TW202321724A - Battery management device, battery management method, and battery management program - Google Patents
Battery management device, battery management method, and battery management program Download PDFInfo
- Publication number
- TW202321724A TW202321724A TW111142727A TW111142727A TW202321724A TW 202321724 A TW202321724 A TW 202321724A TW 111142727 A TW111142727 A TW 111142727A TW 111142727 A TW111142727 A TW 111142727A TW 202321724 A TW202321724 A TW 202321724A
- Authority
- TW
- Taiwan
- Prior art keywords
- battery
- difference
- time
- charging
- state
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/367—Software therefor, e.g. for battery testing using modelling or look-up tables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
- G01R31/3828—Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
- G01R31/3835—Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/389—Measuring internal impedance, internal conductance or related variables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/392—Determining battery ageing or deterioration, e.g. state of health
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
- Tests Of Electric Status Of Batteries (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
本發明係關於管理電池的狀態的技術。The present invention relates to techniques for managing the state of batteries.
鋰離子電池單元所輸出的電壓(單元電池電壓(cell voltage))一般係藉由控制電池單元(或連接有複數電池單元的組電池單元)的電池管理裝置(BMU)來測定或取得。BMU係使用該測定值來計算電池單元的充電狀態(State Of Charge:SOC)。BMU係藉由例如CAN(Control Area Network,控制器區域網路)通訊而對上位裝置傳送該計算結果。The output voltage (cell voltage) of a lithium-ion battery unit is generally measured or obtained by a battery management unit (BMU) controlling the battery unit (or a battery unit connected to a plurality of battery units). The BMU uses the measured value to calculate the state of charge (State Of Charge: SOC) of the battery cell. The BMU transmits the calculation result to the host device through, for example, CAN (Control Area Network, Controller Area Network) communication.
隨著使用蓄電池的場面涉及多方面,正確推定SOC的必要性增加。輸送例如鋰金屬電池或鋰離子電池時,有圖求SOC相對額定容量為預定比例以下(例:額定容量的30%以下)的情形。或者,當對電力系統由需要者側連接蓄電池時,必須正確掌握SOC,俾以按照運用排程來驅動蓄電池。As the scene where the storage battery is used involves various aspects, the need to correctly estimate the SOC increases. When transporting, for example, lithium metal batteries or lithium ion batteries, there are cases where the SOC relative to the rated capacity is calculated to be below a predetermined ratio (eg: 30% or less of the rated capacity). Alternatively, when the battery is connected to the power system from the customer side, it is necessary to accurately grasp the SOC so that the battery can be driven according to the operation schedule.
下述專利文獻1係以「不僅電池的製程值,亦考慮SOC及SOH的相互相關而精度佳地推定SOC及SOH」為課題,揭示出「在電池控制器6BC中,BCIA9係具備:計測電池5的內阻的25℃換算值R25的內阻計測部96、及計測開放電壓的25℃換算值OCV25的開放電壓計測部97。CPU8係具備:記憶表示OCV25與SOH及SOC的關係的第1方程式、及表示R25與SOH及SOC的關係的第2方程式的方程式記憶部86;以及將前述R25及OCV25的計測結果適用於前述各方程式,求出SOH及SOC作為其聯立方程式的解的求解部87」等技術(參照摘要)。
[先前技術文獻]
[專利文獻]
The following
[專利文獻1]日本特開2017-129401號公報[Patent Document 1] Japanese Patent Laid-Open No. 2017-129401
(發明所欲解決之問題)(Problem to be solved by the invention)
上位裝置係根據由BMU所取得的SOC,實施各種動作。在輸送上述之鋰離子電池等時或需要者側的蓄電池等之例中,此原則上亦相同,通常根據由BMU所取得的SOC,來實現各用途。但是,由BMU所取得的SOC係有以一定程度的餘裕予以通知的情形。例如實際的SOC為80%時,係有BMU對上位裝置報告SOC為70%之要旨的情形。上位裝置所執行的應用程式(例:電動汽車中的剩餘容量顯示)係有另外以餘裕提示SOC的情形。如上所示,從經驗上得知使用者所辨識的時點的SOC並不一定與BMU所通知的SOC相一致,此外,BMU所通知的SOC不一定與實際的SOC相一致。The host device executes various actions based on the SOC obtained from the BMU. The principle is the same in the case of transporting the above-mentioned lithium ion battery or the like or the storage battery on the customer side, and each application is usually realized based on the SOC obtained by the BMU. However, the SOC acquired by the BMU may be notified with a certain degree of margin. For example, when the actual SOC is 80%, the BMU may report that the SOC is 70% to the host device. An application program executed by a host device (for example: remaining capacity display in an electric vehicle) may additionally display the SOC with a margin. As shown above, it is known from experience that the SOC at the time identified by the user is not necessarily consistent with the SOC notified by the BMU. In addition, the SOC notified by the BMU is not necessarily consistent with the actual SOC.
若蓄電池在放電中(充電中亦同,以下同)計測來自電池的輸出電壓,有對計測結果重疊較大雜訊的情形。BMU係對該計測結果實施雜訊去除處理,且對上位裝置通知該結果。伴隨該雜訊去除,有BMU對上位裝置所報告的計測結果亦偏離實際的SOC的可能性。If the battery is being discharged (the same is true for charging, the same applies hereinafter) and the output voltage from the battery is measured, large noise may be superimposed on the measurement result. The BMU performs noise removal processing on the measurement result, and notifies the result to the host device. With this noise removal, there is a possibility that the measurement result reported by the BMU to the host device also deviates from the actual SOC.
本發明係鑑於如上所述之課題而完成者,目的在提供無須僅依據BMU所取得的SOC,可取得電池的正確SOC的電池管理裝置。 (解決問題之技術手段) The present invention was made in view of the above-mentioned problems, and an object thereof is to provide a battery management device capable of obtaining a correct SOC of a battery without relying only on the SOC obtained by a BMU. (technical means to solve the problem)
本發明之電池管理裝置係使用第1充電動作或第1放電動作中的電池電壓的變動份、與第2充電動作或第2放電動作中的電池電壓的變動份,藉由參照記述有該等變動份與SOC之間的關係的資料,來推定SOC。 (發明之效果) The battery management device of the present invention uses the variation of the battery voltage in the first charging operation or the first discharging operation, and the variation of the battery voltage in the second charging operation or the second discharging operation, and these are described by reference SOC can be estimated by changing the data of the relationship between credits and SOC. (Effect of Invention)
藉由本發明之電池管理裝置,無須僅依據BMU所取得的SOC,可取得電池的正確SOC。With the battery management device of the present invention, the correct SOC of the battery can be obtained without relying only on the SOC obtained by the BMU.
<實施形態1><
圖1係顯示BMU取得電池單元的SOC的樣子的模式圖。BMU係與1以上的電池單元相連接,使用電池單元的輸出電壓或輸出電流來計算SOC,且對上位裝置報告該結果。上位裝置係可在例如圖1下段的畫面介面上在視覺上顯示SOC。若SOC接近充滿電,電池圖標(icon)以充滿的狀態予以顯示。或者亦可提示SOC的數值本身。FIG. 1 is a schematic diagram showing how the BMU acquires the SOC of the battery cell. The BMU is connected to one or more battery cells, calculates the SOC using the output voltage or output current of the battery cells, and reports the result to the host device. The host device can visually display the SOC on, for example, the screen interface in the lower part of FIG. 1 . If the SOC is close to being fully charged, the battery icon (icon) is displayed in a fully charged state. Alternatively, the numerical value of the SOC itself may be presented.
圖2係在電池的放電動作時,BMU所計測或取得的電池電壓的波形例。在電池電壓(來自電池的輸出電壓)的計測值係重疊有一定程度的雜訊。尤其在放電動作時,在經驗上得知重疊較大雜訊。接續放電動作的休止期間(均未實施放電或充電的期間)的雜訊相對較小,但是仍對計測結果重疊有一定程度的雜訊。圖2左圖係顯示重疊有雜訊的電壓波形。因此,BMU係藉由實施雜訊去除處理,取得如圖2右圖所示之電壓波形,且將此報告上位裝置、或據此推定SOC。充電動作時亦同。FIG. 2 is an example of the waveform of the battery voltage measured or obtained by the BMU during the battery discharge operation. A certain amount of noise is superimposed on the measured value of the battery voltage (output voltage from the battery). Especially during the discharge operation, it is empirically known that there is a large overlapping noise. Noise is relatively small during the rest period (period in which neither discharge nor charge is performed) following the discharge operation, but there is still a certain amount of noise superimposed on the measurement results. The left panel of Figure 2 shows a voltage waveform with noise superimposed on it. Therefore, the BMU obtains the voltage waveform shown in the right figure of Figure 2 by implementing noise removal processing, and reports this to the host device, or estimates the SOC based on it. The same applies to the charging operation.
如圖2所示,若BMU對電池電壓實施了雜訊去除之後,對上位裝置報告該計測結果等時,藉由該雜訊去除處理,計測結果被偏移(offset),有上位裝置並無法取得正確的計測結果的可能性。例如藉由計測出放電動作時的單元電池電壓的結果,電池電壓係隨著放電進行而單調遞減,但是BMU所輸出的電池電壓波形係迅速呈安定。因此,推定在實際的電池電壓與藉由BMU所得之計測值之間係存在有偏移。在休止期間,雖然不像放電動作時那麼大,但是同樣地推定在藉由BMU所得之計測結果係重疊有偏移。As shown in Figure 2, if the BMU reports the measurement result to the host device after performing noise removal on the battery voltage, the measurement result will be offset by the noise removal process, and the host device cannot Possibility to obtain accurate measurement results. For example, as a result of measuring the cell voltage during the discharge operation, the battery voltage monotonically decreases as the discharge progresses, but the battery voltage waveform output by the BMU quickly becomes stable. Therefore, it is presumed that there is an offset between the actual battery voltage and the measured value obtained by the BMU. During the rest period, although it is not as large as during the discharge operation, it is presumed that the measurement results obtained by the BMU are similarly superimposed with an offset.
圖3係本發明之實施形態1之電池管理裝置100的構成圖。電池管理裝置100係管理電池200的狀態的裝置。電池管理裝置100係具備:通訊部110、運算部120、偵測部130、記憶部140。偵測部130係取得電池200的輸出電壓、輸出電流、溫度等。並非必定由偵測部130本身計測該等,亦可由例如BMU取得計測結果。運算部120係使用該等計測結果來推定電池200的SOC。通訊部110係對外部裝置傳送該推定結果。記憶部140係儲存運算部120所使用的資料的裝置。Fig. 3 is a configuration diagram of the
圖4係顯示電池管理裝置100推定電池200的SOC時的放電動作之例。電池200係電池管理裝置100推定電池200的SOC時,如圖4所例示,分別實施2次放電動作與之後接續的休止期間。該等動作可由電池管理裝置100進行控制,亦可由別的控制裝置進行控制。亦即,若可取得伴隨該等動作的電池電壓的經時變動即可。FIG. 4 shows an example of the discharge operation when the
運算部120係在開始推定電池200的SOC的時點,預先掌握電池200的SOH(State Of Health:劣化狀態)者。以取得SOH的手法而言,係可使用任意的周知技術,關於其1例,容後敘述。運算部120係對電池200的額定容量[Ah]乘算其SOH,藉此可計算該時點的電池200的充滿電容量[Ah]。可將該充滿電容量視為該時點的SOC=100%。
運算部120係取得電池200開始第1次放電動作(第1放電動作)的時點的電池電壓V1。運算部120係取得電池200實施了第1放電動作的時間長t1,藉由將放電電流與t1進行乘算,來計算放電量。運算部120係可藉由該放電量與充滿電容量的比率,取得依第1放電動作而改變的SOC。The
運算部120係取得第1放電動作後的休止期間(第1休止期間)的電池電壓V2。運算部120係取得在第1休止期間,電池電壓的經時變動呈安定的時點的電池電壓作為V2。休止期間開始之後至電池電壓安定為止的時間長係假想幾秒程度,並不需要採用如開電路電壓般至安定為止需要幾十分鐘的電壓作為V2。The
運算部120係計算由V1至V2的電壓變化(ΔV12=V1-V2)。藉此,運算部120係可得伴隨第1放電動作的SOC的變化量、與伴隨第1放電動作的電池電壓的變化量之間的關係。The
運算部120係取得電池200實施了第2次放電動作(第2放電動作)的時間長t2,藉由將放電電流與t2進行乘算,來計算放電量。運算部120係可藉由該放電量與充滿電容量的比率,取得依第2放電動作而改變的SOC。The
運算部120係取得第2放電動作後的休止期間(第2休止期間)的電池電壓V3。運算部120係與V2同樣地,取得在第2休止期間,電池電壓的經時變動呈安定的時點的電池電壓作為V3。第1休止期間開始之後至V2為止的時間長、與第2休止期間開始之後至V3為止的時間長可為相同,亦可為不同。The
運算部120係計算由V2至V3的電壓變化(ΔV23=V2-V3)。藉此,運算部120係可得伴隨第2放電動作的SOC的變化量、與伴隨第2放電動作的電池電壓的變化量之間的關係。The
圖5係顯示休止期間開始之後,電池電壓的經時變動呈安定的時點的電池電壓與SOC之間的關係的圖。圖5所示之資料係可例如預先藉由實驗來取得。藉由將該資料所示之關係進行微分(求出相對於SOC的變化的電池電壓的變化),可得接下來圖6所示的資料曲線。FIG. 5 is a graph showing the relationship between the battery voltage and the SOC at the point in time when the temporal variation of the battery voltage becomes stable after the start of the rest period. The data shown in FIG. 5 can be obtained, for example, through experiments in advance. By differentiating the relationship shown in this data (obtaining the change of battery voltage with respect to the change of SOC), the data curve shown in Fig. 6 below can be obtained.
圖6係顯示使用在供運算部120推定電池200的SOC之用的資料之例與使用該資料的SOC的推定順序的圖。該資料係記述有伴隨圖4中所例示的放電動作的電池電壓的變動(例如ΔV12、ΔV23)、與SOC之間的關係。該資料係在推定SOC之前預先作成而儲存在記憶部140。FIG. 6 is a diagram showing an example of data used for calculating the SOC of the
運算部120係由圖6的資料,特定圖4中所說明的2次放電動作各個中的電壓變動(ΔV12與ΔV23)所對應的資料點。藉此所得的2個資料點係對應各放電動作已完成的時點的SOC。但是,亦有存在複數個對應各電壓變動的SOC的候補的情形。在圖6的資料例中,對應ΔV12的SOC候補存在2個,對應ΔV23的SOC候補存在4個。The
因此,運算部120係另外在SOC候補之中,特定對應第2放電動作中的放電量者。例如若第2放電動作中的放電量為相當於SOC1%者,特定對應ΔV12的SOC與對應ΔV23的SOC之間的差分為1%的SOC候補。藉此所特定出的SOC候補係可推定為表示電池200的真的SOC。在圖6的資料例中,SOC=24%近旁的資料點相當於此。因此,運算部120係可推定電池200的SOC為約24%。Therefore, the
運算部120亦可更簡易地在SOC候補之中,特定對應ΔV12與ΔV23之間的差分VR者。VR係對應第2放電動作中的放電量之故。在圖6的資料例中,同樣地SOC=24%近旁的資料點相當於此。此時,運算部120並不需要計算伴隨放電動作的放電量(I×t1、I×t2等),若在圖6所示之資料上特定對應ΔV12、ΔV23、VR的資料點即足夠。The
<實施形態1:結論>
本實施形態1之電池管理裝置100係在第1放電期間後的第1休止期間取得V2,並且計算ΔV12,在第2放電期間後的第2休止期間取得V3,並且計算ΔV23,且使用該等來參照圖6的資料,藉此推定電池200的SOC。藉由使用作為該等差分的ΔV12或ΔV23而非V1~V3本身,即使在對V1~V3各個重疊有BMU的計測過程中的偏移的情形下,亦可以一定程度取消該影響。此外,無須依據BMU所計測到的SOC,而且藉由緩和了偏移的影響的計測結果,可正確取得SOC。
<Embodiment 1: Conclusion>
The
本實施形態1之電池管理裝置100推定SOC時所使用的關係資料(圖6所例示的資料)係記述有伴隨充放電動作的SOC的變化與此時的電池電壓的變化之間的關係,運算部120係特定對應ΔV12與ΔV23的資料點作為SOC候補,並且由該SOC候補之中特定對應充放電量者,藉此推定SOC。藉此,即使在存在複數個SOC候補的情形下,亦可正確特定對應充放電量的SOC。The relational data (data illustrated in FIG. 6 ) used when the
本實施形態1之電池管理裝置100推定SOC時所使用的關係資料(圖6所例示的資料)係記述有伴隨充放電動作的SOC的變化與此時的電池電壓的變化之間的關係,運算部120係特定對應ΔV12與ΔV23的資料點作為SOC候補,並且由該SOC候補之中特定對應藉由第2充電動作或第2放電動作所致之電池電壓的變動份(VR)者,藉此推定SOC。藉此,即使未計算充放電量本身,亦可藉由伴隨充放電動作的電池電壓的變動,來正確特定對應充放電量的SOC。The relational data (data illustrated in FIG. 6 ) used when the
在本實施形態1中,係說明在放電動作後的休止期間取得電池電壓之例,惟亦可在充電動作後的休止期間取得電池電壓,藉由同樣手法來推定SOC。在之後的實施形態中亦同。例如充電開始時若將電池200的剩餘容量設為0,且取得伴隨2次充電動作各個的電池電壓的變動份即可。關於充電動作後的休止期間,若在經過了電池電壓呈安定的幾秒程度的時間長的時點計測電池電壓即可。In the first embodiment, an example is described in which the battery voltage is obtained during the rest period after the discharge operation, but the battery voltage can also be obtained during the rest period after the charge operation, and the SOC can be estimated by the same method. The same applies to the subsequent embodiments. For example, at the start of charging, it is sufficient to set the remaining capacity of the
<實施形態2>
在實施形態1中係說明了考慮到由BMU所取得的電池電壓並不一定正確,而更正確地推定SOC的順序。但是,若由BMU所取得的電池電壓的履歷蓄積一定程度,認為可推定由BMU所取得的電池電壓與正確SOC之間的對應關係。因此,在本發明之實施形態2中係說明學習由BMU所取得的電池電壓與正確的SOC之間的對應關係,且使用此來推定SOC的動作例。電池管理裝置100的構成係與實施形態1相同,因此以下主要說明關於學習的事項。
<
圖7係說明運算部120使用由BMU所取得的電池電壓來推定SOC的順序的模式圖。運算部120係按照實施形態1中所說明的順序,使用電池電壓V1~V3來推定電池200的SOC。此時所使用的V1~V3係例如由BMU所取得者。如上所述該V1~V3有由真值偏移的可能性,惟運算部120係直接使用由BMU所取得的V1~V3來推定SOC。FIG. 7 is a schematic diagram illustrating a procedure for the
運算部120係將SOC的推定結果、與使用在用以推定此的V1~V3的套組(set)之間的對應關係儲存至記憶部140。運算部120係每次推定SOC,即將同樣的對應關係儲存至記憶部140。如上所示藉由蓄積對應關係,運算部120係可在取得新的V1~V3時使用該對應關係來推定SOC。The
以運算部120使用V1~V3來推定SOC的手法而言,考慮例如以下所示者:(a)藉由適當的機械學習手法來學習V1~V3與使用此的SOC的推定結果之間的對應關係,對作為其結果所得的學習模型投入新的V1~V3,藉此取得SOC推定結果作為學習器的輸出;(b)標繪V1~V3與使用此的SOC的推定結果,且算出最近似該等對應關係的方程式。藉由對該方程式代入新的V1~V3,取得SOC推定結果。As a method of estimating the SOC using V1 to V3 by the
本實施形態2的手法係必須最初按照實施形態1的手法,以一定程度蓄積推定結果,惟確定了V1~V3與SOC之間的對應關係之後,可由V1~V3的計測值立即取得SOC,此點極為有用。In the method of the second embodiment, it is necessary to first accumulate the estimation results to a certain extent according to the method of the first embodiment, but after confirming the correspondence between V1-V3 and SOC, the SOC can be obtained immediately from the measured values of V1-V3. point is extremely useful.
<實施形態3>
圖8係說明本發明之實施形態3之電池管理裝置100推定SOC的順序的模式圖。在實施形態2中係說明了學習由BMU所取得的V1~V3與SOC之間的關係。在本實施形態3中係取代此,說明學習由BMU所取得的SOC與電池管理裝置100所推定的SOC之間的對應關係之例。電池管理裝置100的構成係與實施形態1相同,因此以下主要說明關於學習的事項。
<
BMU係使用電池電壓或電池電流來計算SOC。運算部120係取得該SOC。運算部120係有別於此,藉由實施形態1中所說明的手法,推定電池200的SOC。運算部120係與實施形態2同樣地學習由BMU所取得的SOC與運算部120所推定出的SOC之間的對應關係。運算部120係在學習結果蓄積了一定程度的時點之後,對該學習模型投入由BMU所取得的新的SOC,藉此可得SOC推定結果。The BMU uses battery voltage or battery current to calculate SOC. The
<實施形態4>
在本發明之實施形態4中係說明推定實施形態1~3中所說明的電池200的SOH(或內阻Ri,以下同)的方法。電池管理裝置100的構成係與以上之實施形態相同,惟亦可為如以下所示之變形例。在其他實施形態中亦可採用同樣的變形例。
<
圖9係顯示電池管理裝置100的其他構成例的圖。電池管理裝置100亦可不一定為與電池200直接連接而接受電力供給的裝置,示出未包含圖3所記載之通訊部110及偵測部130的形態者。在圖9中,電池管理裝置100係由通訊部110取得電池200的電壓V、電流I、溫度T。具體而言,電池管理裝置100所具備的偵測部150係例如經由網路來接收該等檢測值,運算部120係使用該等檢測值來計算SOH。FIG. 9 is a diagram showing another configuration example of the
圖10係顯示偵測部130與電池200相連接時的構成例。偵測部130亦可構成為電池管理裝置100的一部分,亦可構成為有別於電池管理裝置100的其他模組。偵測部130係具備:電壓感測器131、溫度感測器132、電流感測器133,俾以取得電池200的充放電動作時的電壓V、溫度T、電流I。FIG. 10 shows a configuration example when the
電壓感測器131係測定電池200的兩端電壓(電池200所輸出的電壓)。溫度感測器132係與例如電池200所具備的熱電偶相連接,且透過此來測定電池200的溫度。電流感測器133係與電池200的一端相連接,測定電池200所輸出的電流。溫度感測器132為選擇項(option),亦可不一定具備。The
圖11係說明運算部120計算Ri與SOH的順序的流程圖。運算部120係在例如電池管理裝置100起動時,被指示了開始本流程圖之時,在每隔預定周期等適當時序,開始本流程圖。以下說明圖11的各步驟。FIG. 11 is a flowchart illustrating the procedure for calculating Ri and SOH by the
(圖11:步驟S1101)
運算部120係判定是否為充電後的休止期間或放電後的休止期間。若現在非為休止期間,即結束本流程圖。若為休止期間,即進至S1102。例如為放電後的休止期間,係可藉由電池200所輸出的電流由負值(I<0)朝向零變化、(b)由負值朝向零近旁的值變化而呈安定(|I|<臨限值)等來判定。
(FIG. 11: Step S1101)
(圖11:步驟S1102)
運算部120係計算ΔVa與ΔVb。ΔVa係從休止期間結束了以後的第1起算時點至經過了第1期間ta的第1時刻為止的電池200的輸出電壓的變動份。ΔVb係從第1時刻以後的第2起算時點至經過了第2期間tb的第2時刻為止的電池200的輸出電壓的變動份。該等計算順序容後敘述。
(FIG. 11: Step S1102)
The
(圖11:步驟S1103)
運算部120係按照下述式1與式2,計算Ri與SOH。f
Ri係將Ri定義為ΔVa的函數。f
Ri係具有:依電池200的溫度而變動的參數(c_Ri_T)、及依電池200的輸出電流而變動的參數(c_Ri_I)。f
SOH係將SOH定義為ΔVb的函數。f
SOH係具有:依電池200的溫度而變動的參數(c_SOH_T)、及依電池200的輸出電流而變動的參數(c_SOH_I)。該等參數係藉由關係表141予以定義。各函數的具體例與關係表141的具體例容後敘述。f
Ri及f
SOH係成為例如根據每個批量的實驗資料而形成之式。
(FIG. 11: Step S1103) The calculating
(圖11:步驟S1103:計算式) (FIG. 11: Step S1103: calculation formula)
圖12係顯示在放電後的休止期間,電池200所輸出的電流與電壓的經時變化的圖表。S1102中的ΔVa係從放電結束後的時點或其之後的第1起算時點至經過了第1期間ta的第1時刻為止的電池200的輸出電壓的變動份。本發明人發現在放電剛結束瞬後的輸出電壓中,充分表現出因電池200的內阻所致之電壓變動。亦即該期間的輸出電壓的變動(ΔVa)可謂為與Ri之間的相關強。在本實施形態中係利用此情形,藉由ΔVa來推定Ri。ta的開始時刻與時間長各個的最適值係可根據從放電的結束時點以後至電壓的經時變化曲線中的斜率變化率的最大點為止的區間來取得。其中,特定前述區間時,若形成為依電池的種類、裝置、精度等,形成為前述區間的兩端附近、或包含兩端的區域等適當較佳的運用即可。FIG. 12 is a graph showing changes over time in current and voltage output from the
S1102中的ΔVb係從經過了期間ta的時點或其之後的第2起算時點至經過了第2期間tb的第2時刻為止的電池200的輸出電壓的變動份。本發明人發現在放電剛結束瞬後的ΔVa在與Ri之間具有相關,相對於此,其之後的輸出電壓平緩變動的期間係在與SOH之間具有相關。在本實施形態中係利用此情形,藉由ΔVb來推定SOH。tb的開始時刻與時間長各個的最適值係可根據從放電的結束時點以後的電壓的經時變化曲線中的斜率變化率的最大點至電壓的經時變化曲線的斜率變化漸近成一定為止的區間來取得。其中,特定前述區間時,若形成為依電池的種類、裝置、精度等,形成為前述區間的兩端附近、或包含兩端的區域等適當較佳的運用即可。ΔVb in S1102 is the amount of variation in the output voltage of the
ta的開始時刻亦可不一定與放電結束時刻相同,惟以與放電結束時刻近接為宜。tb的開始時刻亦可不一定與ta的結束時刻相同。在任何情形下,ta與tb係有ta<tb的關係。關於ΔVa的大小與ΔVb的大小,可為ΔVa較大的情形,亦可為ΔVb較大的情形。其中,在此係形成為ta<tb,惟若依電池的種類、裝置、精度等,亦可為ta>tb、或ta=tb的情形,因此若形成為適當較佳的關係即可。The start time of ta may not necessarily be the same as the end time of discharge, but it is better to be close to the end time of discharge. The start time of tb may not necessarily be the same as the end time of ta. In any case, ta and tb have a relationship of ta < tb. Regarding the magnitude of ΔVa and the magnitude of ΔVb, ΔVa may be large, or ΔVb may be large. Wherein, ta<tb is formed here, but depending on the type, device, precision, etc. of the battery, ta>tb or ta=tb may also be the case, so it is sufficient to form an appropriate and better relationship.
由藉由本發明人所為之實驗結果可知即使ta與tb的合計為例如幾秒程度,亦可精度佳地推定Ri與SOH。因此藉由本實施形態,可在休止期間迅速地同時推定Ri與SOH。From the results of experiments conducted by the present inventors, it has been found that Ri and SOH can be estimated with high accuracy even if the sum of ta and tb is, for example, about several seconds. Therefore, according to this embodiment, Ri and SOH can be simultaneously estimated rapidly during the idle period.
圖13係顯示在充電後的休止期間,電池200所輸出的電流與電壓的經時變化的圖表。S1102中的ΔVa亦可為取代放電,而從充電結束後的時點或其之後的第1起算時點至經過了第1期間ta的第1時刻為止的電池200的輸出電壓的變動份。此時,S1102中的ΔVb係成為從經過了期間ta的時點或其之後的第2起算時點至經過了第2期間tb的第2時刻為止的電池200的輸出電壓的變動份。本發明人發現即使在充電後的休止期間,亦為ΔVa在與Ri之間具有相關,且ΔVb在與SOH之間具有相關。因此,在本實施形態中,S1102中的ΔVa與ΔVb亦可在充放電任意者之後取得。FIG. 13 is a graph showing changes over time in current and voltage output from the
圖14係顯示關係表141的構成與資料例的圖。關係表141係定義式1與式2中的各參數的資料表,被儲存在記憶部140內。c_Ri_I與c_SOH_I係依電池200的輸出電流而變動,因此按每個輸出電流值予以定義。c_Ri_T與c_SOH_T係依電池200的溫度而變動,因此按每個溫度予以定義。該等參數係有在放電後的休止期間與充電後的休止期間之間具有不同特性的情形,因此關係表141係按每個該等期間來定義各參數。FIG. 14 is a diagram showing the structure of the relationship table 141 and an example of data. The relationship table 141 is a data table defining parameters in
若f
Ri為ΔVa的1次函數,Ri係可藉由例如下述式3來表示。Ri的斜率係受到溫度影響,截距係受到電流影響之故。此時,c_Ri_T與c_Ri_I分別為1個。
If f Ri is a linear function of ΔVa, Ri can be represented by, for example,
若f
SOH為ΔVb的1次函數,SOH係可藉由例如下述式4來表示。SOH的斜率係受到溫度影響,且截距係受到電流影響之故。此時,c_SOH_T與c_SOH_I分別為1個。
If fSOH is a linear function of ΔVb, SOH can be represented by, for example, the following
<實施形態5>
圖15A係電池管理裝置100推定電池200的SOC的情形之1例。實施形態1中所說明的充電動作係可藉由例如將裝載有電池200的電氣機器充電的充電器來實施。設為例如在電動汽車1500(電氣機器)內裝載有電池200者。作業人員係將電動汽車1500所具備的充電埠1501與充電器1502相連接,且將電池200充電。此時,配置在充電器1502與充電埠1501之間的計測器1503係計測電池電壓且對電池管理裝置100傳送該結果。電池管理裝置100與計測器1503係可透過例如網路而相連接。運算部120係使用由計測器1503所取得的電池電壓,藉由實施形態1中所說明的手法來推定SOC。
<Embodiment 5>
FIG. 15A shows an example of a situation where the
為了使用實施形態1中所說明的推定手法,必須實施2次藉由充電器所為之充電動作。因此,作業人員係如實施形態1中所說明,實施2次充電動作。運算部120係在各充電動作後的休止期間,由計測器1503取得電池電壓。以休止期間而言,可使用作業人員停止了充電作業之後的期間。In order to use the estimation method described in
圖15B係電池管理裝置100推定電池200的SOC的情形之1例。與圖15A同樣地,電池200係裝載在例如電動汽車內,作業人員係透過充電埠來實施充電動作。作業人員係另外將OBD(On Board Diagnostics,車上診斷系統)終端機1504連接至電動汽車。OBD終端機1504係計測電池電壓且對電池管理裝置100傳送該結果。電池管理裝置100與OBD終端機1504係例如可透過網路而相連接。運算部120係使用由OBD終端機1504所取得的電池電壓,藉由實施形態1中所說明的手法來推定SOC。FIG. 15B shows an example of a situation where the
圖16係顯示放電動作之1例。放電動作係可藉由使與裝載有電池200的電氣機器相連接的電性負載運轉來實施。若電池200裝載在電動汽車1500內,藉由例如使電動汽車1500所具備的空調機進行動作,可使電池200放電。若使空調機為OFF,電池200係成為休止期間。休止期間的電池電壓係可藉由例如OBD終端機1504來計測。之後的動作相同。空調機係電性負載之1例,亦可使用其他電性負載來使電池200放電。Fig. 16 shows an example of the discharge operation. The discharge operation can be implemented by operating an electric load connected to an electric device on which the
<實施形態6>
圖17係本發明之實施形態6之電力系統1700的構成圖。電力系統1700係分別對電力系統供給太陽電池1701與電池200所輸出的電力的系統。太陽電池1701係藉由電力控制裝置1702予以驅動,電池200係藉由電力控制裝置1703予以驅動。電力控制裝置1703係計測電池200的輸出電壓等,且對資料伺服器上傳該計測結果。電池管理裝置100係使用該經上傳的計測結果來推定電池200的SOC。管理伺服器1704係控制電力系統1700全體。對電力控制裝置1702與1703的指令係由例如電池管理裝置100或管理伺服器1704,透過PLC(可程式化邏輯控制器)來傳送。電力控制裝置1702與1703係按照該指令,分別控制太陽電池1701與電池200。
<
圖18係電力系統1700的運用排程之例。對電力系統連接電力系統1700時,有要求預先對管制機構提出運用排程(例如每個時刻的發電量)的情形。該運用排程係按照該運用期間的太陽電池1701的發電量預測結果來作成。但是,太陽電池1701的發電量的預測值係背離實績值的可能性相對較高。即使在該情形下,為了使電力系統1700對電力系統所供給的電力依照運用排程,可輔助性使用電池200。剩餘電力係使用在用以將電池200充電,不足電力可藉由從電池200放電來補充之故。FIG. 18 is an example of an operation schedule of the
為了如上所示使用電池200,必須將電池200的SOC預先準備為適於此的狀態。以其前提而言,必須正確計測電池200的SOC。電池管理裝置100係藉由以上實施形態中所說明的手法,推定其SOC。電力系統1700的運用者係可按照該推定結果來預先準備電池200。In order to use the
若電力系統1700的運用排程為例如06:00~18:00,必須在06:00之前準備電池200的SOC。在圖18之例中,係在期間1802內準備此。此外,以其前提而言,在比期間1802之前的期間1801,推定SOC。為了充分確保準備期間,期間1801以短為宜。If the operation schedule of the
<實施形態7>
圖19係電池管理裝置100所提供的使用者介面之例。使用者介面係可提示電池200的SOC推定結果、實施形態1中所說明的ΔV12或ΔV23等計測結果、由BMU所取得的電池電壓的經時變化等。使用者介面係可例如由運算部120生成而顯示在適當的顯示元件上,亦可運算部120生成記述有使用者介面的資料(例:指定HTML資料等畫面布局的資料)而對別的顯示終端機送訊,且該顯示終端機描繪此。亦可藉由其他適當手法來提供。
<Embodiment 7>
FIG. 19 is an example of the user interface provided by the
<關於本發明之變形例> 本發明係包含各種變形例,而非為限定於前述實施形態者。例如,上述之實施形態係為易於理解本發明來進行說明而詳細說明者,並不一定為限定於具備所說明的全部構成者。此外,可將某實施形態的構成的一部分置換為其他實施形態的構成,此外,亦可在某實施形態的構成加上其他實施形態的構成。此外,關於各實施形態的構成的一部分,可進行其他構成的追加/刪除/置換。 <Modification of the present invention> The present invention includes various modified examples, and is not limited to the aforementioned embodiments. For example, the above-mentioned embodiments are described and described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations. In addition, a part of the structure of a certain embodiment may be replaced with the structure of another embodiment, and the structure of another embodiment may be added to the structure of a certain embodiment. In addition, addition/deletion/replacement of other configurations may be performed for a part of configurations of each embodiment.
在以上的實施形態中說明了偵測部130由BMU取得電池電壓V1~V3的計測結果,惟亦可由BMU以外的任意計測裝置(例如實施形態5中所說明的計測器1503或OBD終端機1504)取得此。In the above embodiment, the
在以上的實施形態中,運算部120亦可藉由構裝有其功能的電路元件等硬體所構成,亦可藉由CPU(Central Processing Unit,中央處理單元)等運算裝置執行構裝有其功能的軟體所構成。In the above embodiment, the
100:電池管理裝置
110:通訊部
120:運算部
130:偵測部
131:電壓感測器
132:溫度感測器
133:電流感測器
140:記憶部
141:關係表
150:偵測部
200:電池
1500:電動汽車
1501:充電埠
1502:充電器
1503:計測器
1504:OBD終端機
1700:電力系統
1701:太陽電池
1702,1703:電力控制裝置
1704:管理伺服器
1801,1802:期間
I:電流
T:溫度
V:電壓
100: battery management device
110: Department of Communications
120: Computing department
130: Detection Department
131: Voltage sensor
132: Temperature sensor
133: Current sensor
140: memory department
141: Relation table
150: Detection department
200: battery
1500: Electric vehicles
1501: Charging port
1502: Charger
1503: Measuring device
1504: OBD terminal
1700: Power Systems
1701:
[圖1]係顯示BMU取得電池單元的SOC的樣子的模式圖。
[圖2]係電池的放電動作時,BMU所計測或取得的電池電壓的波形例。
[圖3]係實施形態1之電池管理裝置100的構成圖。
[圖4]係顯示電池管理裝置100推定電池200的SOC時的放電動作之例。
[圖5]係顯示休止期間開始後,電池電壓的經時變動呈安定的時點的電池電壓與SOC之間的關係的圖。
[圖6]係顯示使用在供運算部120推定電池200的SOC之用的資料之例與使用該資料的SOC的推定順序的圖。
[圖7]係說明運算部120使用由BMU所取得的電池電壓來推定SOC的順序的模式圖。
[圖8]係說明實施形態3之電池管理裝置100推定SOC的順序的模式圖。
[圖9]係顯示電池管理裝置100的其他構成例的圖。
[圖10]係顯示偵測部130與電池200相連接時的構成例。
[圖11]係說明運算部120計算Ri與SOH的順序的流程圖。
[圖12]係顯示在放電後的休止期間,電池200所輸出的電流與電壓的經時變化的圖表。
[圖13]係顯示在充電後的休止期間,電池200所輸出的電流與電壓的經時變化的圖表。
[圖14]係顯示關係表141的構成與資料例的圖。
[圖15A]係電池管理裝置100推定電池200的SOC的情形之1例。
[圖15B]係電池管理裝置100推定電池200的SOC的情形之1例。
[圖16]係顯示放電動作之1例。
[圖17]係實施形態6之電力系統1700的構成圖。
[圖18]係電力系統1700的運用排程之例。
[圖19]係電池管理裝置100所提供的使用者介面之例。
[Fig. 1] is a schematic diagram showing how the BMU acquires the SOC of the battery cell.
[Fig. 2] is an example of the waveform of the battery voltage measured or acquired by the BMU during the discharge operation of the battery.
[ Fig. 3 ] is a configuration diagram of the
Claims (14)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-186083 | 2021-11-16 | ||
JP2021186083A JP2023073549A (en) | 2021-11-16 | 2021-11-16 | Battery management device, battery management method, and battery management program |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202321724A true TW202321724A (en) | 2023-06-01 |
TWI833434B TWI833434B (en) | 2024-02-21 |
Family
ID=86396910
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111142727A TWI833434B (en) | 2021-11-16 | 2022-11-09 | Battery management device, battery management method, battery management program |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2023073549A (en) |
TW (1) | TWI833434B (en) |
WO (1) | WO2023090180A1 (en) |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08106924A (en) * | 1994-10-05 | 1996-04-23 | Brother Ind Ltd | Quick charger |
JP2008053126A (en) * | 2006-08-25 | 2008-03-06 | Mazda Motor Corp | Battery deterioration judgement device |
JP4561859B2 (en) * | 2008-04-01 | 2010-10-13 | トヨタ自動車株式会社 | Secondary battery system |
JP5287844B2 (en) * | 2010-12-27 | 2013-09-11 | 株式会社デンソー | Secondary battery remaining capacity calculation device |
JP5556698B2 (en) * | 2011-02-18 | 2014-07-23 | 株式会社デンソー | Battery assembly |
JP5553798B2 (en) * | 2011-06-10 | 2014-07-16 | 株式会社日立製作所 | Positive electrode material for lithium ion secondary battery |
US20120319657A1 (en) * | 2011-06-16 | 2012-12-20 | O2 Micro USA | Battery management system |
US9269994B2 (en) * | 2011-12-29 | 2016-02-23 | Blackberry Limited | Power pack remaining capacity level detection |
JP6898585B2 (en) * | 2017-04-10 | 2021-07-07 | 日産自動車株式会社 | Secondary battery state estimation method and state estimation system |
JP7141012B2 (en) * | 2018-03-13 | 2022-09-22 | 三菱自動車工業株式会社 | Secondary battery system |
CN111478387A (en) * | 2020-04-09 | 2020-07-31 | 苏州桑倍储能技术有限公司 | Battery management system |
JP2022170227A (en) * | 2021-04-28 | 2022-11-10 | 株式会社日立ハイテク | Battery state estimation device and power system |
-
2021
- 2021-11-16 JP JP2021186083A patent/JP2023073549A/en active Pending
-
2022
- 2022-11-07 WO PCT/JP2022/041327 patent/WO2023090180A1/en unknown
- 2022-11-09 TW TW111142727A patent/TWI833434B/en active
Also Published As
Publication number | Publication date |
---|---|
JP2023073549A (en) | 2023-05-26 |
WO2023090180A1 (en) | 2023-05-25 |
TWI833434B (en) | 2024-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110914696B (en) | Method and system for estimating battery open cell voltage, state of charge, and state of health during operation of a battery | |
US12034319B2 (en) | Server-side characterization of rechargeable batteries | |
CN102540088B (en) | Battery monitoring apparatus and battery monitoring methods | |
US11101669B2 (en) | State of health estimation for batteries | |
KR100911317B1 (en) | Apparatus and method for estimating battery's state of health based on battery voltage variation pattern | |
US8975897B2 (en) | State-of-charge estimating apparatus | |
CN104483628B (en) | Device and method for detecting health state of battery pack of electric vehicle | |
US11982720B2 (en) | Method and battery management system for ascertaining a state of health of a secondary battery | |
US10530180B2 (en) | Battery output monitoring device and battery output monitoring method | |
US20090187359A1 (en) | System and method for estimating battery state of charge | |
WO2020198118A1 (en) | Methods, systems, and devices for estimating and predicting a remaining time to charge and a remaining time to discharge of a battery | |
CN111095663A (en) | System and method for controlling rechargeable battery | |
JP2019537923A (en) | Battery health status judgment and alarm generation | |
US20220179003A1 (en) | Characterisation of lithium plating in rechargeable batteries | |
KR20150019190A (en) | Method of Estimating Battery Stste-Of-Charge and Apparatus therefor the same | |
CN114614118B (en) | Battery power processing method, device and battery management system | |
WO2020012720A1 (en) | Secondary battery parameter estimation device, secondary battery parameter estimation method, and program | |
CN117222904A (en) | Battery state estimating device and power system | |
CN112677820B (en) | Vehicle battery management method and device and vehicle | |
CN106896273A (en) | The internal resistance detection method of battery cell, detection means and the vehicle with it | |
KR20140071060A (en) | Methods and apparatus for online determination of battery state of charge and state of health | |
TW202321724A (en) | Battery management device, battery management method, and battery management program | |
US12123921B2 (en) | Method and apparatus for determining a state of health of an electrical energy store of unknown type by using machine learning methods | |
CN105720634A (en) | Self-learning charging power current control method and system | |
US20240248141A1 (en) | Method and apparatus for diagnosing a current sensor in an electrically operated technical device having a device battery |