, requiring higher levels of conductivity, thermal conductivity, and reflectance than at present. Especially regarding durability, the S property of a halogen element including chlorine is required. This requirement is inconvenient for a write-once optical disc in which an organic dye recording film containing a halogen element, a protective layer, and the like are directly laminated with a reflective film. Further, the next-generation optical disc differs from the DVD in that it has a reverse laminated configuration prepared as follows: a film is formed on a transparent plastic substrate, and then a dielectric protective film/recording film/force film is laminated thereon. Therefore, in order to suppress the deterioration of the recording and reproducing characteristics, it is necessary to lower the surface roughness of the reflective film, and it is required to maintain the stability of the surface roughness even under thermal load. Further, it is necessary to rapidly diffuse heat which is generated in the minute region of the recording film by the radium for the thermal conductivity. The reflective film requires a high conductivity to simultaneously function as a thermal diffusion film. Further, the "reflection film" is required to have a high reflectance for the cyan violet laser for recording the next-generation optical disk at a high speed. However, Ag-based alloys that meet all of these requirements are guaranteed to be used as high-speed recording DVDs or next-generation discs and Cu, and are also added to the thin; heat-stable to reflect the durability of the corrosion-resistant enamel film, adhesion In particular, the following squares reflect the reflection ~ the electric body protects the extreme drop f, and can also f-produce the coefficient, DVD or i appears. J Highly Reliable (3) 1265976 Properties 'Ag prime alloys with all the required characteristics such as high thermal conductivity, high reflectivity and high durability are strongly required. On the other hand, the Ag film has been used in various applications due to its high visible light transmittance and excellent infrared ray shielding properties. For example, in order to improve the heating and cooling in the room, the efficiency is formed by sputtering or the like on a transparent substrate such as glass.

Ag的紅外線遮罩用Ag膜透明體。進而,因Ag膜的電波 遮罩性亦優異,例如,爲了保護由電波所導致之錯誤操作 • 的電子機器免於外部電波,或爲了抑制自電子機器産生的 電波放射’在設置有該等機器的實驗室的窗-戶-玻璃上施加 • Ag膜,或者對該等機器內置或外置Ag膜或施加Ag膜的 基體。 ' 但是,Ag膜因耐磨性差,並對環境的耐久性不夠, 所以會因濕氣等而劣化,難以長期使用。因此,採用加厚 Ag膜的方法。但是,從提高耐磨性、耐久性的觀點來看 ’並沒有充分解決問題,其結果係隨時間Ag膜劣化,因 •此純Ag膜欠缺實用性。而且,厚膜化雖然提高電磁波遮 罩特性(紅外線遮罩性、電波遮罩性),但可見光透過率 "減少,從而室內變暗。 因此,作爲擴大可見光區的透過性且提高A g膜的耐 磨性、耐天候性的技術,提出有由氧化錫、氧化鋅或氧化 • 鈦等氧化物或氮化矽等氮化物所構成的透明介電膜塗層 Ag膜的技術。另外,爲提高Ag膜和這些氧化物或氮化物 之間的密接性,提出有在Ag膜和氧化物或氮化物之間插 入Cr或Ni - Cr合金層的技術。 (4) 1265976 根據該技術,能夠降低Ag .膜的光反射率,所以能夠 減少Ag膜的反射光所引起的閃耀感,同時可得到比上述 純Ag膜耐用期長的效果。但是,Ag即使用透明介電膜塗 * 覆’如果成膜後暴露在大氣中,以透明介電膜自身的氣孔 , 或傷痕等缺陷部位爲起點進行Ag凝集,則容易引起Ag 膜的裂膜(即,膜的連續性消失),産生裂膜。如果如此 (失去膜的連續性),則失去Ag膜的導電性,且電磁波, · ·遮罩特性顯著下降。並且基於Ag凝集,玻璃或薄膜等施 ' 有A g膜的基體表面上産生很多白點,降低外觀設計性和 - 商品性。 — 作爲改善這種Ag膜凝集的技術,已提出各種不同的 „ 技術。例如,日本特開平7 - 3 1 5 8 74 / 1 995號公報已提出 在玻璃板表面上形成對A g添加5〜2 0摩爾%的至少一種 运自 P d、Pt、Sη、Ζη、Iη、C r、Ti、S i、Zr、Nb、Ta 的 元素的金屬薄膜的熱線遮罩玻璃。 φ 另外,日本特開平8 — 293379/1996號公報已提出在 基體上將主要成分爲Ag及對Ag含有0.5〜5原子%的Pd 的金屬層層疊主要成分爲至少一種選自Zn、In或Sn的金 屬氧化物的透明介電層的技術,使得該金屬層介於該透明 介電層之間。 - 、 進而·,日本特開平9 — 135096/1997號公報已提出在The infrared mask of Ag is made of an Ag film transparent body. Further, the Ag film is excellent in radio wave shielding property, for example, in order to protect an electronic device that is erroneously operated by radio waves from external electric waves, or to suppress radio wave radiation generated from an electronic device. The laboratory's window-household-glass application: Ag film, or a built-in or external Ag film or a substrate to which an Ag film is applied. However, the Ag film is inferior in abrasion resistance and has insufficient durability to the environment, so it is deteriorated by moisture or the like, and it is difficult to use it for a long period of time. Therefore, a method of thickening the Ag film is employed. However, from the viewpoint of improving wear resistance and durability, the problem has not been sufficiently solved, and as a result, the Ag film deteriorates with time, and the pure Ag film lacks practicality. Further, although the thick film is improved in electromagnetic wave shielding properties (infrared masking property and radio wave masking property), the visible light transmittance " is reduced, and the room is darkened. Therefore, as a technique for increasing the permeability of the visible light region and improving the wear resistance and weather resistance of the A g film, it is proposed to be composed of an oxide such as tin oxide, zinc oxide, or titanium oxide, or a nitride such as tantalum nitride. A technique of coating a Ag film with a transparent dielectric film. Further, in order to improve the adhesion between the Ag film and these oxides or nitrides, a technique of inserting a Cr or Ni-Cr alloy layer between an Ag film and an oxide or a nitride has been proposed. (4) 1265976 According to this technique, since the light reflectance of the Ag film can be lowered, the blaze caused by the reflected light of the Ag film can be reduced, and an effect longer than the durability of the above pure Ag film can be obtained. However, Ag is coated with a transparent dielectric film. If it is exposed to the atmosphere after film formation, Ag is agglomerated with defects such as pores or scratches of the transparent dielectric film, and it is easy to cause cracking of the Ag film. (ie, the continuity of the film disappears), resulting in a split film. If this is the case (the continuity of the film is lost), the conductivity of the Ag film is lost, and the electromagnetic wave and the mask characteristics are remarkably lowered. And based on Ag agglomeration, glass or film, etc., produces a lot of white spots on the surface of the substrate with the A g film, which reduces the design and commerciality. — As a technique for improving the aggregation of such an Ag film, various different techniques have been proposed. For example, Japanese Patent Laid-Open No. Hei 7- 3 1 5 8 74 / 1 995 has proposed the formation of a 5 g on the surface of a glass plate. 20% by mole of a hot-line mask glass of at least one metal film transported from elements of Pd, Pt, Sη, Ζη, Iη, Cr, Ti, S i, Zr, Nb, Ta. φ In addition, Japanese special Kaiping 8 - 293379/1996 has proposed to laminate a metal layer whose main component is Ag and Pd containing 0.5 to 5 atom% of Ag on a substrate, and the main component is at least one metal oxide selected from Zn, In or Sn. The technique of the dielectric layer is such that the metal layer is interposed between the transparent dielectric layers. - Further, Japanese Patent Laid-Open Publication No. Hei 9-135096/1997 has been proposed.

Ag中添加3原子%的至少一種選自Pb、Cu、An、Ni、Zn 、Cd、Mg或A1的元素的電磁波遮罩基板,並且日本特 開平11— 231122/ 1999號公報已提出藉由在Ag中添加 1265976 (5)An electromagnetic wave shielding substrate in which at least one element selected from the group consisting of Pb, Cu, An, Ni, Zn, Cd, Mg, or A1 is added to Ag, and Japanese Patent Laid-Open No. Hei 11-231122/1999 has been proposed by Add 1265976 to Ag (5)

Pb、Cu、Au、Ni、Pd、Pt、Zn、Cd、Mg 及 A1 以實現提 高A g的耐凝集性的技術。 進而,本發明人提出藉由在Ag中添加Sc、Y和稀土 ' 類元素以實現提高Ag的耐凝集性的技術(日本特願平 1 3 — 3 5 1 5 72 / 200 1 號)。 但這些被提案的和被提出的Ag合金膜也會隨時間推 .進而使Ag凝集,使Ag合金膜劣化。因此,如在這些Ag Φ 合金膜塗層的面暴露於大氣中的狀態下使用,以覆蓋Ag 合金膜的透明膜的缺陷部爲中心産生Ag凝集,結果爲使 , Ag合金膜面不暴露於大氣中,必須加工成夾層玻璃或複 _ .層玻璃來使用,導致製造成本上升。另外,即使是製成夾 ^ 層玻璃或複層玻璃的情況,如果在Ag成膜後不馬上加工 成夾層玻璃或複層玻璃,就會産生白點,失去作爲商品的 使用價値。並且,即使是製成夾層玻璃或複層玻璃的情況 ,如果長期使用Ag合金膜會劣化,從而無法具有充分的 ® 耐久性。 最近’無需內置燈而耗電少的反射型液晶顯示元件受 人注自。該反射型液晶顯示元件的背面必須設有作爲反射 板的光反射膜,反射室內光或自然光等成爲用於形成圖像 的光源。因此,光反射膜的反射率越高越容易形成明亮而 • 淸晰的圖像。 以往作爲該光反射膜一直使用反射率高的A1薄^, 但在最近開始使用反射率更高、耐化學腐蝕性強的Ag丨 體的薄膜(Ag薄膜)作爲光反射膜。 -9- (6) 1265976 但是’ Ag薄膜在製造液晶顯示元件時如在高溫下長 時間暴露於空氣中,或者在製造後的使用過程中在高溫高 濕下長時間暴露情況等,會發生結晶粒的粗大化、Ag原 • 子的凝集、Ag的氧化等引起的泛白或白點,反射率下降 ,因此無法得到Ag原有的高反射率。並且,根據元件製 造過程中不可避免的熱歷史(至200 °C ),基於結晶粒的 成長或Ag原子的凝集所引起的薄膜表面的粗糙度增大或 φ 異常粒子成長,元件形成變得困難或者反射率進而降低。 因此,爲了防止A g的結晶粒的成長或A g原子的凝 , 集,以發揮維持Ag原有的高光反射率,已提出在Ag中 - 添加其他種類之元素。 . 例如,日本特開平7 - 1 3 43 00 / 1 995號公報公開一種 由含有比銀容易氧化的金屬,具體來說是選自鎂、鋁、鈦 、鉻或給的一種或兩種以上金屬的銀合金(Ag底質合金 )所構成的薄膜。 # 另外,日本特開平9 — 23 0806/ 1 997號公報公開一種 由與防止銀元素遷移的其他種類之元素,具體來說是選自 鋁、銅、鎳、鎘、金、鋅或鎂中的一種或兩種以上金屬的 合金的銀系金屬材料(Ag底質合金)所構成的薄膜。 但是,上述現有技術亦無法充分阻止Ag的結晶粒成 - 長或Ag原子的凝集,因而無法確保Ag原有的高光反射 率。 【發明內容】 -10- 1265976 (7) 發明摘要 本發明就是鑒於以上狀況而完成的。其第一個目的是 藉由找出比純Ag或現有的Ag合金具有高導熱係數、高 反射率、高耐久性的Ag底質合金,提供高倍速DVD或下 一代光碟用具有高可靠性的光資訊記錄介質用Ag底質合 金反射膜或半透過反射膜、以及具備這些反射膜或半透過 反射膜的光資訊記錄介質。 # 本發明的第二個目的是提供不易産生Ag凝集、進而 是具有優異的耐久性的電磁波遮罩用Ag合金膜、以及電 磁波遮罩用Ag合金膜形成體。 ^ 本發明的第三個目的是藉由找出能夠盡可能地防止 , Ag的結晶粒成長或Ag原子的凝集的Ag底質合金,提供 具備與Ag原有的高光反射率幾乎相等的高光反射率的高 性能光反射膜或使用該光反射膜的液晶顯示元件。 本發明的第四個目的是提供可用於上述各種Ag合金 ® 膜成膜的濺射靶。 實現上述任意一個目的的本發明之Ag底質合金薄膜 含有至少一種選自Bi和Sb的元素,Bi和Sb的含量合計 爲0.005〜10原子%。該Ag底質合金薄膜的厚度適宜爲 3〜300 nm。另外,該Ag底質合金薄膜中,最好是進而含 • 有至少一種稀土類金屬元素,該稀土類金屬元素適宜選自 N d和Y的至少一種。 如果薄膜是由Bi和Sb的含量合計爲0.005〜0.40原 子%的Ag底質合金所構成’則該Ag底質合金薄膜將兼 -11 - 1265976 (8) 備高導熱係數、高反射率、高耐久性,可實現該第一個目 的。在此,適宜地該Ag底質合金進而含有至少一種選自 Nd和Y的元素,該元素的合計含量爲〇.1〜2原子%。另 ' 外,該 Ag底質合金進而含有至少一種選自 Cu、Au、Rh _ 、Pd或Pt的元素,該元素的合計含量爲0.1〜3原子%。 如果薄膜是由Bi和Sb的含量合計爲0.01〜10原子 %的Ag底質合金所構成,則該Ag底質合金薄膜將不易 • 産生Ag凝集、進而具有優異的耐久性,可實現該第二個 目的。在此,適宜地該Ag底質合金進而含有至少一種選 ', 自 Cu、Au、Pd、Rh、Ru、Ir或Pt的元素,該元素的合 計含量爲〇·3原子%或以上。 . 如果薄膜是由Bi和Sb的含量合計爲0.01〜4原子% 的Ag底質合金所構成,則該Ag底質合金薄膜將能夠盡 可能地防止Ag的結晶粒成長或Ag原子的凝集,同時還 具:備與Ag原有的高光反射率幾乎相等的高光反射率,可 •實現該第三個目的。在此,適宜地該Ag底質合金進而含 有〇·〇1〜2原子%的稀土類金屬元素,該稀土類金屬元素 適宜地爲N d和Y的至少一種。 爲了實現_h述目的的本發明Ag底質合金薄膜形成用 濺射靶含有Bi: 〇·05〜23原子%、sb: 0.005〜10原子% - 中的至少一種。 如果Ag底質合金薄膜形成用濺射靶含有0.05〜4.5 原子%的Bi或含有〇 〇〇5〜〇·4〇原子%的sb,則適用於 兼備高導熱係數、高反射率、高耐久性的Ag底質合金薄 -12- 1265976 (9) 膜的成膜。 - 如果該濺射靶中的含量滿浞Bi : 0.2〜23原子%及Sb :0.0 1〜1 0原子%中的至少一種,並且該濺射靶中的B i 量及Sb量滿足下述式(1 ),則適合於不易産生Ag凝集 、進而是具有優異的耐久性的Ag底質合金薄膜的成膜。 01 原子 % € 0.0005 02X3 + 0.009 8 7X2 + 0.0 5 5 3 X + y $ 1 0 原子% ……式(1 ) ^ 上述式(1 )中,X爲Ag底質合金濺射IE中的Bi量 (原子%) 、yMAg底質合金.灘射靶中的Sb量(原子% )。並且,進而適宜地含有0.3原子%以上的至少一種選 : 自 Cu、Au、Pd、Rh、*Ru、Ir 或 Pt 的元素。 - 如果該濺射靶中的含量滿足Bi: 0.2〜15原子%及Sb :t 01〜4原子%中的至少一種,並且該濺射靶中的Bi量 及Sb量滿足下述式(2 ),則適合於能夠盡可能地防止 /. Ag的結晶·粒成長或Ag原子的凝集,同時還具備與Ag原 > 有的高光反射率幾乎相等的高光反射率的Ag底質合金薄 膜的成膜。 01 原子 %S 0.0 00502X3 + 0.00987X2 + 0.0553X + y€4 原 - ' 子% ...... 式(2) • 上述式(2 )中,X爲Ag合金濺射靶中的Bi量(原 '子%) 、乂爲八8合金濺射靶中的Sb量(原子%)。Pb, Cu, Au, Ni, Pd, Pt, Zn, Cd, Mg, and A1 are techniques for improving the agglutination resistance of A g . Further, the present inventors have proposed a technique for improving the agglutination resistance of Ag by adding Sc, Y, and a rare earth 'element element to Ag (Japanese Patent No. 1 3 - 3 5 1 5 72 / 200 No. 1). However, these proposed and proposed Ag alloy films are also pushed over time, which causes Ag to aggregate and deteriorate the Ag alloy film. Therefore, when the surface of the Ag Φ alloy film coating is exposed to the atmosphere, Ag is aggregated around the defect portion of the transparent film covering the Ag alloy film, and as a result, the Ag alloy film surface is not exposed to In the atmosphere, it must be processed into laminated glass or laminated glass to cause an increase in manufacturing costs. Further, even in the case of forming a laminated glass or a laminated glass, if a laminated glass or a laminated glass is not processed immediately after the film formation of Ag, white spots are generated and the use price as a commercial product is lost. Further, even in the case of forming a laminated glass or a laminated glass, if the Ag alloy film is used for a long period of time, it will deteriorate, and thus it is impossible to have sufficient ® durability. Recently, a reflective liquid crystal display element which consumes less power without a built-in lamp has been attracting attention. The back surface of the reflective liquid crystal display element must be provided with a light reflecting film as a reflecting plate, and indoor light or natural light is reflected as a light source for forming an image. Therefore, the higher the reflectance of the light reflecting film, the easier it is to form a bright and clear image. Conventionally, as the light-reflecting film, A1 film having a high reflectance has been used. However, a film (Ag film) of an Ag film having a high reflectance and high chemical resistance has recently been used as a light-reflecting film. -9- (6) 1265976 However, crystallization occurs when the Ag film is exposed to air for a long time at a high temperature during the manufacture of a liquid crystal display element, or exposed to high temperature and high humidity for a long time during use. The whitening or white spots caused by coarsening of the particles, aggregation of Ag atoms, oxidation of Ag, etc., and the reflectance are lowered, so that the high reflectance of Ag is not obtained. Further, depending on the heat history unavoidable in the manufacturing process of the device (to 200 ° C), the formation of the film becomes difficult due to the increase in the roughness of the surface of the film or the growth of the abnormal particles due to the growth of crystal grains or the aggregation of Ag atoms. Or the reflectivity is further reduced. Therefore, in order to prevent the growth of crystal grains of A g or the aggregation of A g atoms, it is proposed to maintain the original high light reflectance of Ag, and it has been proposed to add other kinds of elements in Ag. For example, Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. A film composed of a silver alloy (Ag base alloy). In addition, Japanese Laid-Open Patent Publication No. Hei 9-23 0806/1 997 discloses an element of other kinds, which is selected from aluminum, copper, nickel, cadmium, gold, zinc or magnesium, and is resistant to migration of silver. A film composed of a silver-based metal material (Ag-based alloy) of an alloy of two or more kinds of metals. However, the above prior art cannot sufficiently prevent the crystal grains of Ag from being aggregated or Ag atoms, and thus the original high light reflectance of Ag cannot be ensured. SUMMARY OF THE INVENTION -10- 1265976 (7) SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances. Its first objective is to provide high-speed DVD or next-generation optical discs with high reliability by finding Ag-based alloys with high thermal conductivity, high reflectivity, and high durability compared to pure Ag or existing Ag alloys. An Ag-based alloy reflective film or a semi-transmissive reflective film for an optical information recording medium, and an optical information recording medium having the reflective film or the semi-transmissive reflective film. # A second object of the present invention is to provide an Ag alloy film for electromagnetic wave shielding which is less likely to cause aggregation of Ag, and further excellent durability, and an Ag alloy film forming body for electromagnetic wave shielding. The third object of the present invention is to provide a high-light reflection having almost the same high light reflectance as Ag by finding an Ag-based alloy capable of preventing the growth of Ag crystal grains or Ag atoms from being prevented as much as possible. A high-performance light reflecting film or a liquid crystal display element using the light reflecting film. A fourth object of the present invention is to provide a sputtering target which can be used for film formation of the above various Ag alloy ® films. The Ag-based alloy film of the present invention which achieves any of the above objects contains at least one element selected from the group consisting of Bi and Sb, and the total content of Bi and Sb is 0.005 to 10% by atom. The thickness of the Ag-based alloy film is suitably from 3 to 300 nm. Further, in the Ag-based alloy thin film, it is preferable to further contain at least one rare earth metal element which is at least one selected from the group consisting of N d and Y. If the film is composed of Ag-base alloy having a total content of Bi and Sb of 0.005 to 0.40 atom%, the Ag-based alloy film will have a high thermal conductivity, high reflectance, and high. Durability, the first purpose can be achieved. Here, suitably, the Ag-based alloy further contains at least one element selected from the group consisting of Nd and Y, and the total content of the element is 0.1 to 2 atom%. Further, the Ag-based alloy further contains at least one element selected from the group consisting of Cu, Au, Rh_, Pd or Pt, and the total content of the element is 0.1 to 3 atom%. If the film is composed of an Ag-based alloy having a total content of Bi and Sb of 0.01 to 10% by atom, the Ag-based alloy film is less likely to generate Ag aggregation and thus has excellent durability, and the second can be realized. Purpose. Here, suitably, the Ag-based alloy further contains at least one element selected from Cu, Au, Pd, Rh, Ru, Ir or Pt, and the total content of the element is 〇·3 atom% or more. If the film is composed of an Ag-based alloy having a total content of Bi and Sb of 0.01 to 4 atom%, the Ag-based alloy film can prevent crystal grain growth of Ag or aggregation of Ag atoms as much as possible. It also has a high light reflectivity that is almost equal to the original high light reflectance of Ag, and can achieve the third purpose. Here, it is preferable that the Ag-based alloy further contains a rare earth metal element of 1 to 2 atom% of lanthanum cerium, and the rare earth metal element is suitably at least one of N d and Y. At least one of Bi: 〇·05 to 23 at% and sb: 0.005 to 10 at% of the sputtering target for sputtering target formation of the present invention for the purpose of the invention. If the Ag target film forming sputtering target contains 0.05 to 4.5 atom% of Bi or sb containing 5 to 4 atom% of the sputtering target, it is suitable for high thermal conductivity, high reflectance, and high durability. Ag-based alloy thin film -12- 1265976 (9) film formation. - if the content in the sputtering target is at least one of Bi: 0.2 to 23 at% and Sb: 0.0 1 to 10 at%, and the amount of B i and the amount of Sb in the sputtering target satisfy the following formula (1) It is suitable for film formation of an Ag-based alloy thin film which is less likely to cause Ag aggregation and further has excellent durability. 01 Atomic % € 0.0005 02X3 + 0.009 8 7X2 + 0.0 5 5 3 X + y $ 1 0 Atomic % ...... Formula (1 ) ^ In the above formula (1), X is the amount of Bi in the sputtering IE of Ag substrate (Atomic %), yMAg, and the amount of Sb (atomic %) in the beach target. Further, it is preferable to contain at least one element selected from the group consisting of Cu, Au, Pd, Rh, *Ru, Ir or Pt. - if the content in the sputtering target satisfies at least one of Bi: 0.2 to 15 at% and Sb: t 01 to 4 at%, and the amount of Bi and the amount of Sb in the sputtering target satisfy the following formula (2) In addition, it is suitable for the formation of an Ag-based alloy thin film which is capable of preventing the formation of Ag crystals, grain growth, or aggregation of Ag atoms as much as possible, and having a high light reflectance which is almost equal to the Ag light > membrane. 01 Atomic %S 0.0 00502X3 + 0.00987X2 + 0.0553X + y€4 Original - ' Sub% ...... Equation (2) • In the above formula (2), X is the amount of Bi in the Ag alloy sputtering target (Original '%%), 乂 is the amount of Sb (atomic %) in the eight-8 alloy sputtering target.

Bi和Sb的含量合計爲0.005〜0.40原子%的Ag底質 合金薄膜適合用作光資訊記錄介質用反射膜或半透過反射 膜。 •13- (10) 1265976An Ag-based alloy film having a total content of Bi and Sb of 0.005 to 0.40 atom% is suitably used as a reflective film or a semi-transmissive reflective film for an optical information recording medium. •13- (10) 1265976

Bi和Sb的含量合計爲(^丨〜;^原子%的Ag底質合 金薄膜適合用作電磁波遮罩膜,Q該電磁波遮罩膜中,適宜 地該Ag底質合金薄膜的表面和介面的至少一方具有8丨和 - Sb中至少一種的含量比該Ag底質合金薄膜內部多的層。 另外,該電磁波遮罩膜中,適宜地該B i和S b中至少一種 的含量多的層含有氧化Bi和氧化Sb的至少一種。The total content of Bi and Sb is (^丨~; ^ atom% of the Ag-based alloy film is suitable for use as an electromagnetic wave mask film, Q in the electromagnetic wave mask film, suitably the surface and interface of the Ag-based alloy film At least one of the layers having at least one of 8 Å and -Sb is more than the inner layer of the Ag-based alloy film. Further, in the electromagnetic wave mask film, a layer having a high content of at least one of B i and S b is suitably used. Containing at least one of Bi oxide and Sb oxide.

Bi和Sb的含量合計爲〇·〇ι〜10原子%的Ag底質合 ☆ # 金薄膜還適合用作電磁波遮罩膜形成體。該電磁波遮罩膜 形成體可以構成爲在該基體上形成有含有選自氧化物、氮 ' 化物或氧氮化物中的至少一種的膜作爲底層,在該底層上 :形成有該Ag底質合金薄膜,在該Ag底質合金薄膜上形 . 成有含有選自氧化物、氮化物或氧氮化物中的至少一種的 膜作爲保護層。在此,適宜地該底層和該保護層爲氧化物 或氧氮化物。並且,適宜地該氧化物爲選自ITO、氧化鋅 、氧化錫或氧化銦中的至少一種。另外,適宜地該底層和 • 該保護層的厚度爲l〇nm以上及lOOOnm以下。該電磁波 遮罩膜形成體適宜地構成:該基體爲透明基體,或在該保 護層之上層疊有透明體,或在該保護層之上隔著隔板層疊 透明體,在該保護層和該透明體之間設置有空間層。該電 磁波遮罩膜形成體中,適宜地該Ag底質合金薄膜的厚度 - 爲3nm以上及20nm以下。 -The total content of Bi and Sb is Ag·〇ι~10 atom% of Ag substrate. ☆ # Gold film is also suitable as an electromagnetic wave mask film former. The electromagnetic wave mask film forming body may be configured such that a film containing at least one selected from the group consisting of an oxide, a nitrogen compound, or an oxynitride is formed on the substrate as a bottom layer on which the Ag substrate is formed A film is formed on the Ag-base alloy film to form a film containing at least one selected from the group consisting of oxides, nitrides, and oxynitrides as a protective layer. Here, suitably, the underlayer and the protective layer are oxides or oxynitrides. Further, suitably, the oxide is at least one selected from the group consisting of ITO, zinc oxide, tin oxide, and indium oxide. Further, suitably, the underlayer and the protective layer have a thickness of 10 nm or more and 100 nm or less. The electromagnetic wave mask film forming body is suitably configured such that the substrate is a transparent substrate, or a transparent body is laminated on the protective layer, or a transparent body is laminated on the protective layer via a separator, and the protective layer and the protective layer A space layer is provided between the transparent bodies. In the electromagnetic wave mask film forming body, the thickness of the Ag-based alloy film is preferably -3 nm or more and 20 nm or less. -

Bi和Sb的含量合計爲〇·〇1〜4原子%的Ag底質合 金薄膜適合用作用於液晶顯示元件的反射電極或反射板的 光反射膜。 -14- (11) 1265976 如果將本發明Ag底質合金用於光資訊記錄介質用之 反射膜或半透過反射膜’則具有高導熱係數、高反射率、 高耐久性,因此可大幅度提高光資訊記錄介質(尤其是高 • 倍速D V D或下一代光碟)的記錄和再生之特性和可靠性 。另外,本發明的Ag底質合金薄膜形成用之濺射靶適合 用作光資訊記錄介質的反射膜或半透過反射膜,使用其成 膜的反射膜或半透過反射膜的合金組成和合金元素分佈和 • 膜厚的膜面內均勻性優異。並、且,·該反射膜或半透過反射 膜的雜質成分含量少,因此可良好地表現出作爲反射膜的 高性能(高導熱係數、高反射率、、高耐久性),可生産出 ^ 高性能且可靠性高的光資訊記錄介質。進而,具備該反射 . 膜或半透過反射膜的光資訊記錄介質能夠大幅度提高記錄 和再生之特性和可靠性。 另外,如果將本發明Ag底質合金用於電磁波遮罩用 膜,則不易産生Ag的凝集,並且不易産生由於Ag的凝 • 集而導電性消失引起的電磁波·遮罩特性的下降或白點,因 此可提高有關耐久性。本發明Ag底質合金薄膜形成用濺 射靶適合用作這種電磁波遮罩用膜的成膜。 另外,如果將本發明的Ag底質合金用於液晶顯示元 件的光反射膜,則能夠提供具備與Ag原有的高光反射率 • 幾乎相等的高光反射率的高性能光反射膜,以及使用該光 反射膜的液晶顯示元件。本發明的Ag底質合金薄膜形成 用濺射靶適合用作這種液晶顯示元件的光反射膜的成膜。 -15- (12) 1265976 較佳體系之詳細說明 首先,對第一個發明的較佳體系進行說明。 本發明人在上述之課題下,潛心硏究’以提供具有 導熱係數、高反射率、高耐久性的光資訊記錄介質用 Ag底質合金反射膜或半透過反射膜。其結果發現含有 及/或Sb合計爲0.005〜0.40%的Ag底質合金不僅具 能夠與純Ag相關的高反射率、高導熱係數,而且可發 # 超過純Ag的高水準的耐久性,以致完成本發明。下面 本發明進行詳細說明。 • 本發明的光資訊記錄介質用Ag底質合金反射膜或 ^ 透過反射膜是由含有Bi及/或Sb合計0.005〜0.40% - 爲必須元素的Ag底質合金構成。由這種Ag底質合金 成的反射膜或半透過反射膜不僅具有能夠與純Ag相當 高導熱係數和高反射率,而且具有卓越的耐久性(熱穩 性及化學穩定性)。 ® 通常,由濺射法等成膜的純Ag薄膜含有多個結晶 陷(空穴、轉位 '粒界等),經該結晶缺陷,Ag容易 散,因此如果在高溫高濕環境下放置純Ag薄膜,則 原子在各處擴散、凝集,使表面粗度或結晶粒徑增大。 外,Ag原子在含有氯離子等鹵離子的環境下也同樣容 * 擴散和凝集。起因於這種凝集的薄膜表面的變化導致反 率的下降,顯著惡化光碟的記錄和再生之特性。尤其用 DVD - ROM的極薄的半透過反射膜中,凝集導致的對 射率的影響大,顯著惡化光碟的記錄和再生之特性。 高 之 Bi 有 揮 對 半 作 構 的 定 缺 擴 Ag 另 易 射 於 反 -16- (13) 1265976 作爲上述問題的解決方法’一直探討著Ag的合金化 ,提出有如在Ag中添加貴金屬元素(Au、Pd、Pt等), 或添加稀土類金屬元素(Y等)的合金化。 ' 但是,如果在Ag中添加貴金屬元素(Au、Pd、Pt等 )進行合金化,雖然能夠抑制受氯離子等的影響的Ag原 子的凝集,但無法抑制放置於高溫高濕下的Ag原子的凝 集。另外,添加稀土類金屬元素(Y等)進行合金化的方 # 法是雖然能夠抑制放置於高溫高濕下的Ag原子的凝集, 但無法抑制受氯離子等的影響的Ag原子的凝集。即,使 * 用任意元素組的合金化也無法同時抑制受高溫高濕下放置 . 和氯離子影響的來自該雙方影響的Ag原子的凝集。 - 但是根據本發明,藉由製成Bi及/或Sb合計含量超 過0.005 %的Ag底質合金,能夠同時抑制受高溫高濕下 放置和氯·離子影響的Ag原子的凝集。並且,這些元素被 確認隨其含量增加而發揮更明確的凝集抑制效果。但是, ® 向Ag添加上述元素存在對於純Ag薄膜降低導熱係數和 反射率的傾向,該傾向隨上述元素含量的增加而顯著,結 果降低Ag底質合金薄膜的導熱係數和反射率。 對於上述元素的含量,從確保用於下一代光碟的對青 紫色鐳射的高反射率角度來看,總含量上限可提高至3 % 。但是’如果總含量超過〇 · 4 0 %,則無法確保高倍速 DVD或下一代光碟的反射膜要求的高導熱係數,因此, 作爲爲了確保高反射率和高導熱係數兩個特性的要素,總 含重的上限定爲0.40 %。另一方面,如果總含量不足 -17- (14) 1265976 Ο · Ο Ο 5 %,則無法有效發揮根據添加B i及/或s b 抑制效果。適宜地〇 · Ο 1 %以上,〇 · 3 %以下,更: 〇 . 〇 5 %以上,〇 · 2 %以下。考慮到濺射靶的製造等 * 作性優異方面來看,適宜地使用Bi。 本發明中,爲了進而提高含有Bi及/或Sb的 質合金的耐久性,尤其是熱穩定性,除了上述元素 稀土類金屬元素也有效。這些元素具有進而抑制高 • 下放置引起的Ag原子的凝集,進而提高耐久性的 該稀土類金屬元素適宜地Nd及/或Y,對於上述 , 質合金的這些元素的含量適宜地Nd及/或Y合計 • 以上,2%以下。如果不足0.1%,則無法獲得根據 - 素添加的效果,如果含量超過2 %,則無法獲得高 數。更適宜地的含量上限爲1%,進而適宜地0.5% 進而,爲了提高含有Bi及/或Sb的Ag底質 耐久性,尤其是化學穩定性,可添加至少一種選自 B Au、Rh、Pd或Pt的元素。這些元素具有進而抑制 子影響的Ag原子的凝集,進而提高耐久性的效果 有效發揮這些Ag原子的凝集抑制效果,適宜地總 0.1%以上,3%以下。更適宜地的上限爲2%。 另外,爲了實現Ag底質合金的進而的化學穩 . 提高,在上述元素中添加Mg、Ti及Zn也有效。 加這些元素的耐久性提高效果不及Au、Rh、Pd及 因原料費便宜,在降低光碟的成本方面有利。如果 Ti及Zn的含量多,會降低導熱係數和反射率’因 的凝集 適宜地 ,從操 Ag底 外含有 溫高濕 效果。 Ag底 0.1% 上述元 導熱係 〇 合金的 Cu、 受氯離 ,爲了 含S爲 定性的 雖然添 Pt,但 Mg、 此,這 -18 - (15) 1265976 些兀素的總Q重上限定爲3 %。當然,對於以上合金元素 組’添加一種也能獲得充分的效果,但組合兩種以上添加 ’也能夠獲得同樣的效果。只是,作爲稀土類金屬元素添 加Nd及/或 Y來得到的上述效果或添加至少一種選自 Cu ' Au、Rh、Pd或Pt的元素來得到的上述效果爲含有 Bi及/或Sb的Ag底質合金能得到的特有的效果,如在 純A g中得不到同樣的效果。 如日本特開200 1 — 1 84725號公報亦公開藉由在Ag 中添加 〇·5 〜5% 的選自 Al、Au、Cu、Co、Ni、Ti、V、 Mo、Μη、Pt、Si、Nb、Fe、Ta、Hf、Ga、Pd、Bi、In、An Ag-based gold alloy film having a total content of Bi and Sb of 〇·〇1 to 4 at% is suitably used as a light-reflecting film for a reflective electrode or a reflector of a liquid crystal display element. -14- (11) 1265976 When the Ag-based alloy of the present invention is used for a reflective film or a semi-transmissive reflective film for optical information recording media, it has high thermal conductivity, high reflectance, and high durability, and thus can be greatly improved. The recording and reproduction characteristics and reliability of optical information recording media (especially high-speed DVD or next-generation optical discs). Further, the sputtering target for forming an Ag-based alloy thin film of the present invention is suitably used as a reflective film or a semi-transmissive reflective film of an optical information recording medium, and an alloy composition and an alloying element of a reflective film or a semi-transmissive reflective film formed thereon are used. Distribution and • Film thickness is excellent in in-plane uniformity. In addition, since the content of the impurity component of the reflective film or the semi-transmissive reflective film is small, the high performance (high thermal conductivity, high reflectance, and high durability) of the reflective film can be satisfactorily exhibited, and the product can be produced. High performance and highly reliable optical information recording medium. Further, the optical information recording medium having the reflection or the film or the semi-transmissive reflection film can greatly improve the characteristics and reliability of recording and reproduction. In addition, when the Ag-based alloy of the present invention is used for a film for electromagnetic wave shielding, aggregation of Ag is less likely to occur, and it is less likely to cause a decrease in electromagnetic wave/mask characteristics or white spots due to disappearance of conductivity due to aggregation of Ag. Therefore, it can improve the durability. The sputtering target for forming a Ag-based alloy film of the present invention is suitably used for film formation of such a film for electromagnetic wave shielding. In addition, when the Ag-based alloy of the present invention is used for a light-reflecting film of a liquid crystal display device, it is possible to provide a high-performance light-reflecting film having a high light reflectance which is almost equal to the original high light reflectance of Ag, and A liquid crystal display element of a light reflecting film. The sputtering target for forming an Ag-based alloy film of the present invention is suitably used as a film of a light-reflecting film of such a liquid crystal display element. -15- (12) 1265976 DETAILED DESCRIPTION OF THE PREFERRED SYSTEM First, a preferred system of the first invention will be described. The present inventors have focused on the above-mentioned problems to provide an Ag-based alloy reflective film or a semi-transmissive reflective film for an optical information recording medium having thermal conductivity, high reflectance, and high durability. As a result, it was found that the Ag-based alloy containing and/or having a total Sb of 0.005 to 0.40% has not only high reflectance and high thermal conductivity which can be correlated with pure Ag, but also can exceed the high level of durability of pure Ag. The present invention has been completed. The invention is described in detail below. The Ag-based alloy reflective film or the transmission-reflecting film for an optical information recording medium of the present invention is composed of an Ag-based alloy containing 0.005 to 0.40% of Bi and/or Sb as a necessary element. The reflective film or semi-transmissive reflective film made of such an Ag-based alloy has not only high thermal conductivity and high reflectance comparable to pure Ag, but also excellent durability (thermal stability and chemical stability). ® In general, a pure Ag film formed by sputtering or the like contains a plurality of crystal defects (holes, translocation 'grain boundaries, etc.), and Ag is easily dispersed by the crystal defects, so if it is placed in a high-temperature and high-humidity environment, it is pure. In the Ag film, atoms diffuse and aggregate in various places to increase the surface roughness or crystal grain size. In addition, Ag atoms are also diffused and aggregated in an environment containing a halogen ion such as a chloride ion. The change in the surface of the film resulting from such agglomeration causes a decrease in the inversion rate, which significantly deteriorates the characteristics of recording and reproduction of the optical disk. In particular, in the extremely thin semi-transmissive reflective film of the DVD-ROM, the influence of the aggregation due to agglomeration is large, and the characteristics of recording and reproduction of the optical disk are remarkably deteriorated. Gao Bi has a half-construction of the lack of expansion Ag is also easy to shoot in the anti-16- (13) 1265976 as a solution to the above problem 'has been discussing the alloying of Ag, proposed to add precious metal elements in Ag ( Au, Pd, Pt, etc.), or alloying of rare earth metal elements (Y, etc.). However, when alloying is performed by adding a noble metal element (Au, Pd, Pt, etc.) to Ag, it is possible to suppress aggregation of Ag atoms affected by chloride ions or the like, but it is not possible to suppress Ag atoms placed under high temperature and high humidity. Agglutination. In addition, the addition of a rare earth metal element (Y or the like) to the alloying method suppresses aggregation of Ag atoms placed under high temperature and high humidity, but does not inhibit aggregation of Ag atoms affected by chloride ions or the like. That is, the alloying of * with any element group cannot simultaneously suppress the aggregation of Ag atoms from both sides affected by the high temperature and high humidity. - According to the present invention, by forming an Ag-based alloy having a total content of Bi and/or Sb of more than 0.005%, it is possible to simultaneously suppress aggregation of Ag atoms which are affected by high temperature and high humidity and chlorine ions. Further, these elements were confirmed to exhibit a more specific agglutination inhibitory effect as their content increased. However, the addition of the above elements to Ag has a tendency to lower the thermal conductivity and the reflectance of the pure Ag film, which is remarkable as the content of the above elements is increased, and as a result, the thermal conductivity and reflectance of the Ag underlying alloy film are lowered. For the content of the above elements, the upper limit of the total content can be increased to 3% from the viewpoint of ensuring high reflectance for the blue-violet laser for the next-generation optical disc. However, if the total content exceeds 〇·40%, the high thermal conductivity required for the reflective film of the high-speed DVD or the next-generation optical disc cannot be ensured. Therefore, as an element for ensuring both high reflectance and high thermal conductivity, The upper limit of the weight is defined as 0.40%. On the other hand, if the total content is less than -17-(14) 1265976 Ο · Ο Ο 5 %, the effect of adding B i and/or s b can not be effectively exerted. Suitably 〇 · Ο 1% or more, 〇 · 3 % or less, more: 〇 . 〇 5 % or more, 〇 · 2 % or less. In view of the production of a sputtering target, etc., Bi is suitably used in terms of excellent workability. In the present invention, in order to further improve the durability, particularly the thermal stability, of the alloy containing Bi and/or Sb, it is effective in addition to the above-mentioned element rare earth metal element. These elements have a Nd and/or Y which is suitable for suppressing agglomeration of Ag atoms caused by high-level placement and further improving durability. For the above, the content of these elements of the metal alloy is suitably Nd and/or Y total • Above, 2% or less. If it is less than 0.1%, the effect of adding by the element cannot be obtained, and if the content exceeds 2%, the high number cannot be obtained. More preferably, the upper limit is 1%, and more preferably 0.5%. Further, in order to improve the durability of the Ag substrate containing Bi and/or Sb, especially chemical stability, at least one selected from the group consisting of B Au, Rh, Pd may be added. Or the element of Pt. These elements have an effect of suppressing the aggregation of Ag atoms which are further affected by the influence of the particles, and further improve the durability. The aggregation suppressing effect of these Ag atoms is effectively exhibited, and is preferably 0.1% or more and 3% or less in total. A more suitable upper limit is 2%. Further, in order to further improve the chemical stability of the Ag-based alloy, it is also effective to add Mg, Ti, and Zn to the above elements. The durability improvement effect of adding these elements is inferior to that of Au, Rh, Pd, and the cost of raw materials, which is advantageous in reducing the cost of the optical disc. If the content of Ti and Zn is large, the thermal conductivity and the reflectance are lowered. The agglutination is suitable, and the effect of temperature and high humidity is contained from the outside of the operation. Ag bottom 0.1% Cu of the above-mentioned elemental thermally conductive bismuth alloy is affected by chlorine. In order to characterize S, although Pt is added, but Mg, this -18 - (15) 1265976 is limited to the total Q weight of these alizarins. 3 %. Of course, a sufficient effect can be obtained by adding one of the above alloy element groups, but the same effect can be obtained by combining two or more types. However, the above effect obtained by adding Nd and/or Y as a rare earth metal element or the addition of at least one element selected from Cu ' Au, Rh, Pd or Pt is an Ag bottom containing Bi and/or Sb. The unique effects that the alloy can achieve, such as the same effect in pure A g. It is also disclosed in Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. Nb, Fe, Ta, Hf, Ga, Pd, Bi, In,

W或Zr的至少一種元素,提高_腐蝕性的Ag合金。但 是,Al、An、Cu、Pt及Pd並沒有能夠抑制在高溫下放置 Ag薄膜時産生的Ag原子的凝集的效果,從本發明中作爲 解決課題的熱穩定性方面來看無法獲得耐久性改善效果。 另外,添加0 · 5 %以上Bi會降低導熱係數,所以不好,從 本發明中除去。另外,日本特開2002— 92959號公報公開 藉由在Ag中添加4〜15重量(質量)%的Cu和0.5重量 %的Al、Zn、Cd、Sn、Sb及Ir來提高化學穩定性的Ag 合余。但是,Cu、Al、Zn、Cd、Sn及Ir無法獲得根據高 溫下放置的Ag原子的凝集抑制效果。另外,如果添加Sb 超過0.5重量% (0.44%),會降低Ag原有的導熱係數 ,所以不好。因此,這些公知的Ag合金從其具體構成和 作用效果來看,與本發明有明確的區別。 本發明的光資訊記錄介質用Ag底質合金反射膜或Ag -19- 1265976 (16) 底質合金半透過反射膜可藉由真_蒸鍍法或離子電鍍法或 濺射法等在基板上成膜該合金組成的Ag底質合金來得到 ,其中推薦根據濺射法成膜。藉由濺射法成膜的Ag底質 * 合金反射膜和Ag底質合金半透過反射膜與根據其他成膜 法成膜的膜相比,合金元素分佈或膜厚的膜面內均勻性優 異,可良好地表現出作爲反射膜的高水準特性(高導熱係 數、高反射率、高耐久性),可生産出高性能且可靠性高 # 的光碟。 另外,本發明中的光資訊記錄介質用 Ag底質合金反 - 射膜爲用作只在光碟單面進行記錄的單層記錄的反射膜, - 或者用作複層記錄的最上層的反射膜的薄膜’透過率幾.乎 . 爲0%,反射率由盤構成而定,但大致爲45%以上。並且 其膜厚可以在滿足上述反射率和透過率的範圍內適宜選擇 ,標準地可以爲50〜200nm程度。 另外,本發明的半透過反射膜爲用作在盤單面進行兩 • 層以上複層記錄的介質的反射膜的膜’透過率和反射率根 據盤構成而定,但大致指具有60〜72 %程度的透過率和 18〜30%程度的反射率的薄膜。另外,其膜厚可以在滿足 上述反射率和透過率的範圍內適宜選擇’標準地可以爲5 〜20nm程度。 _ 本發明的光資訊記錄介質用Ag底質合金濺射靶可以 用溶解鑄造法或粉末燒結法以及噴霧法等任意方法製造’ 其中尤其推薦根據真空溶解鑄造法製造。根據真空溶解鑄 造法製造的Ag底質合金濺射靶與其他方法製造的相比氮 -20- (17) 1265976 或氧等雜質成分的含量少,使用該濺射靶成膜的反射膜或 半透過反射膜可良好地表現出作爲反射膜的高特性(高導 熱係數、高反射率、高耐久性),可生産出高性能且可靠 \ 性高的光碟。 本發明的反射膜或半透過反射膜如上該必須含有 0.005〜0.40%的.Bi及/或Sb,但爲了獲得尤其是Bi的 .含量滿足上述範圍組成的薄膜,濺射耙中需要含有〇.〇4〜 Φ 4.5%程度的Bi。 通常的合金系,如Ag - Cu合金系、Ag-貴金屬合金 ; 系或A g -稀土類金屬合金系等薄膜中,濺射靶的組成和 : ' .薄膜的組成幾乎一致。對於此,使用含有Bi的Ag底質合 金濺射靶成膜薄膜時,薄膜中的Bi量將減少擺射耙中的 B i量的幾%〜幾十%。 該原因可能是因爲,l)Ag和Bi的熔點之差大,或 與A g相比B i的蒸氣壓高,所以在成膜過程中b丨從基板 ® 側再蒸發,或者2 ) Ag的濺射率大於B i的縣射率,所以 B i不易被濺射’進而,3 ) B i比A g容易氧化,所以在擺 射靶表面只有Bi被氧化而不被濺射等,根據這些原因, 薄膜中的Bi量比濺射靶中的Bi量少。 從而,本發明濺射靶中的Bi含量有必要多於作爲目 的的反射膜中和半透過反射膜中的Bi含量,如爲了獲得 含有0.005〜0.40%的Bi的反射膜中和半透過反射膜,需 要考慮未進入膜中的Bi含量,使濺射靶中的Bi含量爲 0.05以上,4.5%以下,適宜地0.1以上,3.6%以下。 -21 - (18) 1265976 上述現象爲在Ag—Sb合金系、Ag — 系等其他Ag合金系看不到的現象,這些 ’濺射靶和使用它成膜的薄膜的組成幾乎 • 明中也對於Bi以外的其他元素,可以製 定的範圍內含有各種各樣元素的濺射靶。 本發明的光資訊記錄介質適宜地具備 合金反射膜、半透過反射膜,作爲其他光 • 構成不做特別限定,可以採用光資訊記錄 所有構成,但在聚碳酸酯等透明基板單 - Ag底質合金構成的反射膜或半透過反射 ^ 資訊記錄介質因具有光反射率、高導熱係 - 不僅適合用於讀出專用型、可寫一次型、 I己錄介質’速適合用於筒倍速DVD或下- 接著,對第二個發明的較佳體系進行 本發明是如下實施的。 ® 製作含有Bi:0.2〜23原子%,Sb: (以下也叫做原子% )中的至少一種,同 滿足下述式(2 - 1 )的Ag合金構成的濺 磁波遮罩用Ag合金膜的形成用的Ag合 用該濺射靶,根據濺射法在由透明玻璃等 膜Bi及/或Sb合計含有0.01〜10原子9 本發明的電磁波遮罩用Ag合金膜)。由 磁波遮罩用Ag合金膜形成體。 〇·〇1 原子 %S 0.000502X3 + 0.00987X: 稀土類金屬合金 Ag底質合金中 一致。從而本發 造在滿足上述規 本發明Ag底質 資訊記錄介質的 介質領域公知的 面具備由如上該 膜的本發明的光. 數及高耐久性, 重寫型等光資訊 -代光碟。 說明。 〇.〇1〜10原子% 時Bi量及Sb量 射靶(本發明電 金濺射靶)。使 構成的基體上成 6的Ag合金膜( 此得到本發明電 + 0.0 5 5 3 X + Sb 量 -22- (19) 1265976 $10 原子 % ...... 式(2— 1) 在上述式(2 — 1)中,X爲濺射靶(Ag合金)中 Bi量(原子%) 、Sb量爲濺射靶(Ag合金)中的Sb • (原子% )。 在這種方案下實施本發明。 \本發明人爲了實現該本發明目的,使用在Ag中添 各種不同元素製造的Ag底質合金濺射靶,藉由濺射法 • 基體上形成由各種不同成分組成構成的Ag合金薄膜, 價作爲電磁波遮罩用Ag合金膜的特性。其結果發現, • 有Bi及/或Sb的Ag合金膜時,能夠抑制.Ag的遷移 > Λ 不易發生凝集,以至完成本發明。下面,進行詳細說明 • 由本發明人在此之前發明的 ''由含有Sc、Y和稀 類元素中的一種以上元素的Ag底質合金構成的Ag底 合金(臼本特願平13— 351572/2001號)〃與純Ag 或含有 Pd、Pt、Sn、Zn、In、Cr、Ti、Si、Zr、Nb 及 ® 的一種以上元素的Ag底質合金構成的Ag底質合金相 ,具有優異的耐A g凝集性,因此顯示耐久性(長期使 Ag合金膜也不會惡化)和耐候性(對於高溫、高濕環 的耐Ag凝集性)優異的特性。 對此,發現本發明涉及的Ag合金膜(由含有Bi及 • 或Sb合計0.01〜10原子%的Ag合金構成的電磁波遮 用A g合金膜)爲A g的凝集抑制效果更加優異,更微 的添加即可發揮充分效果,同時,能夠進而減少電阻。 進而,該 > 由含有Sc、Y和稀土類元素中的一種 的 量 加 在 評 含 土 質 膜 Ta 比 用 境 / 罩 量 以 -23- (20) 1265976 上元素的Ag底質合金構成的Ag底質合金膜(日本特願 平1 3 — 3 5 1 5 72 / 200 1號)〃雖然爲對大氣中的氧或水 分的耐久性優異,但在含有鹽水等鹵元素的氣氛中無法獲 ~ 得充分的耐久性,而本發明涉及的Ag合金膜對鹽水也顯 示出充分的耐久性。 本發明的Ag合金膜中,藉由適當控制添加元素(Bi 及/或Sb )的添加量,可獲得能夠發揮對應於電磁波波 • 長的特性(即,紅外線遮罩性、電波遮罩性)的Ag合金 膜。在本發明中叫做紅外線遮罩用的情況,是指對波長( 一 人)爲8 X 1 (T 7m以上的長波的遮罩性。另外,稱電波遮 ' 罩用的情況是指對波長(λ )爲1 (T 3m以上的長波的遮 - 罩性。 對於這些添加元素(Bi及/或Sb)的添加量(含量 ),需要其合計量爲〇.〇1〜1〇原子%。 如果Bi及/或Sb合計添加0.01原子%以上,能夠 ® 有效抑制Ag的表面擴散引起的結晶粒的成長。尤其,Bi 及/或Sb合計含有0.05原子%以上的Ag合金膜比純Ag 膜化學穩定性(尤其是耐候性)優異,因此,即使暴露於 高溫高濕環境下,Ag合金膜的凝集抑制效果也高,電磁 波遮罩性也極其優異。 • 尤其,基板爲含有氧的化合物的情況下,B i及/或At least one element of W or Zr enhances the _ corrosive Ag alloy. However, Al, An, Cu, Pt, and Pd do not have an effect of suppressing aggregation of Ag atoms generated when an Ag thin film is placed at a high temperature, and durability improvement cannot be obtained from the viewpoint of thermal stability as a problem to be solved in the present invention. effect. Further, addition of 0.5% or more of Bi lowers the thermal conductivity, so that it is not good and is removed from the present invention. Further, Japanese Laid-Open Patent Publication No. 2002-92959 discloses the improvement of chemical stability by adding 4 to 15% by mass of Cu and 0.5% by weight of Al, Zn, Cd, Sn, Sb and Ir to Ag. Balance. However, Cu, Al, Zn, Cd, Sn, and Ir cannot obtain an aggregation suppressing effect according to Ag atoms placed at a high temperature. In addition, if the addition of Sb exceeds 0.5% by weight (0.44%), the original thermal conductivity of Ag is lowered, so it is not good. Therefore, these known Ag alloys are clearly distinguished from the present invention in view of their specific constitution and effects. The Ag-based alloy reflective film for an optical information recording medium of the present invention or the Ag-19-1265976 (16) semi-transmissive semi-transmissive reflective film can be formed on a substrate by a true-vapor deposition method, an ion plating method, or a sputtering method. It is obtained by filming an Ag-based alloy composed of the alloy, and it is recommended to form a film according to a sputtering method. The Ag-based* alloy reflective film and the Ag-based semi-transmissive reflective film formed by the sputtering method are superior in film in-plane uniformity of alloy element distribution or film thickness as compared with a film formed by another film forming method. It can exhibit high level of characteristics (high thermal conductivity, high reflectivity, and high durability) as a reflective film, and can produce a high-performance and highly reliable optical disc. Further, the Ag-based base material anti-reflection film for an optical information recording medium of the present invention is used as a reflection film for single-layer recording which is recorded only on one side of the optical disk, or as the uppermost reflection film for multi-layer recording. The film has a transmittance of 0%, and the reflectance is determined by the disk composition, but is approximately 45% or more. Further, the film thickness can be appropriately selected within a range satisfying the above reflectance and transmittance, and can be, for example, about 50 to 200 nm. Further, the semi-transmissive reflective film of the present invention is a film which is used as a reflection film of a medium for performing multi-layer recording on a single side of a disk, and the transmittance and reflectance are determined according to the disk configuration, but generally have 60 to 72. A film with a degree of transmittance and a reflectance of 18 to 30%. Further, the film thickness can be appropriately selected within a range satisfying the above-mentioned reflectance and transmittance, and the standard can be about 5 to 20 nm. The Ag-based alloy sputtering target for an optical information recording medium of the present invention can be produced by any method such as a dissolution casting method, a powder sintering method, or a spray method. Among them, it is particularly preferable to manufacture it according to a vacuum dissolution casting method. The Ag-based alloy sputtering target produced by the vacuum dissolution casting method has a smaller content of impurities such as nitrogen-20-(17) 1265976 or oxygen than the other methods, and a reflective film or a half formed by using the sputtering target. The high-performance (high thermal conductivity, high reflectance, and high durability) of the reflective film can be satisfactorily exhibited by the reflective film, and a high-performance and reliable optical disc can be produced. The reflective film or the semi-transmissive reflective film of the present invention must contain 0.005 to 0.40% of .Bi and/or Sb as above, but in order to obtain a film having a composition in which the content of Bi is particularly high, the sputtering crucible needs to contain germanium. 〇4~ Φ 4.5% Bi. In a general alloy system, such as an Ag-Cu alloy system, an Ag-precious metal alloy, or a film such as an Ag-rare earth metal alloy, the composition of the sputtering target and the composition of the film are almost the same. In this case, when a film is formed using a Ag-based gold alloy sputtering target containing Bi, the amount of Bi in the film is reduced by several to several tens of % of the amount of Bi in the sputum. This may be because, l) the difference between the melting points of Ag and Bi is large, or the vapor pressure of B i is higher than that of A g , so b丨 re-evaporates from the substrate side during film formation, or 2) Ag Since the sputtering rate is larger than the county rate of B i , B i is not easily sputtered. Further, 3) B i is easily oxidized than A g , so only Bi is oxidized on the surface of the oscillating target without being sputtered or the like. The reason is that the amount of Bi in the film is smaller than the amount of Bi in the sputtering target. Therefore, it is necessary that the content of Bi in the sputtering target of the present invention is more than the content of Bi in the reflective film and the semi-transmissive reflective film, for example, in order to obtain a reflective film and a semi-transmissive reflective film containing 0.005 to 0.40% of Bi. It is necessary to consider the content of Bi which does not enter the film, and the content of Bi in the sputtering target is 0.05 or more and 4.5% or less, suitably 0.1 or more and 3.6% or less. -21 - (18) 1265976 The above phenomenon is not observed in other Ag alloy systems such as Ag-Sb alloy system and Ag-based system. The composition of these 'sputter targets and films formed using the film is almost the same. For other elements other than Bi, a sputtering target containing various elements in a range can be specified. The optical information recording medium of the present invention is preferably provided with an alloy reflective film or a semi-transmissive reflective film. The other light/structure is not particularly limited, and all of the components can be recorded by optical information. However, the transparent substrate such as polycarbonate has a single-Ag substrate. Reflective film or semi-transmissive reflection of alloys. Information recording medium with light reflectivity and high thermal conductivity - not only suitable for read-only type, write-once type, I-recorded medium' speed is suitable for single-speed DVD or Next - Next, the present invention is carried out as follows for the preferred system of the second invention. ® Preparation of an Ag alloy film for a spatter magnetic wave mask comprising at least one of Bi: 0.2 to 23 at%, Sb: (hereinafter also referred to as atomic %), and an Ag alloy satisfying the following formula (2 - 1 ) In the sputtering method, the Ag target film of the electromagnetic wave mask of the present invention containing 0.01 to 10 atoms in total of the film Bi and/or Sb such as transparent glass is used in combination with the sputtering target. The body is formed of an Ag alloy film by a magnetic wave mask. 〇·〇1 Atomic %S 0.000502X3 + 0.00987X: The rare earth metal alloy is consistent in the Ag base alloy. Accordingly, the present invention is known in the art of a medium which satisfies the above-described Ag-based information recording medium of the present invention. The optical information of the present invention having the above-mentioned film and the high-endurance, rewriting type and the like are included. Description. 〇.〇1 to 10 atom% of the amount of Bi and Sb amount of the target (the gold sputtering target of the present invention). The constituting substrate is formed into an Ag alloy film of 6 (this gives the present invention an electric + 0.0 5 5 3 X + Sb amount -22-(19) 1265976 $10 atom% ...... Formula (2-1) In the formula (2 - 1), X is the amount of Bi (atomic %) in the sputtering target (Ag alloy), and the amount of Sb is Sb • (atomic %) in the sputtering target (Ag alloy). In order to attain the object of the present invention, the inventors of the present invention use an Ag-based alloy sputtering target produced by adding various elements to Ag to form an Ag alloy composed of various components by a sputtering method. The film and the valence were used as the characteristics of the Ag alloy film for electromagnetic wave shielding. As a result, it was found that • in the case of an Ag alloy film having Bi and/or Sb, migration of Ag can be suppressed> 凝 aggregation is less likely to occur, and the present invention has been completed. DETAILED DESCRIPTION OF THE INVENTION The Ag-base alloy consisting of an Ag-based alloy containing one or more elements of Sc, Y and a rare element was invented by the present inventors (Sakamoto Tetsui 13-351572/2001) No.) with pure Ag or containing Pd, Pt, Sn, Zn, In, Cr, Ti, Si, Zr, Nb and ® An Ag-based alloy phase composed of an Ag-based alloy of one or more elements has excellent Ag-resistant agglomeration, and thus exhibits durability (the Ag alloy film does not deteriorate for a long period of time) and weather resistance (for high-temperature, high-humidity rings) In view of the above, it is found that the Ag alloy film (the electromagnetic wave shielding A g alloy film composed of an Ag alloy containing 0.01 to 10 atom% of Bi and / or Sb in total) is A. The aggregation suppressing effect of g is more excellent, and a sufficient effect can be obtained with a slight addition, and at the same time, the electric resistance can be further reduced. Further, the amount of the material containing one of Sc, Y, and a rare earth element is added to the soil film. Ta is an Ag-based alloy film composed of an Ag-based alloy of -23-(20) 1265976 on the surface/cover (Japanese Patent No. 1 3 - 3 5 1 5 72 / 200 No. 1), although Although it is excellent in durability against oxygen or moisture in the atmosphere, sufficient durability cannot be obtained in an atmosphere containing a halogen element such as brine, and the Ag alloy film according to the present invention exhibits sufficient durability against salt water. Invented Ag alloy film By appropriately controlling the addition amount of the additive element (Bi and/or Sb ), an Ag alloy film capable of exhibiting characteristics corresponding to electromagnetic wave length (that is, infrared masking property and radio wave shielding property) can be obtained. In the case of the infrared mask, it means that the wavelength (one person) is 8 X 1 (the shielding property of a long wave of T 7 m or more. In addition, the case of using the electric wave shielding cover means that the wavelength (λ) is 1 (The coverage of long waves of T 3m or more. For the addition amount (content) of these additional elements (Bi and/or Sb), the total amount thereof is required to be 〇1〇1〇1 atom%. When a total of 0.01 atom% or more of Bi and/or Sb is added, it is possible to effectively suppress the growth of crystal grains due to surface diffusion of Ag. In particular, an Ag alloy film containing 0.05 atom% or more in total of Bi and/or Sb is superior in chemical stability (especially weather resistance) to a pure Ag film, and therefore, aggregation inhibition effect of an Ag alloy film even when exposed to a high temperature and high humidity environment It is also high, and the electromagnetic wave shielding property is also extremely excellent. • In particular, where the substrate is a compound containing oxygen, B i and/or

Sb與氧的親和性高,因此向基板介面擴散濃縮而提高密 接性。由此,A g的凝集進而減少。進而,如果A g合金膜 表面暴露於有氧的氣氛中,Ag合金膜中的Bi及/或Sb -24· 1265976 (21) • 向Ag合金膜的表面擴散濃縮,形成氧化物層(Bi及/或 . Sb的氧化物層)。由於該氧化物層隔斷與環境的接觸, 所以進而提高Ag的凝集抑制效果。 圖1〜2中表示形成於玻璃基板上的厚度約20nm的 Ag - Bi合金膜的XPS(X射線光電子分光法)的厚度方 • 向的組成分析結果(圖1 )和Bi的狹域光譜(圖2 ),可 知Bi濃縮在最表面,並且從Bi的狹域光譜來看,最表面 • 濃縮的B i形成了氧化物。另一方面,從膜的表面濺射1 分鐘、2分鐘、3分鐘、4分鐘後的Ag - Bi合金膜內部的 ·; XPS的Bi的狹域光譜來看,得到了表示金屬Bi的峰,可 / 知只有最表面被氧化。另外,用RB S (盧瑟福反向散射) . 分析法解析該氧化物層的厚度的結果爲幾個原子層的厚度 。另外,玻璃基板和A g合金膜介面上B i組成也高於A g 合金膜內部,因此確認濃縮。 如上該緻密形成Bi及/或Sb的氧·化物層,隔斷與環 • 境的接觸方面來看,適宜地Bi及/或Sb合計含有0.05 原子%以上。即,更適宜地的添加元素(Bi及/或Sb) 的添加量的下限値爲〇·〇5原子%。 Λ 關於這些添加元素(Bi及/或Sb )的添加量的上限 値,即使添加量增加,元素添加效果也會飽和’而且還降 • 低可見光透過率,所以定爲.1 〇原子%。用作紅外線遮罩 '•用Ag合金膜時,適宜地5原子%以下’更適宜地3原子 %以下,進而適宜地1原子%以下。用作電波遮罩用A g 合金膜時,如果添加量多,Ag合金膜的電阻將增大,無 -25- (22) 1265976 法獲得充分的電波遮罩性,因此_薦上限値爲5原子%, 更適宜地的上限値爲3原子%,進而適宜地的上限値爲1 原子%。尤其爲了發揮對波長1 〇 _ 1 m以上的長波的優異 ' 的電波遮罩性,該上限値適宜地爲5原子%,以減少電阻 ,更適宜地的上限値爲3原子%,進而適宜地的上限値爲 1原子%。這裏所說的添加量(含量)爲對於包含Bi及 /或Sb的濃縮層的Ag合金膜全體的Bi及/或Sb的組 鲁成。 本發明電磁波遮罩用Ag合金膜爲,如上該含有Bi及 , /或Sb合計0.01〜10原子%以上。此時,如果在這些成 - 分外進而含有0.3原子%的選自Cu、Au、Pd、Rh、Ru、 .Ir或Pt中的至少一種以上的元素,Ag的化學穩定性將進 而提高,抑制Ag凝集的效果將進而提高。尤其這些元素 (Cu、An、Pd、Rh、Ru、Ir及Pt)不會隨添加量增加而 減低反射率或電阻,所以,藉由補充性地添加’可提高 • Ag的耐凝集性效果。這些元素(Cu、Au、Pd、Rh、Ru、 Ir及Pt )的添加量更適宜地〇·5原子% (原子% )以上’ 進而適宜地0.8原子%以上。另一方面,添加量的上限不 做特別限定,如果超過1 0原子%,除了元素添加效果飽 和外,可見光透過率下降’電阻增大,無法獲得充分的電 波遮罩性,因此這些元素(Cu、Au、Pd、Rh、Ru、Ir及 Pt)的添加量的上限値適宜地10原子% ’更適宜地8原 子%以下,最適宜地5原子%以下。另外’如果在本發明 Ag合金膜中添加Sc、Y、Nd等稀土類元素’可進而抑制 -26- (23) 1265976 A g的凝集性。這些添加量適宜地〇 · 1原子%以上 宜地0.2原子%以上。另一方面,從電阻角度來看 適宜地爲1原子%,更適宜地0·8原子%以下,最 , 〇 . 6原子%以下。 另外,根據用途,在不損害本發明作用的範圍 可以添加上述成分以外的其他成分。這種成分可以 加如Ta、Co、Zn、Mg、Ti等。事先含在原料中的 Φ 入到膜中也沒關係。 本發明電磁波遮罩用Ag合金膜的厚度不做特 - ,可根據電磁波遮罩特性或可見光透過率等要求的 ‘ 當變更。適宜地3nm以上,20nm以下。如果不 . ,有時無法獲得充分的電磁波遮罩特性。從有關方 ,更適宜地5nm以上,最適宜地8nm以上。用於 罩用時,膜厚適宜地5nm以上,更適宜地8nm以 適宜地10nm以上。另外,從獲得充分的可見光透 ® 度來看,適宜地20nm以下,更適宜地18nm以下 宜地1 5 n m以下。 本發明中,爲了降低根據Ag合金膜的由可見 射引起的閃耀感,可在Ag合金膜之外形成其他膜 可以在基體和電磁波遮罩用Ag合金膜之間設置底 • 成於基體上的底層不做特別限定,但從可見光透過 來看適宜地具有透明性。另外,爲了提高Ag合金 體的密接性,可以設置底層。進而,底層適宜地具 性,這樣還可以提高熱線遮罩效果、電磁波遮罩效 ,更適 ,上限 適宜地 內,還 積極添 雜質進 別限定 特性適 足 3 nm 面來看 電波遮 上,最 過率角 ,最適 光的反 。例如 層。形 性角度 膜和基 有導電 .果,可 -27- (24) 1265976 適當選擇具有所期望目的特性的組成的底層。 作爲這種底層舉例有主要成分爲氧化鋅、氧化錫、氧 化鈦、氧化銦、ITO、氧化釔、氧化锆、氧化鋁等氧化物 的氧化膜或者主要成分爲氮化矽、氮化鋁、氮化硼等氮化 物的氮化膜、主要成分爲矽鋁氧氮(sialon )耐熱陶瓷等 氧氮化物的氧氮化膜。當然,可以使用如上該單獨氧化物 、或者兩種以上混合氧化物、或者氧化物以外的混合物作 爲底層(底膜),底層的組成不做特別限定,但Bi及/ 或Sb容易與氧結合,所以如果底膜含有氧,底膜和Ag 合金膜的介面也容易擴散Bi及/或Sb並濃縮,所以密接 性提高·。從而,從提高密接性角度來看,上述底膜中適宜 地氧化物或氧氮化物等含有氧的膜。 這些底層可以是單層或複層,複層時可以組合上述舉 例的底膜和該底膜外的組成的膜作爲複層。其中,適宜地 使用氧化鈦等具有高折射率的作爲底層,因爲可以抑制光 反射,而且能夠獲得充分的可見光透過性。 底膜(底層)的形成方法不做特別限定,可以使用適 合於底膜組成的方法在基體上形成,有關方法舉例有濺射 法、等離子體CVD法、溶膠凝膠法等。 底膜的膜厚不做特別限定,但通常推薦爲l〇nm〜 1 OOOnm程度。如果比1 〇nm薄,則得不到所希望的目的 ’如無法實現在確保充分可見光透過率的情況下減少光反 射率。另外’如果大於1 〇 〇 〇 nm,有可能根據膜應力密接 性下降,所以不好。更適宜地l〇〇nm以下。 -28- 1265976 (25) 爲了與底層同樣的目的,進而提高耐久性和耐候性, 或者爲了進而提高對於使用環境的耐藥品性、耐磨耗性、 耐傷性、耐Ag凝集性等特性,可以在Ag合金膜上設置 - 保護膜。 形成於電磁波遮罩用Ag合金膜上的保護層不做特別 限定,但從可見光透過性角度來看適宜地具有透明性,並 且從對於氧或水分的耐久性角度來看,推薦是非晶質膜。 • 這種保護膜可以使用具有與上述底膜同樣組成的膜,適宜 地作爲上述底層舉例的膜作爲保護層。其中,從耐磨耗性 ^ 、耐傷性角度來看,適宜地從氧化鋁、氮化矽、氮化鋁、 •, 氮化硼、矽鋁氧氮聚合材料等中適當選擇作爲保護層。另 - 外,從耐候性和對於鹽水等含有鹵元素的氣氛的耐久性角 度來看,適宜地氧化物或氧氮化物。這是因爲保護膜爲含 有氧的氧化膜或氧氮化膜時,在成膜過程中有氧,所以 Bi及/或Sb擴散到Ag合金膜上並氧化形成氧化物,根 ® 據Bi及/或Sb的氧化物層提高與環境的隔斷性,並且提 高與保護膜的密接性,同時減少保護膜的氣孔,因此可進 而提高環境隔斷性。尤其從與Bi及/或Sb的濃縮層的密 接性或氣孔少的角度來看,在氧化物中適宜地ITO或氧化 鋅、氧化錫、氧化銦。這些保護層可以是單層,也可以是 ' 複層。而且,複層時可以組合上述舉例的保護層和該保護 層外的組成的膜作爲複層。 保護層的形成方法不做特別限定,可以使用適合於保 護層組成的方法在Ag合金膜上形成,有關方法舉例有濺 -29- 1265976 (26) 射法、等離子體CVD法、溶膠凝膠法等。 保護膜的膜厚不做特別限定,但通常推薦焉 1 0 0 0 n m程度。如果比1 0 n m薄,則得不到充分 - 性、耐傷性,而且不能充分減少氣孔。另外, 1 0 0 0 nm,有可能根據膜應力密接性下降,所以 適宜地lOOnm以下。 另外,也可以在基體上交互層疊底層、Ag _ 保護層。 本發明形成Ag合金膜(或者其底層)的基 - 玻璃、塑膠、樹脂薄膜等,但用於窗戶玻璃等需 " 透過的,用途時,適宜地使用具有透明性(即可見 •)的基體。此時,只要可透過可見光則對其材質 厚度等不做特別限定。另外,基體不要求透明性 在電子機器類中內置、外置Ag合金膜等以電波 要目的來使用Ag合金膜時,對基體的種類、組 • 性、厚度、材質等不做特別限定。 本發明中,可以單獨或多個使用基體,對於 做特別限定,爲了進而提高特性,可以組合各種 體及/或至少一層電磁波遮罩用Ag合金膜、進 求組合底層、保護層作爲複層。即,本發明電磁 • Ag合金膜形成體可以在基體上形成本發明電磁 Ag合金膜。另外,也可以在基體上形成含有選 、氮化物、氧氮化物中的至少一種的膜作爲底層 層上形成本發明電磁波遮罩用Ag合金膜,在該 > 1 Onm 〜 的耐磨耗 如果大於 不好。更 合金膜、 體舉例有 要可見光 光透過性 、組成、 時,即, 遮罩爲主 成、透明 其組合不 各樣的基 而根據要 波遮罩用 波遮罩用 自氧化物 ,在該底 Ag底質 -30- 1265976 (27) 合金膜上形成含有選自氧化物、氮化物、氧氮化物中的至 • 少一種的膜作爲保護層。 例如,用於需要可見光透過的用途時,推薦形成爲 ' Ag合金膜等在室內側面。如果形成在室外側,由於外在 „ 因素(小石頭或灰塵等)膜上産生傷痕的可能性大,所以 不好。另外,即使設置在室內側也有可能根據外在因素膜 上産生傷痕,所以通常適宜地以形成Ag合金膜等的膜不 ^ 直接暴露在室外環境的狀態使用。從而,本發明Ag合金 膜形成體可以是基體單層,但從將Ag合金膜從外在因素 * 保護的角度來看,也可以是組合多個基體的複層。製成複 層時的組合不做特別限定,舉例使用具有透明性的玻璃作 - 爲基體時的情況,可舉例所謂複層玻璃、夾層玻璃。如果 考慮生活環境要求的室內隔熱性、隔音性等’從耐久性角 度來看,推薦基體爲複層玻璃、或夾層玻璃。對於複層玻 璃時的組合不做特別限定。複層玻璃適宜地密封遮罩成’ ^ 如使用多張玻璃板,在鄰接的玻璃板間設置隔板等,殺置 , 空氣層(空間層)。此時,從防止玻璃板間的腐蝕的角度 來看,適宜地在空間層中封入乾燥空氣或氮氣。另外’ . A g合金膜適宜地形成在外側玻璃的空氣層側面或內側玻 璃的空氣層側面,這樣可以防止在工廠製作時受傷。這些 除了作爲基體使用具有透明性的玻璃的情況外’使用透明 體的情況也相同,推薦在由其透明體構成的基體(透明基 體)上形成的Ag合金膜(或進而在該Ag合金膜上形成 的保護層)之上層疊透明體的複層結構,此時’適宜地經 -31 - 1265976 (28) 隔板層疊透明體,在該透明體和其之下的膜(Ag合金膜 或保護層)之間設置空間層。 把本發明電磁波遮罩用Ag合金膜用於不需要可見光 • 透過的用途時,可以在如電子機器等需要電波遮罩的機器 類的罩的內側及/或外側形成Ag合金膜,或者在電波遮 罩用板的任意面形成Ag合金膜。當然,爲了把如上該Ag 合金膜從外在因素保護,可以製成複層,也可以根據用途 • 形成底層、保護層。當然,也可以把在高分子薄膜等上塗 層Ag膜的層疊薄膜貼在基體上在機器類內置或外置Ag • 膜。 、 本發明電磁波遮罩用Ag合金膜推薦由濺射法形成於 . 基體上。如果把純Ag膜根據濺射法等成膜工藝形成於基 體上,則膜厚爲幾十nm時成爲島狀膜,成爲Ag的表面 能局的狀態,而Ag膜若直接接觸於空氣,因Ag的表面 能進而增大,所以爲了降低表面能而容易引起Ag的凝集 ® 。但是’添加Bi及/或Sb的Ag合金膜因爲Ag的表面 能低,所以抑制Ag的表面擴散,可抑制凝集。尤其,如 果暴露在有氧氣氛中,添加Bi及/或Sb的Ag合金膜藉 由在Ag表面擴散Βί及/或Sb與氧結合而形成氧化物, 隔斷Ag合金膜和環境的同時降低Ag表面能,因此進而 抑制Ag的表面擴散,抑制凝集。認爲在該Ag合金膜中 添加Cu、Au、Pd、Rh、Ru、Ir或Pt中的一種以上元素 ,表面能將進而降低,進而抑制Ag的凝集。另外,本發 明涉及的添加元素Bi及/或Sb爲,如果基板或底膜和保 -32- (29) 1265976 護膜中含氧,則Bi及/或Sb向Ag合金膜表面擴散並濃 縮,Ag合金膜的內部的Bi及/或Sb的組成値降低。其 結果,電阻率下降,電波遮罩特性也極其優異。 上述電磁波遮罩用Ag合金膜的根據濺射法成膜用的 濺射靶可以使用由含有Bi: 0.2〜23原子%、Sb: 0.01〜 10.0原子%中的至少一種,同時Bi量及Sb量滿足式(2 - 1 )的 Ag合金構成的濺射靶。此時,濺射靶材料適宜 ® 地使用由溶解鑄造法制作的Ag底質合金(以下也叫做溶 制Ag底質合金靶材料)。涉及的溶制Ag底質合金靶材 • 料在組織上均勻,並且,濺射率和出射角度均勻,所以能 . 夠穩定地獲得成分組成均勻的Ag底質合.金膜,結果可以 - 獲得更高性能的Ag合金膜形成體。如果控制上述溶制Ag 底質合金靶材料的含氧量(適宜地lOOppm以下)容易保 持一定的膜形成速度,並且可以降低Ag底質合金膜中的 含氧量,因此,可提高該Ag合金膜的耐腐蝕性。 ® 此時,可使用由含有Bi:0.2〜23原子%、Sb:0.01 〜10原子%中的至少一種,同時Bi量及Sb量滿足式(2 -1 )的Ag合金構成的濺射靶作爲用於獲得含有Bi及/ 或Sb合計0.01〜1〇原子%的電磁波遮罩用Ag合金膜的 濺射靶(以下也叫做靶)。使用含Bi的Ag底質合金構成 * 的耙藉由潑射法形成Ag合金膜時,Ag合金膜中的Bi量 將少於靶中的Bi量,定量地是靶中Bi量的幾%〜幾十% 。因此,作爲用於獲得含Bi的Ag合金膜的靶,需要使用 比欲獲得Ag合金膜的Bi量含有更多Bi的靶,具體來說 -33- (30) 1265976 ,作爲用於獲得含有Bi: 0.01〜1〇·〇原子%的Ag合金膜 的靶,需要使用含有Bi :0.2〜23原子%的靶。本發明涉 及的靶爲如上該組成的靶。即,關於Bi,含有它時,應 ' 爲含有比欲獲得Ag合金膜的Bi量更多的Bi的組成的靶 〇 這樣,使用由含Bi的Ag底質合金構成的靶藉由濺射 法形成Ag合金膜時,Ag合金膜中的Bi量少於靶中的Bi # 量。其原因是,Bi比Ag熔點低,並且Ag和Bi的熔點之 差大,所以在成膜過程中(濺射中)Bi從基板側再蒸發 - ,及/或,Ag的濺射率大於Bi的濺射率,所以Bi不易 " 被濺射,及/或,B i比Ag容易氧化,所以在濺射靶表面 - 只有Bi被氧化而不被濺射等。 如上該,Ag合金膜中含有的Bi和Sb合計量需要爲 〇·〇1原子%以上,10原子%以下。因此,靶中含有的Bi 、Sb量需要滿足式(2 — 1 )。這也是因爲靶中含有的Bi ® 量和Ag合金膜中含有的Bi量不同。 關於式(2 — 1 )中靶中的 Bi量的係數(g口, 0·0005 02Χ3 + 0.0 09 8 7Χ2 + 0·05 5 3 Χ 該式及其係數)是,實驗 硏究靶中Bi量和Ag合金膜中Bi量的相關性後,從其結 果近似得出。 ' 把本發明涉及的電磁波遮罩用 Ag合金膜用於電波遮 罩用時,適宜地使用由含有Bi: 0.2〜12原子%及Sb: 0.01〜5原子%中的至少一種,並且Bi量及Sb量滿足下 述式(2 — 2)的Ag底質合金構成的濺射靶。 -34- (31) 1265976 〇·〇!原子 %S0.000502X3+0.00987X2+0.0553X+Sb 量 ‘ 5原子% ...... 式(2 — 2 ) 上述式(2 — 2)中,X爲靶中的Bi量(原子%)、 Sb量爲靶中的sb量(原子%)。 濺射法的條件不做特別限定,可使用公知的濺射法。 用作紅外線遮罩用濺射靶時,適宜地主要成分爲Ag ’並含有Bi: 〇·2〜12原子%、Sb: 0.05〜5原子%中的 至少一種的同時Bi量及Sb量滿足下述式(2 — 3 ),進而 適宜地含有Bi: 〇·5〜8原子%、Sb: 0.10〜3原子%中的 至少一種的同時Bi量及Sb量滿足下述式(2—4)。 〇·〇5 原子 %s〇.〇〇〇5〇2X3 + 0.00987X2 + 〇.05 5 3 X + Sb 纛 S 5原子% ...... 式(2 — 3 ) 〇·1〇 原子 % $ 0.000502X3 + 0.00987X2 + 0.0553X + Sb 纛 ‘3原子% ...... 式(2 - 4) 上述式(2〜3) 、 (2— 4)中,X爲靶中的Bi量( 原子%) 、Sb量爲靶中的Sb量(原子%)。 用作電波遮罩用濺射靶時,適宜地主要成分爲Ag, 並含有Bi: 〇·2〜12原子%、Sb: 0.01〜5原子%中的至 少一種的同時Bi量及Sb量滿足下述式(2— 5),更適宣 地含有Bi: 〇·5〜8原子%、Sb: 0.5〜3原子%中的至少 一種的同時Bi量及Sb量滿足下述式(2—6),進而適宣 地含有Bi: 〇·5〜5原子%、Sb: 0·10〜1原子%中的至少 一種的同時Bi量及Sb量滿足下述式(2 - 7 )。 0.01 原子 %S 0.0005 02X3 + 0.009 8 7X2 + 0.05 5 3X + Sb 量 -35- 1265976 (32) 原子% ...... 式(2— 5) 0.05原子%$ 0.0005 02乂3 + 0.0098 7)(2 + 0.05 5 3>( + 313量 S3原子% ...... 式(2— 6) ’ 0· 1 0 原子 % S 0.0005 02X3 + 0.009 87x2 + 0.05 5 3X + Sb 量 原子% ...... 式(2— 7) 上述式(2— 5) 、 (2-6) 、 (2— 7)中’X爲靶中 的Bi量(原子%) 、Sb量爲靶中的sb量(原子%) ° # 如果這些靶中含有合計〇·3原子%以上選自Cu、Au 、Pd、Rh、Ru或Pt中的至少一種以上的元素,可進而提 • 高Ag的凝集抑制效果。這些元素(Cu、Au、Pd、Rh、 - Ru、Ir及Pt )的添加量更適宜地〇·5原子%以上,適宜地 • 0.8原子%以上。另一方面,這些元素(Cu、Au、Pd、Rh 、Ru、Ir及Pt )的添加量的上限不做特別限定,但上限 値適宜地10原子%,更適宜地8原子%,最適宜地5原 子%。 ® 這樣,使用在Ag中添加上述添加元素(Bi及/或Since Sb has high affinity with oxygen, it diffuses and concentrates on the substrate interface to improve adhesion. Thereby, the agglutination of A g is further reduced. Further, if the surface of the Ag alloy film is exposed to an oxygen atmosphere, Bi and/or Sb -24· 1265976 (21) in the Ag alloy film diffuse and concentrate on the surface of the Ag alloy film to form an oxide layer (Bi and / or. Sb oxide layer). Since the oxide layer is blocked from contact with the environment, the aggregation suppressing effect of Ag is further enhanced. 1 to 2 show the results of the composition analysis of the thickness of the XPS (X-ray photoelectron spectroscopy) of the Ag-Bi alloy film having a thickness of about 20 nm formed on a glass substrate (Fig. 1) and the narrow-field spectrum of Bi (Fig. 1) Figure 2) shows that Bi is concentrated on the outermost surface, and from the narrow-area spectrum of Bi, the most surface-concentrated B i forms an oxide. On the other hand, the inside of the Ag-Bi alloy film was sputtered from the surface of the film for 1 minute, 2 minutes, 3 minutes, and 4 minutes, and the peak of the Bi of the XPS was obtained. It can be known that only the outermost surface is oxidized. In addition, the thickness of the oxide layer was analyzed by RB S (Rutherford Backscattering). The result was the thickness of several atomic layers. Further, the composition of B i on the interface between the glass substrate and the Ag alloy film was also higher than that inside the A g alloy film, and thus it was confirmed that the composition was concentrated. As described above, the oxygen and chemical layers of Bi and/or Sb are densely formed, and in view of the contact with the environment, it is preferable that Bi and/or Sb are contained in an amount of 0.05% by atom or more in total. That is, the lower limit 添加 of the addition amount of the more preferable additive element (Bi and/or Sb) is 〇·〇5 atom%. Λ Regarding the upper limit of the addition amount of these additive elements (Bi and/or Sb), even if the addition amount is increased, the element addition effect is saturated' and the low visible light transmittance is lowered, so it is set to .1 〇 atom%. When the Ag alloy film is used, it is preferably 5 atom% or less, more preferably 3 atom% or less, and further preferably 1 atom% or less. When used as an A g alloy film for a radio wave mask, if the amount of addition is large, the resistance of the Ag alloy film will increase, and the -25-(22) 1265976 method will obtain sufficient radio wave masking property, so the upper limit of the _ recommended is 55. The atomic %, more preferably, the upper limit 値 is 3 atom%, and a suitable upper limit 値 is 1 atom%. In particular, in order to exhibit excellent radio wave masking properties for a long wave having a wavelength of 1 〇 _ 1 m or more, the upper limit 値 is suitably 5 atom% to reduce the electric resistance, and more preferably, the upper limit 値 is 3 atom%, and further suitably The upper limit is 1 atom%. The addition amount (content) referred to herein is a composition of Bi and/or Sb for the entire Ag alloy film containing a concentrated layer of Bi and/or Sb. The Ag alloy film for an electromagnetic wave mask of the present invention contains, as described above, a total of 0.01 to 10 atom% or more of Bi and/or Sb. At this time, if at least one element selected from the group consisting of Cu, Au, Pd, Rh, Ru, .Ir, or Pt is contained in an amount of 0.3 atom%, the chemical stability of Ag is further increased and suppressed. The effect of Ag agglutination will increase. In particular, these elements (Cu, An, Pd, Rh, Ru, Ir, and Pt) do not decrease the reflectance or the electric resistance as the amount of addition increases, so that the additive resistance of Ag can be improved by the addition of '. The amount of addition of these elements (Cu, Au, Pd, Rh, Ru, Ir, and Pt) is more preferably 55 atom% (atomic %) or more and more preferably 0.8 atom% or more. On the other hand, the upper limit of the amount of addition is not particularly limited, and if it exceeds 10 atom%, the visible light transmittance decreases as the element addition effect is saturated, and the electric resistance is increased, so that sufficient radio wave masking property cannot be obtained, so these elements (Cu The upper limit of the amount of addition of Au, Pd, Rh, Ru, Ir, and Pt) is suitably 10 atom%, more preferably 8 atom% or less, and most preferably 5 atom% or less. Further, when a rare earth element such as Sc, Y or Nd is added to the Ag alloy film of the present invention, the aggregability of -26-(23) 1265976 A g can be further suppressed. These addition amounts are suitably 〇 1 atom% or more, preferably 0.2 atom% or more. On the other hand, from the viewpoint of electrical resistance, it is suitably 1 atom%, more preferably 0. 8 atom% or less, and most preferably 6 atom% or less. Further, depending on the application, other components than the above components may be added to the extent that the effects of the present invention are not impaired. Such a component may be added such as Ta, Co, Zn, Mg, Ti or the like. It does not matter if Φ contained in the raw material beforehand is introduced into the film. The thickness of the Ag alloy film for the electromagnetic wave mask of the present invention is not particularly limited, and may be changed according to requirements such as electromagnetic wave mask characteristics or visible light transmittance. Suitably 3 nm or more and 20 nm or less. If not, sometimes sufficient electromagnetic wave mask characteristics are not obtained. From the relevant side, it is more preferably 5 nm or more, and most preferably 8 nm or more. When used for a cover, the film thickness is suitably 5 nm or more, more preferably 8 nm or more preferably 10 nm or more. Further, from the viewpoint of obtaining sufficient visible light transmittance, it is preferably 20 nm or less, more preferably 18 nm or less and preferably 1 5 n or less. In the present invention, in order to reduce the glare caused by visible radiation according to the Ag alloy film, other films may be formed outside the Ag alloy film, and a substrate may be provided between the substrate and the Ag alloy film for electromagnetic wave shielding. The bottom layer is not particularly limited, but is suitably transparent from the viewpoint of visible light transmission. Further, in order to improve the adhesion of the Ag alloy body, a primer layer may be provided. Further, the bottom layer is suitably sizable, so that the heat ray mask effect and the electromagnetic wave mask effect can be improved, and the upper limit is suitable, and the impurity is also positively added. The characteristic is suitable for the 3 nm surface to observe the electric wave. The angle of the pass, the best of the light. For example, layer. Shape Angle The film and the base are electrically conductive. Fruit, -27- (24) 1265976 Appropriately select the bottom layer of the composition having the desired purpose characteristics. Examples of such a primer layer include an oxide film whose main components are oxides of zinc oxide, tin oxide, titanium oxide, indium oxide, ITO, cerium oxide, zirconium oxide, or aluminum oxide, or whose main components are tantalum nitride, aluminum nitride, and nitrogen. A nitride film of a nitride such as boron, and an oxynitride film of an oxynitride such as a sialon heat-resistant ceramic. As a matter of course, the single oxide or two or more mixed oxides or a mixture other than the oxide may be used as the underlayer (base film), and the composition of the underlayer is not particularly limited, but Bi and/or Sb are easily bonded to oxygen. Therefore, if the underlayer film contains oxygen, the interface between the underlayer film and the Ag alloy film is likely to diffuse Bi and/or Sb and concentrate, so that the adhesion is improved. Therefore, from the viewpoint of improving the adhesion, a film containing oxygen such as an oxide or an oxynitride is suitably used in the under film. These underlayers may be a single layer or a stratified layer, and the base film of the above-described examples and the film of the composition outside the underlayer may be combined as a composite layer. Among them, a high refractive index such as titanium oxide is suitably used as the underlayer because it is possible to suppress light reflection and to obtain sufficient visible light transmittance. The method for forming the underlayer (underlayer) is not particularly limited, and may be formed on a substrate by a method suitable for the composition of the underlayer film, and examples of the method include a sputtering method, a plasma CVD method, a sol-gel method, and the like. The film thickness of the under film is not particularly limited, but it is usually recommended to be about 10 nm to 1 OOO nm. If it is thinner than 1 〇 nm, the desired purpose cannot be obtained. For example, it is impossible to reduce the light reflectance while ensuring sufficient visible light transmittance. In addition, if it is larger than 1 〇 〇 〇 nm, there is a possibility that the adhesion of the film stress is lowered, so it is not good. More suitably, it is below l〇〇nm. -28- 1265976 (25) In order to improve the durability and weather resistance for the same purpose as the bottom layer, or to improve the chemical resistance, abrasion resistance, scratch resistance, and Ag aggregation resistance of the use environment, A protective film is provided on the Ag alloy film. The protective layer formed on the Ag alloy film for electromagnetic wave shielding is not particularly limited, but is preferably transparent from the viewpoint of visible light transmittance, and is preferably an amorphous film from the viewpoint of durability against oxygen or moisture. . • A film having the same composition as that of the above-mentioned base film can be used as the protective film, and a film exemplified as the above-mentioned primer layer is suitably used as the protective layer. Among them, from the viewpoint of abrasion resistance and scratch resistance, a protective layer is suitably selected from alumina, tantalum nitride, aluminum nitride, boron nitride, yttrium aluminum oxynitride polymer, and the like. Further, in view of weather resistance and durability against an atmosphere containing a halogen element such as salt water, an oxide or oxynitride is suitably used. This is because when the protective film is an oxide film containing oxygen or an oxynitride film, oxygen is formed during the film formation process, so Bi and/or Sb diffuse onto the Ag alloy film and oxidize to form an oxide, and the root is based on Bi and / Or the oxide layer of Sb improves the barrier property to the environment, improves the adhesion to the protective film, and reduces the pores of the protective film, thereby further improving the environmental barrier property. In particular, from the viewpoint of the adhesion to the concentrated layer of Bi and/or Sb or the small number of pores, ITO or zinc oxide, tin oxide or indium oxide is suitably used in the oxide. These protective layers can be single layers or 'multilayers'. Further, in the case of the stratification, a film of the above-exemplified protective layer and a composition outside the protective layer may be combined as a composite layer. The method for forming the protective layer is not particularly limited, and may be formed on the Ag alloy film by a method suitable for the composition of the protective layer. Examples of the method include sputtering -29-1265976 (26), plasma CVD, and sol-gel method. Wait. The film thickness of the protective film is not particularly limited, but it is generally recommended to be about 10,000 nm. If it is thinner than 10 n m, sufficientness and scratch resistance are not obtained, and the pores cannot be sufficiently reduced. Further, at 100 nm, there is a possibility that the adhesion of the film stress is lowered, so that it is preferably 100 nm or less. Alternatively, the underlayer and the Ag_protective layer may be alternately laminated on the substrate. The present invention forms a base of an Ag alloy film (or a bottom layer thereof), a glass, a plastic, a resin film, etc., but is used for window glass, etc., and is preferably used in a substrate having transparency (see:). . In this case, the material thickness and the like are not particularly limited as long as the visible light is transmitted. In addition, the substrate is not required to have transparency. When an Ag alloy film is used for the purpose of radio waves, such as an internal electronic device or an external Ag alloy film, the type, composition, thickness, and material of the substrate are not particularly limited. In the present invention, the substrate may be used singly or in a plurality of layers, and in order to further improve the characteristics, various bodies and/or at least one layer of the Ag alloy film for electromagnetic wave shielding, a combination underlayer, and a protective layer may be used as the composite layer. That is, the electromagnetic Ag alloy film forming body of the present invention can form the electromagnetic Ag alloy film of the present invention on a substrate. Further, a film containing at least one of a nitride, a nitride, and an oxynitride may be formed on the substrate as an underlying layer to form an Ag alloy film for an electromagnetic wave mask of the present invention, and the wear resistance of the > 1 Onm 〜 More than bad. The alloy film and the body are exemplified by a light-transmitting property and a composition, that is, a mask is mainly formed, and a combination of a transparent base is used, and the self-oxide is used for the wave mask for the wave mask. The bottom Ag substrate -30-1265976 (27) forms at least one film selected from the group consisting of oxides, nitrides, and oxynitrides as a protective layer on the alloy film. For example, when it is used for applications requiring visible light transmission, it is recommended to form an 'Ag alloy film or the like on the indoor side. If it is formed on the outdoor side, it is not good because there is a large possibility of scratches on the external factor (small stone or dust, etc.). In addition, even if it is installed on the indoor side, there is a possibility that a flaw is generated on the film according to the external factor. It is generally suitable to use a film in which an Ag alloy film or the like is not directly exposed to an outdoor environment. Thus, the Ag alloy film forming body of the present invention may be a single layer of a substrate, but is protected from an external factor* by an Ag alloy film. In view of the above, a combination of a plurality of substrates may be used. The combination in the case of forming a composite layer is not particularly limited. For example, when a glass having transparency is used as a substrate, a so-called laminated glass or interlayer may be exemplified. Glass. Considering the indoor heat insulation and sound insulation required for the living environment. From the viewpoint of durability, the recommended substrate is laminated glass or laminated glass. The combination of the laminated glass is not particularly limited. Suitably seal the mask into ' ^ if multiple sheets of glass are used, separate partitions between adjacent glass sheets, etc., to kill, air layer (space layer). From the viewpoint of corrosion between the glass plates, it is preferable to enclose dry air or nitrogen gas in the space layer. Further, the .A g alloy film is suitably formed on the side of the air layer of the outer glass or the side of the air layer of the inner glass, thereby preventing It is injured at the time of production at the factory. In addition to the case where a transparent glass is used as the substrate, the same applies to the case of using a transparent body. It is recommended to form an Ag alloy film on a substrate (transparent substrate) made of a transparent body (or further A layered structure of a transparent body is laminated on the protective layer formed on the Ag alloy film, at which time a transparent body is suitably laminated via a separator, and the film is laminated under the transparent body and the film thereunder A space layer is provided between the (Ag alloy film or the protective layer). When the Ag alloy film of the electromagnetic wave mask of the present invention is used for applications that do not require visible light transmission, it can be used in a machine type cover such as an electronic device that requires a radio wave mask. An Ag alloy film is formed on the inner side and/or the outer side, or an Ag alloy film is formed on any surface of the radio wave mask sheet. Of course, in order to protect the Ag alloy film from external factors as described above It can be made into a multi-layer or a base layer or a protective layer depending on the application. Of course, it is also possible to attach a laminated film of an Ag film such as a polymer film to a substrate, or to have an Ag/film inside or outside the machine. The Ag alloy film for an electromagnetic wave mask of the present invention is preferably formed on the substrate by a sputtering method. When the pure Ag film is formed on the substrate by a sputtering process or the like, the film thickness becomes an island when the film thickness is several tens of nm. The film is in a state of surface energy of Ag, and if the Ag film is in direct contact with air, the surface energy of Ag is further increased. Therefore, in order to lower the surface energy, aggregation of Ag is likely to occur. However, 'add Bi and/or Sb. Since the Ag alloy film has a low surface energy, the surface diffusion of Ag is suppressed, and aggregation can be suppressed. In particular, if exposed to an aerobic atmosphere, an Ag alloy film to which Bi and/or Sb is added is diffused on the Ag surface. / or Sb combines with oxygen to form an oxide, which blocks the Ag alloy film and the environment while reducing the surface energy of Ag, thereby suppressing the surface diffusion of Ag and suppressing aggregation. It is considered that by adding one or more elements of Cu, Au, Pd, Rh, Ru, Ir, or Pt to the Ag alloy film, the surface energy is further lowered, thereby suppressing aggregation of Ag. In addition, the additive element Bi and/or Sb according to the present invention is such that if oxygen is contained in the substrate or the base film and the protective film of 32-(29) 1265976, Bi and/or Sb diffuse and concentrate on the surface of the Ag alloy film. The composition of Bi and/or Sb inside the Ag alloy film is reduced. As a result, the resistivity is lowered and the radio wave mask characteristics are extremely excellent. The sputtering target for forming a film by the sputtering method for the electromagnetic wave mask may be at least one selected from the group consisting of Bi: 0.2 to 23 at% and Sb: 0.01 to 10.0 at%, and the amount of Bi and the amount of Sb. A sputtering target composed of an Ag alloy of the formula (2 - 1) is satisfied. At this time, the sputtering target material is suitably used in an Ag-based alloy (hereinafter also referred to as a dissolved Ag-based alloy target material) produced by a dissolution casting method. The dissolved Ag substrate target material involved in the material is uniform in structure, and the sputtering rate and the exit angle are uniform, so that a stable Ag composition and a gold film can be obtained stably, and the result can be obtained. A higher performance Ag alloy film former. If the oxygen content (suitably 100 ppm or less) of the above-mentioned molten Ag-based alloy target material is controlled, it is easy to maintain a certain film formation speed, and the oxygen content in the Ag-based alloy film can be lowered, so that the Ag alloy can be improved. The corrosion resistance of the film. In this case, a sputtering target composed of an Ag alloy containing at least one of Bi: 0.2 to 23 at%, Sb: 0.01 to 10 at%, and a Bi amount and an Sb amount satisfying the formula (2 -1 ) can be used. A sputtering target (hereinafter also referred to as a target) for obtaining an Ag alloy film for electromagnetic wave mask containing 0.01 to 1 atom% of Bi and/or Sb in total. When an Ag alloy film is formed by a sputtering method using a Bi-containing Ag-based alloy*, the amount of Bi in the Ag alloy film is less than the amount of Bi in the target, and quantitatively is a few % of the amount of Bi in the target. Dozens of percent. Therefore, as a target for obtaining a Bi-containing Ag alloy film, it is necessary to use a target containing more Bi than the amount of Bi in which the Ag alloy film is to be obtained, specifically -33-(30) 1265976, as a material for obtaining Bi. : A target of an Ag alloy film of 0.01 to 1 〇·〇 atom% is required to use a target containing Bi: 0.2 to 23 at%. The target involved in the present invention is a target having the above composition. In other words, when Bi is contained, it is required to be a target having a composition of Bi more than Bi to obtain an Ag alloy film, and a target composed of a Bi-containing Fe-based alloy is used by sputtering. When the Ag alloy film is formed, the amount of Bi in the Ag alloy film is smaller than the amount of Bi # in the target. The reason is that Bi has a lower melting point than Ag, and the difference between the melting points of Ag and Bi is large, so Bi is re-evaporated from the substrate side during film formation (during sputtering), and/or, the sputtering rate of Ag is larger than Bi. Since the sputtering rate is such that Bi is not easily sputtered, and/or B i is easily oxidized than Ag, the surface of the sputtering target - only Bi is oxidized without being sputtered or the like. As described above, the total amount of Bi and Sb contained in the Ag alloy film needs to be 原子·〇1 atom% or more and 10 atom% or less. Therefore, the amount of Bi and Sb contained in the target needs to satisfy the formula (2 - 1). This is also because the amount of Bi ® contained in the target is different from the amount of Bi contained in the Ag alloy film. The coefficient of the amount of Bi in the target in the formula (2 - 1) (g port, 0·0005 02Χ3 + 0.0 09 8 7Χ2 + 0·05 5 3 Χ This formula and its coefficient) is the amount of Bi in the experimental target After the correlation with the amount of Bi in the Ag alloy film, the results are approximated. When the Ag alloy film for an electromagnetic wave mask according to the present invention is used for a radio wave mask, at least one of Bi: 0.2 to 12 at% and Sb: 0.01 to 5 at% is used, and the amount of Bi is A sputtering target composed of an Ag-based alloy having the Sb amount satisfying the following formula (2-2). -34- (31) 1265976 〇·〇! Atomic %S0.000502X3+0.00987X2+0.0553X+Sb Amount '5 Atomic % ...... Formula (2 - 2) In the above formula (2-2), X is the amount of Bi (atomic %) in the target, and the amount of Sb is the amount of sb (atomic %) in the target. The conditions of the sputtering method are not particularly limited, and a known sputtering method can be used. When it is used as a sputtering target for an infrared mask, it is preferable that the main component is Ag' and contains at least one of Bi: 2 to 12 atom% and Sb: 0.05 to 5 atom%, and the amount of Bi and the amount of Sb satisfy. Further, at least one of Bi: 〇·5 to 8 at% and Sb: 0.10 to 3 at% may be contained in the above formula (2-3), and the amount of Bi and the amount of Sb satisfy the following formula (2-4). 〇·〇5 Atomic %s〇.〇〇〇5〇2X3 + 0.00987X2 + 〇.05 5 3 X + Sb 纛S 5 atom% ...... Formula (2 — 3 ) 〇·1〇 atomic % $ 0.000502X3 + 0.00987X2 + 0.0553X + Sb 纛 '3 atom% ...... Formula (2 - 4) In the above formulas (2~3), (2-4), X is the amount of Bi in the target (Atomic %) and the amount of Sb is the amount of Sb (atomic %) in the target. When it is used as a sputtering target for a radio wave mask, it is preferable that the main component is Ag and contains at least one of Bi: 2 to 12 at% and Sb: 0.01 to 5 at%, and the amount of Bi and the amount of Sb satisfy. In the above formula (2-5), it is more preferable to contain at least one of Bi: 〇·5 to 8 at% and Sb: 0.5 to 3 at%, and the amount of Bi and the amount of Sb satisfy the following formula (2-6). Further, at least one of Bi: 〇·5 to 5 at% and Sb: 0·10 to 1 at% may be used to satisfy the following formula (2-7). 0.01 Atomic % S 0.0005 02X3 + 0.009 8 7X2 + 0.05 5 3X + Sb Amount -35 - 1265976 (32) Atomic % ...... Formula (2-5) 0.05 Atomic% $ 0.0005 02乂3 + 0.0098 7) (2 + 0.05 5 3 > ( + 313 S3 atomic % ...... Formula (2-6) ' 0· 1 0 Atomic % S 0.0005 02X3 + 0.009 87x2 + 0.05 5 3X + Sb Atomic % .. .... Formula (2-7) In the above formulas (2-5), (2-6), and (2-7), 'X is the amount of Bi in the target (atomic %), and the amount of Sb is sb in the target. Amount (atomic %) ° # If these targets contain at least one element selected from the group consisting of at least one of Cu, Au, Pd, Rh, Ru or Pt, it is possible to further improve the aggregation inhibition effect of Ag. The addition amount of these elements (Cu, Au, Pd, Rh, -Ru, Ir, and Pt) is more preferably 〇5 atom% or more, and suitably 0.8 atom% or more. On the other hand, these elements (Cu, Au) The upper limit of the amount of addition of Pd, Rh, Ru, Ir, and Pt) is not particularly limited, but the upper limit is suitably 10 atom%, more preferably 8 atom%, and most preferably 5 atom%. Add the above added elements (Bi and /or

Sb,或進而選自Cu、Au、Pd、Rh、Ru、Ir或Pt的一種 以上)的濺射靶根據濺射法成膜的電磁波遮罩用Ag合金 膜除了電磁波遮罩特性(紫外線遮罩性、電波遮罩性)優 異外’可見光透過性、耐久性、耐候性、耐Ag凝集性也 , 優異。 本發明涉及的電磁波遮罩用Ag合金膜推薦如上該由 濺射法成膜,但也可以由真空蒸鍍法等物理蒸鍍法或 CVD法等化學蒸鍍法成膜。 -36- 1265976 (33) 本發明中,如上該,在Ag合金膜的表面及/或介面 • 具有比該Ag合金膜的內部Bi及/或Sb的含量多的層( 以下也叫做富Bi«Sb層)。該富Bi*Sb層存在於該Ag •.合金膜的表面及/或介面。該富B^Sb層可以只存在於 該Ag合金膜的表面,或者只存在於該Ag合金膜的介面 ,或者存在於該Ag合金膜的表面和介面。 此時,Ag合金膜的表面爲該Ag合—膜的內部以外, • 並不只限定於最表面或最表面及其附近,從最表面到Ag 合金膜厚度1 / 4程度厚度(深度)處的部分(層)也包 • 含在Ag合金膜的表面,在這些部分(層)存在該富Bi· β Λ Sb層(在Ag合金膜的表面存在富Bi · Sb層的.情況)。 • 另外,Ag合金膜的介面爲,在該Ag合金膜的表面附有其 他膜或層(層疊的情況)時,這些其他膜或層和該Ag合 金膜的介面,對於該Ag合金膜的介面,意思與上述Ag 合金膜的表面的情況祖同,.並不只限定於介面或介面及其 ® 附近’從介面到Ag合金膜厚度1/ 4程度厚度(深度) -處的部分(層)也包含在Ag合金膜的介面,在這些部分 (層)存在該富Bi.Sb層(在Ag合金膜的介面存在富 Bi · Sb層的情況)。Ag合金膜的內部是指,從Ag合金 膜的表面或介面到Ag合金膜厚度1/4程度厚度(深度 ' )處與3 / 4程度厚度(深度)處之間的部分·(層)。 本發明中,如上該富Bi · Sb層含有氧化Bi及/或氧 化Sb。該富Bi· Sb層在大多情況下由氧化Bi及/或氧 化Sb構成,但並不限定於此,還包括氧化Bi及/或氧化 -37- 1265976 (34)Sputter target of Sb, or further selected from one or more of Cu, Au, Pd, Rh, Ru, Ir, or Pt, in accordance with a sputtering method, an electromagnetic wave mask for an Ag alloy film in addition to electromagnetic wave mask characteristics (ultraviolet mask) Excellent in terms of properties and radio wave shielding properties, and excellent in visible light transmittance, durability, weather resistance, and Ag aggregation resistance. The Ag alloy film for an electromagnetic wave mask according to the present invention is preferably formed by a sputtering method as described above, but may be formed by a chemical vapor deposition method such as a vacuum deposition method or a chemical vapor deposition method such as a CVD method. -36- 1265976 (33) In the present invention, as described above, the surface and/or interface of the Ag alloy film has a layer having a larger content of Bi and/or Sb than the inside of the Ag alloy film (hereinafter also referred to as Rich Bi«). Sb layer). The Bi*Sb-rich layer is present on the surface and/or interface of the Ag. alloy film. The B 2 -rich layer may be present only on the surface of the Ag alloy film, or only on the interface of the Ag alloy film, or on the surface and interface of the Ag alloy film. At this time, the surface of the Ag alloy film is outside the inside of the Ag film, and is not limited to the outermost surface or the outermost surface, and is from the outermost surface to the thickness (depth) of the thickness of the Ag alloy film of 1/4. Part (layer) is also included in the surface of the Ag alloy film, and the Bi·β Λ Sb layer is present in these portions (layers) (the case where the Bi·Sb layer is present on the surface of the Ag alloy film). • The interface of the Ag alloy film is such that when other films or layers are attached to the surface of the Ag alloy film (in the case of lamination), the interfaces of the other films or layers and the Ag alloy film are for the interface of the Ag alloy film. The meaning is the same as that of the surface of the above Ag alloy film, and is not limited to the interface or interface and its vicinity (the thickness of the interface from the interface to the thickness of the Ag alloy film of 1/4 (depth) - the part (layer) also The Bi.Sb-rich layer is present in the interface of the Ag alloy film in the interface (layer) (the case where the Bi·Sb layer is present in the interface of the Ag alloy film). The inside of the Ag alloy film refers to a portion (layer) between the surface or interface of the Ag alloy film to a thickness of 1/4 of the thickness of the Ag alloy film (depth ') and a thickness (depth) of 3 / 4 thickness. In the present invention, the Bi-rich Sb layer contains oxidized Bi and/or oxidized Sb as described above. The Bi·Sb-rich layer is composed of oxidized Bi and/or oxidized Sb in many cases, but is not limited thereto, and includes oxidized Bi and/or oxidized -37- 1265976 (34).

Sb爲主要成分的情況,氧化Bi及/或氧化Sb外Bi及/ 或Sb共存的情況。 接著,對第三個發明的較佳體系進行說明。 ' 本發明人爲了促進性掌〜握製造液晶顯示元件時光反射 . 膜暴露在空氣中的情況或在製造後的使用過程中在高溫高 濕下長時間暴露時引起的現象,進行了把Ag單獨光反射 膜(膜厚lOOnm)在溫度80°C、相對濕度90%的高溫高 • 濕下放置48小時的環境試驗。結果該光反射膜的反射率 與環境試驗前的反射率(波長65 Onm )相比,在環境試驗 - 後下降7.0 %程度。該反射率的降低(以下叫做 ''反射率 * 的經時降低〃)的原因可能是,如在上述現有技術的說明 . 中敍述,由結晶粒的成長或Ag原子的凝集等因素引起。 因此,本發明人基於如要防止該反射率的經時降低獲 得Ag原有的光反射率,重要的是找出能夠去除或者控制 這些因素的合金成分,這種想法進行了潛心硏究。 • 硏究的結果,本發明人發現藉由在Ag中含有Bi及/ 或Sb (選自Bi和Sb的一種或兩種元素),可在維持Ag 原有光反射率的條件下抑制Ag的凝集或結晶粒成長,抑 制反射率的經時降低,以至完成本發明。 一直以來進行著並非純A g而是使用A g底質合金作 - 爲光反射膜的硏究,但如在本發明中規定,藉由在Ag中 添加Bi或Sb來抑制Ag原子的凝集或Ag的結晶粒成長 的報道,並沒有在現有技術中出現。對於Ag原子的凝集 或Ag的結晶粒成長的抑制,有本發明者們的由添加稀土 -38· 1265976 (35) 元素的 Ag底質合金構成的光反射膜的發明(日本特願 2002— 01729),但本發明中由含有Bi、Sb的Ag底質合 金構成的光反射膜具有其之上的反射率和耐久性。 * 本發明中使用含有Bi及/或Sb的Ag底質合金作爲 _ 光反射膜,因抑制反射率的經時降低,維持高光反射率, 所以基於與現有技術明確區分的技術思想。如後述,還可 以使用在含有Bi及/或Sb的Ag底質合金中添加成本低 • 的稀土元素,如Nd或Y的合金。進而,也可以使用含有 提高耐氧化性的成分Au、Cu、Pt、Pd、Rh的三元系或四 元系以上的合金。下面,詳細說明本發明。 . 本發明中,如用於反射型液晶顯示元件等的光反射膜 - 考慮到要求可見光的反射特性的問題,用波長65 0nm測 定反射率來硏究反射特性。在以下說明中、、初期反射率( % )〃是指形成光反射膜後立即測定的反射率(% ),該 値的大小被合金元素的種類和量所左右。另外,〜反射率 ® 的經時變化量(% )〃定義爲 '、環境試驗後的反射率(% )一初期反射率(% ) 〃 ,該經時變化量(% )爲負數時 ,說明環境試驗後的反射率比初期反射率降低。 如果光反射膜是由含有Bi及/或Sb的Ag底質合金 形成,可抑制Ag的結晶粒成長或Ag原子的凝集。尤其 • 由濺射法形成的薄膜含有原子空穴等多數缺陷,所以Ag 原子容易移動和擴散,其結果A g原子凝集,但藉由B i、 Sb存在於Ag的結晶中,可抑制Ag的移動和擴散,抑制 Ag的結晶粒成長或Ag原子的凝集。 -39- (36) 1265976 藉由添加Bi及/或Sb合計量0.01原子%以上,可 顯示出抑制Ag的結晶粒成長或Ag原子的凝集的效果。 只是’隨著這些元素添加量的增大,導致初期反射率的下 ’ 降或電阻率的增大,所以適宜地B i及/或S b的合計添加 、 里在4原子%以下。尤其液晶顯不兀件擔任反射體和電極 兩種角色時’適宜地儘量降低電阻率。即,關於初期反射 率,如果選Bi及/或Sb的合計添加量在2原子%以內, 鲁可維持8 0 %以上的高初期反射率。另一方面,關於電阻 率,通常用於液晶顯示元件配線膜的A1合金(Al — Ta、 _ A1 — Nd等)的電阻率爲5〜1 5 // Ω cm程度,因此,如在 、- 後述實施例中所示,如果Bi、Sb都在1 ·8原子%以內, • 可獲得與Α1合金配線相等的1 5 # Ω cm以下的電阻率。 只是’與A1合金同樣用於液晶顯示元件配線膜的Cr或 Mo等高熔點金屬材料中,電阻率以〜200 // Ω cm程度使 用,因此,即使Bi、Sb的添加量超過1.8原子%,使用 ® 也沒有問題。從而,Bi及/或Sb的合計量的更適宜地的 上限爲2原子%。 另一方面,作爲促進性再現容易引起Ag的結晶粒成 長或Ag原子的凝集的環境的環境試驗,把光反射膜在溫 度8 0°C、相對濕度90%的高溫高濕下放置48小時的情況 • ,只要Bi及/或Sb的合計量超過〇·〇5原子%,可使環 境試驗前的反射率[二初期反射率](% )和環境試驗後的 反射率(%)之差控制在1%以內,因此,Bi及/或Sb 的合計量的更適宜地的下限爲0.05原子%。 -40- (37) 1265976 用於本發明的光反射膜形成的Ag底質合金可以進而 含有稀土元素,尤其是Nd及/或Y。雖然與Bi或Sb相 比效果小,但Nd或Y也有提高Ag的耐凝集性的效果, - 而且Nd或Y與Bi或Sb相比成本低,因此,如果取代一 、 部分Bi或Sb可以降低成本。Nd及/或Y的合計添加量 適宜地爲〇·〇1原子%以上。只是,Nd或Y的添加會導致 初期反射率或電阻率的下降,因此,其合計量適宜地爲2 Φ 原子%以下,更適宜地1原子%以下(雖然在Ag中不添 力口 Bi及/或Sb,只添加Nd及/或Y,也能提高Ag的耐 » 凝集性,但如在後述實施例中該,存在不能提高耐NaCl 性的課題。) - 另外,也可以添加An、Cu、Pt、Pd、Rh等,以提高 耐氧化性。這些元素雖然沒有抑制Ag凝集的效果,但有 增加化學穩定性的效果,起到抑制反射率的經時下降的作 用。這些元素隨著添加量的增加,尤其導致短波區域( • 400nm前後)的反射率的降低,因此,合計量適宜地3原 子%以下,更適宜地2原子%以下。 本發明的光反射膜的適宜地較佳體系爲,含有Bi及 /或Sb,根據需要含有Nd、Y或Cu、Au、Pd、Rh及Pt ,剩餘部分實質上爲Ag,這樣可以獲得高的初期反射率 • ,但也可以在不影響本發明作用的範圍內,添加上述成分 以外的其他成分。例如,可以添加Zn、Ti、Mg、Ni等, 以起到防止化學性腐蝕或反應的作用。另外,允許有Ar 、〇2、Ν2等氣體成分,或作爲溶解原料的Ag底質合金中 -41 - 1265976 (38) 含有的雜質。 本發明的光反射膜可長時間維持高反射率,因此適合 用於反射型液晶顯示元件。另外,本發明光反射膜對於加 * 熱時結晶粒成長等的結構變化的耐久性優異,因此特別適 _ 合於在製造工序中經過通常 200〜3 00 °C加熱工序的液晶 顯示元件。進而,該光反射膜具有導電性,因此可作爲反 射型液晶顯示元件的反射電極利用。另外,也可以在透明 • 電極的背面作爲反射板來設置。用作反射電極時的電極基 板可以使用玻璃基板、塑膠薄膜基板等公知的材料。反射 ,板的基材也可以使甩同樣的材料。進而,可以使用成兼備 , 光反射膜和配線膜。 . • 適宜地使用濺射法把光反射膜形成於上述基板或基材 上。Bi或Sb在化學平衡狀態下對於Ag的固溶限極其小 ,但由濺射法形成的薄膜可以根據濺射法固有的氣相急冷 實現非平衡固溶,因此與用其他薄膜形成法形成A g底質 ® 合金薄膜的情況相比,該合金元素更容易均勻地存在於 Ag矩陣中。其結果,Ag底質合金的耐氧化性提高,可發 揮對於A g原子凝集的抑制效果。 光反射膜的膜厚適宜地50〜300nm。薄於50nm的膜 開始透過光’所以反射率降低。另一方面,如果超過 ' 3 OOnm,雖然反射率沒有問題,但不利於生産性或成本。 濺射時,作爲濺射靶(以下有時只叫做、、靶〃),藉 由使用選自含有由Bi: 〇·2〜15原子%、Sb: 〇.〇1〜4原 子%組成的組中的一種或二種,同時該濺射靶中的B i量 -42- 1265976 (39) 及Sb量滿足下述再現式(3 - 1)的Ag底質合金可得到 . 所期望化學組成的光反射膜。 0·01‘ 0.000502nBi3 + 0.00987nBi2 + 〇.〇553nBi + nSb$ 4 . ...... (3 - 1 ) • 式(3—1)中,nBi爲靶中的Bi量(原子%) , nSb 爲靶中的Sb量(原子% )。 在此,使靶中Bi含量大於光反射膜中Bi含量的理由 鲁如下。即_,使用由含有Bi的Ag底質合金構成的靶根據濺 射法形成光反射膜時’光反射膜中的B i含量要降低至紀 • 中Bi含量的幾%〜幾十%。其原因被認爲是,Ag和Bi . ' 的熔點之差大’所以在成膜過程中B i從基板上再蒸發, • 以及A g的濺射率大於B i的濺射率,所以b i不易被濺射 ’以及Bi·比A g.容易氧化,所以在靶表面只有Bi被氧化 而不被濺射等。這種光反射膜中的元素含量比靶中的元素 .含量大幅度降低的現象是在Ag~ Sb合金、Ag-稀土類金 屬合金等其他A g底質合金中看不到的現象。因此,靶中 的B i含量必須高於目標光反射膜中B i含量。例如,爲了 獲得含有0.005〜0.4原子%的Bi的光反射膜,需要考慮 未進入光反射膜中的Bi含量,需要使靶中的Bi含量爲 0」5〜4 · 5原子% (參照後述的實施例4 )。另外,如上 _ 該’光反射膜中含有的Bi和Sb的合計量需要爲〇.〇1〜4 原子%。因此,靶中的Bi含量和Sb含量需要滿足式(3 一 1 )。 • 這裏,關於上述式(3 — 1 )中的nBi的各係數的値是 -43- (40) 1265976 ,實驗性地硏究靶中Bi含量和光反射膜中Bi含量的相關 關係後’從其結果近似得出。 靶適宜地使用由溶解鑄造法制作的Ag底質合金(溶 ’ 制Ag底質合金)。溶制Ag底質合金組織上均勻,可使 , 濺射率或出射角度一定,所以可獲得成分組成均勻的光反 射膜。如果把上述溶制Ag底質合金靶的含氧量控制在 10 Oppm以下,容易保持一定的膜形成速度,還可降低光 T,蠢 反射膜中的氧含量,可提高反射率或電阻率。 本發明的反射型液晶顯示元件適宜地具有本發明的光 反射膜,對於作爲其他液晶顯示元件的構成不做特別限定 r : ,可以採用液晶顯示元件領域中公知的所有構成。 - 下面根據實施例進而詳細說明本發明,但下述實施例 並不限制本發明,在不逃脫本發明宗旨的範圍內變更實施 都包含在本發明的技術範圍內。 【實施方式】 實施例1 首先,對各特性的測定、評價方法,在下面敍述。 [Ag底質合金薄膜的製作] 使用在純Ag濺射靶上配置各種添加元素片(chip) 的複合靶,根據DC磁控濺射法,在聚碳酸酯基板(直徑 :5 0mm、厚度:1mm )上成膜厚度lOOnm (作爲反射膜 )或1 5nm (作爲半透過反射膜)的純Ag (試樣序號1 ) -44 - 1265976 (41) 、Ag— Bi合金(試樣序號2〜5) 、Ag— Sb合金(試樣序 號6〜9) 、Ag— Bi— Nd合金(試樣序號1〇〜14)、岣 、:Bi— Y合金(試樣序號15〜19) 、Ag— Sb - Nd合金( 試樣序號20〜24 ) 、Ag — Sb — Y合金(試樣序號25〜29 、 )、Ag - Bi— Cu 合金(試樣序號 30 〜34) 、Ag—Bi— Au Θ金(g式樣序號.35〜39) 、Ag—Sb - Cu合金(試樣序號 40〜44) 、Ag—Sb— Au合金(試樣序號45〜49) 、Ag — — Nd — Cu 口金(試樣序號 50) 、Ag— Bi— Nd— Au 合 金(試樣序號51) 、Ag—Bi - Y— Cu合金(試樣序號52 ' )、Ag— Bi— Y - Αιι 合金(試樣序號 53) 、Ag— Sb— Nd - —Cu合金(試樣序號54) 、Ag - Sb — Nd - A u合金(試 - 樣序號55) 、Ag—Sb— Y— Cu合金(試樣序號56) 、Ag 〜Sb—Y— Αιι合金(試樣序號57) 、Ag—Si合金(試樣 序號58 ) 、Ag,一 Sn合金(試樣序號59 )的薄膜。然後, 根據 ICP ( Inductively Coupled Plasma)質量分析法測定 ® 這些Ag底質合金薄膜的組成。 接著,使用製作的各Ag底質合金薄膜,測定作爲反 射膜(膜厚度lOOnm )或者半透過反射膜(15nm )的特 性(導熱係數、反射率、耐久性)。尤其對於耐久性中的 熱穩定性,測定高溫高濕試驗前後的反射率變化和表面粗 度(平均粗度)和結晶粒徑等,並且對於耐久性中的化學 穩定性測定鹽水浸漬試驗後的外觀變化,評價各薄膜的耐 久性。 •45- (42) 1265976 實施例一1 - 1 [導熱係數的測定] 用以下方法測定如上該製作的膜厚1 OOnm的各薄膜 的導熱係數。使用 HIOKI公司製造的 3 226m Ω Hi TESTER,根據四探針法測定片阻値Rs、使用 TENCOR INSTRUMENTS公司製造的alpha — step2 5 0測定膜厚t, 計算出電阻率p (=片阻値RSX膜厚t),再根據威德曼 —弗朗茲定律計算出絕對溫度3 00K (与27°C )的導熱係 ® 數^ ( = 2.51 X絕對溫度T/電阻率p )。評價時,把顯 示相當於純Ag薄膜具有的導熱係數:32〇W/ (m.K) • 的8成以上的256 W/ ( m · K ).以上的判定爲具有高導熱 係數。將結果不於表1、2。 - 從表】、2可以知道,純Ag (-試樣序號1 ) 、Ag - Si 合金(試樣序號58)的薄膜以及滿足本發明規定要素的 試樣序號2〜4、6〜8、1〇〜13、15〜18、20〜23、25〜 28、30 〜33、35 〜38、40 〜43、45 〜48、50 〜57 的 Ag 底 B 質合金薄膜都具有高導熱係數。相對於此,試樣序號5、 9' 14、19、24、29、34、39、44、49 的 Ag 底質合金薄 MS#&元;素添加籩過多而無法獲得給定高導熱係數,並 且Ag— Sn合金(試樣序號59)的薄膜也無法獲得高導熱 係數。Rh或Pd或Pt的添加效果與Cu或Αιι的添加效果 • 相同。 -46- (43)1265976 表1In the case where Sb is a main component, Bi may be oxidized and/or Sb may be present outside of Sb and/or Sb may coexist. Next, a preferred system of the third invention will be described. The inventors of the present invention performed the light reflection when the liquid crystal display element was manufactured by the inventor of the present invention. When the film was exposed to the air or the phenomenon caused by prolonged exposure under high temperature and high humidity during use after the manufacture, Ag was separately performed. The light-reflecting film (film thickness: 100 nm) was subjected to an environmental test at a temperature of 80 ° C and a relative humidity of 90% at a high temperature and humidity for 48 hours. As a result, the reflectance of the light-reflecting film was reduced by 7.0% after the environmental test - compared with the reflectance (wavelength 65 Onm) before the environmental test. The reason for the decrease in the reflectance (hereinafter referred to as 'the reflectance* decrease with time 〃) may be caused by factors such as growth of crystal grains or aggregation of Ag atoms as described in the above-mentioned prior art. Therefore, the inventors of the present invention have made great efforts to obtain the original light reflectance of Ag by preventing the decrease in the reflectance over time, and it is important to find an alloy component capable of removing or controlling these factors. • As a result of the investigation, the inventors have found that by containing Bi and/or Sb (one or two elements selected from Bi and Sb) in Ag, Ag can be suppressed while maintaining the original light reflectance of Ag. Aggregation or crystal grain growth inhibits the decrease in reflectance over time, so as to complete the present invention. Conventionally, instead of pure A g, an A g-based alloy has been used as a light-reflecting film, but as specified in the present invention, aggregation of Ag atoms is suppressed by adding Bi or Sb to Ag. The report of the growth of crystal grains of Ag has not appeared in the prior art. Inventors of the present invention have a light-reflecting film composed of an Ag-based alloy to which a rare earth-38·1265976 (35) element is added, in order to suppress the aggregation of Ag atoms or the growth of crystal grains of Ag (Japanese Patent Application No. 2002-01729) However, in the present invention, the light-reflecting film composed of the Ag-based alloy containing Bi and Sb has reflectance and durability thereon. * In the present invention, an Ag-based alloy containing Bi and/or Sb is used as the _ light-reflecting film, and since the reflectance is suppressed from decreasing with time and the high light reflectance is maintained, it is based on the technical idea clearly distinguished from the prior art. As will be described later, it is also possible to use a rare earth element such as Nd or Y which is inexpensive to be added to an Ag-based alloy containing Bi and/or Sb. Further, a ternary system or a quaternary or higher alloy containing a component of improving oxidation resistance, Au, Cu, Pt, Pd, and Rh, may also be used. Hereinafter, the present invention will be described in detail. In the present invention, as a light-reflecting film for a reflective liquid crystal display element or the like - in consideration of the problem of requiring reflection characteristics of visible light, the reflectance is measured at a wavelength of 65 0 nm to investigate the reflection characteristics. In the following description, the initial reflectance (%) 〃 refers to the reflectance (%) measured immediately after the formation of the light-reflecting film, and the size of the ruthenium is determined by the type and amount of the alloying element. In addition, the change amount (%) of the reflectance® is defined as ', the reflectance after the environmental test (%) - the initial reflectance (%) 〃, and the change over time (%) is a negative number. The reflectance after the environmental test is lower than the initial reflectance. If the light-reflecting film is formed of an Ag-based alloy containing Bi and/or Sb, it is possible to suppress crystal grain growth of Ag or aggregation of Ag atoms. In particular, the film formed by the sputtering method contains many defects such as atomic holes, so the Ag atoms are easily moved and diffused, and as a result, the Ag atoms are agglomerated, but the presence of Bi and Sb in the crystal of Ag suppresses Ag. Movement and diffusion suppress the growth of crystal grains of Ag or the aggregation of Ag atoms. -39- (36) 1265976 By adding a total of 0.01 atom% or more of Bi and/or Sb, it is possible to exhibit an effect of suppressing the growth of crystal grains of Ag or the aggregation of Ag atoms. However, as the amount of addition of these elements increases, the initial reflectance decreases or the resistivity increases. Therefore, a total of B i and/or S b is preferably added in a total amount of 4 atom% or less. In particular, when the liquid crystal display is used as both the reflector and the electrode, it is desirable to reduce the resistivity as much as possible. In other words, regarding the initial reflectance, if the total addition amount of Bi and/or Sb is within 2 atom%, Lu can maintain a high initial reflectance of 80% or more. On the other hand, regarding the specific resistance, the resistivity of the A1 alloy (Al — Ta, _ A1 — Nd, etc.) which is generally used for the wiring film of the liquid crystal display element is about 5 to 15 // Ω cm, and therefore, as in As shown in the later-described examples, if both Bi and Sb are within 1 · 8 at%, • a resistivity of 15 5 Ω cm or less equal to that of the Α 1 alloy wiring can be obtained. It is only used in a high melting point metal material such as Cr or Mo which is used for a liquid crystal display element wiring film in the same manner as the A1 alloy, and the specific resistance is used in the range of ~200 // Ω cm. Therefore, even if the addition amount of Bi and Sb exceeds 1.8 atom%, There is no problem with using ®. Therefore, a more preferable upper limit of the total amount of Bi and/or Sb is 2 atom%. On the other hand, as an environmental test for facilitating the reproduction of an environment in which Ag crystal growth or Ag atoms are aggregated, the light reflection film is allowed to stand under high temperature and high humidity at a temperature of 80 ° C and a relative humidity of 90% for 48 hours. Case • As long as the total amount of Bi and/or Sb exceeds 〇·〇5 at%, the difference between the reflectance [two initial reflectance] (%) before environmental test and the reflectance (%) after environmental test can be controlled. Within 1%, a more preferable lower limit of the total amount of Bi and/or Sb is 0.05 atom%. -40- (37) 1265976 The Ag-based alloy formed by the light-reflecting film of the present invention may further contain a rare earth element, particularly Nd and/or Y. Although the effect is small compared with Bi or Sb, Nd or Y also has the effect of improving the agglomeration resistance of Ag, - and Nd or Y is lower in cost than Bi or Sb, and therefore, if one, part of Bi or Sb is substituted, it can be lowered. cost. The total amount of addition of Nd and/or Y is suitably 〇·〇1 atom% or more. However, the addition of Nd or Y causes a decrease in initial reflectance or resistivity, and therefore, the total amount thereof is suitably 2 Φ atomic % or less, more preferably 1 atomic % or less (although no force is added to Ag in Ag and / or Sb, when only Nd and/or Y are added, the Ag resistance can be improved. However, as described later in the examples, there is a problem that the NaCl resistance cannot be improved.) - In addition, An and Cu may be added. , Pt, Pd, Rh, etc., to improve oxidation resistance. Although these elements do not suppress the effect of Ag agglutination, they have an effect of increasing chemical stability and suppress the decrease in reflectance over time. These elements increase the reflectance of the short-wavelength region (before and after 400 nm) in particular as the amount of addition increases. Therefore, the total amount is preferably 3 atom% or less, more preferably 2 atom% or less. A preferred system of the light-reflecting film of the present invention contains Bi and/or Sb, and if necessary, contains Nd, Y or Cu, Au, Pd, Rh, and Pt, and the remainder is substantially Ag, so that high can be obtained. The initial reflectance is , but other components than the above components may be added to the extent that the effects of the present invention are not affected. For example, Zn, Ti, Mg, Ni, or the like may be added to prevent chemical corrosion or reaction. Further, it is allowed to have a gas component such as Ar, 〇2, or Ν2, or an impurity contained in -41265976 (38) of the Ag-based alloy as a dissolution raw material. The light-reflecting film of the present invention can maintain a high reflectance for a long period of time, and is therefore suitable for use in a reflective liquid crystal display element. Further, since the light-reflecting film of the present invention is excellent in durability against structural changes such as crystal grain growth during heating, it is particularly suitable for a liquid crystal display device which is subjected to a heating step of usually 200 to 300 ° C in the production process. Further, since the light reflecting film has conductivity, it can be used as a reflective electrode of a reflective liquid crystal display device. Alternatively, it can be placed on the back of the transparent • electrode as a reflector. A well-known material such as a glass substrate or a plastic film substrate can be used as the electrode substrate used as the reflective electrode. Reflection, the substrate of the board can also make the same material. Further, it is possible to use both a light reflection film and a wiring film. • A light reflecting film is suitably formed on the above substrate or substrate by a sputtering method. Bi or Sb has a very small solid solution limit for Ag in a chemical equilibrium state, but a film formed by a sputtering method can achieve non-equilibrium solid solution according to the gas phase quenching inherent in the sputtering method, and thus forms A with other thin film formation methods. Compared with the case of the g-based alloy film, the alloy element is more likely to be uniformly present in the Ag matrix. As a result, the Ag-based alloy has improved oxidation resistance and can suppress the aggregation of Ag atoms. The film thickness of the light reflecting film is suitably 50 to 300 nm. The film thinner than 50 nm starts to transmit light' so the reflectance is lowered. On the other hand, if it exceeds '300 nm, although there is no problem in reflectance, it is not conducive to productivity or cost. At the time of sputtering, as a sputtering target (hereinafter sometimes referred to as "target"), a group selected from the group consisting of Bi: 〇·2 to 15 atom%, Sb: 〇.〇1 to 4 atom% is used. One or two of the same, and the amount of Bi in the sputtering target -42 - 1265976 (39) and the amount of Sb satisfying the following reproduction formula (3 - 1) of the Ag substrate can be obtained. Light reflecting film. 0·01' 0.000502nBi3 + 0.00987nBi2 + 〇.〇553nBi + nSb$ 4 . . . (3 - 1 ) • In the formula (3-1), nBi is the amount of Bi in the target (atomic %) , nSb is the amount of Sb (atomic %) in the target. Here, the reason why the Bi content in the target is larger than the Bi content in the light reflecting film is as follows. That is, when a light-reflecting film is formed by a sputtering method using a target composed of an Ag-based alloy containing Bi, the content of Bi in the light-reflecting film is reduced to a few % to several tens of % of the content of Bi in the film. The reason is considered to be that the difference between the melting points of Ag and Bi. ' is large' so that B i re-evaporates from the substrate during film formation, and the sputtering rate of A g is larger than the sputtering rate of B i , so bi It is not easy to be sputtered' and Bi· is more easily oxidized than A g. Therefore, only Bi is oxidized on the target surface without being sputtered or the like. The phenomenon that the content of the element in the light-reflecting film is significantly lower than the content of the element in the target is not observed in other Ag-based alloys such as Ag-Sb alloy and Ag-rare metal-based alloy. Therefore, the content of Bi in the target must be higher than the content of Bi in the target light reflecting film. For example, in order to obtain a light-reflecting film containing 0.005 to 0.4 atom% of Bi, it is necessary to consider the content of Bi which does not enter the light-reflecting film, and it is necessary to make the Bi content in the target 0 to 5 to 4 · 5 atom% (refer to the following description). Example 4). Further, the total amount of Bi and Sb contained in the above-mentioned "light-reflecting film" needs to be 〜1 to 4 atom%. Therefore, the Bi content and the Sb content in the target need to satisfy the formula (3 - 1 ). • Here, the enthalpy of each coefficient of nBi in the above formula (3 - 1) is -43-(40) 1265976, and the relationship between the Bi content in the target and the Bi content in the light-reflecting film is experimentally investigated. The result is approximate. As the target, an Ag-based alloy (Solvent-based Ag-based alloy) produced by a dissolution casting method is suitably used. The Ag-based underlying alloy is uniformly formed on the structure, so that the sputtering rate or the exit angle is constant, so that a light-reflecting film having a uniform composition of components can be obtained. When the oxygen content of the above-mentioned molten Ag-based alloy target is controlled to 10 Oppm or less, it is easy to maintain a constant film formation speed, and it is also possible to reduce the light T, the oxygen content in the stupid reflection film, and to improve the reflectance or the specific resistance. The reflective liquid crystal display device of the present invention suitably has the light-reflecting film of the present invention, and the configuration of the other liquid crystal display element is not particularly limited. Any configuration known in the field of liquid crystal display elements can be employed. The present invention will be described in detail below based on the embodiments, but the following examples are not intended to limit the invention, and modifications and modifications are intended to be included within the scope of the invention. [Embodiment] Embodiment 1 First, a method of measuring and evaluating each characteristic will be described below. [Preparation of Ag-based alloy thin film] A composite target in which various additive element chips were placed on a pure Ag sputtering target was used in a polycarbonate substrate (diameter: 50 mm, thickness: according to DC magnetron sputtering method). 1mm) pure Ag film (as a reflective film) or 15 nm (as a semi-transmissive reflective film) pure Ag (sample No. 1) -44 - 1265976 (41), Ag-Bi alloy (sample number 2 to 5) ), Ag—Sb alloy (sample No. 6 to 9), Ag—Bi—Nd alloy (sample No. 1〇~14), 岣, :Bi—Y alloy (sample No. 15 to 19), Ag—Sb - Nd alloy (sample No. 20 to 24), Ag - Sb - Y alloy (sample No. 25 to 29, ), Ag - Bi-Cu alloy (sample No. 30 to 34), Ag-Bi- Au sheet metal (g pattern No. 35~39), Ag-Sb-Cu alloy (sample No. 40~44), Ag-Sb- Au alloy (sample No. 45~49), Ag — — Nd — Cu gold (sample No. 50), Ag—Bi—Nd— Au alloy (sample No. 51), Ag—Bi—Y—Cu alloy (sample No. 52′), Ag—Bi—Y—Αιι alloy (sample No. 53), Ag-Sb- Nd - Cu alloy (sample No. 54), Ag - Sb - Nd - A u alloy (test sample No. 55), Ag-Sb-Y-Cu alloy (sample No. 56), Ag ~ Sb - Y - Α ιι alloy ( Sample No. 57), a film of Ag-Si alloy (sample No. 58), Ag, and a Sn alloy (sample No. 59). Then, the composition of these Ag-based alloy thin films was determined by ICP (Inductively Coupled Plasma) mass spectrometry. Next, the properties (thermal conductivity, reflectance, and durability) of the reflective film (film thickness: 100 nm) or semi-transmissive film (15 nm) were measured using each of the produced Ag-based alloy thin films. In particular, for the thermal stability in durability, the change in reflectance and surface roughness (average roughness) and crystal grain size before and after the high-temperature and high-humidity test were measured, and the chemical stability in durability was measured after the salt water immersion test. The appearance was changed, and the durability of each film was evaluated. 45-(42) 1265976 Example 1 1-1 [Measurement of thermal conductivity] The thermal conductivity of each of the films having a film thickness of 100 nm prepared as described above was measured by the following method. Using a 3 226 m Ω Hi TESTER manufactured by HIOKI, the sheet resistance Rs was measured according to the four-probe method, and the film thickness t was measured using an alpha-step 2 50 manufactured by TENCOR INSTRUMENTS, and the resistivity p (= chip resistance 値 RSX film was calculated). Thick t), according to the Wedman-Franz law, calculate the absolute temperature of 3 00K (and 27 ° C) of the thermal conductivity system number ^ ( = 2.51 X absolute temperature T / resistivity p). In the evaluation, it was judged that the thermal conductivity of the pure Ag film was 32 以上W/(m.K) of 256 W/(m·K) or more, which was determined to have a high thermal conductivity. The results are not shown in Tables 1 and 2. - From the table, 2, a film of pure Ag (-sample No. 1), Ag-Si alloy (sample No. 58), and sample numbers 2 to 4, 6 to 8, 1 satisfying the specified elements of the present invention are known. The Ag-bottom B alloy films of 〇~13, 15~18, 20~23, 25~28, 30~33, 35~38, 40~43, 45~48, 50~57 have high thermal conductivity. On the other hand, the sample Nos. 5, 9' 14, 19, 24, 29, 34, 39, 44, 49 of the Ag substrate alloy thin MS# &element; the addition of yttrium too much to obtain a given high thermal conductivity Also, a film of Ag-Sn alloy (sample No. 59) could not obtain a high thermal conductivity. The addition effect of Rh or Pd or Pt is the same as that of Cu or Αιι. -46- (43)1265976 Table 1

導熱係數測定結果 試樣 序號 組成 導熱係數 [W/(m*K)] 高導熱 係數 1 純Ag 320 〇 2 Ag-0.005原子%Bi合金 319 〇 3 Ag-0.2原子%8丨合金 296 〇 4 Ag-0.4原子%Bi合金 271 〇 5 Ag-0.6原子%Bi合金 247 X 6 Ag-0.005原子%31)合金 319 〇 7 Ag-0.2原子%81)合金 292 〇 8 Ag-0.4原子%Sb合金 264 〇 9 Ag-0.6原子%Sb合金 236 X 10 Ag-0.2 原子%Bi-0.01 原子。/〇Nd 合金 296 〇 11 Ag-0.2 原子%Bi-0.1 原子°/(^(1 合金 294 〇 12 Ag-0.2原子%8^0.5原子°/(^(1合金 287 〇 13 Ag-0.2原子°/(^丨-2原子°/(^(1合金 260 〇 14 Ag-0.2原子%Bi-3原子%Nd合金 242 X 15 Ag-0.2原子%Bi-0.01原子%丫合金 296 〇 16 Ag-0.2原子原子%丫合金 294 〇 17 Ag-0.2原子%Bi-0.5原子%丫合金 288 〇 18 Ag-0.2原子。/〇^-2原子%Y合金 262 〇 19 Ag-0.2原子%8丨-3原子%Υ合金 245 X 20 Ag-0.2原子%Sb-0.01原子%Nd合金 292 〇 21 Ag-0.2 原子%81)-0.1 原子°/(^(1 合金 290 〇 22 Ag-0.2 原子%31)-0.5 原子°/(^(1 合金 283 〇 23 Ag-0.2原子%31>2原子°/(^0合金 256 〇 24 Ag-0.2原子%81)-3原子°/(^(1合金 238 X 25 Ag-0.2原子%3卜0.01原子%丫合金 292 〇 26 Ag-0.2原子%Sb-0.1原子%丫合金 290 〇 27 Ag-0.2原子°/(^13-0.5原子%丫合金 284 〇 28 Ag-0.2原子%Sb-2原子%Y合金 258 〇 29 Ag-0.2原子%Sb-3原子%丫合金 241 X -47- (44) 1265976 表2Thermal conductivity measurement results Sample number composition thermal conductivity [W / (m * K)] High thermal conductivity 1 pure Ag 320 〇 2 Ag - 0.005 atomic % Bi alloy 319 〇 3 Ag - 0.2 atomic % 8 丨 alloy 296 〇 4 Ag -0.4 at% Bi alloy 271 〇5 Ag-0.6 at% Bi alloy 247 X 6 Ag-0.005 at% 31) Alloy 319 〇7 Ag-0.2 at% 81) Alloy 292 〇8 Ag-0.4 at% Sb alloy 264 〇 9 Ag-0.6 at% Sb alloy 236 X 10 Ag-0.2 Atomic % Bi-0.01 Atom. /〇Nd alloy 296 〇11 Ag-0.2 Atomic %Bi-0.1 Atom °/(^(1 Alloy 294 〇12 Ag-0.2 Atomic % 8^0.5 Atomic °/(^(1 alloy 287 〇13 Ag-0.2 Atom ° /(^丨-2 atom ° / (^ (1 alloy 260 〇 14 Ag-0.2 atom% Bi-3 atom% Nd alloy 242 X 15 Ag-0.2 atom% Bi-0.01 atom% 丫 alloy 296 〇 16 Ag-0.2 Atomic atom% yttrium alloy 294 〇17 Ag-0.2 atom% Bi-0.5 atom% yttrium alloy 288 〇18 Ag-0.2 atom. /〇^-2 atom%Y alloy 262 〇19 Ag-0.2 atom%8丨-3 atom %Υ alloy 245 X 20 Ag-0.2 atom% Sb-0.01 atom% Nd alloy 292 〇21 Ag-0.2 atomic %81)-0.1 atom °/(^(1 alloy 290 〇22 Ag-0.2 atom%%31)-0.5 Atomic ° / (^ (1 alloy 283 〇 23 Ag-0.2 atom% 31) 2 atom ° / (^0 alloy 256 〇 24 Ag-0.2 atom% 81) -3 atom ° / (^ (1 alloy 238 X 25 Ag -0.2 atom%3b0.01 atom%丫 alloy 292 〇26 Ag-0.2 atom% Sb-0.1 atom% bismuth alloy 290 〇27 Ag-0.2 atom °/(^13-0.5 atom% bismuth alloy 284 〇28 Ag-0.2 Atomic % Sb-2 Atomic % Y Alloy 258 〇 29 Ag-0.2 Atomic Sb-3 Atomic Oxide Alloy 24 1 X -47- (44) 1265976 Table 2

導熱係數測定結果 試樣 序號 組成 導熱係數 [W/(m*K)] 高導熱 係數 1 純Ag 320 〇 30 Ag-0.2 原子0/〇Bi-0.01 原子%Cii 合金 296 〇 31 Ag-0.2原子原子0/〇Cu合金 295 〇 32 Ag-0.2原子%Bi-0.5原子%Cu合金 290 〇 33 Ag-0.2原子%Bi-3原子%Cu合金 260 〇 34 Ag-0.2原子%Bi-4原子%Οι合金 248 X 35 Ag-0.2 原子ο/〇Βί-0·01 原子%Au 合金 296 〇 36 Ag-0.2原子%Bi-0· 1原子%Au合金 295 〇· 37 Ag-0.2原子%Bi-0.5原子%Au合金 290 〇 38 Ag-0.2原子%Βί·3原子%八11合金 262 〇 39 Ag-0.2原子%Bi-4原子%Au合金 251 X 40 Ag-0.2 原子%Sb-0.01 原子%(11\1 合金 292 〇 41 Ag-0.2原子%Sb-0.1原子%Cii合金 291 〇 42 Ag-0.2原子%Sb-0.5原子%Cu合金 286 〇 43 Ag-0.2原子%Sb-3原子%Cu合金 256 〇 44 Ag-0.2原子%Sb-4原子0/〇Cu合金 244 X 45 Ag-0.2原子%Sb-0.01原子%Au合金 292 〇 46 Ag-0.2原子%SWU原子0/〇Au合金 291 〇 47 Ag-0.2原子0/〇Sb-0.5原子%Au合金 286 〇 48 Ag-0.2原子0/〇Sb-3原子%Au合金 258 〇 49 Ag-0.2原子0/〇Sb-4原子%Au合金 247 X 50 Ag-0.2 原子%Bi-0.5 原子o/〇Nd-0.5 原子0/〇〇!合金 281 〇 51 Ag-0.2 原子0/〇Bi-0.5 原子%Nd-0.:5 原子%Au 合金 281 〇 52 Ag-0.2原子0/〇Bi-0.5原子%Υ·0·5原子%Cu合金 282 〇 53 Ag-0.2原子%Bi-0.5原子%Υ-0·5原子%Au合金 282 〇 54 Ag-0.2 原子%Sb_0.5 原子%Nd-0.5 原子0/〇〇!合金 277 〇 55 Ag-0.2原子%Sb-0.5原子%Nd-0.5原子%Au合金 277 〇 56 Ag_0.2 原子0/〇Sb-0.5 原子ο/〇Υ-0·5 原子%Cii 合金 278 〇 57 Ag-0.2原子%Sb-0.5原子%Υ-0·5原子0/〇Au合金 278 〇 58 Ag-0.2原子%Si合金 265 〇 59 Ag-0.2原子%Sn合金 248 X -48- (45) 1265976 實施例1〜2 [反射率的測定] • 用日本科學工程公司製造的 Polar Kerr Scope ΝΕΟ ARK MODEL ΒΗ — 810測定如上該製作的膜厚lOOnm的各 " 薄膜對可見光(波長:400〜8 OOurn )的反射率。高反射 率的評價是,把對於作爲純Ag薄膜的反射率90.8% (波 長405nm)和92.5% (波長650nm)顯示 80%以上(波 長405nm )和 88%以上(波長650nm )的判定爲具有高 鲁 反射率。這裏波長405nm是用於下一代光碟的鐳射的波 長,波長65 Onm是用於DVD的鐳射的波長。將結果示於 - 表 3 .、4 〇 ; 從表3、4可以知道,純Ag (試樣序號1 ) 、Ag - Si - 合金(試樣序號58) 、Ag-Sn合金(試樣序號59)的薄 膜以及滿足本發明規定要素的試樣序號2〜4、6〜8、1 0 〜13、 15〜18、 20〜23、 25〜28、 30〜33、 35〜38、 40〜 43、45〜48、50 >· 57的.Ag底質合金薄膜都具有高反射率 •。相對於此,試樣序號5、9、14、19、24、29、34、39 、44、49的Ag底質合金薄膜因合金元素添加量過多而無 法獲得給定高反射率。Rh或Pd或Pt的添加效果與Cu或 Au的添加效果相同。 -49 - (46)1265976 表3反射率測定結果Thermal conductivity measurement results Sample serial number Thermal conductivity [W/(m*K)] High thermal conductivity 1 Pure Ag 320 〇30 Ag-0.2 Atom 0/〇Bi-0.01 Atomic Cii Alloy 296 〇31 Ag-0.2 Atom Atom 0/〇Cu alloy 295 〇32 Ag-0.2 atom% Bi-0.5 atom% Cu alloy 290 〇33 Ag-0.2 atom% Bi-3 atom% Cu alloy 260 〇34 Ag-0.2 atom% Bi-4 atom% Οι alloy 248 X 35 Ag-0.2 Atom ο/〇Βί-0·01 Atomic % Au Alloy 296 〇36 Ag-0.2 Atomic % Bi-0·1 Atomic AA Alloy 295 〇· 37 Ag-0.2 Atomic Bi-0.5 Atomic % Au alloy 290 〇38 Ag-0.2 atom% Βί·3 atom% 八11 alloy 262 〇39 Ag-0.2 atom% Bi-4 atom%Au alloy 251 X 40 Ag-0.2 Atomic % Sb-0.01 Atomic % (11\1 Alloy 292 〇41 Ag-0.2 atom% Sb-0.1 atom% Cii alloy 291 〇42 Ag-0.2 atom% Sb-0.5 atom% Cu alloy 286 〇43 Ag-0.2 atom% Sb-3 atom% Cu alloy 256 〇44 Ag -0.2 atomic% Sb-4 atom 0/〇Cu alloy 244 X 45 Ag-0.2 atom% Sb-0.01 atom% Au alloy 292 〇46 Ag-0.2 atom% SWU atom 0/〇Au alloy 291 〇47 Ag-0.2 original 0/〇Sb-0.5 atom%Au alloy 286 〇48 Ag-0.2 atomic 0/〇Sb-3 atom%Au alloy 258 〇49 Ag-0.2 atomic 0/〇Sb-4 atom%Au alloy 247 X 50 Ag-0.2 Atomic % Bi-0.5 Atom o/〇Nd-0.5 Atom 0/〇〇! Alloy 281 〇51 Ag-0.2 Atom 0/〇Bi-0.5 Atomic %Nd-0.:5 Atomic %Au Alloy 281 〇52 Ag-0.2 Atom 0/〇Bi-0.5 atom% Υ·0·5 atom% Cu alloy 282 〇53 Ag-0.2 atom% Bi-0.5 atom% Υ-0·5 atom%Au alloy 282 〇54 Ag-0.2 Atomic % Sb_0. 5 Atomic % Nd - 0.5 Atom 0 / 〇〇 ! Alloy 277 〇 55 Ag - 0.2 Atomic % Sb - 0.5 Atomic % Nd - 0.5 Atomic AZ Alloy 277 〇 56 Ag_0.2 Atom 0 / 〇 Sb - 0.5 Atom ο / 〇 Υ-0·5 Atomic % Cii Alloy 278 〇57 Ag-0.2 Atomic % Sb-0.5 Atomic Oxide - 0 · 5 Atom 0 / 〇 Au Alloy 278 〇 58 Ag-0.2 Atomic % Si Alloy 265 〇 59 Ag-0.2 Atom %Sn alloy 248 X -48- (45) 1265976 Examples 1 to 2 [Measurement of reflectance] • The film thickness of 100 nm produced as described above was measured by Polar Kerr Scope ΝΕΟ ARK MODEL ΒΗ - 810 manufactured by Nippon Scientific Engineering Co., Ltd. " film versus visible light (wavelength 400~8 OOurn) reflectance. The high reflectance was evaluated as having a reflectance of 90.8% (wavelength 405 nm) and 92.5% (wavelength 650 nm) as a pure Ag film, which is 80% or more (wavelength 405 nm) and 88% or more (wavelength 650 nm). Lu reflectivity. Here, the wavelength 405 nm is the wavelength of the laser used for the next-generation optical disc, and the wavelength 65 Onm is the wavelength of the laser used for the DVD. The results are shown in - Table 3, 4 〇; from Tables 3 and 4, pure Ag (sample No. 1), Ag - Si - alloy (sample No. 58), Ag-Sn alloy (sample No. 59) The film and the sample numbers 2 to 4, 6 to 8, 1 0 to 13, 15 to 18, 20 to 23, 25 to 28, 30 to 33, 35 to 38, 40 to 43 satisfying the specified elements of the present invention. The 45.48, 50 >· 57 .Ag primer film has high reflectivity. On the other hand, in the Ag-based alloy thin films of sample Nos. 5, 9, 14, 19, 24, 29, 34, 39, 44, and 49, a given high reflectance could not be obtained due to the excessive addition of the alloying elements. The addition effect of Rh or Pd or Pt is the same as that of Cu or Au. -49 - (46)1265976 Table 3 Reflectance Measurement Results

試樣 組成 對純Ag的反射率[%] 高反 序號 波長405nm 波長650nm 射率 1 純Ag 90.8 92.5 〇 2 Ag-0.005原子°/(^丨合金 90.7 92.5 〇 3 Ag-0.2原子%已1合金 86.2 90.8 〇 4 Ag-0.4原子0/〇Bi合金 81.6 89.1 〇 5 Ag-0.6原子%Bi合金 77.0 87.4 X 6 Ag-0.005原子%31)合金 90.7 92.5 〇 7 Ag-0.2原子%81?合金 86.1 90.7 〇 8 Ag-0.4原子0/〇Sb合金 81.4 88.9 〇 9 Ag-0.6原子0/〇Sb合金 76.7 87.1 X 10 Ag-0.2原子%Bi-0.01原子%Nd合金 86.2 90.8 〇 11 Ag-0.2 原子o/oBi-0.1 {^i%Nd 合金 85.9 90.7 〇 12 Ag-0.2原子o/〇Bi-0.5原子%灿合金 84.8 90.3 〇 13 Ag-0.2原子%Bi,2原子0/〇Nd合金 80.7 88.6 〇 14 Ag-0.2原子0/必-3 ®i%Nd合金 78.0 87.5 X 15 Ag-0.2原子%Bi-0.01原子%丫合金 86.2 90.8 〇 16 Ag-0.2 原子0/〇Bi-0.1 原子0/〇Y 合金 85.9 90.7 〇 17 Ag-0.2原子%Bi-0.5原子0/〇Υ合金 84.7 90.2 〇 18 Ag-0.2原子%Bi-2原子%Υ合金 80.3 88.4 〇 19 Ag-0.2原子%Bi-3原子%Υ合金 77.4 87.2 X 20 Ag-0.2原子%Sb-0.01原子%Nd合金 86.1 90.7 〇 21 Ag-0.2原子%Sb-0.1原子%Nd合金 85.8 90.6 〇 22 Ag-0.2原子%Sb-0.5原子%Nd合金 84.7 90.2 〇 23 Ag-0.2原子0/〇Sb-2原子%Nd合金 80.6 88.5 〇 24 Ag-0.2原子0/〇Sb-3原子%Nd合金 77.9 87.4 X 25 Ag-0.2原子%Sb-0.01原子%Y合金 86.1 90.7 〇 26 Ag-0.2原子%Sb-0.1原子%¥合金 85.8 90.6 〇 27 Ag-0.2原子0/〇Sb-0.5原子%Y合金 84.6 90.1 〇 28 Ag-0.2原子%Sb-2原子%¥合金 80.2 88.3 〇 29 Ag-0.2原子%Sb-3原子0/〇Y合金 77.3 87.1 X -50- (47)1265976 表4反射率測定結果Reflectance of sample composition to pure Ag [%] High inverse serial wavelength 405nm Wavelength 650nm Luminous rate 1 Pure Ag 90.8 92.5 〇2 Ag-0.005 atom ° / (^丨 alloy 90.7 92.5 〇3 Ag-0.2 atom% already 1 alloy 86.2 90.8 〇4 Ag-0.4 atom 0/〇Bi alloy 81.6 89.1 〇5 Ag-0.6 atom%Bi alloy 77.0 87.4 X 6 Ag-0.005 atom%31) alloy 90.7 92.5 〇7 Ag-0.2 atom%81?alloy 86.1 90.7 〇8 Ag-0.4 Atom 0/〇Sb Alloy 81.4 88.9 〇9 Ag-0.6 Atom 0/〇Sb Alloy 76.7 87.1 X 10 Ag-0.2 Atomic Bi-0.01 Atomic Nd Alloy 86.2 90.8 〇11 Ag-0.2 Atom o/ oBi-0.1 {^i%Nd alloy 85.9 90.7 〇12 Ag-0.2 atomic o/〇Bi-0.5 atom% can alloy 84.8 90.3 〇13 Ag-0.2 atom% Bi, 2 atom 0/〇Nd alloy 80.7 88.6 〇14 Ag -0.2 Atomic 0/Bai-3 ®i%Nd Alloy 78.0 87.5 X 15 Ag-0.2 Atomic Bi-0.01 Atomic Niobium Alloy 86.2 90.8 〇16 Ag-0.2 Atom 0/〇Bi-0.1 Atom 0/〇Y Alloy 85.9 90.7 〇17 Ag-0.2 atom% Bi-0.5 atom 0/〇Υ alloy 84.7 90.2 〇18 Ag-0.2 atom% Bi-2 atom% bismuth alloy 80.3 88.4 〇19 Ag-0.2 atom% Bi-3 atom% Υ Gold 77.4 87.2 X 20 Ag-0.2 atomic % Sb-0.01 atomic % Nd alloy 86.1 90.7 〇21 Ag-0.2 atomic % Sb-0.1 atomic % Nd alloy 85.8 90.6 〇22 Ag-0.2 atomic % Sb-0.5 atomic % Nd alloy 84.7 90.2 〇23 Ag-0.2 atom 0/〇Sb-2 atom% Nd alloy 80.6 88.5 〇24 Ag-0.2 atom 0/〇Sb-3 atom% Nd alloy 77.9 87.4 X 25 Ag-0.2 atom% Sb-0.01 atom% Y Alloy 86.1 90.7 〇26 Ag-0.2 atom% Sb-0.1 atom%¥ alloy 85.8 90.6 〇27 Ag-0.2 atom 0/〇Sb-0.5 atom%Y alloy 84.6 90.1 〇28 Ag-0.2 atom% Sb-2 atom%¥ Alloy 80.2 88.3 〇29 Ag-0.2 Atomic Sb-3 Atom 0/〇Y Alloy 77.3 87.1 X -50- (47)1265976 Table 4 Reflectance Measurement Results

試樣 序號 組成 對純Ag的反射率 [%] 局反 射率 波長 405nm 波長 650nm 1 純Ag 90.8 92.5 〇 30 Ag-0.2 原子%Bi-0.01 原子0/〇Cu 合金 86.2 90.8 〇 31 Ag-0.2原子原子%(^11合金 86.0 90.7 〇 32 Ag-0.2 原子0/〇Bi-0.5 原子0/〇Cu 合金 85.3 90.4 〇 33 Ag-0.2原子%Bi-3原子%Cu合金 81.0 88.3 〇 34 Ag-0.2原子%Bi-4原子%Cu合金 79.3 87.5 X 35 Ag-0.2原子%Bi-0.01原子%Au合金 86.2 90.8 〇 36 Ag-0.2原子%Bi-0.1原子%Αιι合金 86.0 90.7 〇 37 Ag-0.2原子%Bi-0.5原子0/〇Au合金 85.4 90.4 〇 38 Ag-0.2原子%Bi-3原子%Au合金 81.5 88.5 〇 39 Ag-0.2原子0/〇Bi-4原子0/〇Au合金 79.9 87.7 X 40 Ag_0.2 原子0/〇Sb-0.01 原子%Qi 合金 86.1 90.7 〇 41 Ag-0.2 原子0/〇Sb-0· 1 原子o/oCu 合金 85.9 90.6 〇 42 Ag-0.2原子%Sb-0.5原子%Cu合金 85.2 90.3 〇 43 Ag-0.2原子0/〇Sb-3原子%Cu合金 80.9 88.2 〇 44 Ag-0.2原子%Sb-4原子%〇1合金 79.2 87.4 X 45 Ag-0.2原子%Sb-0.01原子%Au合金 86.1 90.7 〇 46 Ag-0.2原子0/〇Sb-0.1原子%Au合金 85.9 90.6 〇 47 Ag-0.2原子%Sb-0.5原子0/〇Au合金 85.3 90.3 〇 48 Ag-0.2原子%Sb-3原子%Au合金 81.4 88.4 〇 49 Ag-0.2原子%31>4原子0/〇Λιι合金 79.8 87.6 X 50 Ag-0.2 原子0/〇Bi-0.5 原子0/〇Nd-0.5 原子%Cu 合金 84.0 89.8 〇 51 Ag-0.2 原子%Bi-0.5 原子%Nd-0.5 原子0/〇Au 合金 84.0 89.9 〇 52 Ag-0.2 原子0/〇Bi-0.5 原子0/〇Υ-0·5 原子0/〇Cu 合金 83.9 89.8 〇 53 Ag-0.2原子%Bi-0.5原子%Υ-0·5原子0/〇Au合金 83.9 89.8 〇 54 Ag-0.2 原子0/〇Sb-0.5 原子0/〇Nd-0.5 原子%Cii 合金 83.9 89.7 〇 55 Ag-0.2 原子%Sb-0.5 原子0/〇Nd-0.5 原子%Au 合金 83.9 89.8 〇 56 Ag-0.2原子%Sb-0.5原子%Υ-0·5原子%〇1合金 83.8 89.7 〇 57 Ag-0.2原子0/〇Sb-0.5原子%Υ-0·5原子%Au合金 83.8 89.7 〇 58 Ag-0.2原子%Si合金 85.5 90.3 〇 59 Ag-0.2原子°/〇Sn合金 85.0 89.9 〇 -51 - 1265976 (48) 實施例1〜3 [耐久性實驗1 :熱穩定性的測定] 對於與在上述實施例2的反射率的測定中 朦厚lOOnm的各薄膜實施高溫高濕試驗(溫E 度90% RH -保持時間48小時),試驗後再次 。評價時’把顯示高溫高濕試驗前後的反射率 値在5%以下(波長4〇5nm)和1%以下(波 的判定爲具有高耐久性。將結果示於表5、6。 從$ 5、6可以知道,滿足本發明規定要 號2〜57的Ag底質合金薄膜都具有高耐久性 純 g (試樣序號1) 、Ag— Si合金(試樣J Ag— Sn 〇 $ (試樣序號59 )的薄膜無法獲得 '° Rh ^ Pd或Pt的添加效果與Cu或Au的 同。 使用的相同 ! 80〇C —濕 測定反射率 變化的絕對 長 6 5 Onm ) 素的試樣序 。相對於此 茅號58 )、 給定高耐久 添加效果相 -52- (49)1265976Sample No. Composition Reflectance to Pure Ag [%] Local Reflectance Wavelength 405nm Wavelength 650nm 1 Pure Ag 90.8 92.5 〇30 Ag-0.2 Atomic Bi-0.01 Atom 0/〇Cu Alloy 86.2 90.8 〇31 Ag-0.2 Atom Atom %(^11 alloy 86.0 90.7 〇32 Ag-0.2 atom 0/〇Bi-0.5 atom 0/〇Cu alloy 85.3 90.4 〇33 Ag-0.2 atom%Bi-3 atom%Cu alloy 81.0 88.3 〇34 Ag-0.2 atom% Bi-4 atom% Cu alloy 79.3 87.5 X 35 Ag-0.2 atom% Bi-0.01 atom% Au alloy 86.2 90.8 〇36 Ag-0.2 atom% Bi-0.1 atom% Αιι alloy 86.0 90.7 〇37 Ag-0.2 atom% Bi- 0.5 atom 0/〇Au alloy 85.4 90.4 〇38 Ag-0.2 atom%Bi-3 atom%Au alloy 81.5 88.5 〇39 Ag-0.2 atom 0/〇Bi-4 atom 0/〇Au alloy 79.9 87.7 X 40 Ag_0.2 Atom 0/〇Sb-0.01 Atomic % Qi Alloy 86.1 90.7 〇41 Ag-0.2 Atom 0/〇Sb-0· 1 Atom o/oCu Alloy 85.9 90.6 〇42 Ag-0.2 Atomic Sb-0.5 Atomic Cu Alloy 85.2 90.3 〇43 Ag-0.2 atom 0/〇Sb-3 atom%Cu alloy 80.9 88.2 〇44 Ag-0.2 atom% Sb-4 atom% 〇1 alloy 79.2 87.4 X 45 Ag-0.2 atom% Sb-0.01 atom% Au alloy 86.1 90.7 〇46 Ag-0.2 atom 0/〇Sb-0.1 atom%Au alloy 85.9 90.6 〇47 Ag-0.2 atom% Sb-0.5 atom 0/〇Au alloy 85.3 90.3 〇48 Ag-0.2 Atomic % Sb-3 Atomic % Au Alloy 81.4 88.4 〇 49 Ag-0.2 Atomic % 31 > 4 Atom 0 / 〇Λ ι ι Alloy 79.8 87.6 X 50 Ag-0.2 Atom 0 / 〇 Bi-0.5 Atom 0 / 〇 Nd - 0.5 Atomic % Cu alloy 84.0 89.8 〇51 Ag-0.2 Atomic % Bi-0.5 Atomic % Nd-0.5 Atom 0/〇Au Alloy 84.0 89.9 〇52 Ag-0.2 Atom 0/〇Bi-0.5 Atom 0/〇Υ-0·5 Atom 0 /〇Cu alloy 83.9 89.8 〇53 Ag-0.2 atom%Bi-0.5 atom%Υ-0·5 atom 0/〇Au alloy 83.9 89.8 〇54 Ag-0.2 Atom 0/〇Sb-0.5 Atom 0/〇Nd-0.5 Atomic % Cii alloy 83.9 89.7 〇 55 Ag-0.2 Atomic % Sb-0.5 Atom 0 / 〇 Nd - 0.5 Atomic % Au Alloy 83.9 89.8 〇 56 Ag - 0.2 Atomic % Sb - 0.5 Atomic % Υ - 0 · 5 Atomic % 〇 1 Alloy 83.8 89.7 〇57 Ag-0.2 atom 0/〇Sb-0.5 atom%Υ-0·5 atom%Au alloy 83.8 89.7 〇58 Ag-0.2 atom%Si alloy 85.5 90.3 〇59 Ag-0.2 atom °/〇Sn alloy 85.0 89.9 〇-51 - 1265976 (48) Examples 1 to 3 [Durability Test 1: Measurement of Thermal Stability] A high-temperature and high-humidity test was performed on each film having a thickness of 100 nm in the measurement of the reflectance in the above Example 2 (temperature E degree 90%) RH - hold time 48 hours), again after the test. In the evaluation, the reflectance before and after the high-temperature and high-humidity test was 5% or less (wavelength 4〇5 nm) and 1% or less (the wave was judged to have high durability. The results are shown in Tables 5 and 6. From $5 6, it can be known that the Ag substrate film satisfying the requirements of the invention No. 2 to 57 has high durability pure g (sample No. 1), Ag-Si alloy (sample J Ag-Sn 〇 $ (sample The film of No. 59) cannot obtain the addition effect of '° Rh ^ Pd or Pt and the same effect as Cu or Au. The same is used! 80〇C—wet to measure the absolute length of reflectance change 6 5 Onm ) Sample order of the element. Relative to this number 58), given a high durability added effect phase -52- (49) 1265976

表5 耐久性(熱穩定性)評價結果 試樣 序號 組成 高溫高濕試驗前後的反射率變化 [%] 局耐 久性 波長405nm 波長650nm 1 純Ag -27.3 -3.0 X 2 Ag-0.005原子合金 -1.4 -0.8 〇 3 Ag-0.2原子%Bi合金 -0.7 -0.3 〇 4 Ag-0.4原子%Bi合金 -0.5 -0.2 〇 5 Ag-0.6原子〇趟合金 -0.3 -0.1 〇 6 Ag-0.005原子%31)合金 -1.6 -0.9 〇 7 Ag-0.2原子%Sb合金 -0.8 -0.4 〇 8 Ag-0.4原子%Sb合金 -0.6 -0.3 〇 9 Ag-0.6原子%Sb合金 -0.4 -0.2 〇 10 Ag-0.2 原子o/oBi-0.01 原子%Nd 合金 -0.6 -0.2 〇 11 Ag-0.2原子0/〇Bi-0.1原子%Nd合金 -0.5 -0.1 〇 12 Ag-0.2原子%Bi-0.5原子%Nd合金 -0.3 -0.1 〇 13 Ag-0.2原子%Bi-2原子%Nd合金 0.0 0.0 〇 14 Ag_0.2原子%Bi-3原子%·合金 0.0 0.0 〇 15 Ag-0.2原子%Bi-0.01原子0/〇Y合金 -0.6 -0.2 〇 16 Ag-0.2原子0/oBi-0.1原子%Υ合金 -0.5 -0.1 〇 17 Ag-0.2原子。/〇Bi-0.5原子%Υ合金 -0.4 -0.1 〇 18 Ag-0.2原子%Bi,2原子0/〇Υ合金 0.0 0.0 〇 19 Ag-0.2原子%Bi-3原子0/〇Υ合金 0.0 0.0 〇 20 Ag-0.2 原子0/〇Sb-0.01 原子%Nd 合金 -0.7 -0.3 〇 21 Ag-0.2原子%Sb-0.1原子%Nd合金 -0.6 -0.2 〇 22 Ag-0.2原子o/〇Sb-0.5原子%Nd合金 -0.4 -0.2 〇 23 Ag-0.2原子%Sb-2原子0/〇Nd合金 0.0 0.0 〇 24 Ag-0.2原子%Sb_3原子0/〇Nd合金 0.0 0.0 〇 25 Ag-0.2原子%Sb-0.01原子0/〇Y合金 -0.7 -0.3 〇 26 Ag-0.2原子0/〇Sb-0.1原子%Υ合金 -0.6 -0.2 〇 27 Ag-0.2原子%Sb-0.5原子%Υ合金 -0.5 -0.2 〇 28 Ag-0.2原子0/〇Sb-2原子%Υ合金 0.0 0.0 〇 29 Ag-0.2原子0/〇Sb-3原子0/〇Υ合金 0.0 0.0 〇 •53· (50) 1265976 表6Table 5 Durability (thermal stability) evaluation results Sample number composition change before and after high temperature and high humidity test [%] Bureau durability wavelength 405nm Wavelength 650nm 1 Pure Ag -27.3 -3.0 X 2 Ag-0.005 atomic alloy-1.4 -0.8 〇3 Ag-0.2at%Bi alloy-0.7 -0.3 〇4 Ag-0.4at%Bi alloy-0.5 -0.2 〇5 Ag-0.6 atomic yttrium alloy -0.3 -0.1 〇6 Ag-0.005 atom%31) Alloy -1.6 -0.9 〇7 Ag-0.2 atomic %Sb alloy -0.8 -0.4 〇8 Ag-0.4 atomic %Sb alloy -0.6 -0.3 〇9 Ag-0.6 atomic %Sb alloy -0.4 -0.2 〇10 Ag-0.2 atom o/oBi-0.01 Atomic % Nd alloy -0.6 -0.2 〇11 Ag-0.2 atom 0/〇Bi-0.1 atom% Nd alloy-0.5 -0.1 〇12 Ag-0.2 atom% Bi-0.5 atom% Nd alloy-0.3 - 0.1 〇13 Ag-0.2 atom% Bi-2 atom% Nd alloy 0.0 0.0 〇14 Ag_0.2 atom% Bi-3 atom%·alloy 0.0 0.0 〇15 Ag-0.2 atom% Bi-0.01 atom 0/〇Y alloy- 0.6 -0.2 〇16 Ag-0.2 atom 0/oBi-0.1 atom% bismuth alloy -0.5 -0.1 〇17 Ag-0.2 atom. /〇Bi-0.5 atom%Υ alloy-0.4 -0.1 〇18 Ag-0.2 atom% Bi, 2 atom 0/〇Υ alloy 0.0 0.0 〇19 Ag-0.2 atom% Bi-3 atom 0/〇Υ alloy 0.0 0.0 〇 20 Ag-0.2 Atom 0/〇Sb-0.01 Atomic % Nd Alloy-0.7 -0.3 〇21 Ag-0.2 Atomic Sb-0.1 Atomic Nd Alloy-0.6 -0.2 〇22 Ag-0.2 Atom o/〇Sb-0.5 Atom %Nd alloy-0.4 -0.2 〇23 Ag-0.2 atom% Sb-2 atom 0/〇Nd alloy 0.0 0.0 〇24 Ag-0.2 atom% Sb_3 atom 0/〇Nd alloy 0.0 0.0 〇25 Ag-0.2 atom% Sb- 0.01 atom 0 / 〇 Y alloy - 0.7 - 0.3 〇 26 Ag - 0.2 atom 0 / 〇 Sb - 0.1 atom% bismuth alloy - 0.6 - 0.2 〇 27 Ag - 0.2 atom% Sb - 0.5 atom% bismuth alloy - 0.5 - 0.2 〇 28 Ag-0.2 Atom 0/〇Sb-2 Atomic Niobium Alloy 0.0 0.0 〇29 Ag-0.2 Atom 0/〇Sb-3 Atom 0/〇Υ Alloy 0.0 0.0 〇•53· (50) 1265976 Table 6

試樣 序號 組成 高溫高濕試驗前後 的反射率變化[%] 高耐 久性 波長 405nm 波長 650nm 1 純Ag -27.3 -3.0 X 30 Ag-0.2 原子%Bi-0.01 原子0/〇〇!合金 -0.6 -0.2 〇 31 Ag-0.2原子%Bi-0.1原子0/〇Cu合金 -0.5 -0.1 〇 32 Ag-0.2原子%Bi-0.5原子%〇1合金 -0.4 -0.1 〇 33 Ag-0.2原子%Bi-3原子%Cu合金 0.0 0.0 〇 34 Ag-0.2原子%Bi-4原子%〇1合金 0.0 0.0 〇 35 Ag-0.2 原子%Bi-0.01 原子0/〇Au 合金 -0.6 -0.2 〇 36 Ag-0.2原子%Bi_0.1原子0/〇Au合金 -0.5 -0.1 〇 37 Ag-0.2原子%Bi-0.5原子%Au合金 -0.4 -0.1 〇 38 Ag-0.2原子0/〇Bi-3原子%Au合金 0.0 0.0 〇 39 Ag-0_2原子〇厥4原子%Αιι合金 0.0 0.0 〇 40 Ag-0.2原子%Sb-0.01原子%Cu合金 -0.7 -0.3 〇 41 Ag-0.2 原子%Sb-0.1 原子0/〇Cii 合金 -0.6 -0.2 〇 42 Ag-0.2原子%81>0.5原子%Cu合金 -0.4 -0·1 〇 43 Ag-0.2原子0/〇Sb-3原子%Cu合金 0.0 0.0 〇 44 Ag-0.2原子%Sb-4原子0/〇Cu合金 0.0 0.0 〇 45 Ag-0.2 原子%Sb-0.01 原子0/〇Au 合金 -0.7 -0.3 〇 46 Ag-0.2原子%Sb-0.1原子%Αιι合金 -0.5 -0.2 〇 47 Ag-0.2原子%Sb-0.5原子%Au合金 -0.3 -0.1 〇 48 Ag-0.2原子%Sb-3原子%Au合金 0.0 0.0 〇 49 Ag-0.2原子0/〇Sb-4原子%Au合金 0.0 0.0 〇 50 Ag-0.2 原子0/〇Bi-0.5 原子%Nd-0.5 原子%〇1 合金 0.0 0.0 〇 51 Ag-0.2原子%Bi-0.5原子o/〇Nd-0.5原子%八11合金 0.0 0.0 〇 52 Ag-0.2原子0/〇Bi-0.5原子%Υ·0.5原子%Cu合金 0.0 0.0 〇 53 Ag-0.2原子%Bi-0.5原子0/〇Y_0.5原子%Au合金 0.0 0.0 〇 54 Ag-0.2 原子%Sb-0.5 原子%Nd-0.5 原子0/〇Cu 合金 0.0 0.0 〇 55 Ag-0.2 原子0/〇Sb-0.5 原子%Nd-0.5 原子%Au 合金 0.0 0.0 〇 56 Ag-0.2 原子0/〇Sb-0.5 原子%Y-0.5 原子0/〇Cu 合金 0.0 0.0 〇 57 Ag-0.2 原子0/〇Sb-0.5 原子ο/〇Υ-0·5 原子0/〇Au 合金 0.0 0.0 〇 58 Ag-0.2原子%Si合金 -19.9 -2.1 X 59 Ag-0.2原子%Sn合金 -18.4 -1.8 X •54- (51) 1265976 實施例1〜4 [耐久性實驗2 :化學穩定性的測定] 對於如上該製作的膜厚1 5nm的各薄膜實施鹽水浸漬 試’驗(鹽水濃度:0.05mol / 1的NaCl,鹽水溫度:2(TC ,浸漬時間:5分鐘),目測觀察試驗後的薄膜的外觀變 化°評價時’把看不到變色或剝離等外觀變化的判定爲具 有高耐久性。將結果示於表7、8。 從表7、8可以知道,滿足本發明規定要素的試樣序 號2〜5 7的Ag底質合金薄膜都具有高耐久性。相對於此 純Ag(4樣序號1) 、Ag— Si合金(試樣序號58)、The sample number constitutes the reflectance change before and after the high temperature and high humidity test [%] High durability wavelength 405nm Wavelength 650nm 1 Pure Ag -27.3 -3.0 X 30 Ag-0.2 Atomic % Bi-0.01 Atom 0 /〇〇! Alloy-0.6 - 0.2 〇31 Ag-0.2 atom% Bi-0.1 atom 0/〇Cu alloy-0.5 -0.1 〇32 Ag-0.2 atom% Bi-0.5 atom% 〇1 alloy-0.4 -0.1 〇33 Ag-0.2 atom% Bi-3 Atomic %Cu alloy 0.0 0.0 〇34 Ag-0.2 atom%Bi-4 atom%〇1 alloy 0.0 0.0 〇35 Ag-0.2 Atomic % Bi-0.01 Atom 0/〇Au Alloy-0.6 -0.2 〇36 Ag-0.2 Atomic % Bi_0.1 Atom 0/〇Au alloy-0.5 -0.1 〇37 Ag-0.2 at% Bi-0.5 at% Au alloy-0.4 -0.1 〇38 Ag-0.2 atom 0/〇Bi-3 atom%Au alloy 0.0 0.0 〇 39 Ag-0_2 atomic 〇厥 4 atomic % Α ι ι ι 0.0 0.0 0.0 Ag 40 Ag-0.2 atom% Sb-0.01 atom% Cu alloy -0.7 -0.3 〇41 Ag-0.2 atomic % Sb-0.1 atom 0 / 〇 Cii alloy -0.6 -0.2 〇42 Ag-0.2 atom%81>0.5 atom% Cu alloy-0.4 -0·1 〇43 Ag-0.2 atom 0/〇Sb-3 atom%Cu alloy 0.0 0.0 〇44 Ag-0.2 atom% Sb-4 Atomic 0/〇Cu alloy 0.0 0.0 〇45 Ag-0.2 Atomic% Sb-0.01 Atom 0/〇Au Alloy-0.7 -0.3 〇46 Ag-0.2 Atomic Sb-0.1 Atomic Oxide Αιι Alloy-0.5 -0.2 〇47 Ag-0.2 Atomic Sb-0.5 Atomic % Au alloy -0.3 -0.1 〇48 Ag-0.2 atom% Sb-3 atom%Au alloy 0.0 0.0 〇49 Ag-0.2 atom 0/〇Sb-4 atom%Au alloy 0.0 0.0 〇50 Ag-0.2 Atom 0/〇Bi -0.5 Atomic % Nd - 0.5 Atomic % 〇 1 Alloy 0.0 0.0 〇 51 Ag - 0.2 Atomic % Bi - 0.5 Atomic O / 〇 Nd - 0.5 Atomic % Eight 11 Alloy 0.0 0.0 〇 52 Ag - 0.2 Atom 0 / 〇 Bi - 0.5 Atomic % Υ · 0.5 Atomic % Cu alloy 0.0 0.0 〇 53 Ag - 0.2 Atomic % Bi - 0.5 Atom 0 / 〇 Y - 0.5 Atomic % Au Alloy 0.0 0.0 〇 54 Ag - 0.2 Atomic % Sb - 0.5 Atomic % Nd - 0.5 Atom 0/〇Cu alloy 0.0 0.0 〇55 Ag-0.2 Atom 0/〇Sb-0.5 Atomic % Nd-0.5 Atomic % Au Alloy 0.0 0.0 〇56 Ag-0.2 Atom 0/〇Sb-0.5 Atomic % Y-0.5 Atom 0/ 〇Cu alloy 0.0 0.0 〇57 Ag-0.2 Atom 0/〇Sb-0.5 Atom ο/〇Υ-0·5 Atom 0/〇Au Alloy 0.0 0.0 〇58 Ag-0.2 Atomic Ni alloy-19.9 -2.1 X 59 Ag -0.2 atomic % Sn alloy -18.4 -1.8 X •54- (51) 12659 76 Examples 1 to 4 [Durability Test 2: Measurement of Chemical Stability] Each of the films having a film thickness of 15 nm prepared as described above was subjected to a salt water immersion test (saline concentration: 0.05 mol / 1 NaCl, brine temperature: 2 (TC, immersion time: 5 minutes), the appearance change of the film after the test was visually observed. At the time of evaluation, it was judged that the appearance change such as discoloration or peeling was not observed to have high durability. The results are shown in Tables 7 and 8. As is apparent from Tables 7 and 8, the Ag-based alloy film of Sample Nos. 2 to 57 which satisfies the predetermined elements of the present invention has high durability. Relative to this pure Ag (4 sample number 1), Ag-Si alloy (sample number 58),

Ag Sn 口金(試樣序號59)的薄膜無法獲得給定高耐久 个半。R h或 P」 、 d或Pt的添加效果與Cu或Au的添加效果相 同。 -55- (52) 1265976 表The film of Ag Sn gold (sample No. 59) could not obtain a given high durability half. The addition effect of R h or P", d or Pt is the same as that of Cu or Au. -55- (52) 1265976

Ag系薄膜的鹽水浸漬試驗後的外觀變化 試樣 序號 組成 鹽水浸漬試驗後的外觀 變化 高耐久性 1 純Ag 有 X 2 Ag-0.005原子%Bi合金 4τττ 1ΙΙΓ > i \\ 〇 3 Ag-0.2原子0/〇Bi合金 並 / \ \\ 〇 4 Ag-0.4原子%Bi合金 4ττΤ JuL ^\\\ 〇 5 Ag-0.6原子%Bi合金 4ητ ΊΠπ j\\\ 〇 6 Ag-0.005原子%Sb合金 >fnT ΊιΠ J \ w 〇 7 Ag-0.2原子%Sb合金 M J \ w 〇 8 Ag-0.4原子%Sb合金 4mi illi: y 〇 9 Ag-0.6原子%81)合金 M J ^ \\ 〇 10 Ag-0.2原子%Bi-0.01原子%Nd合金 >fnT it ΓΓ y \ \\ 〇 11 Ag-0.2原子o/〇Bi-0.1原子%Nd合金 4mi ifil! 〇 12 Ag-0.2原子%81-0.5原子%Nd合金 >fnr tttt j\\\ 〇 13 Ag-0.2原子%Bi-2原子0/〇Nd合金 4nt tttt y i 〇 14 Ag-0.2·原子%Bi-3原子%_合金 4nt ΠίΓ 〇 15 Ag-0.2原子%Bi-0.01原子0/〇Y合金 -frrr ΙιΤΓ y \、、 〇 16 Ag-0.2 原子ο/oBi-O.l 原子0/〇Υ 合金 4rxr 1111: 〇 17 Ag-0.2原子%Bi-0.5原子%Υ合金 4rvr tlir j \ \\ .〇 18 Ag-0.2原子%Bi_2原子%Υ合金 >fnT IIIK j \ \\ 〇 19 Ag-0.2原子0/〇Bi-3原子%Υ合金 M j w\ 〇 20 Ag-0.2 原子%Sb-0.01 原子0/〇Nd 合金 1111- 〇 21 Ag-0.2 原子o/〇Sb-0.1 原子0/〇Nd 合金 4mi llTi ^ w\ 〇 22 Ag-0.2原子%Sb-0.5原子0/〇Nd合金 >frrr lilt 〇 23 Ag-0.2原子%Sb-2原子%Nd合金 >fnr ttiT J \ w 〇 24 Ag-0.2原子%31>3原子°/(^(1合金 jnn j w\ 〇 25 Ag-0.2原子%Sb-0.01原子%Y合金 λχτΐ ΠΤΓ J \\\ 〇 26 Ag-0.2原子%Sb-0.1原子%Υ合金 >fnT 1Ι1Γ 、、 〇 27 Ag-0.2原子%Sb-0.5原子%Υ合金 yfnr tttr: j \ \\ 〇 28 Ag-0.2原子%Sb-2原子%Υ合金 IMi j \\\ 〇 29 Ag-0.2原子%Sb-3原子%Υ合金 >fnr iiir j \ \\ 〇 -56- (53) 1265976 表Appearance change after salt immersion test of Ag film. Composition change after salt immersion test High durability 1 Pure Ag X 2 Ag-0.005 at% Bi alloy 4τττ 1ΙΙΓ > i \\ 〇3 Ag-0.2 Atomic 0/〇Bi alloy and / \ \\ 〇4 Ag-0.4 atom%Bi alloy 4ττΤ JuL ^\\\ 〇5 Ag-0.6 atom%Bi alloy 4ητ ΊΠπ j\\\ 〇6 Ag-0.005 atom% Sb alloy >fnT ΊιΠ J \ w 〇7 Ag-0.2 atomic% Sb alloy MJ \ w 〇8 Ag-0.4 atom% Sb alloy 4mi illi: y 〇9 Ag-0.6 atom% 81) alloy MJ ^ \\ 〇10 Ag- 0.2 atom% Bi-0.01 atom% Nd alloy>fnT it ΓΓ y \ \\ 〇11 Ag-0.2 atomic o/〇Bi-0.1 atom% Nd alloy 4mi ifil! 〇12 Ag-0.2 atom% 81-0.5 atom% Nd alloy >fnr tttt j\\\ 〇13 Ag-0.2 atom%Bi-2 atom 0/〇Nd alloy 4nt tttt yi 〇14 Ag-0.2·atomic%Bi-3 atom%_alloy 4nt ΠίΓ 〇15 Ag- 0.2 atom% Bi-0.01 atom 0/〇Y alloy-frrr ΙιΤΓ y \,, 〇16 Ag-0.2 atom ο/oBi-Ol atom 0/〇Υ alloy 4rxr 1111: 〇17 Ag-0.2 atom% Bi-0.5 atom Tantalum alloy 4rvr tlir j \ \\ .〇18 Ag-0.2 atom%Bi_2 atom%Υ alloy>fnT IIIK j \ \\ 〇19 Ag-0.2 atom 0/〇Bi-3 atom%Υ alloy M jw\ 〇20 Ag-0.2 Atomic % Sb-0.01 Atom 0/〇Nd Alloy 1111- 〇21 Ag-0.2 Atom o/〇Sb-0.1 Atom 0/〇Nd Alloy 4mi llTi ^ w\ 〇22 Ag-0.2 Atomic Sb-0.5 Atom 0/〇Nd alloy>frrr lilt 〇23 Ag-0.2 atom% Sb-2 atom% Nd alloy>fnr ttiT J \ w 〇24 Ag-0.2 atom%31>3 atom °/(^(1 alloy jnn jw \ 〇25 Ag-0.2 atom% Sb-0.01 atom% Y alloy λχτΐ ΠΤΓ J \\\ 〇26 Ag-0.2 atom% Sb-0.1 atom% bismuth alloy>fnT 1Ι1Γ, 〇27 Ag-0.2 atom% Sb- 0.5 atom% niobium alloy yfnr tttr: j \ \\ 〇28 Ag-0.2 atom% Sb-2 atom% niobium alloy IMi j \\\ 〇29 Ag-0.2 atom% Sb-3 atom% niobium alloy >fnr iiir j \ \\ 〇-56- (53) 1265976

Ag系薄膜的鹽水浸漬試驗後的外觀變化Appearance change of Ag-based film after salt water immersion test

試樣 序號 組成 鹽水浸漬試驗 後的外觀變化 高耐 久性 1 純Ag 有 X 30 Ag-0.2 原子o/〇Bi-0.01 原子0/〇Cii 合金 4m: 1 π Γ 〇 31 Ag-0.2原子%Bi-0.1原子%。!!合金 >fnT. 無 〇 32 Ag-0.2 原子0/〇Bi-0.5 原子0/〇Cii 合金 4rrr JILL 〇 33 Ag-0.2 原子0/〇Bi-3 原子0/〇Cii 合金 4nr ΙΙΙΓ / 〇 34 Ag-0.2原子0/〇Bi-4原子%Cu合金 4vrr juH 、N 〇 35 Ag-0.2原子%Bi-0.01原子%Αιι合金 M j \\\ 〇 36 Ag-0.2原子%Bi-0.1原子%Au合金 並 J ΪΝΝ 〇 37 Ag-0.2原子%Bi-0.5原子%Αιι合金 TTttt 〇 38 Ag-0.2原子0/〇Bi-3原子%Αιι合金 赃 川、 〇 39 Ag-0.2原子%Bi-4原子0/—合金 4rrr ΙιΓΓ J \ w 〇 40 Ag-0.2原子%31>0.01原子%〇1合金 >fnT- ιιΠΓ 〇 41 Ag-0.2原子%Sb-0.1原子%Cu合金 >fnr 〇 42 Ag-0.2原子%Sb-0.5原子%Cu合金 4rrr. It it: J \ 〇 43 Ag-0.2原子0/〇Sb-3原子%Cu合金 4ttt ΙΠΕ j\\\ 〇 44 Ag-0.2原子%Sb-4原子0/〇Cu合金 >fnT tin J V 〇 45 Ag-0.2原子%Sb-0.01原子%Au合金 4\rr. Ι11Γ j \\\ 〇 46 Ag-0.2原子%Sb-0.1原子%Au合金 M J V 〇 47 Ag-0.2原子%Sb-0.5原子%八11合金 4ml j \\\ 〇 48 Ag-0.2 原子0/〇Sb-3 原子0/οΑιζ 合金 姐 〇 49 Ag-0.2原子0/〇Sb-4原子%Au合金 iffi j \\\ 〇 50 Ag-0.2 原子%Bi-0.5 原子%Nd-0.5 原子0/〇Cu 合金 >frrr Ulc J V 〇 51 Ag-0.2 原子%Bi-0.5 原子%Nd-0.5 原子0/〇Au 合金 姐 、、 〇 52 Ag-0.2原子〇/(^-0.5原子%Υ-0·5原子%〇1合金 4ml 1ΠΓ J w\ 〇 53 Ag-0.2原子%Βί-0·5原子%Υ-0·5原子%Au合金 inL· ztttC 〇 54 Ag-0.2原子%Sb-0.5原子%Nd-0.5原子%Cii合金 4rrT illl: J 〇 55 Ag-0.2原子%31)-0·^原子0/〇^(1-0.5原子%八11合金 >fnr till y » \N 〇 56 Ag-0.2 原子0/〇Sb-0.5 原子%Υ-0·5 原子0/〇Cu 合金 4tni 111! J i 〇 57 Ag-0.2 原子0/〇Sb-0.5 原子%Υ-0·5 原子0/〇Au 合金 M J \ \\ 〇 58 Ag-0.2原子%別合金 有 X 59 Ag-0.2原子%Sn合金 有 X -57- (54) 1265976 實施例1〜5 [耐久性實驗3 :熱穩定性的測疋] 對於如上該製作的膜厚100nm的各薄膜使用DlgltalSample No. Composition Change after salt immersion test High durability 1 Pure Ag X 30 Ag-0.2 Atom o/〇Bi-0.01 Atom 0/〇Cii Alloy 4m: 1 π Γ 〇31 Ag-0.2 Atomic Bi- 0.1 atom%. !!合金>fnT. 无〇32 Ag-0.2 Atom 0/〇Bi-0.5 Atom 0/〇Cii Alloy 4rrr JILL 〇33 Ag-0.2 Atom 0/〇Bi-3 Atom 0/〇Cii Alloy 4nr ΙΙΙΓ / 〇 34 Ag-0.2 atom 0/〇Bi-4 atom%Cu alloy 4vrr juH, N 〇35 Ag-0.2 atom% Bi-0.01 atom% Αιι alloy M j \\\ 〇36 Ag-0.2 atom% Bi-0.1 atom% Au alloy and J ΪΝΝ 〇37 Ag-0.2 atom% Bi-0.5 atom% Αιι alloy TTttt 〇38 Ag-0.2 atom 0/〇Bi-3 atom% Αιι alloy 赃川, 〇39 Ag-0.2 atom%Bi-4 atom 0/—alloy 4rrr ΙιΓΓ J \ w 〇40 Ag-0.2 atom%31>0.01 atom%〇1 alloy>fnT- ιιΠΓ 〇41 Ag-0.2 atom% Sb-0.1 atom%Cu alloy>fnr 〇42 Ag- 0.2 atom% Sb-0.5 atom% Cu alloy 4rrr. It it: J \ 〇43 Ag-0.2 atom 0/〇Sb-3 atom%Cu alloy 4ttt ΙΠΕ j\\\ 〇44 Ag-0.2 atom% Sb-4 atom 0/〇Cu alloy>fnT tin JV 〇45 Ag-0.2 atom% Sb-0.01 atom%Au alloy 4\rr. Ι11Γ j \\\ 〇46 Ag-0.2 atom% Sb-0.1 atom%Au alloy MJV 〇47 Ag-0.2 atomic% Sb-0.5 atomic% eight 11 Alloy 4ml j \\\ 〇48 Ag-0.2 Atom 0/〇Sb-3 Atom 0/οΑιζ Alloy Sister 49 Ag-0.2 Atom 0/〇Sb-4 Atomic AA Alloyiffi j \\\ 〇50 Ag-0.2 Atomic % Bi - 0.5 Atomic % Nd - 0.5 Atom 0 / 〇 Cu alloy > frrr Ulc JV 〇 51 Ag - 0.2 Atomic % Bi - 0.5 Atomic % Nd - 0.5 Atom 0 / 〇 Au Alloy sister , 〇 52 Ag - 0.2 Atomic 〇/(^-0.5 atom% Υ-0·5 atom% 〇1 alloy 4ml 1ΠΓ J w\ 〇53 Ag-0.2 atom% Βί-0·5 atom% Υ-0·5 atom%Au alloy inL· ztttC 〇54 Ag-0.2 atom% Sb-0.5 atom% Nd-0.5 atom% Cii alloy 4rrT illl: J 〇55 Ag-0.2 atom% 31)-0·^ atom 0/〇^(1-0.5 atom% eight 11 alloy >fnr till y » \N 〇56 Ag-0.2 Atom 0/〇Sb-0.5 Atomic %Υ-0·5 Atom 0/〇Cu Alloy 4tni 111! J i 〇57 Ag-0.2 Atom 0/〇Sb-0.5 Atomic % Υ - 0 · 5 Atom 0 / 〇 Au Alloy MJ \ \\ 〇 58 Ag - 0.2 Atomic % Other alloys have X 59 Ag - 0.2 Atomic % Sn alloy with X - 57 - (54) 1265976 Examples 1 to 5 [Durability Experiment 3: Measurement of Thermal Stability] For each film having a film thickness of 100 nm produced as described above, Dlgltal was used.

Instruments公司製作的Nanoscope瓜a掃描探針顯微鏡 • ,根據原子力顯微鏡(AFM : Atomic Force Microscope ) 模式進行表面形態觀察和表面粗度(平均粗度:Ra)的測 定。然後,對進行AFM模式測定的薄膜實施高溫高濕試 驗(溫度80°C —濕度90% RH —保持時間48小時),試 馨驗後再次進行表面形態觀察和表面粗度(平均粗度:Ra ) 的測定。評價時,把高溫高濕試驗前後平均粗度都小於 1 n m的判定爲具有局耐久性。將結果不於表9、1 0。 -,- 從表9、1 0可以知道’滿足本發明規.疋要素的試樣序 - 號2〜57的Ag底質合金薄膜都具有高耐久性。相對於此 ,純Ag (試樣序號1) 、Ag— Si合金(試樣序號58)、 Ag - Sn合金(試樣序號59 )的薄膜無法獲得給定高耐久 性。Rh或Pd或Pt的添加效果與Cu或Au的添加效果相 @同。 -58- (55)1265976Nanoscope melon a scanning probe microscope manufactured by Instruments • Surface morphology observation and surface roughness (average roughness: Ra) were measured according to the AFM (Atomic Force Microscope) mode. Then, the film subjected to the AFM mode measurement was subjected to a high-temperature and high-humidity test (temperature 80 ° C - humidity 90% RH - holding time 48 hours), and surface morphology observation and surface roughness were again performed after the test (average roughness: Ra) Determination of). In the evaluation, the average thickness before and after the high-temperature and high-humidity test was less than 1 n m, which was judged to have a local durability. The results are not in Table 9, 10. -, - From Tables 9 and 10, it is known that the sample of the sample which satisfies the specifications of the present invention - No. 2 to 57, the Ag-based alloy film has high durability. On the other hand, a film of pure Ag (sample No. 1), Ag-Si alloy (sample No. 58), and Ag-Sn alloy (sample No. 59) could not obtain a given high durability. The addition effect of Rh or Pd or Pt is the same as the addition effect of Cu or Au. -58- (55)1265976

Ag系薄膜高溫高濕試驗前後的平均粗度Average thickness of Ag film before and after high temperature and high humidity test

試樣 序號 組成 高溫高濕試驗前後的 平均粗度[nm] 高耐久性 試驗前 試驗後 1 純Ag 4.18 7.33 X 2 Ag-0.005原子%Bi合金 0.63 0.93 〇 3 Ag-0.2原子%Bi合金 0.58 0.61 〇 4 Ag-0.4原子%Bi合金 0.55 0.58 〇 5 Ag-0.6原子0趟合金 0.52 0.54 〇 6 Ag-0.005原子%315合金 0.65 0.95 〇 7 Ag-0.2原子°/〇Sb合金 0.58 0.63 〇 8 Ag-0.4原子%Sb合金 0.56 0.59 〇 9 Ag-0.6原子%Sb合金 0.54 0.57 〇 10 Ag-0.2 原子%Bi-0.01 Jli%Nd 合金 0.58 0.60 〇 11 Ag-0.2原子%Bi-0.1原子0/〇Nd合金 0.55 0.59 〇 12 Ag-0.2原子%Bi-0.5原子0观合金. 0.52 0.56 〇 13 Ag-0.2原子0/〇Bi_2原子%Nd合金 0.45 0.48 〇 14 Ag-0.2原子%Bi-3原子0观合金 0.44 0.48 〇 15 Ag-0.2 原子0/〇Bi-0.01 原子0/〇Y 合金 0.57 0.60 〇 16 Ag-0.2原子0/〇Bi-0.1原子%丫合金 0.56 0.59 〇 17 Ag-0.2原子%Bi-0.5原子%Y合金 0.53 0.58 〇 18 Ag-0.2原子%Bi-2原子%Υ合金 0.47 0.53 〇 19 Ag-0.2原子%Bi-3原子%Υ合金 0.45 0.52 〇 20 Ag-0.2 原子0/〇Sb-0.01 原子%Nd 合金 0.58 0.62 〇 21 Ag-0.2 原子0/〇Sb-0.1 原子0/〇Nd 合金 0.56 0.60 〇 22 Ag-0.2原子%Sb-0.5原子%Nd合金 0.53 0.58 〇 23 Ag-0.2原子%Sb-2原子%Nd合金 0.47 0.50 〇 24 Ag-0.2原子%Sb-3原子%Nd合金 0.47 0.49 〇 25 Ag-0.2原子%Sb-0.01原子0/〇Y合金 0.58 0.63 〇 26 Ag-0.2原子%Sb-0.1原子%Υ合金 0.55 0.61 〇 27 Ag-0.2原子%Sb-0.5原子%Υ合金 0.54 0.60 〇 28 Ag-0.2原子0/〇Sb-2原子0/〇Υ合金 0.46 0.54 〇 29 Ag-0.2原子%81>3原子%Υ合金 0.45 0.53 〇 -59- (56)1265976The sample number constitutes the average thickness before and after the high temperature and high humidity test [nm] High durability test before the test 1 Pure Ag 4.18 7.33 X 2 Ag-0.005 atom%Bi alloy 0.63 0.93 〇3 Ag-0.2 atom%Bi alloy 0.58 0.61 〇4 Ag-0.4 atom%Bi alloy 0.55 0.58 〇5 Ag-0.6 atom 0趟 alloy 0.52 0.54 〇6 Ag-0.005 atom%315 alloy 0.65 0.95 〇7 Ag-0.2 atom °/〇Sb alloy 0.58 0.63 〇8 Ag- 0.4 atom% Sb alloy 0.56 0.59 〇9 Ag-0.6 atom% Sb alloy 0.54 0.57 〇10 Ag-0.2 atomic % Bi-0.01 Jli% Nd alloy 0.58 0.60 〇11 Ag-0.2 atom% Bi-0.1 atomic 0/〇Nd alloy 0.55 0.59 〇12 Ag-0.2 atom% Bi-0.5 atom 0 alloy. 0.52 0.56 〇13 Ag-0.2 atom 0/〇Bi_2 atom% Nd alloy 0.45 0.48 〇14 Ag-0.2 atom% Bi-3 atom 0 alloy 0.44 0.48 〇15 Ag-0.2 Atom 0/〇Bi-0.01 Atom 0/〇Y Alloy 0.57 0.60 〇16 Ag-0.2 Atom 0/〇Bi-0.1 Atomic Oxide Alloy 0.56 0.59 〇17 Ag-0.2 Atomic Bi-0.5 Atom %Y alloy 0.53 0.58 〇18 Ag-0.2 atom% Bi-2 atom% bismuth alloy 0.47 0.53 〇19 Ag-0.2 atom% Bi-3 original Υ%Υ alloy 0.45 0.52 〇20 Ag-0.2 Atom 0/〇Sb-0.01 Atomic %Nd Alloy 0.58 0.62 〇21 Ag-0.2 Atom 0/〇Sb-0.1 Atom 0/〇Nd Alloy 0.56 0.60 〇22 Ag-0.2 Atom %Sb-0.5 atom% Nd alloy 0.53 0.58 〇23 Ag-0.2 atom% Sb-2 atom% Nd alloy 0.47 0.50 〇24 Ag-0.2 atom% Sb-3 atom% Nd alloy 0.47 0.49 〇25 Ag-0.2 atom% Sb -0.01 Atom 0/〇Y Alloy 0.58 0.63 〇26 Ag-0.2 Atomic Sb-0.1 Atomic Oxide Alloy 0.55 0.61 〇27 Ag-0.2 Atomic Sb-0.5 Atomic Oxide Alloy 0.54 0.60 〇28 Ag-0.2 Atom 0/ 〇Sb-2 atom 0/〇Υ alloy 0.46 0.54 〇29 Ag-0.2 atom%81> 3 atom% bismuth alloy 0.45 0.53 〇-59- (56) 1265976

表10 Ag系薄膜高溫高濕試驗前後的平均粗度 試樣 序號 組成 高溫高濕試驗前 後的平均粗度[nm] 高耐 久性 試驗前 試驗後 1 純Ag 4.18 7.33 X 30 Ag-0.2 原子0/〇Bi-0.01 原子%Cii 合金 0.59 0.93 〇 31 Ag-0.2 原子0/〇Bi-0.1 原子%Cii 合金 0.58 0.90 〇 32 Ag-0.2 原子%Bi-0.5 原子%(1111 合金 0.56 0.86 〇 33 Ag-0.2原子%Bi-3原子%Cu合金 0.55 0.75 〇 34 Ag-0.2原子%Bi-4原子%Cu合金 0.54 0.73 〇 35 Ag-0.2原子%Bi-0.01原子%Au合金 0.59 0.94 〇 36 Ag-0.2原子o/oBi-0.1原子%Au合金 0.57 0.89 〇 37 Ag-0.2原子*%Bi-0.5原子*%Au合金 0.56 0.84 〇 38 Ag-0.2原子0/〇Bi-3原子0/〇Au合金 0.54 0.76 〇 39 Ag-0.2原子%Bi-4原子0/〇Au合金 0.53 0.75 〇 40 Ag-0.2 原子%Sl>0.01 原子0/〇Cii 合金 0.59, 0.95 〇 41 Ag-0.2原子%Sb-0.1原子%〇1合金 0.58 0.91 〇 42 Ag-0.2原子%Sb-0.5原子%Cii合金 0.57 0.88 〇 43 Ag-0.2原子%Sb-3原子%Cii合金 0.56 0.78 〇 44 Ag-0_2原子0/〇Sb-4原子0/〇〇!合金 0.54 0.77 〇 45 Ag-0.2 原子%Sb-0.01 原子0/〇Au 合金 0.58 0.94 〇 46 Ag-0.2原子%Sb-0.1原子%Au合金 0.58 0.90 〇 47 Ag-0.2原子%Sb-0.5原子%Au合金 0.57 0.86 〇 48 Ag-0.2原子0/〇Sb-3原子%Au合金 0.57 0.79 〇 49 Ag-0.2原子%Sb_4原子o/oAu合金 0.55 0.77 〇 50 Ag-0.2原子%Bi-0.5原子%Nd-0.5原子%Cii合金 0.50 0.55 〇 51 Ag-0.2 原子%Bi-0.5 原子0/〇Nd-0.5 原子%Au 合金 0.51 0.56 〇 52 Ag-0.2 原子o/〇Bi-0.5 原子ο/〇Υ-0·5 原子0/〇Cii 合金 0.52 0.57 〇 53 Ag-0.2原子%Bi-0.5原子ο/〇Υ-0·5原子%Au合金 0.51 0.55 〇 54 Ag-0.2 原子%Sb-0.5 原子0/〇Nd-0.5 原子%Cii 合金 0.52 0.58 〇 55 Ag-0.2 原子%Sb-0.5 原子%Nd-0.5 原子0/〇Au 合金 0.53 0.60 〇 56 Ag-0.2 原子0/〇Sb-0.5 原子0/〇Υ-0·5 原子%〇!合金 0.52 0.59 〇 57 Ag-0.2原子%Sb-0.5原子%Υ-0.5原子%Au合金 0.54 0.59 〇 58 Ag-0.2原子%Si合金 0.68 1.17 X 59 Ag-0.2原子%311合金 0.79 1.25 X -60 - (57) 1265976 從上述表1〜1 0的結果可以知道,滿足本 . 試樣2〜4、6〜8、10〜13、15〜18、2〇〜23 30〜33、 35〜38、 40〜43、 45〜48、 50〜57 的 : 金薄膜在高導熱係數、高反射率、高耐久性全 、 性能。尤其在A g - B i合金(試樣序號3 )中 金屬兀素Nd的(試樣序號1〇〜14)或添加γ 號1 5〜1 9 )、或者添加(:11的(試樣序號3〇〜 Au的(g式樣序號35〜39)的與Ag - Bi合金( )相比’耐久性提高。同樣在Ag — s b合金( , )中添加稀土類金屬元素Nd的(試樣序號2〇 力□ γ的(試樣序號2 5〜2 9 )、或添加c 11的 -40〜44)或添加Au的(試樣序號45〜49)與 金(試樣序號7 )相比,耐久性提高。進而在 金(δ式樣序號3 )中添加N d和C11的(試樣戶 添加Nd和Au的(試樣序號5 1 )、添加γ和 ®樣序號5 2 )、添加| γ和Au的(試樣序號5 3 ) - 合金(試樣序號3 )相比,耐久性進而提高 Ag—Sb合金(試樣序號7)中添加Nd和Cu , 號5 4 )、添加Nd和Au的(試樣序號5 5 )、 Cu的(試樣序號56)、添加Y和Au的(試辛 ' 與Ag — Sb合金(試樣序號7 )相比,耐久性進 實施例2 實施例i 發明規定的 、25 〜28、 Ag底質合 方面具有局 添加稀土類 的(試樣序 3 4 )或添加 試樣序號3 試樣序號7 〜24 )或添 (試樣序號 Ag — Sb 合 A g — B i 合 声號50 )、 Cu的(試 與 Ag - Bi 。同樣,在 的(試樣序 添加 Y和 _序號57 ) 而提高。 -61 - 1265976 (58) 使用主要成分爲Ti的濺射輕,根據濺射法(在Ar和 氧氣的混合氣氛中)在透明基體(無色浮法玻璃、板厚·· 3mm、尺寸:2cm X 4 cm )上面作爲底層成膜氧化鈦膜(膜 ' 厚:30nm )的作爲各試驗用基體。 . 使用上述基體根據濺射法(在Ar氣氛中)在上述基 體的底層(氧化鈦膜)上,將表12所示組成的Ag合金 膜(電磁波遮罩用Ag合金膜)控制成使膜厚·· i〇nm程度 ^ 來成膜。此時,使用在純Ag靶上配置5x 5mm板狀片( 由Bi等合金成分構成)複合靶作爲濺射靶。 • 上述Ag合金膜(及純Ag膜)成膜後,再次使用主 ' 要成分爲Ti的濺射靶,根據濺射法(在Ar和氧氣的混合 • 氣氛中)在上述Ag合金膜上面作爲保護層成膜氧化鈦( 膜厚:20nm )。由此獲得在透明基體上形成氧化鈦/ Ag 合金膜/氧化鈦三層結構膜的電磁波遮罩用Ag合金膜形 成體。 B 另一方面,爲了分析Ag合金膜的組成,使用該Ag 合金膜成膜用的複合靶,根據與該Ag合金膜成膜時相同 條件的濺射法,在浮法玻璃上只形成 Ag合金膜,根據 ICP法求出膜的組成。 另外,對於由該成膜獲得的電磁波遮罩用Ag合金膜 * 形成體,測定片阻値(電阻値)、可見光透過率。進而’ 進行高溫高濕試驗[在85 t、90% RH (相對濕度)氣氛中 放置48小時]後,分析有無Ag的凝集,同時還測定片阻 値。此時,對於片阻値是根據四探針法求出。對於Ag的 -62- (59) 1265976 凝集是用肉眼及光學顯微鏡觀察(倍數:2〇〇倍) 可見光透過率是基於JIS R3 106中規定的方法、測$ 進而’對於上述A g合金膜形成體進行鹽水浸 (N a C 1濃度·· 0 · 0 5 m ο 1 /升、浸漬時間·· 1 5分鐘) _ 觀察變色和剝離狀態。 將适些δ式驗寺的結果與上述Ag合金膜的組成 於表10。 • 比較例2 - 1 * 根據與實施例2 - 1的情況相同的方法、相同 .得到在透明基體上形成氧化欽/ A g合金膜/氧化 • 結構膜的Ag合金膜形成體。Ag合金膜的組成與養 一 1的情況不同,如在表2所示。即,合金成分爲 、Nb、Sn、Cu— Al、Zn中的任意一種。進而,只 Ag靶進行純Ag膜的成膜,還製作在透明基體上形 ® 鈦/純Ag膜/氧化鈦三層結構膜的純Ag膜形成 11) 〇 對於上述Ag合金膜形成體及純Ag膜形成儀 與實施例的情況相同'的方法進行相同試驗。另外, 實施例的情況相同的方法在浮法玻璃上只形成Ag ' ,根據ICP法求出膜的組成。 將這些試驗等的結果與上述Ag合金膜的組戽 於表1 2及表1 1。 分析。 漬試驗 ,目測 一起示 條件, 鈦三層 施例2 Nd、In 使用純 成氧化 體(表 ,根據 根據與 合金膜 一起示 •63- 1265976Table 10 Average thickness of Ag film before and after high temperature and high humidity test Sample number composition Average thickness before and after high temperature and high humidity test [nm] High durability test before test 1 Pure Ag 4.18 7.33 X 30 Ag-0.2 Atom 0/ 〇Bi-0.01 Atomic %Cii Alloy 0.59 0.93 〇31 Ag-0.2 Atom 0/〇Bi-0.1 Atomic %Cii Alloy 0.58 0.90 〇32 Ag-0.2 Atomic %Bi-0.5 Atomic % (1111 Alloy 0.56 0.86 〇33 Ag-0.2 Atomic % Bi-3 Atomic % Cu alloy 0.55 0.75 〇 34 Ag-0.2 Atomic % Bi-4 Atomic % Cu alloy 0.54 0.73 〇 35 Ag-0.2 Atomic % Bi-0.01 Atomic AA Alloy 0.59 0.94 〇36 Ag-0.2 Atom /oBi-0.1 Atomic % Au Alloy 0.57 0.89 〇37 Ag-0.2 Atom*%Bi-0.5 Atom*%Au Alloy 0.56 0.84 〇38 Ag-0.2 Atom 0/〇Bi-3 Atom 0/〇Au Alloy 0.54 0.76 〇39 Ag-0.2 atom% Bi-4 atom 0/〇Au alloy 0.53 0.75 〇40 Ag-0.2 atomic%Sl>0.01 atomic 0/〇Cii alloy 0.59, 0.95 〇41 Ag-0.2 atom% Sb-0.1 atom% 〇1 alloy 0.58 0.91 〇42 Ag-0.2 atom% Sb-0.5 atom% Cii alloy 0.57 0.88 〇43 Ag-0.2 atom% Sb-3 atom% Cii alloy 0.56 0 .78 〇44 Ag-0_2 Atom 0/〇Sb-4 Atom 0/〇〇! Alloy 0.54 0.77 〇45 Ag-0.2 Atomic % Sb-0.01 Atom 0/〇Au Alloy 0.58 0.94 〇46 Ag-0.2 Atomic Sb- 0.1 atom% Au alloy 0.58 0.90 〇47 Ag-0.2 atom% Sb-0.5 atom% Au alloy 0.57 0.86 〇48 Ag-0.2 atom 0/〇Sb-3 atom%Au alloy 0.57 0.79 〇49 Ag-0.2 atom% Sb_4 atom o/oAu alloy 0.55 0.77 〇50 Ag-0.2 atom% Bi-0.5 atom% Nd-0.5 atom% Cii alloy 0.50 0.55 〇51 Ag-0.2 Atomic % Bi-0.5 Atom 0/〇Nd-0.5 Atomic %Au Alloy 0.51 0.56 〇52 Ag-0.2 Atom o/〇Bi-0.5 Atom ο/〇Υ-0·5 Atom 0/〇Cii Alloy 0.52 0.57 〇53 Ag-0.2 Atomic Bi-0.5 Atom 〇Υ/〇Υ-0·5 Atomic % Au alloy 0.51 0.55 〇54 Ag-0.2 Atomic % Sb-0.5 Atom 0/〇Nd-0.5 Atomic % Cii Alloy 0.52 0.58 〇55 Ag-0.2 Atomic % Sb-0.5 Atomic % Nd-0.5 Atom 0/〇Au Alloy 0.53 0.60 〇56 Ag-0.2 Atom 0/〇Sb-0.5 Atom 0/〇Υ-0·5 Atomic %〇! Alloy 0.52 0.59 〇57 Ag-0.2 Atomic % Sb-0.5 Atomic Υ-0.5 Atomic AA Alloy 0.54 0.59 〇 58 Ag-0.2 Atomic % Si alloy 0.68 1.17 X 59 Ag-0.2 atom% 311 alloy 0.79 1.25 X -60 - (57) 1265976 It can be known from the results of Table 1~1 0 above that this sample is satisfied. Samples 2~4, 6~8, 10~ 13, 15~18, 2〇~23 30~33, 35~38, 40~43, 45~48, 50~57: Gold film has high thermal conductivity, high reflectivity, high durability and full performance. Especially in the A g - B i alloy (sample No. 3), the metal halogen Nd (sample number 1〇~14) or the addition of γ number 1 5~1 9 ), or added (: 11 (sample number) 3〇~ Au (g pattern number 35 to 39) is improved in durability compared with Ag-Bi alloy ( ). Also added to the Ag-sb alloy ( , ) is a rare earth metal element Nd (sample No. 2) 〇力□ γ (sample number 2 5~2 9 ), or adding -41 to 44 of c 11) or adding Au (sample number 45 to 49) is more durable than gold (sample number 7) Increased in nature. Further add N d and C11 in gold (δ pattern number 3) (samples add Nd and Au (sample number 5 1 ), add γ and ® sample number 5 2 ), add | γ and Compared with Au (sample No. 5 3 ) - alloy (sample No. 3), durability and further improvement of Ag-Sb alloy (sample No. 7) were added with Nd and Cu, No. 5 4 ), and Nd and Au were added. (Sample No. 5 5 ), Cu (Sample No. 56), and addition of Y and Au (Testing sympleced with Ag-Sb alloy (Sample No. 7), durability was advanced. Example 2 Example i Invention Prescribed, 25 to 28, Ag bottom The surface has a rare earth added (sample order 3 4) or added sample number 3 sample number 7 ~ 24) or added (sample number Ag - Sb combined with A g - B i vocal number 50), Cu (Try with Ag - Bi. Similarly, increase in the sample order by adding Y and _ No. 57. -61 - 1265976 (58) Using a sputtering material whose main component is Ti, according to the sputtering method (in Ar and In a mixed atmosphere of oxygen (a colorless float glass, a plate thickness of 3 mm, and a size of 2 cm X 4 cm), a titanium oxide film (film thickness: 30 nm) was formed as a base material for each test. Using the above-mentioned substrate, an Ag alloy film (Ag alloy film for electromagnetic wave shielding) having a composition shown in Table 12 was controlled to have a film thickness on the underlayer (titanium oxide film) of the above-mentioned substrate according to a sputtering method (in an Ar atmosphere). In the case of i〇nm, the film is formed. In this case, a 5x5mm plate-shaped sheet (made of an alloy component such as Bi) is placed on the pure Ag target as a sputtering target. • The above Ag alloy film (and pure Ag) After film formation, the sputtering target of the main component of Ti is used again, according to the sputtering method (in Ar and oxygen) In the atmosphere, titanium oxide (film thickness: 20 nm) was formed as a protective layer on the above Ag alloy film, thereby obtaining an electromagnetic wave mask in which a titanium oxide/Ag alloy film/titanium oxide three-layer structure film was formed on a transparent substrate. On the other hand, in order to analyze the composition of the Ag alloy film, a composite target for forming an Ag alloy film is used, and a sputtering method is used according to the same conditions as when the Ag alloy film is formed. Only an Ag alloy film was formed on the glass, and the composition of the film was determined by the ICP method. Further, an Ag alloy film* was formed for the electromagnetic wave mask obtained by the film formation, and the sheet resistance (resistance 値) and visible light transmittance were measured. Further, after performing a high-temperature and high-humidity test [placed in an atmosphere of 85 t and 90% RH (relative humidity) for 48 hours], the presence or absence of aggregation of Ag was measured, and the sheet resistance was also measured. At this time, the sheet resistance was determined by the four-probe method. For Ag-62-(59) 1265976 agglutination is observed with the naked eye and optical microscope (multiplier: 2〇〇). The visible light transmittance is based on the method specified in JIS R3 106, and the measurement is performed for the above-mentioned A g alloy film. The body was subjected to salt water immersion (N a C 1 concentration·· 0 · 0 5 m ο 1 /liter, immersion time··15 minutes) _ The discoloration and peeling state were observed. The results of the above-mentioned δ-type test temples and the composition of the above Ag alloy film are shown in Table 10. • Comparative Example 2 - 1 * An Ag alloy film formed body in which an Oxide/Ag alloy film/oxidized/structure film was formed on a transparent substrate was obtained in the same manner as in the case of Example 2-1. The composition of the Ag alloy film is different from that of the case of the one, as shown in Table 2. That is, the alloy component is any one of Nb, Sn, Cu-Al, and Zn. Further, only the Ag target is formed into a film of a pure Ag film, and a pure Ag film formed on a transparent substrate is formed of a titanium/pure Ag film/titanium oxide three-layer structure film. 11) 〇 The above Ag alloy film forming body and pure The same test was carried out for the same method as in the case of the Ag film forming apparatus. Further, in the same manner as in the case of the examples, only Ag ' was formed on the float glass, and the composition of the film was determined by the ICP method. The results of these tests and the like and the above-mentioned Ag alloy film group are shown in Table 12 and Table 11. analysis. Stain test, visual inspection together, condition, titanium three-layer application 2 Nd, In using pure oxide (table, according to the alloy film together; 63- 1265976

一 一 谳 評價結果 鹽水浸漬試驗 剝離 鹿 壊 鹿 鹿 壊 壊 壊 展 戡 裢 壊 鹿 鹿 壊 變色 (泛黃) X □ 〇 〇 〇 〇 〇 〇 □ 〇 〇 〇 〇 〇 〇 向1 § § ON 00 v〇 § 00 p· 〇 片阻抗(Ω/α) Ag凝集試驗後 (N 卜 T—H <N 寸 CO 卜 m Ag凝集試驗前 m 00 r-H CN cn 00 cn (N ,S ύ S\l fe « si t W. < X □ 〇 〇 〇 〇 〇 〇 □ 〇 〇 〇 o 〇 〇 添加元素量 (原子%) 1 1—Η Ο Ο Ο CN r-H 〇 On r-H 〇 cs O o r-H 0.009 s o r-H r-H O (N (N 〇 ^H G) 寸 〇 〇 r«H 組成 純Ag Ag-Bi Ag-Sb Ιέ (N 寸 in 卜 00 Os o F—H CN in 比較例1 實施例1 -64 - (61) 1265976 (61)One-to-one evaluation results salt water immersion test stripping deer stag deer stag deer stag deer scorpion discoloration (yellow) X □ 〇〇〇〇〇〇 〇〇〇〇〇〇 〇〇〇〇〇〇 1 § § ON 00 v 〇§ 00 p· 阻抗 film impedance (Ω/α) After Ag agglutination test (N 卜 T-H < N inch CO 卜 m Ag agglutination test m 00 rH CN cn 00 cn (N , S ύ S\l fe « si t W. < X □ 〇〇〇〇〇〇 〇〇〇 〇〇 o 〇〇 Adding element amount (atomic %) 1 1—Η Ο Ο Ο CN rH 〇On rH 〇cs O o rH 0.009 so rH rH O (N (N 〇^HG) inch 〇〇r«H constitutes pure Ag Ag-Bi Ag-Sb Ιέ (N inch in 00 Os o F-H CN in Comparative Example 1 Example 1 -64 - (61) 1265976 (61)

- 評價結果 鹽水浸漬試驗 剝離 壊 捱 變色 (泛黃) X □ □ X X X X 可見光透過率 (%) r- jo VO JQ 2 VO 片阻抗(Ω/ο) Ag凝集試驗後 二 m cn 00 cn m i Ag凝集試驗前 1__ VD VO m 釋靈 1 1 1 ! 岖 < 〇 X X X X X X 添加元素量 源子%) 〇 0.40 0.92 1 0.88 o Os o ο 組成 5 X) Z 老 P % < s 試驗 No. I 00 ON 比較例1 -65- (62) 1265976 實施例2 - 1及比較例2 — 1的結果 g式驗 N 〇 . 1 7 ( A g — In) 、18(Ag — N b ) 、19(Ag —- Evaluation results Salt water immersion test Peeling discoloration (yellowing) X □ □ XXXX Visible light transmittance (%) r- jo VO JQ 2 VO sheet impedance (Ω/ο) Ag agglutination test two m cn 00 cn mi Ag agglutination Before the test 1__ VD VO m Release 1 1 1 ! 岖< 〇XXXXXX Add element quantity source %) 〇0.40 0.92 1 0.88 o Os o ο Composition 5 X) Z Old P % < s Test No. I 00 ON Comparative Example 1 -65- (62) 1265976 The results of Example 2 - 1 and Comparative Example 2 - 1 g test N 〇. 1 7 (A g - In) , 18 (Ag - N b ) , 19 (Ag -

Sb) 、20(Ag - Cu) 、21(Ag-Al) 、22(Ag— Zn)涉 ' 及的電磁波遮罩用Ag合金膜形成體爲比較例2 - 1涉及 . 的。另外,試驗Νο·1涉及的爲純Ag膜形成體(Ag膜組 成:純Ag ) ’爲比較例2 - 1涉及的。這些Ag合金膜形 成體及純Ag膜形成體在高溫高濕試驗後能用肉眼看到在 • 透明基體(玻璃)表面有多數白點,確認Ag的凝集(在 表12、表11中用X表示)。 • 對於此,本發明實施例2 — 1涉及的試驗N 〇 · 2〜1 6的 ' 電磁波遮罩用Ag合金膜形成體在高溫高濕試驗後用肉眼 - 看不到白點。進而,用倍數:200倍的光學顯微鏡觀察的 結果,在上述Ag合金膜形成體中,Ag合金膜中的Bi及 /或Sb量不足0.04原子%的試驗Νο·2、Νο.3、Νο·9涉 及的Ag、合金膜形成體中能確認有15〜25個白點(表1 1 ® 中用△表示)。但是,此外的膜中合金元素(添加元素) 量:〇.〇5原子%以上的Ag合金膜形成體中白點爲10個 以下(表11中用〇表示)。 另一方面,隨著Bi或Sb的添加量增加,顯示片阻値 (電阻)增加,同時可見光透過率減少的傾向。一般地, > 作爲電磁波遮罩用Ag合金膜形成體’從確保視認性和眺 望性的觀點出發,適宜地可見光透過率爲近以上。 另外,通常,爲了確保紅外線遮罩性的片阻値只要是近 40 Ω / □則已充分,但爲了確保電波遮罩性的片阻値上限 -66- 1265976 (63) 爲近30〇/口。(片阻値是把阻抗率(Ω .m)用膜厚相 * 除的値’物理單位爲Ω。這裏把/ □附在Ω後,以表示膜 阻抗。以後也用Ω / □表示膜阻抗。) ' 從而,從表1 1可以知道從確保紅外線遮罩性的角度 . 出發,Bi或Sb的添加量適宜地爲10原子%以下,並且 ’從確保電波遮罩性的角度出發,Bi或Sb的添加量適宜 地爲5原子%以下。 • 另外,在高溫高濕試驗後測定各Ag合金膜形成體的 片阻値的結果,比較例2 - 1涉及的試驗No · 1的Ag合金 …膜形成體的情況,根據高溫高濕試驗片阻値大幅度上升, 但本發明實施例ί涉及的試驗No · 2〜1 5的Ag合金膜形 - 成體的情況,片阻値的上升少,全部爲幾乎4 0 Ω / □以 下' 進而,在鹽水浸漬試驗中,與在高溫高濕試驗中良好 (表1 2中用〇表示)的比較例2 — 1涉及的試驗No. 1 6的 Ag合金膜形成體(Ag合金膜組成:Ag - Nd)變色(表 1 2中用X表示)以及産生剝離相比,本發明實施例.1涉及 的試驗Νο·2〜15的Ag合金膜形成體(Ag合金膜組成: 含有Bi或Sb )的情況,變色少(表1 1中用△、〇表示 〇 ,其中尤其Bi或Sb : 0.05原子%以上的情況完全看不 ' 到變色(表11中用〇表示)。另外,本發明實施例2 — 1 涉及的Ag合金膜形成體全部沒有産生剝離。 實施例2 - 2 -67- (64) 1265976 使用主要成分爲A1 (鋁)的靶,根據濺射法(在Ar 和氧氣的混合氣氛中)在透明基體(無色浮法玻璃、板厚 :3mm、尺寸:2cmx4cm)上面作爲底層成膜氧化鋁膜( _ 膜厚:20nm )的作爲各試驗用基體。 使用上述基體根據潑射法(在Ar氣氛中)在上述基 體的底層(氧化鋁膜)上,將表13所示組成的Ag合金 膜(電磁波遮罩用Ag合金膜)控制成膜厚:1 5nm程度來 # 成膜。此時,使用在純Ag、Ag— 0.2原子%Sb、Ag— 0.1 原子% S b組成的溶制靶(由真空溶解法制作)上配置5 x , 5mm的板狀片(由Bi、Au、Cu或Pd構成)複合靶作爲 ' 濺射靶。 - 上述Ag合金膜(及純Ag膜)成膜後,再次使用主 要成分爲A1的濺射靶,根據濺射法(在Ar和氧氣的混合 氣氛中)在上述Ag合金膜上面作爲保護層成膜氧化鋁( 膜厚:40nm)。由此獲得在透明基體上形成氧化鋁/ Ag ® 合金膜/氧化鋁三層.結構膜的電磁波遮罩用Ag合金膜形 成體。 另一方面,爲了分析Ag合金膜的組成,使用該Ag 合金膜成膜用的複合耙,根據與該Ag合金膜成膜時相同 條件的濺射法,在浮法玻璃上只形成Ag合金膜,根據 * ICP法求出膜的組成。 另外,對於由該成膜獲得的電磁波遮罩用Ag合金膜 形成體,測定片阻値(電阻値)、可見光透過率。進而, 進行高溫高濕試驗[在85 °C、90% RH (相對濕度)氣氛中 -68- (65) 1265976 放置240小時]後,使用投影機將玻璃表面擴大ι〇 出Ag的凝集點(白點)個數。還測定了片阻値。 對於片阻値是根據四探針法求出。可見光透過率 - JIS R3 106中規定的方法測定。 將這些試驗等的結果與上述Ag合金膜的組成 於表1 3。 _比較例2 - 2 製作與比較例2 — 1涉及的試驗No. 1相同的純 * 形成體,對此進行與實施例2 - 2的情況相同的試 ' 結果示於表1 3。 實施例2 - 2及比較例2 - 2的結果 試驗No.23涉及的是純Ag膜形成體(Ag膜組 Ag),爲比較例2 - 2涉及的。該純Ag膜形成體 ® 高濕試驗後用肉眼即可確認産生了多個白點(Ag 點),並且根據高溫高濕試驗,片阻値大幅度上升 對於此,試驗No .24的電磁波遮罩用Ag合金 體(Ag合金膜組成:Ag - 0.19原子% )的情況, Ag的凝集點)産生個數爲1 0個程度,極其少。並 * 看不到根據高溫高濕試驗的片阻値的上升。 試驗No.25〜34的電磁波遮罩用Ag合金膜形 Ag合金膜組成:Ag - Bi或Sb— Au、Cu或Pd)爲 實施例2 - 2涉及的,這些Ag合金膜形成體的情 倍來數 此時, 是基於 一起示The Sb), 20 (Ag-Cu), 21 (Ag-Al), and 22 (Ag-Zn)-related electromagnetic wave mask Ag alloy film formations were referred to in Comparative Example 2-1. Further, the test Νο·1 relates to a pure Ag film formed body (Ag film composition: pure Ag) ’ is referred to in Comparative Example 2-1. These Ag alloy film formations and pure Ag film formations can be seen with the naked eye on the surface of the transparent substrate (glass) after high temperature and high humidity test, and Ag aggregation is confirmed (X in Table 12 and Table 11). Express). • For this reason, the test N 〇 · 2 to 16 of the invention according to Example 2-1 of the present invention was used for the electromagnetic alloy mask for the Ag alloy film formation body after the high temperature and high humidity test, and the white spot was not visible to the naked eye. Further, as a result of observation by an optical microscope at a multiple of 200 times, in the Ag alloy film formation, the amount of Bi and/or Sb in the Ag alloy film was less than 0.04 atom%, and the test Νο·2, Νο. 3, Νο· In the Ag and alloy film formations involved, it is confirmed that there are 15 to 25 white spots (indicated by Δ in Table 1 1 ® ). However, in addition to the amount of the alloying element (addition element) in the film: the white point of the Ag alloy film formed body of 5% by weight or more is 10 or less (indicated by 〇 in Table 11). On the other hand, as the amount of addition of Bi or Sb increases, the display sheet resistance (resistance) increases, and the visible light transmittance tends to decrease. In general, the Ag alloy film forming body for electromagnetic wave shielding is preferably a light transmittance of not less than the viewpoint of ensuring visibility and visibility. In addition, in general, it is sufficient to ensure the infrared ray shielding sheet resistance as long as it is approximately 40 Ω / □, but the upper limit of the sheet resistance to ensure radio wave masking is -66 - 1265976 (63) is approximately 30 〇 / port. (The chip resistance is the physical unit of the impedance ratio (Ω.m) divided by the film thickness phase *. The physical unit is Ω. Here, / □ is attached to Ω to indicate the film impedance. The film impedance is also expressed by Ω / □. Therefore, from the viewpoint of ensuring the infrared ray opacity, the amount of addition of Bi or Sb is suitably 10 atom% or less, and 'from the viewpoint of ensuring radio wave masking, Bi or Sb The amount of addition is suitably 5 atom% or less. • The results of measuring the sheet resistance of each Ag alloy film formation after the high-temperature and high-humidity test, and the case of the Ag alloy of the test No. 1 in Comparative Example 2-1, the film formation body, according to the high-temperature and high-humidity test piece The resistance is greatly increased. However, in the case of the Ag alloy film-form of the test No. 2 to 15 according to the embodiment of the present invention, the rise of the sheet resistance is small, and all of them are almost 40 Ω / □ or less. In the salt water immersion test, the Ag alloy film formed body of the test No. 16 (Comparative Example 2-1) which is good in the high temperature and high humidity test (indicated by 〇 in Table 12) (Ag alloy film composition: Ag - Nd) discoloration (indicated by X in Table 12) and Ag alloy film formation (Ag alloy film composition: containing Bi or Sb) of the test Νο·2~15 according to the embodiment 1. In the case of the case, the discoloration is small (indicated by Δ and 〇 in Table 1 1 , wherein in particular, Bi or Sb: 0.05 at% or more is completely invisible to discoloration (indicated by 〇 in Table 11). Further, the embodiment of the present invention 2—1 The Ag alloy film formed body did not cause peeling at all. Example 2 - 2 -67- (64) 1265976 A target having a main component of A1 (aluminum) is used as a primer layer on a transparent substrate (colorless float glass, plate thickness: 3 mm, size: 2 cm x 4 cm) according to a sputtering method (in a mixed atmosphere of Ar and oxygen) A film-forming aluminum oxide film (_ film thickness: 20 nm) was used as a substrate for each test. The composition shown in Table 13 was used on the underlayer (alumina film) of the above substrate according to a sputtering method (in an Ar atmosphere) using the above substrate. The Ag alloy film (the Ag alloy film for electromagnetic wave mask) is controlled to have a film thickness of about 15 nm to form a film. In this case, it is composed of pure Ag, Ag - 0.2 at% Sb, Ag - 0.1 at% S b . A 5 x, 5 mm plate-shaped sheet (composed of Bi, Au, Cu, or Pd) is placed as a 'sputter target' on a molten target (made by a vacuum dissolution method) - the above Ag alloy film (and pure Ag film) After the film formation, a sputtering target having a main component of A1 was used again, and alumina (film thickness: 40 nm) was formed as a protective layer on the above Ag alloy film by a sputtering method (in a mixed atmosphere of Ar and oxygen). This results in the formation of aluminum oxide / Ag ® alloy film / alumina three layers on a transparent substrate. The electromagnetic wave mask of the structural film is formed of an Ag alloy film. On the other hand, in order to analyze the composition of the Ag alloy film, the composite ruthenium for forming the Ag alloy film is used, and the same conditions as those for forming the Ag alloy film are used. In the shot method, only the Ag alloy film was formed on the float glass, and the composition of the film was determined by the *ICP method. In addition, the Ag alloy film formed by the electromagnetic wave mask obtained by the film formation was used to measure the sheet resistance (resistance 値), visible light transmittance. Further, after performing the high-temperature and high-humidity test [in the atmosphere of 85 ° C, 90% RH (relative humidity) - 68 - (65) 1265976 for 240 hours], the surface of the glass is enlarged by the projector to condense the Ag agglutination point ( White point) number. Tablet resistance was also measured. The sheet resistance is determined by the four-probe method. Visible light transmittance - measured by the method specified in JIS R3 106. The results of these tests and the like and the composition of the above Ag alloy film are shown in Table 13. -Comparative Example 2 - 2 The same pure * formed as Test No. 1 of Comparative Example 2 - 1 was produced, and the same test as in the case of Example 2-3 was carried out. The results are shown in Table 13. Results of Example 2-2 and Comparative Example 2-2 Test No. 23 relates to a pure Ag film formation (Ag film group Ag), which is referred to in Comparative Example 2-2. After the high-humidity test of the pure Ag film formation body, it was confirmed by the naked eye that a plurality of white spots (Ag dots) were generated, and according to the high-temperature and high-humidity test, the sheet resistance was greatly increased. For this, the electromagnetic wave of the test No. 24 was covered. When the cover is made of an Ag alloy body (Ag alloy film composition: Ag - 0.19 atom%), the number of Ag agglomeration points is about 10, which is extremely small. And * Can not see the increase in the sheet resistance according to the high temperature and high humidity test. The electromagnetic wave mask of Test Nos. 25 to 34 is composed of an Ag alloy film-shaped Ag alloy film: Ag - Bi or Sb - Au, Cu or Pd) is involved in the embodiment 2 - 2, and these Ag alloy film forming bodies are in the same manner. At this time, it is based on a joint

Ag膜 驗。將 成=純 在局溫 的凝集 〇 膜形成 白點( 且幾乎 成體( 本發明 況,白 -69- (66) 1265976 點(Ag的凝集點)産生個數比上述試驗Νο· 24的Ag合金 膜形成體的情況還少,從表1 3可以知道,隨著An、Cu 或Pd添加量的增加白點發生個數也減少。 • 另外,在該實施例2 — 1和2— 2中,對於Bi、Sb是 , 各自單獨添加,但同時添加的情況也可得到與實施例2 - 1和2 — 2的情況相同傾向的結果。另外,實施例2 - 2中 Cu、Au、Pd、Rh、Ru、Ir、Pt 中,Au、Cu、Pd 是各自單 • 獨添加,但同時添加的情況也可得到與該實施例2 - 2的 情況相同傾向的結果。另外,將Au、Cu、Pd以外的元素 ' (Rh、Ru、Ir、Pt )各自添加和同時添力[]的情況都可得到 * 與該實施例2的情況相同傾向的結果。 實施例2 — 3、比較例2 — 3 使用主要成分爲ITO的靶,根據高頻濺射法(在Ar 氣氛中)在厚度70//m的聚對苯二甲酸乙二醇酯(PET) ® 薄膜上由濺射法成膜厚度40nm的ITO膜後,使用Ag -0.5原子% Bi靶(以下叫做〇.5Bi— T),成膜厚度15nm 的 Ag — Bi合金膜。進而,由濺射法成膜厚度40 nm的 ITO膜。從該層疊膜(以下叫做ITO / Ag — Bi合金膜(使 用0.5Bi— T,膜厚15nm) / ITO的三層膜)的表面用Ar ' 離子束蝕刻,並根據XPS在膜厚方向進行組成分析,結 果確認在最外層(最遠離PET薄膜的層)的ITO膜和Ag 一 Bi合金膜的介面上Bi濃化。另外,從該濃化的Bi的 狹域光譜確認Bi被氧化。 -70- 1265976 (67) 另一方面,還製作了在上述層疊膜中各層的膜厚和層 數相同,只是用靶組成爲A g — 1 · 5原子% B i的(以下叫 做1.5Bi—T)作爲Ag— Bi合金膜成膜的層疊膜(以下叫 • 做 ITO/Ag-Bi 合金膜(使用 1.5Bi—T,膜厚 15nm) / ITO的三層膜)以及用靶組成爲Ag — 2.0原子% Bi的(以 下叫做2.0Bi— T)作爲Ag - Bi合金膜成膜的層疊膜(以 下叫做ITO/Ag— Bi合金膜(使用2.0Bi— T,膜厚15nm • ) / ITO的三層膜)。另外,成膜在上述成膜中使用Ag 一 1原子% Pd靶代替Ag — Bi合金膜的層疊膜(以下叫做 - ITO/Ag — 1原子%Pd合金膜(膜厚15nm) /ITO的三層 膜)(比較例涉及的膜)。進而·,還製作在上述成膜中使 用0.5Bi— T(Ag— 0.5原子%Bi靶)成膜的Ag— Bi合金 膜的膜厚只爲2 nm的層疊膜(以下叫做ITO/Ag— Bi合 金膜(使用〇.5Bi— T,膜厚2nm)/ITO的三層膜)。 對於這樣製作的5種膜,即, ® (1) ITO/Ag— Bi 合金膜(使用 0.5Bi— T,膜厚 15nm) / ITO的三層膜 (2) ITO/Ag— Bi合金膜(使用 1.5Bi— T,膜厚 15nm ) / ITO的三層膜 (3) ITO/Ag— Bi合金膜(使用 2.0Bi—T,膜厚 ^ 15nm) / ITO的三層膜 (4) ITO/Ag— 1原子%Pd合金膜(膜厚I5nm) / IΤ Ο的三層膜) (5) ITO/Ag— Bi合金膜(使用 0.5Bi — T,膜厚 -71 - (68) 1265976 2nm) / ITO的三層膜 各自浸漬到濃度〇.5mol/ L的鹽水中,用光學顯微鏡 (倍數:200倍)觀察Ag的凝集情況。 • 其結果,(4)的膜,即ITO/Ag— 1原子%Pd合金 膜(膜厚15nm) /ITO的三層膜)(比較例涉及的膜) 經浸漬75小時開始在表面産生表示Ag凝集的白點,但 相對於此,(1 )〜(3 )的膜,即]ITO/ Ag — Bi合金膜 •(使用〇.5Bi—T,膜厚15nm ) / ITO的三層膜(本發明 涉及的膜)、ITO/Ag—Bi合金膜(使用1.5Bi—T,膜厚Ag film test. A white point is formed in the agglomerated ruthenium film which is pure at the local temperature (and almost adult (in the present invention, white-69-(66) 1265976 points (aggregation point of Ag) produces a number of Ags than the above test Νο. 24 There are few cases of the alloy film forming body, and it can be known from Table 13 that the number of white spots is also decreased as the amount of addition of An, Cu or Pd is increased. • In addition, in the examples 2 - 1 and 2 - 2 For Bi and Sb, each of them is added separately, but in the case of simultaneous addition, the same tendency as in the case of Examples 2 - 1 and 2 - 2 can be obtained. Further, in Example 2 - 2, Cu, Au, Pd, Among Rh, Ru, Ir, and Pt, Au, Cu, and Pd are added individually, but in the case of simultaneous addition, the same tendency as in the case of Example 2-4 can be obtained. Further, Au, Cu, In the case where the elements '(Rh, Ru, Ir, Pt) other than Pd are added and the force is added simultaneously [], the same tendency as in the case of the second embodiment can be obtained. Example 2 - 3, Comparative Example 2 - 3 Using a target whose main component is ITO, according to high-frequency sputtering (in Ar atmosphere), polyphenylene terephthalate with a thickness of 70/m On the acid glycol (PET) ® film, an ITO film having a thickness of 40 nm was formed by sputtering, and Ag - 0.5 at% Bi target (hereinafter referred to as 〇.5Bi-T) was used to form Ag - Bi having a thickness of 15 nm. Further, an ITO film having a thickness of 40 nm was formed by a sputtering method from the laminated film (hereinafter referred to as ITO / Ag - Bi alloy film (using 0.5 Bi - T, film thickness: 15 nm) / ITO three-layer film) The surface was etched with Ar' ion beam, and composition analysis was performed in the film thickness direction according to XPS. As a result, it was confirmed that Bi was concentrated on the interface between the ITO film and the Ag-Bi alloy film on the outermost layer (the layer farthest from the PET film). From the narrow-field spectrum of the concentrated Bi, it was confirmed that Bi was oxidized. -70-1265976 (67) On the other hand, in the above laminated film, the film thickness and the number of layers of each layer were also the same, except that the target composition was A. g — 1 · 5 atom% B i (hereinafter referred to as 1.5Bi—T) is a laminated film formed by forming an Ag—Bi alloy film (hereinafter referred to as ITO/Ag-Bi alloy film (using 1.5Bi—T, film thickness) 15nm) / ITO three-layer film) and the target composition of Ag - 2.0 atom% Bi (hereinafter referred to as 2.0Bi-T) as Ag - Bi alloy Film-formed laminated film (hereinafter referred to as ITO/Ag-Bi alloy film (using 2.0Bi-T, film thickness 15 nm • ) / ITO three-layer film). In addition, film formation uses Ag-1 atom% in the above film formation. A Pd target was used instead of a laminated film of an Ag-Bi alloy film (hereinafter referred to as - ITO/Ag - 1 at% Pd alloy film (film thickness: 15 nm) / three-layer film of ITO) (film of a comparative example). Further, a laminated film having a film thickness of only 2 nm of an Ag-Bi alloy film formed by using 0.5Bi-T (Ag-0.5 atom% Bi target) in the film formation described above (hereinafter referred to as ITO/Ag-Bi) was produced. Alloy film (using 〇.5Bi—T, film thickness 2 nm)/three-layer film of ITO). For the five films thus produced, that is, ® (1) ITO/Ag-Bi alloy film (using 0.5Bi-T, film thickness 15nm) / ITO three-layer film (2) ITO/Ag-Bi alloy film (used 1.5Bi—T, film thickness 15nm) / ITO three-layer film (3) ITO/Ag—Bi alloy film (using 2.0Bi—T, film thickness ^ 15nm) / ITO three-layer film (4) ITO/Ag— 1 atom% Pd alloy film (film thickness I5nm) / IΤ 三 three-layer film) (5) ITO/Ag-Bi alloy film (using 0.5Bi — T, film thickness -71 - (68) 1265976 2nm) / ITO The three layers of the film were each immersed in a brine having a concentration of 〇5 mol/L, and the agglutination of Ag was observed with an optical microscope (multiple: 200 times). • As a result, the film of (4), that is, the ITO/Ag-1 atomic% Pd alloy film (film thickness: 15 nm) / three-layer film of ITO) (the film of the comparative example) was subjected to immersion for 75 hours to start generation of Ag on the surface. Agglomerated white spots, but in contrast, (1) to (3) films, ie, ITO/Ag-Bi alloy films • (using 〇.5Bi—T, film thickness 15 nm) / ITO three-layer film (this Film involved in the invention, ITO/Ag-Bi alloy film (using 1.5Bi-T, film thickness)

、 15nm) / ITO的三層膜(本發明實施例涉及的膜)、ITO _ /Ag— Bi 合金膜(使用 2.0Bi— T,膜厚 15nm) / ITO 的 - 三層膜(本發明實施例涉及的膜)經1 5 0小時浸漬後也完 全看不到變化,顯示優異的耐鹽水浸漬性。這些(1 )〜 (3)的膜及(4)的膜,合金膜的膜厚都相同(膜厚 1 5 nm ) 。, 15 nm) / ITO three-layer film (film according to the embodiment of the invention), ITO_ /Ag-Bi alloy film (using 2.0Bi-T, film thickness 15nm) / ITO - three-layer film (invention example) The film involved) did not show any change after immersion in 150 hours, and showed excellent salt water impregnation resistance. The film of (1) to (3) and the film of (4) have the same film thickness (thickness of 15 nm).

® ( 5)的膜,即ITO/Ag— Bi合金膜(使用0.5Bi— T ,膜厚2nm) / ITO的三層膜經60小時後開始在表面産 生表示A g凝集的白點,與上述(1 )的膜的情況相比耐 鹽水浸漬性差,但這是因爲Ag - Bi合金膜的膜厚薄的緣 故(膜厚2nm)。這樣(5)的膜雖然其Ag— Bi合金膜的 * 膜厚薄爲2nm,但與比它厚的膜厚達15nm的Ag — 1原子 %Pd合金膜的(4)的膜(ITO/Ag—l原子%Pd合金膜 (膜厚15nm) / ITO的三層膜)相比,在表面開始産生 表示凝集的白點的時間幾乎相等,耐鹽水浸漬性相差不大 -72- (69) 1265976 ,幾乎相等。 如上該,浸漬在鹽水(濃度〇.5mol/ L )的情況,( 5)的膜(ITO/Ag - Bi合金膜(使用 0.5Bi— T,膜厚 2nm ) / ITO的三層膜)經60小時後開始在表面産生表示 凝集的白點,因此可以知道,即使是Ag - B i合金膜,如 果其膜厚薄達2nm時無法獲得所希望的耐鹽水浸漬性。 此時需要使A g— Bi合金膜的膜厚定在3 nm以上。 實施例2 - 4、比較例2 - 4 在厚度70/zm的PET (聚對苯二甲酸乙二醇酯)薄 膜上由濺射法依次成膜ITO膜/ Ag— Bi合金膜/ ITO膜 /Ag— Bi合金膜/ ITO膜/ Ag— Bi合金膜/ ITO膜,成 膜ITO膜和Ag— Bi合金膜的層疊膜。此時製作Ag — Bi 合金膜時使用組成爲Ag — 0.25原子% Bi的靶(以下叫做 0.25Bi-T)。另外,使各層膜厚成膜爲ITO膜爲2 0nm、 Ag-Bi合金膜爲l〇nm。從該層疊膜(以下叫做ITO / Ag —Bi合金膜(使用 0.25Bi— T,膜厚10nm)的七層膜) 的表面用Ar離子束蝕刻,並根據XPS在膜厚方向進行組 成分析,結果確認在最外層(最遠離PET薄膜的層)的 ITO膜和Ag— Bi合金膜的介面上Bi濃化。另外,從該濃 化的Bi的狹域光譜確認Bi被氧化。 另一方面,製作在上述層疊膜中,使各層的厚度與層 數相同,只是用Ag— 1原子% Pd — 1.7原子%Cu合金膜 代替Ag — Bi合金膜部分的層疊膜(以下叫做ITO / Ag — -73- 1265976 (70) 1原子%Pd-1.7原子%Cu合金膜(膜厚l〇nm)的 膜)(比較例涉及的膜)。 對於這樣製作的2種膜,即, • ( a) ITO/ Ag- Bi 合金膜(使用 〇.25Bi— T, 10nm)的七層膜 (b) ITO/Ag—l 原子 %Pd— 1·7 原子 %Cu 合金 膜厚lOnm )的七層膜 • 各自浸漬到濃度〇.5mol/L的鹽水中,用光學顯 (倍數:200倍)觀察Ag的凝集情況。 ' 其結果,(b )的膜,即ITO/ Ag— 1原子% pd .v 原子%Cu合金膜(膜厚i〇nm)的七層膜(比較例涉 - 膜)經浸漬4 0小時開始在表面産生表示A g凝集的 ,但相對於此,(a )的膜,即ITO/ Ag — Bi合金膜 用0.25Bi— T,膜厚l〇nm)的七層膜(本發明實施例 的膜)經1 00小時浸漬後也完全看不到變化,顯示優 ^ 耐鹽水浸漬性。這些(a )〜(b )的膜,合金膜的膜 相同(膜厚1 0 n m )。 七層 膜厚 膜(. 微鏡 -1.7 及的 白點 (使 涉及 異的 厚都 -74- 1265976The film of ® (5), that is, the ITO/Ag-Bi alloy film (using 0.5Bi-T, film thickness 2nm) / ITO three-layer film, after 60 hours, began to produce white spots on the surface indicating Ag gagulation, with the above The film of (1) is inferior to the salt water impregnation property, but this is because the film thickness of the Ag-Bi alloy film is thin (film thickness: 2 nm). Such a film of (5) has a film thickness of 2 nm of the Ag-Bi alloy film, but a film of (4) of an Ag-1 atom% Pd alloy film having a thickness of 15 nm thicker than that of the film (ITO/Ag- The atomic % Pd alloy film (film thickness 15 nm) / ITO three-layer film) is almost equal in time to start generating white spots indicating agglomeration, and the salt water impregnation resistance is not much different -72-(69) 1265976, almost the same. As described above, in the case of immersion in brine (concentration 〇.5mol/L), the film of (5) (ITO/Ag-Bi alloy film (using 0.5Bi-T, film thickness 2nm) / ITO three-layer film) is 60 After a lapse of hours, white spots indicating agglomeration were started on the surface, so that even if the Ag-B i alloy film was thinner than 2 nm, the desired salt water impregnation resistance could not be obtained. At this time, it is necessary to set the film thickness of the A g—Bi alloy film to 3 nm or more. Example 2 - 4, Comparative Example 2 - 4 ITO film / Ag - Bi alloy film / ITO film was sequentially formed by sputtering on a PET (polyethylene terephthalate) film having a thickness of 70 / zm. Ag—Bi alloy film/ITO film/Ag—Bi alloy film/ITO film, laminated film of film-forming ITO film and Ag—Bi alloy film. At this time, a target of Ag - 0.25 at% Bi (hereinafter referred to as 0.25 Bi-T) was used for the production of the Ag-Bi alloy film. Further, the film thickness of each layer was formed so that the ITO film was 20 nm, and the Ag-Bi alloy film was 10 nm. The surface of the laminated film (hereinafter referred to as a seven-layer film of ITO / Ag - Bi alloy film (using 0.25Bi - T, film thickness: 10 nm)) was etched with Ar ion beam, and composition analysis was performed in the film thickness direction according to XPS. It was confirmed that Bi was concentrated on the interface between the ITO film and the Ag—Bi alloy film on the outermost layer (the layer farthest from the PET film). Further, it was confirmed from the narrow-field spectrum of the concentrated Bi that Bi was oxidized. On the other hand, in the above laminated film, the thickness of each layer was made the same as the number of layers, except that a laminated film of Ag-Bi alloy film portion was replaced by Ag-1 atom% Pd - 1.7 atom% Cu alloy film (hereinafter referred to as ITO / Ag — —73— 1265976 (70) A film of a 1 atom% Pd-1.7 atom% Cu alloy film (film thickness: 10 nm) (film of a comparative example). For the two films thus produced, namely, (a) ITO/Ag-Bi alloy film (using 〇.25Bi-T, 10 nm), a seven-layer film (b) ITO/Ag-1 atomic Pd-1.7 The seven-layer film of the atomic %Cu alloy film thickness lOnm was each immersed in a brine having a concentration of 55 mol/L, and the agglutination of Ag was observed by optical display (multiple: 200 times). As a result, the film of (b), that is, the ITO/Ag-1 atom% pd.v atomic% Cu alloy film (film thickness i〇nm), a seven-layer film (comparative example-film) was immersed for 40 hours. On the surface, a film indicating the Ag agglutination is produced, but in contrast, the film of (a), that is, the ITO/Ag-Bi alloy film is 0.25 Bi—T, and the film thickness is 10 nm (the embodiment of the present invention) The film) did not show any change after immersion for 100 hours, showing excellent salt water impregnation. In the films of (a) to (b), the film of the alloy film was the same (film thickness: 10 n m ). Seven layers of film thickness (. micromirror -1.7 and white point (so that the thickness of the difference is -74- 1265976

e 一撇 評働吉果 可見光透過率 (%) On r- 04 00 VD v〇 片阻抗(Ω/Cl) AG凝集試驗後 ν〇 卜 〇\ On S Ό CN 卜 AG凝集試驗前 v〇 ν〇 卜 v〇 Os r- Ό (N Os 00 (Μ 1- 尚溫局濕試驗 白點發生個數 00 〇\ Ο 00 Ο 寸 00 寸 o 〇 o Ο 1添加元素量 Μ , 其他 1 1 m ο ON Ο 寸 ο r-H m o’ o m 10.0 卜 cm' 卜 Gs 丨丨丨 Μ BI/SB 1 0,9 0.19 0.19 0.19 0.19 0.19 0.19 0.21 0.21 0.21 0.21 組成 5 Ag-Bi- Ag-Bi· Ag-Bi- "O Ph Ag-Sb- Ag-Sb- 試驗No. cn CN 00 CN (N cn m 比較例2 實施例2 -75- (72) 1265976 在純Ag靶上配置5mmx5mm的Bi或Sb金屬片,由 DC磁控濺射法,在玻璃基板上製成厚度ι〇〇ηιη的表1的 試驗Ν ο · 1〜1 2所不成分組成的試樣。薄膜的組成是另外 ' 在同一條件下製作膜厚1 # m的試樣,用IC p —質量分析 法(精工儀器公司製造的SPQ — 8 000 )進行組成的測定。 具體來說,把l〇〇nig以上的試樣作爲前處理溶解於硝酸 :純水=1 : 1的溶液中,並把它在200 °C的熱板上加熱確 ® 認試樣完全溶解後冷卻,進行分析。靶尺寸爲¢) = 100mm ,玻璃基板尺寸爲Φ = 5 0 m m。主要成膜條件爲,到達真 • 空度:6·67 X 1 0 — 4Pa、成膜時的 Ar氣壓:〇.267Pa、基板 • 溫度:25°C、靶一基板間距:55mm。 ^ 成膜後馬上用可見紫外分光光度計(島津製作所製造 )測定各試樣的反射率。另外,用上述分光光度計測定這 些試樣環境試驗(溫度8(TC、相對濕度90%、時間48h )後的反射率,評價環境試驗前後的反射率的變化量。進 B 而,用原子力顯微鏡(AFM )測定環境試驗前後的表面粗 度,評價環境試驗前後的表面粗度的變化量。進而進行鹽 水浸漬試驗(NaCl : 0.05m〇l / L、15分鐘),目測觀察 _ 反射膜的變色程度以及光反射膜是否從基板剝離,評價耐 NaCM 性。 比較例3 — 1 把配置於純Ag靶上的金屬片用Nd、In、Nb或Sn代 替上述實施例3 — 1的Bi或Sb,在與上述實施例3 — 1相 -76- (73) 1265976 同的成膜條件製作表1的試驗No . 1 3〜1 6所示組成白々 合金薄膜,進行與實施例3 - 1相同的評價。 將實施例3 - 1及比較例3 - 1的評價結果一倂表 • 表1 4。如表1 4的實施例3 — 1所示,與純A g薄膜( _ No·l)相比,根據Bi或Sb的添加(試驗No.2〜12 能夠顯著抑制環境試驗前後的反射率的變化量及表面 的變化量。對於Bi或Sb的添加量,雖然〇.〇1原子 # 能看到效果(試驗N。· 2、8 ),但尤其〇 · 〇 5原子%以 效果大(試驗N 〇 · 3〜7、9〜1 2 )。另外,鹽水浸漬 •後也能夠看到根據Bi或Sb的添加,光反射膜的泛黃 ' 色或從基板上的光反射膜的剝離消失,顯示出良好的 ,性。 對於此,如表14的比較例3 — 1所示,Ag - Nd 對抑制環境試驗前後的反射率的變化量顯示出良好的 ,但沒有N a C 1耐久性(試驗n ο · 1 3 )。另外,A g — B Ag — Nb、Ag - Sn是對表面粗度變化量的抑制效果非 (試驗 Ν ο · 1 4 〜1 6 )。 實施例3 - 2 使用在純Ag或Ag - 〇.2%Sb的靶上設置5mmx . 的Bi、Cu、Au、Nd或Y的金屬片的複合靶,在與實 3 - 1相同的成膜條件製作試樣。把對於這些試樣進 實施例3 — 1相同的評價的結果示於表1 5。表丨5中 比較而再現表14中的試驗Ν0·;ι及4。 J Ag 示於 試驗 ), 粗度 %也 上時 試驗 等變 耐久 雖然 結果 In、 常低 5mm 施例 行與 爲了 •77- 1265976 (74) 可以知道藉由在Ag— Bi中進而添加Nd或γ 而改善表面粗度及其變化量(試驗Ν〇·18、19 )。 知道,在Ag— Bi或Ag— Sb中進而添加Cu或Au 是’雖然沒有表面粗度的進而的改善效果,但具有 .射率變化量的效果(試驗No.19〜24)。 實施例4 濺射靶中的Bi量和薄膜中的Bi量的比較 爲了比較濺射靶中以及使用它成膜的薄膜中的 量,使用具有表16所示組成的濺射靶成膜Ag底 薄膜。根據濺射法(在Ar氣氛中)在透明基體( 法玻璃、板厚·· 3mm、尺寸:2cmx4cm)上面成膜 金膜(Ag — Bi系合金膜),控制膜厚:15nm程度 ,使用由含有Bi的Ag底質合金構成的溶制靶(由 解法制作)作爲濺射靶。溶制靶中的Bi量是根據 分析)確認。 把所得薄膜的A g底質合金部分1 0 m g以上作 使用,用硝酸:純水二1 : 1的溶液溶解。然後, 2 00 °C的熱板上加熱確認試樣完全溶解後冷卻,用 質量分析法(精工儀器公司製造的SPQ 一 8000 )測 中含有的Bi量。將結果示於表16。 ,可進 還可以 的情況 減少反e 撇 働 可见光 可见光 可见光 可见光 可见光 可见光 On On On On On On On On On On On On On On On On On AG AG AG AG AG AG AG AG AG AG On On On On On On On On On On On On On On On On On On On On卜v〇Os r- Ό (N Os 00 (Μ 1- 尚温局 Wet test white point occurs a number of 00 〇 \ Ο 00 Ο inch 00 inch o 〇o Ο 1 add element amount Μ, other 1 1 m ο ON寸 inch ο rH m o' om 10.0 卜 cm' 卜 Gs 丨丨丨Μ BI/SB 1 0,9 0.19 0.19 0.19 0.19 0.19 0.19 0.21 0.21 0.21 0.21 Composition 5 Ag-Bi- Ag-Bi· Ag-Bi- &quot O Ph Ag-Sb-Ag-Sb-Test No. cn CN 00 CN (N cn m Comparative Example 2 Example 2 -75- (72) 1265976 A 5 mm x 5 mm Bi or Sb metal piece was placed on a pure Ag target, In the DC magnetron sputtering method, a sample of the composition of Table 1 of the thickness ι ηιη of Table 1 was prepared on a glass substrate. The composition of the film was another 'film under the same conditions. A sample with a thickness of 1 m is measured by IC p - mass spectrometry (SPQ - 8 000 manufactured by Seiko Instruments Inc.). Specifically, a test of l〇〇nig or more is used. As a pretreatment, it was dissolved in a solution of nitric acid: pure water = 1 :1, and it was heated on a hot plate at 200 ° C. The sample was completely dissolved and then cooled for analysis. The target size was ¢) = 100 mm. The size of the glass substrate is Φ = 50 mm. The main film formation conditions are: true air vacancy: 6·67 X 1 0 — 4Pa, Ar gas pressure at film formation: 267.267Pa, substrate • Temperature: 25°C, The distance between the target and the substrate was 55 mm. ^ The reflectance of each sample was measured immediately after film formation using a visible ultraviolet spectrophotometer (manufactured by Shimadzu Corporation). In addition, the environmental test of these samples was measured by the above spectrophotometer (temperature 8 (TC, The reflectance after 90% relative humidity and 48 h) was evaluated for the amount of change in reflectance before and after the environmental test. The surface roughness before and after the environmental test was measured by atomic force microscopy (AFM), and the surface roughness before and after the environmental test was evaluated. The amount of change in the degree was further measured by a salt water immersion test (NaCl: 0.05 m〇l / L, 15 minutes), and the degree of discoloration of the reflective film and whether the light-reflecting film was peeled off from the substrate were visually observed to evaluate the NaCM resistance. Comparative Example 3 - 1 The metal piece disposed on the pure Ag target was replaced with Nd, In, Nb or Sn of Bi or Sb of the above Example 3-1, in the same manner as the above Example 3-1 -76- (73) 1265976 The same film forming conditions were used to prepare a chalky alloy film as shown in Test No. 1 3 to 16 of Table 1, and the same evaluation as in Example 3-1 was carried out. The evaluation results of Example 3-1 and Comparative Example 3-1 are shown in Table 1. Table 14. As shown in Example 3-1 of Table 14, the addition of Bi or Sb was compared with the pure A g film (_No.l) (Test Nos. 2 to 12 can significantly suppress the reflectance before and after the environmental test. The amount of change and the amount of change in the surface. For the addition amount of Bi or Sb, although 〇.〇1 atom# can see the effect (test N.· 2, 8), especially 〇·〇5 atom% is effective (test N 〇 · 3 to 7, 9 to 1 2 ). Further, after the salt water is immersed, it can be seen that the yellowing of the light reflecting film or the peeling of the light reflecting film from the substrate disappears according to the addition of Bi or Sb. For this reason, as shown in Comparative Example 3-1 of Table 14, Ag - Nd showed good change in the reflectance before and after the suppression of the environmental test, but there was no N a C 1 durability ( Test n ο · 1 3 ). In addition, A g — B Ag — Nb and Ag - Sn are not effective in suppressing the amount of change in surface roughness (test ο ο ̄ 1 4 ~1 6 ). Example 3 - 2 A composite target of 5 mmx. of Bi, Cu, Au, Nd or Y metal sheets is placed on a target of pure Ag or Ag - 〇. 2% Sb, and is formed under the same film forming conditions as real 3-1. The results of the same evaluations for the samples as in Example 3-1 are shown in Table 15. The comparisons in Table 5 were repeated to reproduce the tests in Table 14 ι0·; ι and 4. J Ag is shown in the test) When the thickness % is also on the test, the test is equilibrated. Although the result is In, the case is usually 5 mm lower, and the method is 77- 1265976 (74). It can be known that the surface roughness is improved by adding Nd or γ to the Ag-Bi. The amount of change (test Ν〇 · 18, 19). It is known that the addition of Cu or Au to Ag-Bi or Ag-Sb is an effect of improving the amount of change in the rate of radiation (the test No. 19 to 24). Example 4 Comparison of the amount of Bi in the sputtering target and the amount of Bi in the film In order to compare the amount in the sputtering target and the film formed using the film, a sputtering target having the composition shown in Table 16 was used to form an Ag substrate. film. A gold film (Ag-Bi alloy film) was formed on a transparent substrate (in a glass atmosphere, a thickness of 3 mm, and a size of 2 cm x 4 cm) by a sputtering method (in an Ar atmosphere), and the film thickness was controlled to be about 15 nm. A molten target (made by a solution) composed of an Ag-containing alloy containing Bi was used as a sputtering target. The amount of Bi in the dissolved target was confirmed based on the analysis. The A g-based alloy portion of the obtained film was used in an amount of 10 m g or more, and dissolved in a solution of nitric acid: pure water of 1:1. Then, it was confirmed by heating on a hot plate at 200 ° C to completely dissolve the sample and then cooled, and the amount of Bi contained in the sample was measured by mass spectrometry (SPQ-8000 manufactured by Seiko Instruments Inc.). The results are shown in Table 16. , can enter the okay, reduce the situation

Bi含 質合金 無色浮 Ag合 。此時 真空溶 測定( 爲試樣 把它在 ICP — 定薄膜 -78- 1265976Bi-containing alloy, colorless float Ag. At this time, the vacuum solution is determined (for the sample, it is placed in the ICP - film -78-1265976

寸 lm 評價結果 鹽水浸漬試驗 黯 戡 裢 鹿 壤 壊 壊 壊 壊 链 壊 捱 璀 變色 (泛黃) X □ 〇 〇 〇 〇 〇 □ 〇 〇 〇 〇 X □ □ X 騰ε 国G ϋ % (N oi v〇 (N cn cn ο 卜· οο 寸 Η ν〇 寸 <Ν (Ν CN ΓΛ VO ΓΛ Os' Os 寸 寸· ^Τ) 〇\ 寸 VO 表面粗度(nm) 變化量 『C-D1 ΠΊ 卜 o g 〇 g O ψ·^ ο ο Ο ο s Ο 卜 Ο g Ο S o 〇 o s o § o »Λ> rn ο Η 卜 (Ν 環境試驗 後[D] m 卜· 00 (N o 卜 〇 Ό Ο (Ν Ο Ό Ό· Ο 00 rs Ο f-H 卜 〇 (N Ό 〇 VO VO 〇 Ό 〇 卜·· (Τ) (Ν vd Μ ΓΤ 將 1""1 te IS Bp (N 寸· CN CN Os 〇 m VD 〇 Ο ΓΟ ν〇 ο 3 Ο ^-Η CN (Ν On Ο m Ό O’ r〇 〇 o (N 〇 VC CO F—Η (Ν »/ί 反射率(%):波長4〇〇nm 變化量 ίΒ-Α1 Γ<Ί 卜· 寸 〇 1 oo o (Ν Ο ΙΟ ο Ο 寸 tri p 1 00 o »Λ) 〇 f—s o Os 1 寸 <Ν 卜 環境試 驗衡Β] … r〇· Ο <ri 00 <N ss 寸 US 00 寸 00 00 寸 <Ν Ό Ο cn 00 (N ss* 寸 »T) 00 OO 寸 (N o 00 ΓΛ ro 00 m 00 ο G< te 裔葬 1» 〇〇 § 寸 Os oo (N 00 OO <N Ό* oo (Ν 00 ΓΟ (Ν ν〇 寸 Os OO (N OO OO (N \6 00 <N 〇\ VO 00 00 SS* oo ΓΛ oo 卜 oo 添加元素 里 (原子%) 1 F—H 〇 o o On 〇 Os Ο ο (Ν f-H ΓΟ 0.009 s o r—H (N 〇 oo f—^ 〇 ΓΛ 寸 o’ o o’ (Ν On Ο 00 00 o 4¾ 純Ag Ag-Bi Ag-Sb -a Z 身 t 43 c cn 身 1 (N cn 寸 Ό 卜 oo ON o r-H (N H 寸 >Α) Ό 實施 1—Η 比較 舾汹__: x , «奴藜舞:V ,€3親擗靶:〇:(舾2n€]M(坊 -79- (76)1265976Inch lm evaluation results salt water immersion test elk soil 壊壊壊壊 chain 壊挨璀 discoloration (yellow) X □ 〇〇〇〇〇 □ 〇〇〇〇 X □ □ X 腾 ε G G ϋ % (N oi V〇(N cn cn ο 卜 · οο Η Η 〇 & Ν Ν Ν Ν Ν ΓΛ ΓΛ VO ΓΛ Os' Os inch · Τ VO VO surface roughness (nm) variation "C-D1 ΠΊ 卜Og 〇g O ψ·^ ο ο Ο ο s Ο Ο Ο g Ο S o 〇oso § o »Λ> rn ο Η 卜 (Ν After the environmental test [D] m 卜 00 (N o 〇Ό 〇Ό ( Ν Ο Ό Ό· Ο 00 rs Ο fH 〇 〇 (N Ό 〇 VO VO 〇Ό 〇 · · Ν Ν Ν Ν Ν d & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & VD 〇Ο ΓΟ ν〇ο 3 Ο ^-Η CN (Ν On Ο m Ό O' r〇〇o (N 〇VC CO F—Η (Ν »/ί reflectance (%): wavelength 4〇〇nm change Β Β Α Α Γ Ί Ί Ί — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — <ri 00 <N ss inch US 00 inch 00 00 inch<Ν Ό Ο cn 00 (N ss* inch » T) 00 OO inch (N o 00 ΓΛ ro 00 m 00 ο G< te burial 1» 〇〇§ inch Os oo (N 00 OO <N Ό* oo (Ν 00 ΓΟ (Ν ν〇 inch Os OO ( N OO OO (N \6 00 <N 〇\ VO 00 00 SS* oo ΓΛ oo oo Add element (atomic %) 1 F-H 〇oo On 〇Os Ο ο (Ν fH ΓΟ 0.009 sor-H ( N 〇oo f—^ 〇ΓΛ inch o' o o' (Ν On Ο 00 00 o 43⁄4 pure Ag Ag-Bi Ag-Sb -a Z body t 43 c cn body 1 (N cn inch Ό oo ON o rH (NH inch > Α) 实施 Implementation 1 - Η Compare 舾汹 __: x , «Sports dance: V, €3 relatives target: 〇: (舾2n€)M (Fang-79- (76) 1265976

評價結果 電阻率 (μΩαη) m (Ν· cn ΓΟ 未測定 未測定 ^r ΓΛ Η (Ν r^' ro οο (Τ) 表面粗度(nm) 變化量 [C-D1 口 0.06 0.01 -0.03 0.02 0.01 0.09 0.03 0.06 0.03 環境試驗 後[D] ΓΟ 0.71 0.49 0.56 0.70 0.71 0.72 0.68 0.70 0.62 醇 FT δ釋 (Ν 寸 0.65 0.48 0.59 0.68 0.70 0.63 0.65 0.64 0.59 反射率(%):波長400nm 變化量 fB-Al -27.3 -0.8 寸 〇 v〇 〇 ο -0.2 ο Ο ο ο ο ο 環境試驗 後网 63.5 85.4 84.7 84.8 85.5 85.7 87.2 86.0 85.8 00 m „ 勝< S te 吆m 运» 90.8 86.2 00 85.4 86.0 85.9 87.5 86.1 85.8 ι—Η 00 添加元素量 KL· 其他 1 1 卜 〇 ^Τ) 〇 Os Ο ο ο ΓΟ ο ο ο m 丨1丨 Bi/Sb 1 0.19 0.19 0.19 0.19 0.19 0.19 0.20 0.20 0.20 組成 1 純Ag S T3 •— PQ >r s Ρ U • ν-Ν PQ D < S U PQ < 3 Ελ ο U Ελ 身 — 寸 00 〇\ (Ν 實施例 2 -80- (77) 1265976 表1 6 i式驗序號 濺射靶的組成 薄膜中的Bi量[原子%1 1 Ag— 0.01原子%Bi合金 <0.001 2 Ag— 0.04原子%Bi合金 <0.001 3 Ag—0.05原子%Bi合金 0.005 4 Ag— 0.20原子%Bi合金 0.011 5 Ag— 1.41原子%Bi合金 0.056 6 Ag — 4.50原子% Bi合金 0.398 7 Ag- 7.00原子% Bi合金 1.02 8 Ag^ 14.3原子%Bi合金 3.82 9 Ag—22.9原子%Bl·合金 9.93 10 Ag—40.8原子%Bi合金 27.2 從表16可以知道Ag合金膜中的Bi量少於靶中的Bi 量。需要考慮這種濺射靶中以及使用它成膜的薄膜中的 Bi含量的關係來決定爲了得到所希望Bi含量的Ag合金 膜的濺射靶中的Bi含量。 【圖式簡單說明】 圖1表示Ag- Bi合金膜的X射線光電子分光法的膜 厚度方向的組成分析結果,其顯示X射線光電子分光法 的濺射時間和組成間之關係。 圖2表示Ag - Bi合金膜的X射線光電子分光法的Bi狹 域光譜測定結果,其顯示結合能和強度間之關係。 -81 -Evaluation result Resistivity (μΩαη) m (Ν· cn ΓΟ Not determined not measured ^r ΓΛ Η (Ν r^' ro οο (Τ) Surface roughness (nm) Variation [C-D1 mouth 0.06 0.01 -0.03 0.02 0.01 0.09 0.03 0.06 0.03 After environmental test [D] ΓΟ 0.71 0.49 0.56 0.70 0.71 0.72 0.68 0.70 0.62 Alcohol FT δ release (Ν 0.6 0.65 0.48 0.59 0.68 0.70 0.63 0.65 0.64 0.59 Reflectance (%): wavelength 400nm variation fB-Al - 27.3 -0.8 〇v〇〇ο -0.2 ο Ο ο ο ο ο After the environmental test, the net 63.5 85.4 84.7 84.8 85.5 85.7 87.2 86.0 85.8 00 m „ wins < S te 吆m transport » 90.8 86.2 00 85.4 86.0 85.9 87.5 86.1 85.8 ι—Η 00 Adding element amount KL·Others 1 1 卜〇^Τ) 〇Os Ο ο ο ΓΟ ο ο ο m 丨1丨Bi/Sb 1 0.19 0.19 0.19 0.19 0.19 0.19 0.20 0.20 0.20 Composition 1 Pure Ag S T3 •—PQ >rs Ρ U • ν-Ν PQ D < SU PQ < 3 Ελ ο U Ελ body — inch 00 〇\ (Ν Example 2 -80- (77) 1265976 Table 1 6 i-type serial number The amount of Bi in the composition film of the sputtering target [atomic % 1 1 Ag - 0.01 atomic % Bi alloy < 0.001 2 Ag - 0.04 original %Bi alloy <0.001 3 Ag - 0.05 atomic % Bi alloy 0.005 4 Ag - 0.20 atomic % Bi alloy 0.011 5 Ag - 1.41 atomic % Bi alloy 0.056 6 Ag - 4.50 atom% Bi alloy 0.398 7 Ag - 7.00 atom% Bi alloy 1.02 8 Ag^ 14.3 atomic % Bi alloy 3.82 9 Ag - 22.9 atom % Bl · alloy 9.93 10 Ag - 40.8 atom % Bi alloy 27.2 It can be seen from Table 16 that the amount of Bi in the Ag alloy film is less than the amount of Bi in the target. The Bi content in the sputtering target of the Ag alloy film in order to obtain the desired Bi content is determined in consideration of the relationship of the Bi content in the sputtering target and the film formed using the film. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 shows the results of composition analysis in the film thickness direction of the X-ray photoelectron spectroscopy of an Ag-Bi alloy film, which shows the relationship between the sputtering time and the composition of the X-ray photoelectron spectroscopy. Fig. 2 shows the results of Bi narrow-spectrum measurement of the Ag-Bi alloy film by X-ray photoelectron spectroscopy, which shows the relationship between the binding energy and the strength. -81 -

Claims (1)

(1) 1265976 十、申請專利範圍 1. 一種Ag底質合金薄膜,其包含至少一種選自Bi 或Sb的元素,且Bi和Sb的總含量爲0.005〜10原子% 考 〇 2. 如申請專利範圍第1項之Ag底質合金薄膜,其 中該Ag底質合金薄膜的厚度爲3〜300 nm。 3. 如申請專利範圍第1項之Ag底質合金薄膜,其 _ 包含具有Bi和Sb的總含量爲0.005〜0.40原子%之Ag 底質合金。 , 4.如申請專利範圍第1項之Ag底質合金薄膜,其 ^ 中該Ag底質合金進一步包含至少一種選自C’u、Au、Rh ^ 、Pd或Pt的元素,且該等元素的總含量爲0.1〜3原子% 〇 5. 如申請專利範圍第1項之Ag底質合金薄膜,其 包含具有Bi和Sb的總含量爲0.01〜10原子%之Ag底質 鲁合金。 6. 如申請專利範圍第1項之Ag底質合金薄膜,其 包含具有Bi和Sb的總含量爲0.01〜4原子%之Ag底質 合金。 -82-(1) 1265976 X. Patent Application Area 1. An Ag-based alloy thin film comprising at least one element selected from Bi or Sb, and the total content of Bi and Sb is 0.005 to 10 atomic %. The Ag-based alloy film of the first aspect, wherein the Ag-based alloy film has a thickness of 3 to 300 nm. 3. The Ag-based alloy film according to claim 1, wherein the _ contains an Ag-based alloy having a total content of Bi and Sb of 0.005 to 0.40 atom%. 4. The Ag-based alloy film according to claim 1, wherein the Ag-based alloy further comprises at least one element selected from the group consisting of C'u, Au, Rh^, Pd or Pt, and the elements The total content of the Ag-based alloy film according to the first aspect of the patent application is as follows, which comprises an Ag-based Lu alloy having a total content of Bi and Sb of 0.01 to 10% by atom. 6. The Ag-based alloy film according to claim 1, which comprises an Ag-based alloy having a total content of Bi and Sb of 0.01 to 4% by atom. -82-
TW94121903A 2002-08-08 2003-08-07 Ag base alloy thin film and sputtering target for forming Ag base alloy thin film TWI265976B (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2002231596 2002-08-08
JP2002233283 2002-08-09
JP2002239972 2002-08-20
JP2002361117A JP3655907B2 (en) 2002-08-20 2002-12-12 Reflective film and transflective film for optical information recording medium, and optical information recording medium
JP2003003643A JP4105956B2 (en) 2002-08-08 2003-01-09 Light reflection film, liquid crystal display device using the same, and sputtering target for light reflection film
JP2003004586 2003-01-10
JP2003122314A JP3997177B2 (en) 2002-08-09 2003-04-25 Ag alloy film for forming electromagnetic wave shield, Ag alloy film forming body for electromagnetic wave shield, and Ag alloy sputtering target for forming Ag alloy film for electromagnetic wave shield

Publications (2)

Publication Number Publication Date
TW200536949A TW200536949A (en) 2005-11-16
TWI265976B true TWI265976B (en) 2006-11-11

Family

ID=37967123

Family Applications (2)

Application Number Title Priority Date Filing Date
TW92121689A TWI263689B (en) 2002-08-08 2003-08-07 Ag base alloy thin film and sputtering target for forming Ag base alloy thin film
TW94121903A TWI265976B (en) 2002-08-08 2003-08-07 Ag base alloy thin film and sputtering target for forming Ag base alloy thin film

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW92121689A TWI263689B (en) 2002-08-08 2003-08-07 Ag base alloy thin film and sputtering target for forming Ag base alloy thin film

Country Status (1)

Country Link
TW (2) TWI263689B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006294195A (en) 2005-04-14 2006-10-26 Kobe Steel Ltd Ag alloy reflection film for optical information recording, optical information recording medium and ag alloy sputtering target for deposition of ag alloy reflection film for optical information recording
WO2019163340A1 (en) * 2018-02-22 2019-08-29 大阪瓦斯株式会社 Radiative cooling device

Also Published As

Publication number Publication date
TW200536949A (en) 2005-11-16
TW200412374A (en) 2004-07-16
TWI263689B (en) 2006-10-11

Similar Documents

Publication Publication Date Title
KR100605840B1 (en) Ag-BASED THIN FILM AND A SPUTTERING TARGET FOR FORMING THE SAME
TWI325134B (en) Semi-reflective film and reflective film for optical information recording medium, optical information recording medium, and sputtering target
JP2004002929A (en) Silver alloy, sputtering target, reflector for reflection lcd, reflection wiring electrode, thin film, manufacturing method therefor, optical recording medium, electro magnetic wave shield, metal material for electronic part, wiring material, electronic part, electronic appliance, processing method of metal film, electron optical part, laminate, and glass of building material
JP2005029849A (en) Ag ALLOY REFLECTIVE FILM FOR REFLECTOR, REFLECTOR USING THE Ag ALLOY REFLECTIVE FILM, AND Ag ALLOY SPUTTERING TARGET FOR DEPOSITING THE Ag ALLOY REFLECTIVE FILM
WO2006132414A1 (en) Silver alloy having excellent reflectivity/transmissivity maintaining characteristics
WO2006132415A1 (en) Silver alloy having excellent reflectivity/transmissivity maintaining characteristics
JP4320000B2 (en) Transflective reflective film and reflective film for optical information recording medium, optical information recording medium and sputtering target
JP3997177B2 (en) Ag alloy film for forming electromagnetic wave shield, Ag alloy film forming body for electromagnetic wave shield, and Ag alloy sputtering target for forming Ag alloy film for electromagnetic wave shield
WO2006132416A1 (en) Silver alloy excellent in reflectance/transmittance maintaining characteristics
TWI265976B (en) Ag base alloy thin film and sputtering target for forming Ag base alloy thin film
TWI496908B (en) An optical interference film or a protective film for an optical information recording medium formed by DC sputtering of a target containing titanium oxide as a main component, and an optical interference film or a protective film containing titanium oxide as a main component for forming an optical information Recording medium
JP2004315970A (en) Ag-BASE ALLOY FILM FOR ELECTROMAGNETIC SHIELDING, AND LAMINATE OF Ag-BASE ALLOY FILM FOR ELECTROMAGNETIC SHIELDING
JP4320003B2 (en) Transflective reflective film and reflective film for optical information recording medium, optical information recording medium, and sputtering target
JP4314065B2 (en) Ag alloy laminated film, light reflector, optical information recording medium, flat panel display element and reflector
TWI261624B (en) Alloy film
JPWO2011024740A1 (en) Light reflector comprising heat-resistant silver alloy light reflector

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent