1260428 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種相位延遲之量測裝置及量測方 法,特別是指一種利用相位延遲值相互補償之原理來量蜊 雙折射物質相位延遲之一種相位延遲之量測裝置及量測 法。 【先前技術】 _ 在傳統的液晶顯示器中在液晶塗布的領域之中,具有 相當重要足以影響顯示品質之參數,包括有液晶分子之扭 轉角度(twisted angle)以及相位延遲量(retardation)。 ' 由於上述之麥數’具有影響液晶顯示品質的重要指 • 標,因此投入相關研究或者是專利也相當的多,以下針對 於現有揭露之技術進行說明: (a) U· S· Pat· No· 6, 633,358 ·揭露了一種於待測液晶前 後各設置一偏光板,然後以一單色光源通過,藉由 調整待測液晶旋轉角度檢測光通過該待測液晶至 φ 一檢偏板之強度,然後經由方程式的運算而求得該 待測液晶之扭轉角度以及相位延遲量。 (b) U· S· Pat· No· 6, 300, 954 :揭露了 一種以測光器 ^ (Photodetector)量測光通過液晶後,再經由可旋 轉特定角度之一偏光板以及一四分之一波板之強 % 度’然後藉由史托克參數(Stokes parameters)的 , 计异’可以得知該液晶之厚度以及扭轉角度。 (c) U· S· Pat· No· 5, 825, 452 ·•揭露了一種利用光學電腦 計算系統來量測相位延遲量。該方法係為利用結合 兩道相位差9 0度的線性偏極光通過待測材料,而 5 1260428 " 產生光學干涉調紋,利用不同材料具有不同種之條 ^ 紋圖案,經由電腦運算比對而求得相位延遲量。 (d) U. S. Pat· No· 5, 400, 131 :揭露了一種利用單色光源 _ 通過一線性偏光板產生輸入光源,通過待測體,再 利用兩次分析通過待測體之輸出光^以該輸出光通 * 過一線性檢偏板(analyzer)而形成代表該待測體 應力分部之具有相對強度之條紋區域圖(fringes map),再利用電腦解析出該待測體之延遲參數。 ^ 然而,綜合上述,習知之發明所揭露之方式操作上並 不方便,並無法以簡單以及快速的方式得到液晶之參數 值。因此亟需一種相位延遲之量測裝置及量測方法,以解 ' 決上述習知技術之缺失。 【發明内容】 本發明的主要目的在於提供一種相位延遲之量測裝置 及量測方法,以達到量測相位延遲之目的。 本發明的次要目的在於提供一種相位延遲之量測裝置 • 及量測方法,其利用相位延遲相互補償之方式,達到量測 待測體之相位延遲值之目的。 本發明之另一目的在於提供一種相位延遲之量測裝置 及量測方法,其利用可以調整相位延遲值之一補償部,使 該補償部之相位延遲值與該待測體之相位延遲值相互補 ' 償,達到量測待測體之相位延遲值之目的。 - 為了達到上述之目的,本發明提供一種相位延遲量測 裝置,包括:一單色光源部、一光偵測部、一第一偏光板、 一第二偏光板以及一補償部。該單色光源部可發射一連續 光源;該光偵測部係設置於該單色光源部之一側;該第一 6 1260428 系:置於该單色光源部與該光偵測部之間;該第二 _、由、彳叹置於该第一偏光板與該光偵測部之間;以及, 補;板與該第二偏光板之間,該 "周正方式而改變其相位延遲值。 者,該連續光源係為一雷射光源。 偏朵’該第一偏光板之偏光角係與該第二偏光板之 偏先角度呈一夾角;其中,該夹角為九十度。 偏光角乂 iiJUf反之偏光角係與該第二偏光板之 巧没壬夾角,其中,該夾角為零度。 -補=者並?Γ賞部更包括:一具有-第-折射率之第 『體、、包括一第一平面以及一第二平面,該 該第二平面係與該第一平 ^ 八有第一折射率之第二補償體,其 = =該第第 第-平面相一:四平面,該第三平面係與該 且與該第二平面相丁鄰;“四平面係與該第三平面成-角度 測方二本發一^ ,供-量測相位延遲之裝置’其包括一單色 ί!;連續:源偏:f偵測部’係設置於該單色光源部 =側,一弟一偏光板,係設置於該單色光源 偵測部之間,-第二偏光板 —、= =軌間;以及-補償部,=置;該 該補償部可藉由-調整上 將該待測體設置於該補償部與該第二偏光板之間; 1260428 將該連續光源依序經由該第一偏光板、該補償部、該待 測體以及該第二偏光板而形成一相位補償光;以及 以該調整方式調整該補償部之相位延遲值使該光偵測 部可以偵測出該相位補償光強度之極限值。 、 【實施方式】 為使貝審查委員能對本發明之特徵、目的及功能有 更進一步的認知與瞭解,下文特將本發明之裝置的相關細 部結構以及没计的理念原由進行說明,以使得審查委員可 以了解本發明之特點,詳細說明陳述如下: 首先,請參閱圖一所示,該圖係為光源通過具有雙折 射率之物質之光程示意圖。以一光源5〇直射通過具有雙折 射率之一待測體6時(例如:液晶),由於該待測體6之異 向性(anisotropic)特質,該直射之光源5〇在該待測體6 内會分成兩道速率不一樣之偏極化的光線而造成兩種不同 的折射率’其中不折射之光線係為一尋常光54(ordinary ray),另一道折射光係為一非尋常光55(extraordinary ray)。為了方便說明,該尋常光之折射率係以n〇(ordinary index of fraction)表示,該非尋常光之折射率係以 ne(extraordinary index of fraction)表示。 由於雙折射的關係,尋常光以及非尋常光在該待測體 中所行走之光程並不相同,因此該尋常光以及非尋常光彼 此會有一個相位差,因而產生相位延遲(phase 代七&『(131^〇11)的現象,亦即為(1^-11())*(1,其中(1為該待測 體之厚度。其中若(ne-n〇)大於零,則為正光學性材料例如 層列型液晶(Smectic liquid crystal)、向列型液晶 (Nematic liquid crystal)、石英材料(quartz)或金紅石 8 1260428 (rutile),若(ne-η。)小於零則為負光學性材料例如,膽固 醇液晶(Cholesteric liquid crystal)、方解石材料 (calcite)、硝酸納材料(sodium nitrate)或電氣石材料 (tourmaline) 〇 请參閱圖一所示,该圖係為本發明之相位延遲量測裝 置較佳貫施例組合示意圖。該相位延遲裝置2係包括· 一 單色光源部21、一光偵測部25、一第一偏光板22、一第 二偏光板24以及一補償部23。該單色光源部21 ,其係可 發射一連繽光源,該連續光源係為一雷射光源。該光偵測 部25,其係設置於該單色光源部之一側;該第一偏光板 22 ’其係設置於該單色光源部21與該光備測部25之間· 該第二偏光板24 ’其係設置於該第—偏光板22與該光伯 測部25之間。該第-偏光板22之偏光角係與該第二偏光 板24之偏光角度呈一夾角,其中該夾角係為九十度或者 零度。該補償部23,其係設置於該第—偏光板22盘該第 j光板2 4之間,該補償部2 3可藉由—調整 其相位延遲值。 又 心閱圖三A以及圖^所示’該圖係為本發明之補 補償部2?㈣^ t 所7F ’在本實施例中,該 ^貝423係更包括-弟—補償體 挪。該第一補償體231係 及丨:2體 第-平面2311以及一第二“ ”包括- 命外外 卞167 1」,该弟一平面2311禆 與该第一偏光板22相互平杆,兮穿—π工。1你 2Ή1 , & 十仃,该弟一平面2312係與該第 狀角度該第二補償體232係具有-第二 γ一率112且包括一第三平面2321以及一第四平面2322, =三平面2321係與該第第—平面2311相互平η 四平面卿係與該第三平面2321成一角度0且與該第 1 9 1260428 平面2312相鄰靠,該第一平面2311與該第三平面2321係 相距一距離D1。如圖三B所示,其中該調整方式92係為 將該第二平面2312與該第四平面2322產生相對滑移運動 91而改變該第二平面2312與該第四平面2322鄰靠區域中 之該第一平面2311與該第三平面2321之距離D2。由於該 第一補償體231係具有該第一折射率nl,該第二補償體232 係具有該第二折射率n2,因此該補償部23可以視為一具 有雙折射性之物體,所以當該連續光源通過該第一偏光板 而經過該補償部23時,所通過之光也會產生相位延遲的現 象,該相位延遲值係為該第一平面2311與該第三平面2321 之距離與該第一折射率nl和該第二折射率n2之差值之乘 積。以圖二為例,該相位延遲可以表示為(nl-n2)*D。該補 償部係可選擇一正光學性材料以及一負光學性材料其中之 一者。其中該正光學性材料係可選擇一石英材料(quartz) 以及一金紅石材料(rutile)其中之一者。該負光學性材料 係可選擇一方解石材料(calcite)、一硝酸鈉材料(sodium nitrate)以及一電氣石材料(tourmaline)其中之一者。 請參閱圖四所示,該圖係為本發明之相位延遲量測方 法流程圖。爲了更了解該相位延遲之量測方法,請配合參 閱圖五所示,該圖係為本發明之相位延遲量測裝置較佳實 施例量測一待測體之組合示意圖。該相位延遲之量測方法 3包括下列步驟: 步驟31 -提供一量測相位延遲之裝置4,其係包括一單 色光源部41,其係可發射一連續光源,一光 偵測部46,其係設置於該單色光源部41之一 侧,一第一偏光板42,其係設置於該單色光 源部41與該光偵測部46之間,一第二偏光板 1260428 45,其係設置於該第一偏光板42與該光偵測 部46之間;以及一補償部43,其係設置於該 第一偏光板42與該第二偏光板45之間,該補 償部43可藉由一調整方式而改變其相位延遲 值; 步驟32-將該待測體44設置於該補償部43與該第二偏 光板45之間,在本實施例中,該待測體44 係為一雙折射之正光學性(ne-n〇大於零),例 如為向列型液晶液晶材料, 步驟33-將該連續光源依序經由該第一偏光板42、該補 償部4 3、該待測體4 4以及該第二偏光板4 5 而形成一相位補償光,位了達到相位補償之目 的,該補償部之材料係選擇為一雙折射之負光 學性(ne-η〇小於零);以及 步驟34-以該調整方式調整該補償部43之相位延遲值 使該光偵測部46可以偵測出該相位補償光強 度之極限值。 其中,如果該待測體係為一負光學性材料(ne-n。小於 零),則選擇該補償部係為一正光學性材料(ne-n◦大於零), 或者是如果該待測體係為一正光學性材料(ne-n。大於零), 則選擇該補償部係為一負光學性材料(ne-n。小於零)。該正 光學性材料係可選擇一石英材料(quartz)以及一金紅石材 料(rut i 1 e)其中之一者。該負光學性材料可選擇一方解石 材料(calcite)、一石肖酸鈉材料(sodiumnitrate)以及一電 氣石材料(tourmaline)其中之一者。至於該相位延遲裝置 4係如前述所描述之裝置2,在此不多做贅述。 請參閱圖六A所示,該圖係為本發明之檢測光源通過 1260428 該第一偏光板以形成一偏極光示意圖。圖中該單色光源部 41發射出一連續光源71,例如為一雷射光源,通過該第一 偏光板42的時候,會形成一偏極光72。該第一偏光板42 係為一線性偏極光板,在本實施例中為一 45度線性偏極光 板◦所該偏極光72在空間中可以被視為具有xy平面分量 以及yz平面分量之偏極光。 請參閱圖六B所示,該圖係為該偏極光通過該補償部 而形成一相位延遲光示意圖。當該偏極光72通過該補償部 43時,由於該補償部43可視為一雙折射性物體,因此通 過該補償部43之該偏極光72會產生一相位偏移的現象, 如圖中所示,該相位差係為△ λ 1而形成一相位延遲光7 3, 該相位延遲光73係為一非線性偏極光,例如圓形偏極光或 者是橢圓形偏極光,至於是圓形還是橢圓形偏極光則是當 時之相位差之角度而定,如果△ λ 1為四分之一波長的相位 差時,則該非線性偏極光則為一圓形偏極光。 請參閱圖六C所示,該圖係為該非線性偏極光通過該 待測體時而形成一相位補償光示意圖。當該相位延遲光73 通過該待測體44,由於該待測體44具有雙折射之正光學 性(ne-n。大於零)特性,因此可以利用光線通過該待測體44 會產生相位延遲的物理現象,使該通過該待測體44產生之 相位延遲來補償該相位延遲光73之相位差,而形成一相位 補償光74。利用該步驟33之方式,調整該補償部43之厚 度,使該相位差Α λ i可以被該待測體44之相位延遲完全 的補償回來。如果該相位差△ λ !被完全補償回來的話,該 相位補償光74會恢復成線性偏極光。請參閱圖六D所示, 該圖係為該相位補償光最小極限值示意圖。如果該相位補 償光74為線性偏極光的時候,當該相位補償光74通過該 12 1260428 第二偏光板45時,在本實施例中該第二偏光板45之偏光 角係與該第一偏光板之偏光角正交(成九十度),也因此該 光偵測部46並無法偵測到該相位補償光74通過該第二偏 光板45,使得該光偵測部46所偵測到該相位補償光74之 強度為最小值。 請參閱圖六E所示,該圖係為該相位補償光最大極限 值示意圖。如果該相位補償光74為線性偏極光的時候,當 該相位補償光74通過該第二偏光板45時,在本實施例中 該第二偏光板45之偏光角係與該第一偏光板之偏光角成 零度,也因此該光偵測部46可以偵測到通過該第二偏光板 45之該相位補償光74,使得該光偵測部46所偵測到該相 位補償光74之強度為最大值。 請繼續參閱圖七A所示,該圖係為該相位延遲光通過 該待測體時而形成一未完全相位補償光示意圖。如果該步 驟33調整該補償部之厚度使該相位延遲光73通過該待測 體44時,無法藉由該待測體44完全補償該相位差△ λ!, 如此所形成之相位補償光74’就會形成如圖七Α所示之現 象,該相位補償光74’還是會具有一相位差Δλ2而產生非 線性偏極光之現象。請參閱圖七Β所示,該圖係為該相位 補償光為一非線性偏極光時通過該第二偏光板示意圖。如 圖中所示,由於該相位補償光74’為非線性偏極光,因此 該相位補償光74’其電場在空間中將會呈現順時鍾或者是 逆時鐘旋轉之現象(視觀測者之方向而定),所以當該相位 補償光74’通過該第二偏光板45時會有部分之該相位補 償光通過,而使得該光偵測部可以偵測到部分光之強度。 該光之強度係介於圖六D中之最小值以及圖六Ε中之最大 值之間。 13 1260428 綜合上述,本發明之精神係利用調整該補償部之厚度 改變測光源之相位差,然後再藉由該待測體之相位延遲將 測光源通過補償部之所產生之相位差補償回來。再利用光 偵測部偵測通過偏光板之強度,當光偵測部偵測到強度之 極限值時(最大值或者是最小值),此時補償部之相位延遲 量即為該待測體之相位延遲量。 唯以上所述者,僅為本發明之較佳實施例,當不能以 之限制本發明範圍。即大凡依本發明申請專利範圍所做之 均等變化及修飾,仍將不失本發明之要義所在,亦不脫離 本發明之精神和範圍,故都應視為本發明的進一步實施狀 況。 綜合上述,本發明由於具有操作容易、製造簡單特 點,所以可以滿足業界之需求,境而提高該產業之競爭力, 誠已符合發明專利法所規定申請發明所需具備之要件,故 爰依法呈提發明專利之申請,謹請貴審查委員允撥時間 惠予審視,並賜準專利為禱。 【圖式簡單說明】 圖一係為光源通過具有雙折射率之物質之光程示意圖。 圖二係為本發明之相位延遲量測裝置較佳實施例組合示意 圖。 圖三A以及圖三B係為本發明之補償部調整動作示意圖。 圖四係為本發明之相位延遲量測方法流程圖。 圖五係為本發明之相位延遲量測裝置較佳實施例量測一待 測體之組合示意圖。 圖六A係為本發明之檢測光源通過該第一偏光板以形成一 偏極光示意圖。 14 1260428 圖六B係為該偏極光通過該補償部而形成一相位延遲光示 意圖。 圖六C係為該非線性偏極光通過該待測體時而形成一相位 補償光示意圖。 圖六D係為該相位補償光最小極限值示意圖。 圖六E係為該相位補償光最大極限值示意圖。 圖七A係為該相位延遲光通過該待測體時而形成一未完全 相位補償光示意圖。 圖七B係為該未完全相位補償光通過該第二偏光板示意 圖。 【主要元件符號說明】 2-相位延遲量測裝置 21- 單色光源部 22- 第一偏光板 23- 補償部 231- 第一補償體 231卜第一平面 2312-第二平面 232- 第二補償體 2321- 第三平面 2322- 第四平面 24- 第二偏光板 25- 光偵測部 3 -相位延遲量測方法流程 31〜34 -步驟 4-相位延遲量測裝置 15 1260428 41-單色光源部 4 2 -第一偏光板 43-補償部 ^ 43卜第一補償體 • 432-第二補償體 ^ 44-待測體 4 5 -第二偏光板 46-光偵測部 5 0 -光源 • 54-尋常光 55-非尋常光 . 6 -待測體 7卜連續光源 7 2 -偏極光 73-相位延遲光 74、74’ -相位補償光 91 -滑移運動 φ 92-調整方式 0 -角度 △ λΐ、Δλ2 -相位差 D、D卜D2、d-厚度 nl-第一折射率 • n2-第一折射率1260428 IX. Description of the invention: [Technical field of the invention] The present invention relates to a phase delay measuring device and a measuring method, and more particularly to a method for measuring the phase delay of a birefringent substance by the principle of mutual compensation of phase delay values. A phase delay measuring device and measuring method. [Prior Art] _ In the field of liquid crystal coating in a conventional liquid crystal display, there are parameters which are important enough to affect display quality, including a twisted angle of liquid crystal molecules and a retardation. 'Because the above-mentioned mermaids' have important indicators affecting the quality of liquid crystal display, there are a lot of related research or patents. The following describes the techniques disclosed in the following: (a) U·S· Pat· No · 6, 633, 358 · discloses a polarizing plate disposed before and after the liquid crystal to be tested, and then passed through a monochromatic light source, and the light is detected to pass through the liquid crystal to be tested to φ an analyzer by adjusting the rotation angle of the liquid crystal to be tested. The intensity, then the operation of the equation to determine the torsion angle of the liquid crystal to be tested and the amount of phase delay. (b) U.S. Pat. No. 6, 300, 954: discloses a photodetector that passes light through a liquid crystal, and then passes through a polarizing plate of a specific angle and a quarter. The strength of the wave plate is then 'the thickness of the liquid crystal and the twist angle can be known by the Stokes parameters. (c) U·S· Pat· No 5, 825, 452 ·• Reveals an optical computer computing system to measure the amount of phase delay. The method is to use the linear polarized light combined with two phase differences of 90 degrees to pass the material to be tested, and 5 1260428 " to produce optical interference modulation, using different materials with different kinds of patterns, through computer operation comparison The amount of phase delay is obtained. (d) US Pat· No 5, 400, 131: discloses the use of a monochromatic light source _ through a linear polarizing plate to generate an input light source, through the body to be tested, and then use two times to analyze the output light passing through the object to be tested The output light flux* passes through a linear analyzer to form a fringes map having a relative intensity representing the stress portion of the body to be tested, and the delay parameter of the object to be tested is analyzed by a computer. ^ However, in combination with the above, the manner disclosed by the conventional invention is inconvenient in operation, and the parameter value of the liquid crystal cannot be obtained in a simple and quick manner. Therefore, there is a need for a phase delay measuring device and a measuring method to solve the above-mentioned lack of conventional techniques. SUMMARY OF THE INVENTION The main object of the present invention is to provide a phase delay measuring device and a measuring method for measuring the phase delay. A secondary object of the present invention is to provide a phase delay measuring device and a measuring method for measuring the phase delay value of a body to be measured by means of phase delay mutual compensation. Another object of the present invention is to provide a phase delay measuring device and a measuring method, which can adjust a phase delay value and a phase delay value of the object to be tested by using a compensation unit that can adjust a phase delay value Compensate for the purpose of measuring the phase delay value of the object to be measured. In order to achieve the above object, the present invention provides a phase delay measuring device comprising: a monochromatic light source portion, a light detecting portion, a first polarizing plate, a second polarizing plate, and a compensating portion. The monochromatic light source part can emit a continuous light source; the light detecting part is disposed on one side of the monochromatic light source part; the first 6 1260428 is disposed between the monochromatic light source part and the photo detecting part The second _, 、, 彳 置于 is placed between the first polarizing plate and the photodetecting portion; and, between the slab and the second polarizing plate, the "circle positive mode changes its phase delay value. The continuous light source is a laser light source. The polarizing angle of the first polarizing plate is at an angle with the first angle of the second polarizing plate; wherein the included angle is ninety degrees. The polarizing angle 乂 iiJUf and the polarizing angle are not coincident with the second polarizing plate, wherein the angle is zero degrees. - 补 者 者 Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ a second compensation body of a first refractive index, == the first first-plane phase one: four planes, the third plane is adjacent to the second plane; and the fourth plane and the third The plane-angle measuring method is a device for measuring the phase delay, which includes a monochrome ί!; continuous: the source bias: the f detecting portion is disposed on the side of the monochromatic light source portion. a dipole-polarizer is disposed between the monochromatic light source detecting portions, a second polarizing plate, a == inter-track; and a compensating portion, ==; the compensating portion can be adjusted by The object to be tested is disposed between the compensation portion and the second polarizing plate; 1260428, the continuous light source sequentially forms a phase compensation via the first polarizing plate, the compensation portion, the object to be tested, and the second polarizing plate And adjusting the phase delay value of the compensation portion in the adjustment manner to enable the photodetecting portion to detect the limit value of the phase compensation light intensity. [Embodiment] In order to enable the Beck Review Committee to further understand and understand the features, objects, and functions of the present invention, the detailed description of the detailed structure of the device of the present invention and the original idea of the device are explained below. The details of the present invention can be understood. The detailed description is as follows: First, please refer to FIG. 1 , which is a schematic diagram of the optical path of a light source passing through a material having a birefringence. When the object 6 is to be measured (for example, liquid crystal), due to the anisotropic nature of the object 6 to be tested, the direct light source 5〇 is divided into two different polarities in the object 6 to be measured. The light of the light causes two different refractive indices, where the light that is not refracted is an ordinary ray, and the other refracted light is an extraordinary ray 55. For convenience of explanation, the ordinary light The refractive index of light is expressed by an ordinary index of fraction, and the refractive index of the extraordinary light is expressed by ne (extraordinary index of fraction). The ordinary light and the extraordinary light travel in the object to be tested in different optical paths, so the ordinary light and the extraordinary light will have a phase difference with each other, thus causing a phase delay (phase generation seven & "(131^ The phenomenon of 〇11) is (1^-11())*(1, where (1 is the thickness of the object to be tested, wherein if (ne-n〇) is greater than zero, it is a positive optical material such as Smectic liquid crystal, Nematic liquid crystal, quartz material or rutile 8 1260428 (rutile), if (ne-η. Less than zero is a negative optical material such as Cholesteric liquid crystal, calcite, sodium nitrate or tourmaline. Please refer to Figure 1. It is a schematic diagram of a preferred embodiment of the phase delay measuring device of the present invention. The phase delay device 2 includes a monochromatic light source unit 21, a photodetecting portion 25, a first polarizing plate 22, a second polarizing plate 24, and a compensating portion 23. The monochromatic light source unit 21 is configured to emit a continuous light source, which is a laser light source. The photodetecting unit 25 is disposed on one side of the monochromatic light source unit; the first polarizing plate 22 ′ is disposed between the monochromatic light source unit 21 and the optical detecting unit 25 • the second The polarizing plate 24' is disposed between the first polarizing plate 22 and the optical detecting portion 25. The polarization angle of the first polarizing plate 22 is at an angle to the polarization angle of the second polarizing plate 24, wherein the included angle is ninety degrees or zero degrees. The compensating portion 23 is disposed between the first polarizing plate 22 and the j-th optical plate 24, and the compensating portion 23 can adjust the phase delay value thereof. 3A and FIG. 2 are the complementary compensation unit 2 of the present invention. (4) In the present embodiment, the 423 system further includes a brother-compensation body. The first compensation body 231 and the second body 2 - plane 2311 and a second "" include - the outer outer diameter 167 1", the first plane 2311 禆 and the first polarizing plate 22 are parallel to each other, Wear - π work. 1 you 2Ή1, & Shiyan, the brother a plane 2312 and the second angle of the second compensation body 232 has a second gamma rate 112 and includes a third plane 2321 and a fourth plane 2322, = The third plane 2321 and the first plane 2311 are flush with each other. The four planes are at an angle 0 to the third plane 2321 and adjacent to the first plane 1212, the first plane 2311 and the third plane. 2321 is a distance D1. As shown in FIG. 3B, the adjustment mode 92 is to change the second plane 2312 and the fourth plane 2322 to change the second plane 2312 and the fourth plane 2322. The distance D2 between the first plane 2311 and the third plane 2321. Since the first compensation body 231 has the first refractive index n1, the second compensation body 232 has the second refractive index n2, so the compensation portion 23 can be regarded as an object having birefringence, so when When the continuous light source passes through the compensating portion 23 through the first polarizing plate, the passing light also has a phase delay phenomenon, and the phase delay value is a distance between the first plane 2311 and the third plane 2321 and the first The product of the difference between a refractive index n1 and the second refractive index n2. Taking Figure 2 as an example, the phase delay can be expressed as (nl - n2) * D. The compensation portion may select one of a positive optical material and a negative optical material. The positive optical material may be selected from a quartz material and a rutile material. The negative optical material may be one selected from the group consisting of calcite, sodium nitrate, and a tourmaline. Please refer to FIG. 4, which is a flow chart of the phase delay measurement method of the present invention. In order to better understand the measurement method of the phase delay, please refer to FIG. 5, which is a combination diagram of a preferred embodiment of the phase delay measuring device of the present invention for measuring a body to be tested. The phase delay measuring method 3 includes the following steps: Step 31 - providing a measuring phase delay device 4, comprising a monochromatic light source portion 41, which can emit a continuous light source, a light detecting portion 46, The first polarizing plate 42 is disposed between the monochromatic light source portion 41 and the photodetecting portion 46, and a second polarizing plate 1260428 45 is disposed on one side of the monochromatic light source portion 41. The first polarizing plate 42 is disposed between the first polarizing plate 42 and the photodetecting portion 46. The compensating portion 43 is disposed between the first polarizing plate 42 and the second polarizing plate 45. The compensating portion 43 can be disposed between the first polarizing plate 42 and the second polarizing plate 45. The phase delay value is changed by an adjustment method. Step 32 - the object to be tested 44 is disposed between the compensation portion 43 and the second polarizing plate 45. In this embodiment, the object to be tested 44 is The positive optical property of a birefringence (ne-n 〇 is greater than zero), for example, a nematic liquid crystal liquid crystal material, step 33 - sequentially passing the continuous light source through the first polarizing plate 42 and the compensation portion 43 The body 4 4 and the second polarizing plate 4 5 form a phase compensation light for the purpose of phase compensation. The material of the compensation part is selected as the negative optical property of a birefringence (ne-η〇 is less than zero); and the step 34 is to adjust the phase delay value of the compensation part 43 in the adjustment manner so that the light detecting part 46 can detect The limit value of the phase compensated light intensity is obtained. Wherein, if the system to be tested is a negative optical material (ne-n. less than zero), the compensation portion is selected to be a positive optical material (ne-n◦ is greater than zero), or if the system to be tested is For a positive optical material (ne-n. greater than zero), the compensation portion is selected to be a negative optical material (ne-n. less than zero). The positive optical material may be selected from a quartz material and a rut i 1 e. The negative optical material may be selected from one of calcite, sodium sodium, and one tourmaline. As for the phase delay device 4, the device 2 as described above is not described here. Please refer to FIG. 6A, which is a schematic diagram of the first polarizing plate of the detecting light source of the present invention passing through 1260428 to form a polarized light. In the figure, the monochromatic light source unit 41 emits a continuous light source 71, such as a laser light source. When passing through the first polarizing plate 42, a polarized light 72 is formed. The first polarizing plate 42 is a linear polarizing plate, which is a 45-degree linear polarizing plate in this embodiment. The polarized light 72 can be regarded as having an xy plane component and a yz plane component in space. aurora. Please refer to FIG. 6B, which is a schematic diagram of the phase retardation light formed by the polarization beam passing through the compensation portion. When the polarized light 72 passes through the compensating portion 43, since the compensating portion 43 can be regarded as a birefringent object, the polarized light 72 passing through the compensating portion 43 generates a phase shift phenomenon, as shown in the figure. The phase difference is Δ λ 1 to form a phase retardation light 73, and the phase retardation light 73 is a nonlinear polarized light, such as circular polarized light or elliptical polarized light, as to whether it is circular or elliptical. The polarized light is determined by the angle of the phase difference at that time. If Δ λ 1 is a phase difference of a quarter wavelength, the nonlinear polarized light is a circular polarized light. Please refer to FIG. 6C, which is a schematic diagram of a phase compensation light when the nonlinear polarized light passes through the object to be tested. When the phase retardation light 73 passes through the object to be tested 44, since the object to be tested 44 has a positive optical (ne-n. greater than zero) characteristic of birefringence, a phase delay can be generated by using the light passing through the object to be tested 44. The physical phenomenon causes the phase difference generated by the object 44 to be compensated to compensate the phase difference of the phase retardation light 73 to form a phase compensation light 74. By the manner of this step 33, the thickness of the compensating portion 43 is adjusted so that the phase difference λ λ i can be completely compensated back by the phase delay of the subject 44. If the phase difference Δ λ ! is fully compensated back, the phase compensation light 74 will return to linearly polarized light. Please refer to FIG. 6D, which is a schematic diagram of the minimum compensation value of the phase compensation light. If the phase compensation light 74 is linearly polarized, when the phase compensation light 74 passes through the 12 1260428 second polarizing plate 45, in this embodiment, the second polarizing plate 45 has a polarization angle and the first polarized light. The polarization angle of the board is orthogonal (in the order of ninety degrees), and therefore the light detecting portion 46 cannot detect that the phase compensation light 74 passes through the second polarizing plate 45, so that the light detecting portion 46 detects The intensity of the phase compensation light 74 is at a minimum. Please refer to Figure 6E, which is a schematic diagram of the maximum limit value of the phase compensation light. If the phase compensating light 74 is linearly polarized, when the phase compensating light 74 passes through the second polarizing plate 45, in the embodiment, the polarizing angle of the second polarizing plate 45 is opposite to the first polarizing plate. The photo-detecting portion 46 can detect the phase compensation light 74 passing through the second polarizing plate 45, so that the intensity of the phase compensating light 74 detected by the photo detecting portion 46 is Maximum value. Please continue to refer to FIG. 7A, which is a schematic diagram of an incomplete phase compensation light when the phase retardation light passes through the object to be tested. If the step 33 adjusts the thickness of the compensation portion so that the phase retardation light 73 passes through the object to be tested 44, the phase difference Δλ! cannot be completely compensated by the object to be tested 44, and the phase compensation light 74' thus formed. A phenomenon as shown in Fig. 7A is formed, and the phase compensation light 74' still has a phase difference Δλ2 to generate nonlinear polarization. Please refer to FIG. 7A, which is a schematic diagram of the second polarizer passing through the phase compensation light when it is a nonlinear polarized light. As shown in the figure, since the phase compensation light 74' is nonlinearly polarized, the phase compensation light 74' will exhibit a clockwise or counterclockwise rotation in the space (depending on the observer). Therefore, when the phase compensation light 74' passes through the second polarizing plate 45, part of the phase compensation light passes, so that the light detecting portion can detect the intensity of part of the light. The intensity of the light is between the minimum of Figure 6D and the maximum of Figure 6. 13 1260428 In summary, the spirit of the present invention changes the phase difference of the light source by adjusting the thickness of the compensation portion, and then compensates the phase difference generated by the light source through the compensation portion by the phase delay of the object to be tested. The light detecting unit detects the intensity of the polarizing plate, and when the light detecting unit detects the limit value of the intensity (the maximum value or the minimum value), the phase delay amount of the compensation portion is the object to be tested. The amount of phase delay. The above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto. It is to be understood that the scope of the present invention is not limited by the spirit and scope of the present invention, and should be considered as a further embodiment of the present invention. In summary, the present invention has the characteristics of easy operation and simple manufacturing, so that it can meet the needs of the industry and improve the competitiveness of the industry. The company has met the requirements for applying for inventions as stipulated by the invention patent law. To file an application for a patent for invention, I would ask your review board to allow time for review and grant the patent as a prayer. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic diagram of the optical path of a material having a birefringence. Fig. 2 is a schematic diagram showing a combination of preferred embodiments of the phase delay measuring device of the present invention. FIG. 3A and FIG. 3B are schematic diagrams showing the adjustment operation of the compensation unit of the present invention. Figure 4 is a flow chart of the phase delay measurement method of the present invention. Fig. 5 is a schematic diagram showing the combination of measuring a body to be tested according to a preferred embodiment of the phase delay measuring device of the present invention. Fig. 6A is a schematic view showing that the detecting light source of the present invention passes through the first polarizing plate to form a polarized light. 14 1260428 Fig. 6B shows the phase retardation light of the polarized light passing through the compensation portion. Figure 6C is a schematic diagram of a phase compensation light when the nonlinear polarized light passes through the object to be tested. Figure 6D is a schematic diagram of the minimum limit value of the phase compensation light. Figure 6E is a schematic diagram of the maximum limit value of the phase compensation light. Fig. 7A is a schematic diagram showing an incomplete phase compensation light when the phase retardation light passes through the object to be tested. Figure 7B is a schematic view of the incomplete phase compensation light passing through the second polarizing plate. [Description of Main Element Symbols] 2-Phase Delay Measuring Device 21 - Monochrome Light Source Section 22 - First Polarizing Plate 23 - Compensation Section 231 - First Compensation Body 231 First Plane 2231 - Second Plane 232 - Second Compensation Body 2321 - Third plane 2322 - Fourth plane 24 - Second polarizing plate 25 - Light detecting portion 3 - Phase delay measuring method Flow 31 to 34 - Step 4 - Phase delay measuring device 15 1260428 41 - Monochromatic light source Part 4 2 - first polarizing plate 43 - compensating portion ^ 43 first compensating body 432 - second compensating body ^ 44 - object to be tested 4 5 - second polarizing plate 46 - photo detecting portion 5 0 - light source 54- ordinary light 55-unusual light. 6 - object to be tested 7 continuous light source 7 2 - polarized light 73 - phase retarded light 74, 74' - phase compensation light 91 - slip motion φ 92 - adjustment mode 0 - angle △ λ ΐ, Δλ2 - phase difference D, D Bu D2, d-thickness nl - first refractive index • n2-first refractive index