TW202123962A - 一種預防和治療腎纖維化的方法 - Google Patents

一種預防和治療腎纖維化的方法 Download PDF

Info

Publication number
TW202123962A
TW202123962A TW110102361A TW110102361A TW202123962A TW 202123962 A TW202123962 A TW 202123962A TW 110102361 A TW110102361 A TW 110102361A TW 110102361 A TW110102361 A TW 110102361A TW 202123962 A TW202123962 A TW 202123962A
Authority
TW
Taiwan
Prior art keywords
plasminogen
fibrosis
renal
mice
group
Prior art date
Application number
TW110102361A
Other languages
English (en)
Inventor
李季男
Original Assignee
大陸商深圳瑞健生命科學研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商深圳瑞健生命科學研究院有限公司 filed Critical 大陸商深圳瑞健生命科學研究院有限公司
Publication of TW202123962A publication Critical patent/TW202123962A/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/243Platinum; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/48Hydrolases (3) acting on peptide bonds (3.4)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/48Hydrolases (3) acting on peptide bonds (3.4)
    • A61K38/482Serine endopeptidases (3.4.21)
    • A61K38/484Plasmin (3.4.21.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • C12Y304/21007Plasmin (3.4.21.7), i.e. fibrinolysin

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本發明涉及一種預防和治療腎纖維化的方法,包括給藥受試者有效量的纖溶酶原。

Description

一種預防和治療腎纖維化的方法
本發明涉及一種預防和治療腎纖維化的方法,包括給藥受試者有效量的纖溶酶原。
纖維化是一種病理變化,表現為成纖維細胞啟動增殖、組織器官內纖維結締組織增多,實質細胞減少,持續進展可導致組織、器官結構破壞和功能喪失。重要臟器的纖維化嚴重影響患者生存品質,甚至危及生命。在全世界範圍內,組織纖維化是許多疾病致殘、致死的主要原因,據美國有關統計資料證明,該國因各種疾病而致死的患者中,約45%可以歸於組織纖維增生疾病。
纖維化疾病包括累及多系統的疾病,如系統性硬化症、多灶性纖維化、硬皮病、腎源性的多系統纖維化,也包括器官組織特異性疾病,如皮膚、心、肺、肝、腎纖維化等。不同纖維化疾病的病因各不相同,例如組織器官的損傷、感染、免疫反應、慢性炎症等,但其共同的特徵是細胞外基質(ECM)在組織中的過度沉積和器官組織重構[1-3]
心臟纖維化出現於多種心臟疾病的發生與發展過程中,如病毒性心肌炎、心肌梗塞和高血壓心臟病等。過度的心臟纖維化導致心臟功能受損,是多種疾病走向心衰的主要原因,其中抑制和逆轉心肌纖維化已成為治療心血管疾病的重要環節。
肝纖維化是指由各種致病因子所致肝內結締組織異常增生,肝內彌漫性細胞外基質過度沉澱的病理過程。多種因素均可引起肝纖維化,如病毒感染、炎症反應、氧化應激和酗酒等。肝纖維化的病理特點為匯管區和肝小葉內有大量纖維組織增生和沉積,但尚未形成小葉內間隔,肝硬化則有假小葉形成,中心靜脈區和匯管區出現間隔,肝的正常結構遭到破壞,肝纖維化進一步發展即為肝硬化。我國的慢性肝病中以病毒性肝炎為主,慢性病毒性肝炎的肝組織纖維化與肝內炎症、壞死、病毒複製等有關,而且在早期是可逆的。為此 將抗病毒治療,調整機體免疫功能及保護肝細胞等療法與抗纖維化結合起來,是防止肝纖維化的積極措施。
肺纖維化疾病包括特發性肺纖維化、結節病、過敏性肺炎、塵肺、藥物和放射線導致的纖維化,以及與膠原血管病有關的致纖維化肺泡炎等病因各異、範圍廣泛的疾病譜。其主要病理特點包括肺組織間充質細胞增殖、細胞外基質增生沉積及肺實質的重構等畫。目前主要採用抗炎、抗氧化、抗成纖維細胞增殖和膠原沉積及肺移植等措施治療肺纖維化。
腎纖維化表現為細胞外基質和不適當結締組織在腎聚集,導致腎結構改變和功能受損的病理過程,也是幾乎所有腎疾病進展到終末期腎衰的共同通路。腎纖維化過程涉及炎症反應,固有細胞和免疫細胞的凋亡以及多種調控纖維化因數失衡等,故可通過抗炎症、抗凋亡和針對纖維化因數治療等途徑抗禦腎纖維化。
組織器官的慢性病變常伴有纖維化,例如肺的慢性炎症,慢性病變,伴有肺纖維化。肝纖維化也是這樣,像乙肝、丙肝、酒精肝、脂肪肝、血吸蟲病等都伴有早期肝纖維化。肝的代償功能很強,纖維化病變一直潛伏在各種慢性肝病裡,一般發展為肝硬化時才被發現,實際上肝硬化已經是肝纖維化的嚴重階段。再像慢性腎炎、腎小球炎、腎小管炎等都有腎纖維化;心血管、腦血管、下肢血管硬化、或變窄、或阻塞情況下都有血管纖維化。
皮膚纖維化形成瘢痕組織。瘢痕組織是肉芽組織經改建成熟形成的老化階段的纖維結締組織。創傷等情況下,成纖維細胞分裂、增殖,向受損部位遷移,產生細胞外基質,形成瘢痕組織,修復創傷。
瘢痕的形成是肉芽組織逐漸纖維化的過程。此時網狀纖維及膠原纖維越來越多,網狀纖維膠原化,膠原纖維變粗,與此同時纖維母細胞越來越少,少量剩下者轉變為纖維細胞;間質中液體逐漸被吸收,中性粒細胞、巨噬細胞、淋巴細胞和漿細胞先後消失;毛細血管閉合、退化、消失,留下很少的小動脈及小靜脈。這樣,肉芽組織乃轉變成主要由膠原纖維組成的血管稀少的瘢痕組織,肉眼呈白色,質地堅韌。
由於瘢痕堅韌又缺乏彈性,加上瘢痕收縮可引起器官變形及功能障礙,所以發生在關節附近和重要臟器的瘢痕,常引起關節痙攣或活動受限,如在消化道、泌尿道等腔室器官則引起管腔狹窄,在關節附近則引起運動障礙。發生在器官之間或器官與體腔壁之間的瘢痕性粘連,常不同程度地影響其功能。如器官內廣泛損傷後發生廣泛纖維化、玻璃樣變,則導致器官硬化。
系統性硬化症(SSc)也稱為硬皮病,是一種以局限性或彌漫性皮膚增厚和纖維化為特徵的全身性自身免疫病。病變特點為皮膚纖維增生及血管洋蔥皮樣改變,最終導致皮膚硬化、血管缺血。本病臨床上以局限性或彌漫性皮膚增厚和纖維化為特徵,除皮膚受累外,它也可影響內臟(心、肺和消化道等器官)。
動脈粥樣硬化常常導致組織、器官缺血損傷,繼而引發組織器官的纖維化病變。動脈粥樣硬化是一種慢性的、漸進性動脈疾病,發病時動脈中沉積的脂肪部分或全部堵塞血流。當原本光滑、堅實的動脈內膜變粗糙、增厚,並被脂肪、纖維蛋白、鈣和細胞碎屑堵塞時,便出現動脈粥樣硬化。動脈粥樣硬化是動脈內膜的慢性炎症性增生病變,導致大、中型動脈管腔狹窄或閉塞,引起相應器官組織缺血損傷、纖維化,甚至壞死。
動脈粥樣硬化與糖尿病關係密切,表現為糖尿病患者出現動脈粥樣硬化的時間早、程度重和預後差,而動脈粥樣硬化又是糖尿病患者的主要死亡原因。臨床發現糖尿病患者的冠狀動脈血管病理改變的特點主要是病變累及的血管較多、冠狀動脈狹窄嚴重,病變更加彌漫嚴重,其機制多認為是血糖代謝異常引起動脈粥樣硬化,隨著更進一步深入的研究,更多的結果表明,糖尿病引起動脈粥樣硬化並非單一因素所致,而是通過多種途徑以及較為複雜的機制來誘發和促進動脈粥樣硬化的發生及發展,例如巨噬細胞極化、巨噬細胞移動抑制因數途徑、糖基化終產物途徑、清道夫受體上調、胰島素抵抗、泛素-蛋白酶體系統啟動、血小板源性生長因數啟動途徑等[4]
目前,各種原因導致的纖維化疾病發病人群眾多,患者往往有多個器官組織受累,尚缺乏有效的治療方法,社會和經濟負擔較重。本發明研究 發現纖溶酶原可以改善組織器官的纖維化,改善組織器官功能,從而為組織器官纖維化及其相關病症的預防和治療開闢了一個全新的領域。
本發明包括下述各項:
1.一種預防或治療受試者急性或慢性腎臟疾病導致的腎臟膠原蛋白沉積或腎纖維化的方法,包括給藥受試者有效量的纖溶酶原。
2.如第1項所述的方法,其中所述慢性腎臟疾病包括慢性腎小球腎炎,慢性腎盂腎炎、腎病綜合症、腎功能不全、腎衰、尿毒症、或癌症。
3.一種預防或治療受試者慢性腎臟組織損傷導致的腎臟膠原蛋白沉積或腎纖維化的方法,包括給藥受試者有效量的纖溶酶原。
4.如第3項所述的方法,其中所述慢性腎臟組織損傷為脂肪在腎臟的異常沉積導致的損傷。
5.如第4項所述的方法,其中所述慢性腎臟組織損傷為糖尿病,高脂血症、動脈粥樣硬化導致的腎臟組織損傷。
6.如第4項所述的方法,其中所述慢性腎臟組織損傷為缺血導致的腎臟組織損傷。
7.如第6項所述的方法,其中所述其中所述腎臟組織缺血由選自如下的一項或多項導致:高血壓、血管腔狹窄、血管阻塞、血栓、心臟功能不全、靜脈淤血、貧血、及癌症。
8.如第7項所述的方法,其中所述組織缺血由以下的一項或多項導致:高血壓、動脈粥樣硬化、心臟病、糖尿病、高脂血症、肺心病、心衰、貧血、及癌症。
9.一種預防或治療受試者糖尿病併發的腎膠原蛋白沉積或腎纖維化的方法,包括給藥受試者有效量的纖溶酶原。
10.如第9項所述的方法,其中所述腎纖維化為糖尿病腎間質纖維化。
11.一種預防或治療受試者高脂血症併發的腎膠原蛋白沉積或腎纖維化的方法,包括給藥受試者有效量的纖溶酶原。
12.如第11項所述的方法,其中所述高脂血症為選自如下的一項或多項:血甘油三酯水準升高、血總膽固醇水準升高、血低密度脂蛋白升高、及血極低密度脂蛋白升高。
13.一種預防或治療受試者動脈粥樣硬化併發的腎膠原蛋白沉積或腎纖維化的方法,包括給藥受試者有效量的纖溶酶原。
14.一種治療受試者藥物導致的腎膠原蛋白沉積或腎纖維化的方法,包括給藥受試者有效量的纖溶酶原。
15.如第14項所述的方法,其中所述藥物為腎毒性藥物。
16.如第15項所述的方法,其中所述藥物包括化療藥物、抗生素藥物、降血脂藥物、抗高血壓藥物、或降糖藥物。
17.如第16項所述的方法,其中所述藥物為順鉑。
18.一種治療受試者糖尿病腎小管間質纖維化的方法,包括給藥受試者有效量的纖溶酶原。
19.一種預防或控制受試者慢性腎臟組織損傷導致的腎臟膠原蛋白沉積或腎纖維化的方法,包括給藥受試者有效量的纖溶酶原。
20.如第19項所述的方法,其中所述損傷為炎症、自身免疫反應、癌症、慢性感染、脂肪沉積、缺血、或藥物導致。
21.一種預防或治療受試者腎纖維化相關病症的方法,包括給藥受試者有效量的纖溶酶原。
22.如第21項所述的方法,其中所述腎纖維化相關病症包括因腎纖維化導致的腎功能減弱、障礙或喪失而引發的病症。
23.如第22項所述的方法,其中所述腎纖維化相關病症包括腎功能不全、腎衰、或尿毒症。
24.根據如第1-23項中任一項所述的方法,其中所述纖溶酶原可與一種或多種其它藥物或治療手段聯合施用。
25.根據如第24項所述的方法,其中所述其它藥物包括:降血脂藥物、抗血小板藥物、降血壓藥物、擴張血管藥物、降血糖藥物、抗凝血藥物、溶血栓藥物,保肝藥物,抗纖維化藥物、抗心律失常藥物,強心藥物,利尿藥物、抗腫瘤藥物、放化療藥物、炎症調節藥物、免疫調節藥物、抗病毒藥物、或抗生素。
26.如第1-25項中任一項所述的方法,其中所述纖溶酶原與序列2、6、8、10或12具有至少75%、80%、85%、90%、95%、96%、97%、98%或99%的序列同一性,並且仍然具有纖溶酶原活性。
27.如第1-26項中任一項所述的方法,所述纖溶酶原是在序列2、6、8、10或12的基礎上,添加、刪除和/或取代1-100、1-90、1-80、1-70、1-60、1-50、1-45、1-40、1-35、1-30、1-25、1-20、1-15、1-10、1-5、1-4、1-3、1-2、1個氨基酸,並且仍然具有纖溶酶原活性的蛋白質。
28.如第1-27項中任一項所述的方法,所述纖溶酶原是包含纖溶酶原活性片段、並且仍然具有纖溶酶原活性的蛋白質。
29.如第1-28項中任一項所述的方法,所述纖溶酶原選自Glu-纖溶酶原、Lys-纖溶酶原、小纖溶酶原、微纖溶酶原、delta-纖溶酶原或它們的保留纖溶酶原活性的變體。
30.如第1-29項中任一項所述的方法,所述纖溶酶原為天然或合成的人纖溶酶原、或其仍然保留纖溶酶原活性的變體或片段。
31.如第1-29項中任一項所述的方法,所述纖溶酶原為來自靈長類動物或齧齒類動物的人纖溶酶原直向同系物或其仍然保留纖溶酶原活性的變體或片段。
32.如第1-31項中任一項所述的方法,所述纖溶酶原的氨基酸如序列2、6、8、10或12所示。
33.如第1-32項中任一項所述的方法,其中所述纖溶酶原是人天然纖溶酶原。
34.如第1-33項中任一項所述的方法,其中所述受試者是人。
35.如第1-34項中任一項所述的方法,其中所述受試者缺乏或缺失纖溶酶原。
36.如第1-35項中任一項所述的方法,所述缺乏或缺失是先天的、繼發的和/或局部的。
37.一種用於第1-36項中任一項所述的方法的纖溶酶原。
38.一種藥物組合物,其包含藥學上可接受的載劑和用於第1-36項中任一項所述方法的纖溶酶原。
39.一種預防性或治療性試劑盒,其包含:(i)用於第1-36項中任一項所述方法的纖溶酶原和(ii)用於遞送所述纖溶酶原至所述受試者的構件(means)。
40.根據第39項所述的試劑盒,其中所述構件為注射器或小瓶。
41.如第39或40項所述的試劑盒,其還包含標籤或使用說明書,該標籤或使用說明書指示將所述纖溶酶原投予所述受試者以實施第1-36項中任一項所述方法。
42.一種製品,其包含:含有標籤的容器;和包含(i)用於第1-36項中任一項所述方法的纖溶酶原或包含纖溶酶原的藥物組合物,其中所述標籤指示將所述纖溶酶原或組合物投予所述受試者以實施第1-36項中任一項所述方法。
43.如第39-41項中任一項所述的試劑盒或第42項的製品,還包含另外的一個或多個構件或容器,該構件或容器中含有其他藥物。
44.如第43項所述的試劑盒或製品,其中所述其他藥物選自下組:降血脂藥物、抗血小板藥物、降血壓藥物、擴張血管藥物、降血糖藥物、抗凝 血藥物、溶血栓藥物,保肝藥物,抗纖維化藥物、抗心律失常藥物,強心藥物,利尿藥物、抗腫瘤藥物、放化療藥物、炎症調節藥物、免疫調節藥物、抗病毒藥物、及抗生素。
一方面,本發明涉及一種預防和/或治療受試者組織器官膠原蛋白沉積或纖維化及其相關病症的方法,包括給藥受試者有效量的纖溶酶原,其中所述受試者易患組織器官纖維化、有組織器官纖維化傾向或罹患其它疾病並伴有組織器官纖維化。本發明還涉及纖溶酶原用於預防和/或治療受試者組織器官膠原蛋白沉積或纖維化及其相關病症的用途。本發明還涉及纖溶酶原用於製備預防和/或治療受試者組織器官膠原蛋白沉積或纖維化及其相關病症的藥物的用途。此外,本發明還涉及用於預防和/或治療受試者組織器官膠原蛋白沉積或纖維化及其相關病症的纖溶酶原。在一些實施方案中,所述組織器官膠原蛋白沉積或纖維化包括皮膚纖維化、血管纖維化、心臟纖維化、肺纖維化、肝纖維化、腎纖維化。在另一些實施方案中,所述組織器官膠原蛋白沉積或纖維化包括感染、炎症、超敏反應、腫瘤、組織缺血、組織器官淤血、化學物質、輻射或環境污染導致引發的或伴隨的損傷。具體地,所述組織器官膠原蛋白沉積或纖維化包括細菌、病毒或寄生蟲感染引起的組織器官病變導致的組織器官膠原蛋白沉積或纖維化,其中,所述組織器官膠原蛋白沉積或纖維化包括結核桿菌感染導致的肺纖維化、乙型肝炎病毒、丙型肝炎病毒或戊型肝炎病毒感染導致的肝臟纖維化、血吸蟲感染導致的肝纖維化。在一些實施方案中,所述組織器官膠原蛋白沉積或纖維化為無菌性炎症或自身免疫反應導致的。具體地,所述組織器官膠原蛋白沉積或纖維化為慢性腎小球腎炎、腎盂腎炎、腎病綜合症、腎功能不全、尿毒症導致的腎臟纖維化。在另一些實施方案中,所述組織器官膠原蛋白沉積或纖維化為癌症導致組織器官損傷所致的。具體地,所述組織器官膠原蛋白沉積或纖維化為肺癌導致的肺纖維化、肝癌導致的肝纖維化或腎臟癌症導致的腎臟纖維化。在另一些實施方案中,所述組織器官膠原蛋白沉積或纖維化為慢性缺血性組織損傷導致的。具體地,所述組織器官膠原蛋白沉積或纖維化為冠狀動脈粥樣硬化、冠心病導致的心臟缺血性纖維化和/或慢性缺血性腎損傷導致的腎臟纖維化。在另一些實施方案中,所述組織器官膠原蛋白沉積或纖維化為心血管疾病導致的組織器官淤血導致的。具體地,所述組織器官膠原蛋 白沉積或纖維化為肝淤血或肺淤血。在一些實施方案中,所述組織器官膠原蛋白沉積或纖維化為藥物導致的。具體地,所述組織器官膠原蛋白沉積或纖維化為藥物性肝纖維化或腎纖維化。在一些實施方案中,所述組織器官膠原蛋白沉積或纖維化為吸入性化學物質或環境污染物導致的肺纖維化。在上述實施方案中,所述組織器官膠原蛋白沉積或纖維化為諸如系統性紅斑狼瘡、系統性硬化症、強直性脊柱炎全身性免疫性疾病導致的。在一些實施方案中,所述組織器官纖維化為特發性肺纖維化。
在上述實施方案中,所述組織器官纖維化相關病症包括組織器官因纖維化病變導致的功能減弱、障礙或喪失而引發的病症。具體地,所述組織器官纖維化相關病症包括動脈粥樣硬化、冠心病、心絞痛、心肌梗塞、心律失常、腦缺血、腦梗塞、腎功能不全、尿毒症、肝功能障礙、肝硬化、肝昏迷、呼吸困難、肺氣腫、肺心病、肺纖維化、或強直性脊柱炎。
在上述實施方案中,所述纖溶酶原可與一種或多種其它藥物或治療方法聯用。具體地,所述纖溶酶原可與一種或多種選自如下的藥物聯用:降血脂藥物、抗血小板藥物、降血壓藥物、擴張血管藥物、降血糖藥物、抗凝血藥物、溶血栓藥物,保肝藥物,抗纖維化藥物、抗心律失常藥物,強心藥物,利尿藥物、抗腫瘤藥物、放化療藥物、炎症調節藥物、免疫調節藥物、抗病毒藥物、或抗生素。
在上述實施方案中,所述纖溶酶原與序列2、6、8、10或12具有至少75%、80%、85%、90%、95%、96%、97%、98%或99%的序列同一性,並且仍然具有纖溶酶原活性。
在上述實施方案中,所述纖溶酶原的氨基酸如序列2、6、8、10或12所示。在一些實施方案中,所述纖溶酶原是在序列2、6、8、10或12的基礎上,添加、刪除和/或取代1-100、1-90、1-80、1-70、1-60、1-50、1-45、1-40、1-35、1-30、1-25、1-20、1-15、1-10、1-5、1-4、1-3、1-2、1個氨基酸,並且仍然具有纖溶酶原活性的蛋白質。
在上述實施方案中,所述纖溶酶原是包含纖溶酶原活性片段、並且仍然具有纖溶酶原活性的蛋白質。具體地,所述纖溶酶原選自Glu-纖溶酶原、 Lys-纖溶酶原、小纖溶酶原、微纖溶酶原、delta-纖溶酶原或它們的保留纖溶酶原活性的變體。
在上述實施方案中,纖溶酶原為天然或合成的人纖溶酶原、或其仍然保留纖溶酶原活性的變體或片段。在一些實施方案中,所述纖溶酶原為來自靈長類動物或齧齒類動物的人纖溶酶原直向同系物或其仍然保留纖溶酶原活性的變體或片段。例如,來自靈長類動物或齧齒類動物的纖維蛋白溶酶原直向同系物,例如來自大猩猩,恒河猴、鼠、牛、馬,狗的纖維蛋白溶酶原直向同系物。最佳地,本發明的纖維蛋白溶酶原的氨基酸序列如序列2、6、8、10或12所示。
在上述實施方案中,所述受試者是人。在一些實施方案中,其中所述受試者缺乏或缺失纖溶酶原。具體地,所述缺乏或缺失是先天的、繼發的和/或局部的。
在一個實施方案中,所述纖維蛋白溶酶原通過全身或局部給藥,較佳通過以下途徑施用:表面、靜脈內、肌內、皮下、吸入、椎管內、局部注射、關節內注射或通過直腸。在一個實施方案中,所述局部給藥為直接向骨質疏鬆區域給藥,例如通過敷料,導管等方式來進行。
在一個實施方案中,所述纖溶酶原與適當的多肽載體或穩定劑組合施用。在一個實施方案中,所述纖溶酶原以每天0.0001-2000mg/kg、0.001-800mg/kg、0.01-600mg/kg、0.1-400mg/kg、1-200mg/kg、1-100mg/kg、10-100mg/kg(以每公斤體重計算)或0.0001-2000mg/cm2、0.001-800mg/cm2、0.01-600mg/cm2、0.1-400mg/cm2、1-200mg/cm2、1-100mg/cm2、10-100mg/cm2(以每平方釐米體表面積計算)的劑量施用,較佳至少重複一次,更佳至少每天施用。在局部施用的情況下,上述劑量還可以根據情況進一步調整。一方面,本發明涉及一種藥物組合物,其包含藥學上可接受的載劑和用於本發明所述方法的纖溶酶原。
另一方面,本發明涉及一種預防性或治療性試劑盒,其包含:(i)用於本發明所述方法的纖溶酶原和(ii)用於遞送所述纖溶酶原至所述受試者的構件(means),具體地,所述構件為注射器或小瓶。在一些實施方案中,所述試劑 盒還包含標籤或使用說明書,該標籤或使用說明書指示將所述纖溶酶原投予所述受試者以實施本發明所述的方法。
另一方面,本發明還涉及一種製品,其包含:含有標籤的容器;和(i)用於本發明所述方法的纖溶酶原或包含纖溶酶原的藥物組合物,其中所述標籤指示將所述纖溶酶原或組合物投予所述受試者以實施本發明所述方法。
在上述實施方案中,所述試劑盒或製品還包含另外的一個或多個構件或容器,該構件或容器中含有其他藥物。在一些實施方案中,所述其他藥物選自下組:降血脂藥物、抗血小板藥物、降血壓藥物、擴張血管藥物、降血糖藥物、抗凝血藥物、溶血栓藥物,保肝藥物,抗纖維化藥物、抗心律失常藥物,強心藥物,利尿藥物、抗腫瘤藥物、放化療藥物、炎症調節藥物、免疫調節藥物、抗病毒藥物、及抗生素。
圖1係博萊黴素誘導的系統性硬化模型小鼠給予纖溶酶原21天後腎臟天狼星紅染色代表性圖片。A為給溶媒PBS對照組,B為給纖溶酶原組。結果顯示,在博萊黴素誘導的系統性硬化症小鼠模型中,給溶媒PBS對照組腎臟膠原纖維化(箭頭標識)程度比給纖溶酶原組高。說明纖溶酶原能有效降低博萊黴素誘導的腎臟纖維化。
圖2係24-25周齡糖尿病小鼠給予纖溶酶原31天後腎臟IV型膠原免疫染色觀察結果。A為給溶媒PBS對照組,B為給纖溶酶原組。結果顯示,給纖溶酶原組IV膠原陽性著色(箭頭標識)明顯多於給溶媒PBS對照組,說明纖溶酶原能改善糖尿病小鼠腎臟的纖維化。
圖3係26周齡糖尿病小鼠給予纖溶酶原35天後腎臟masson染色觀察結果。A為給溶媒PBS對照組,B為給纖溶酶原組。結果顯示,給溶媒PBS對照組,腎小球系膜增生,系膜基質增多,腎間質輕度纖維化(箭頭標識),增生的纖維化呈藍色。給纖溶酶原組腎小球系膜細胞及基質明顯比對照組少,腎間質纖維化明顯減少。說明纖溶酶原能夠改善糖尿病小鼠腎臟的纖維化病變。
圖4係順鉑腎纖維化模型小鼠給予纖溶酶原7天後腎臟IV型膠原免疫染色觀察結果。A為給溶媒PBS對照組,B為給纖溶酶原組。結果顯示,給溶媒PBS對照組腎臟IV型膠原陽性表達(箭頭標識)明顯高於給纖溶酶原組。說明纖溶酶原能改善順鉑腎纖維化模型小鼠腎臟的纖維化。
圖5係嘌呤誘導的慢性腎損傷模型小鼠給予纖溶酶原10天後腎臟天狼星紅染色觀察結果。A為給溶媒PBS對照組,B為給纖溶酶原組,C為PLG活性受損組,D為定量分析結果。給纖溶酶原組膠原的沉積(箭頭標識)明顯少於給溶媒PBS對照組和PLG活性受損組,且給纖溶酶原組與PLG活性受損組定量分析統計差異顯著(*表示P<0.05)。說明纖溶酶原能減輕慢性腎損傷所致的腎臟纖維化,促進腎損傷的修復。
圖6係給予纖溶酶原30天後3%膽固醇高脂血症模型小鼠腎臟天狼星紅染色觀察結果。A為空白對照組,B為給溶媒PBS對照組,C為給纖溶酶原組,D為定量分析結果。結果顯示,給纖溶酶原組腎臟膠原蛋白沉積(箭頭標識)明顯少於給溶媒PBS對照組,且統計差異顯著;給纖溶酶原組纖維化基本恢復到正常水準。說明纖溶酶原能有效的減少3%膽固醇高脂血症模型小鼠腎臟纖維化。
圖7係博萊黴素誘導的系統性硬化模型小鼠給予纖溶酶原21天後皮膚天狼星紅染色代表性圖片。A為空白對照組,B為給溶媒PBS對照組,C為給纖溶酶原組,D為PLG活性受損組。結果顯示,在博萊黴素誘導的系統性硬化症小鼠模型中,給溶媒PBS組和PLG活性受損組,真皮上部膠原纖維束明顯增多,膠原纖維粗大,排列緻密,真皮層增厚;給纖溶酶原組真皮層中成纖維細胞明顯少於給溶媒PBS組,且皮膚真皮層厚度接近正常水準。
圖8係博萊黴素誘導的系統性硬化模型小鼠給予纖溶酶原21天後肺天狼星紅染色代表性圖片。A為給溶媒PBS對照組,B為給纖溶酶原組,C為定量分析結果。結果顯示,在博萊黴素誘導的系統性硬化症小鼠模型中,給溶媒PBS組小鼠肺纖維化(箭頭標識)程度比給纖溶酶原組高;給纖溶酶原組小鼠肺部肺泡壁形態接近正常,炎症水準細胞明顯減少,纖維化程度明顯低於給溶媒PBS組,且統計差異顯著(*表示P<0.05)。
圖9係博萊黴素誘導的系統性硬化模型小鼠給予纖溶酶原21天後心臟天狼星紅染色代表性圖片。A為給溶媒PBS對照組,B為給纖溶酶原組。研究發現,在博萊黴素誘導的系統性硬化症小鼠模型中,給溶媒PBS對照組心臟膠原蛋白沉積(箭頭標識)程度比給纖溶酶原組高。說明纖溶酶原能有效降低博萊黴素誘導的心臟纖維化。
圖10係24-25周齡糖尿病小鼠給予纖溶酶原31天後心臟masson染色觀察結果。A為給溶媒PBS對照組,B為給纖溶酶原組。結果顯示,給溶媒PBS對照組心肌纖維之間可見著藍色的增生的膠原纖維(箭頭標識),呈輕度心肌纖維化;給纖溶酶原組心肌纖維之間可見少量的淺藍色的增生的膠原纖維,較之於對照組,心肌纖維化明顯減輕。說明纖溶酶原能夠改善糖尿病小鼠心臟的纖維化。
圖11係17-18周齡糖尿病小鼠給予纖溶酶原35天後心臟天狼星紅染色代表性圖片。A為給溶媒PBS對照組,B為給纖溶酶原組。結果顯示,給纖溶酶原組小鼠膠原纖維的沉積(箭頭標識)明顯少於給溶媒PBS對照組。說明纖溶酶原能夠減少相對年輕(17-18周齡)糖尿病小鼠心臟的纖維化。
圖12係26-27周齡糖尿病小鼠給予纖溶酶原35天後心臟天狼星紅染色代表性圖片。A為給溶媒PBS對照組,B為給纖溶酶原組。結果顯示,給纖溶酶原組小鼠膠原蛋白的沉積(箭頭標識)明顯少於給溶媒PBS對照組。說明纖溶酶原能減弱相對年老(26-27周齡)糖尿病小鼠心臟的纖維化。
圖13係ApoE動脈粥樣硬化模型小鼠給予纖溶酶原30天後心臟天狼星紅染色代表性圖片。A為給溶媒PBS對照組,B為給纖溶酶原組。結果顯示,給纖溶酶原組膠原的沉積(箭頭標識)明顯少於給溶媒PBS對照組,說明纖溶酶原能減輕ApoE動脈粥樣硬化模型小鼠心臟纖維化。
圖14係C57高血脂模型小鼠給予纖溶酶原30天後心臟天狼星紅染色代表性圖片。A為給溶媒PBS對照組,B為給纖溶酶原組。結果顯示,給纖溶酶原組膠原的沉積(箭頭標識)明顯少於給溶媒PBS對照組,說明纖溶酶原能減輕高血脂模型小鼠心臟纖維化。
圖15係24-25周齡糖尿病小鼠給予纖溶酶原31天後胰島天狼星紅染色觀察結果。A為給溶媒PBS對照組,B為給纖溶酶原組,C為定量分析結果。結果顯示,給纖溶酶原組小鼠胰島膠原沉積(箭頭標識)明顯少於給溶媒PBS對照組,且統計差異顯著(*表示P<0.05)。說明纖溶酶原能改善糖尿病所致的胰島損傷和纖維化。
圖16係ApoE動脈粥樣硬化模型小鼠給予纖溶酶原30天後主動脈竇天狼星紅染色代表性圖片。A、C為給溶媒PBS對照組,B、D為給纖溶酶原組。結果顯示給纖溶酶原組膠原蛋白沉積(箭頭標識)的面積明顯小於給溶媒PBS對照組,說明纖溶酶原能夠消減動脈粥硬化模型小鼠主動脈竇纖維化水準。
圖17係給予纖溶酶原14天後四氯化碳誘導的肝纖維化模型小鼠肝臟天狼星紅染色代表性圖片。A為空白對照組,B為給溶媒PBS對照組,C為給纖溶酶原組。結果顯示,給纖溶酶原組膠原蛋白沉積明顯少於給溶媒PBS對照組,且與空白對照小鼠膠原蛋白沉積水準接近。說明纖溶酶原能減少肝臟膠原蛋白的沉積,改善肝纖維化模型小鼠肝臟纖維化。
圖18係16周高脂血症模型小鼠給予纖溶酶原30天後主動脈竇天狼星紅染色代表性圖片。A、C為給溶媒PBS對照組,B、D為給纖溶酶原組。結果顯示,給纖溶酶原組主動脈竇管壁內膜膠原蛋白沉積(箭頭標識)的面積明顯小於給溶媒PBS對照組,說明纖溶酶原能夠消減高脂血症模型小鼠主動脈竇管壁內膜纖維化水準。
圖19係給予纖溶酶原28天四氯化碳誘導的肝臟纖維化模型小鼠肝臟天狼星紅染色觀察結果。A為空白對照組,B為給溶媒PBS對照組,C為給纖溶酶原組,D為定量分析結果。結果顯示,給纖溶酶原組膠原蛋白沉積(箭頭標識)明顯少於給溶媒PBS對照組,且統計差異顯著(*表示P<0.05);與給溶媒PBS對照組相比,給纖溶酶原組膠原沉積水準更加接近空白對照小鼠。說明纖溶酶原能減少肝纖維化模型小鼠肝臟膠原蛋白的沉積,改善肝臟纖維化。
定義
“纖維化”是肺、肝、腎、血管、腹膜、胰腺、皮膚等組織、器官受到炎症、感染、免疫反應、缺血、化學物質、輻射等各種原因導致持續損傷後,成纖維細胞啟動增殖、組織器官內纖維結締組織增多,實質細胞減少,組織、器官結構破壞和功能喪失的病變。該術語可與“纖維化病變”互換使用。該纖維化病變術語涵蓋各種原因導致的心臟纖維化、肺纖維化、肝纖維化、腎纖維化、血管纖維化、皮膚纖維化等組織器官纖維化病變,還包括各種疾病發生、發展過程中伴隨產生的心臟纖維化、肺纖維化、肝纖維化、腎纖維化、血管纖維化、皮膚纖維化等組織器官纖維化病變。
組織、器官發生纖維化病變後,其正常結構發生改變,相應的功能減弱或喪失,由此導致的相關病症稱為“組織器官纖維化相關病症”。
“心臟纖維化”是指各種原因(例如炎症、感染、免疫反應、缺血、化學物質、輻射)導致的或伴隨的心臟組織損傷或各種原因導致的心臟疾病的發生與發展過程中出現的纖維化病變。心臟纖維化病變導致心臟功能受損,由此導致的相關病症稱為“心臟纖維化相關病症”,包括但不限於心臟功能受損引起的各器官、組織缺血的症狀和病症,例如冠心病、心絞痛、心肌梗塞、心律失常、腦缺血、呼吸困難、腎功能不全等。
“肝纖維化”是指由各種原因(例如炎症、感染(例如病毒感染)、免疫反應、缺血、化學物質、輻射、氧化應激和酗酒)導致的或伴隨的肝內結締組織異常增生,肝內彌漫性細胞外基質過度沉澱、肝的正常結構遭到破壞的病理變化(病變)。肝纖維化進一步發展即為肝硬化,也涵蓋在本發明“肝纖維化”術語的範圍內。肝臟纖維化病變導致肝臟功能受損,由此導致的相關病症稱為“肝臟纖維化相關病症”。
“肺纖維化”是指各種原因(例如炎症、感染、免疫反應、缺血、化學物質、輻射)導致的或伴隨的肺組織間充質細胞增殖、細胞外基質增生沉積及肺實質的重構而造成的病理過程。肺臟纖維化病變導致肺臟功能受損,由此導致的相關病症稱為“肺臟纖維化相關病症”。
“腎臟纖維化”是指各種原因(例如炎症、感染、免疫反應、缺血、化學物質、輻射)導致的或伴隨的結締組織在腎臟的異常聚集,導致腎臟結構 改變和功能受損的病理過程。腎臟纖維化病變是幾乎所有腎臟疾病進展到後期的共同通路。
腎臟纖維化病變導致腎臟功能受損,由此導致的相關病症稱為“腎臟纖維化相關病症”,例如,腎臟功能不全,腎衰,尿毒症等。
組織器官的慢性病變常伴有纖維化,例如肺的慢性炎症,慢性病變,伴有肺纖維化。肝纖維化也是如此,例如乙肝、丙肝、酒精肝、脂肪肝、血吸蟲病等都伴有早期肝纖維化。再像慢性腎炎、腎小球炎、腎小管炎等都有腎纖維化;心血管、腦血管、下肢血管硬化、或變窄、或阻塞情況下都有血管纖維化。本發明“纖維化”或“纖維化病變”術語涵蓋機體各組織器官的慢性病變常伴有的纖維化病變。
“系統性硬化症”或稱“硬皮病”是一種以局限性或彌漫性皮膚增厚和纖維化為特徵的全身性自身免疫病。病變特點為皮膚纖維增生及血管洋蔥皮樣改變,最終導致皮膚硬化、血管缺血。本病臨床上以局限性或彌漫性皮膚增厚和纖維化為特徵,除皮膚受累外,它也可影響內臟(心、肺和消化道等器官)。
“動脈粥樣硬化”是一種慢性的、漸進性動脈疾病,發病時動脈中沉積的脂肪部分或全部堵塞血流。動脈粥樣硬化是個漸進的過程。當血液中的脂類濃度大大增加時,便會沿著動脈壁形成脂肪條紋。這些條紋會導致脂肪和膽固醇沉積,這些沉澱依附在原本平滑的動脈內膜上,從而形成小結。這些小結下麵繼而長出纖維化的瘢痕組織,導致鈣沉積。沉積的鈣逐漸演變為無法除去的白堊狀堅硬薄膜(稱為動脈粥樣斑)。當與體內的某個組織、器官相連的動脈被堵塞後,因該組織、器官中的動脈受阻而引起的組織、器官的缺血損傷可導致該組織、器官的纖維化病變,例如心臟、肺臟、肝臟、腎臟、血管、腹膜、胰腺、皮膚的纖維化。
糖尿病常伴有動脈粥樣硬化的發生,其機制多認為是血糖代謝異常引起的動脈粥樣硬化,隨著更進一步深入的研究,更多的結果表明,糖尿病引起動脈粥樣硬化並非單一因素所致,而是通過多種途徑以及較為複雜的機制來誘發和促進動脈粥樣硬化的發生及發展[4]。糖尿病以及其伴隨的動脈粥樣硬化 可導致組織、器官損傷和纖維化,例如心臟、肺臟、肝臟、腎臟、血管、腹膜、胰腺、皮膚等組織、器官的纖維化。
發明詳述
纖溶酶是纖溶酶原啟動系統(PA系統)的關鍵組分。它是一種廣譜的蛋白酶,能夠水解細胞外基質(ECM)的幾個組分,包括纖維蛋白、明膠、纖連蛋白、層粘連蛋白和蛋白聚糖[5]。此外,纖溶酶能將一些金屬蛋白酶前體(pro-MMPs)啟動形成具有活性的金屬蛋白酶(MMPs)。因此纖溶酶被認為是胞外蛋白水解作用的一個重要的上游調節物[6,7]。纖溶酶是由纖溶酶原通過兩種生理性的PAs:組織型纖溶酶原啟動劑(tPA)或尿激酶型纖溶酶原啟動劑(uPA)蛋白水解形成的。由於纖溶酶原在血漿和其他體液中相對水準較高,傳統上認為PA系統的調節主要通過PAs的合成和活性水準實現。PA系統組分的合成受不同因素嚴格調節,如激素、生長因數和細胞因數。此外,還存在纖溶酶和PAs的特定生理抑制劑。纖溶酶的主要抑制劑是α2-抗纖溶酶(α2-antiplasmin)。PAs的活性同時被uPA和tPA的纖溶酶原啟動劑抑制劑-1(PAI-1)抑制以及主要抑制uPA的溶酶原啟動劑抑制劑-2(PAI-2)調節。某些細胞表面具有直接水解活性的uPA特異性細胞表面受體(uPAR)[8,9]
纖溶酶原是一個單鏈糖蛋白,由791個氨基酸組成,分子量約為92kDa[10,11]。纖溶酶原主要在肝臟合成,大量存在於胞外液中。血漿中纖溶酶原含量約為2μM。因此纖溶酶原是組織和體液中蛋白質水解活性的一個巨大的潛在來源[12,13]。纖溶酶原存在兩種分子形式:谷氨酸-纖溶酶原(Glu-plasminogen)和賴氨酸-纖溶酶原(Lys-plasminogen)。天然分泌和未裂解形式的纖溶酶原具有一個氨基末端(N-末端)谷氨酸,因此被稱為谷氨酸-纖溶酶原。然而,在纖溶酶存在時,谷氨酸-纖溶酶原在Lys76-Lys77處水解成為賴氨酸-纖溶酶原。與谷氨酸-纖溶酶原相比,賴氨酸-纖溶酶原與纖維蛋白具有更高的親和力,並可以更高的速率被PAs啟動。這兩種形式的纖溶酶原的Arg560-Val561肽鍵可被uPA或tPA切割,導致二硫鍵連接的雙鏈蛋白酶纖溶酶的形成[14]。纖溶酶原的氨基末端部分包含五個同源三環,即所謂的kringles,羧基末端部分包含蛋白酶結構域。一些kringles含有介導纖溶酶原與纖維蛋白及其抑制劑α2-AP特異性相互作用的賴氨酸結合位點。最新發現一個纖溶酶原為38kDa的片段,其中包括kringles1-4, 是血管生成的有效抑制劑。這個片段被命名為血管抑素,可通過幾個蛋白酶水解纖溶酶原產生。
纖溶酶的主要底物是纖維蛋白,纖維蛋白的溶解是預防病理性血栓形成的關鍵[15]。纖溶酶還具有對ECM幾個組分的底物特異性,包括層粘連蛋白、纖連蛋白、蛋白聚糖和明膠,表明纖溶酶在ECM重建中也起著重要作用[11,16,17]。間接地,纖溶酶還可以通過轉化某些蛋白酶前體為活性蛋白酶來降解ECM的其他組分,包括MMP-1,MMP-2,MMP-3和MMP-9。因此,有人提出,纖溶酶可能是細胞外蛋白水解的一個重要的上游調節器[18]。此外,纖溶酶具有啟動某些潛在形式的生長因數的能力[19-21]。在體外,纖溶酶還能水解補體系統的組分並釋放趨化補體片段。
“纖溶酶”是存在於血液中的一種非常重要的酶,能將纖維蛋白凝塊水解為纖維蛋白降解產物和D-二聚體。
“纖溶酶原”是纖溶酶的酶原形式,根據swiss prot中的序列,按含有信號肽的天然人源纖溶酶原氨基酸序列(序列4)計算由810個氨基酸組成,分子量約為90kD,主要在肝臟中合成並能夠在血液中循環的糖蛋白,編碼該氨基酸序列的cDNA序列如序列3所示。全長的纖溶酶原包含七個結構域:位於C末端的絲氨酸蛋白酶結構域、N末端的Pan Apple(PAp)結構域以及5個Kringle結構域(Kringle1-5)。參照swiss prot中的序列,其信號肽包括殘基Metl-Gly19,PAp包括殘基Glu20-Val98,Kringle1包括殘基Cys103-Cys181,Kringle2包括殘基G1u184-Cys262,Kringle3包括殘基Cys275-Cys352,Kringle4包括殘基Cys377-Cys454,Kringle5包括殘基Cys481-Cys560。根據NCBI資料,絲氨酸蛋白酶域包括殘基Val581-Arg804。
Glu-纖溶酶原是天然全長的纖溶酶原,由791個氨基酸組成(不含有19個氨基酸的信號肽),編碼該序列的cDNA序列如序列1所示,其氨基酸序列如序列2所示。在體內,還存在一種是從Glu-纖溶酶原的第76-77位氨基酸處水解從而形成的Lys-纖溶酶原,如序列6所示,編碼該氨基酸序列的cDNA序列如序列5所示。Delta-纖溶酶原(δ-plasminogen)是全長纖溶酶原缺失了Kringle2-Kringle5結構的片段,僅含有Kringle1和絲氨酸蛋白酶域[22,23],有文獻報 導了delta-纖溶酶原的氨基酸序列(序列8)[23],編碼該氨基酸序列的cDNA序列如序列7。小纖溶酶原(Mini-plasminogen)由Kringle5和絲氨酸蛋白酶域組成,有文獻報導其包括殘基Val443-Asn791(以不含有信號肽的Glu-纖溶酶原序列的Glu殘基為起始氨基酸)[24],其氨基酸序列如序列10所示,編碼該氨基酸序列的cDNA序列如序列9所示。而微纖溶酶原(Micro-plasminogen)僅含有絲氨酸蛋白酶結構域,有文獻報導其氨基酸序列包括殘基Ala543-Asn791(以不含有信號肽的Glu-纖溶酶原序列的Glu殘基為起始氨基酸)[25],也有專利文獻CN102154253A報導其序列包括殘基Lys531-Asn791(以不含有信號肽的Glu-纖溶酶原序列的Glu殘基為起始氨基酸),本專利序列參考專利文獻CN102154253A,其氨基酸序列如序列12所示,編碼該氨基酸序列的cDNA序列如序列11所示。
本發明的“纖溶酶”與“纖維蛋白溶酶”、“纖維蛋白溶解酶”可互換使用,含義相同;“纖溶酶原”與“纖維蛋白溶酶原”、“纖維蛋白溶解酶原”可互換使用,含義相同。
在本申請中,所述纖溶酶原“缺乏”的含義為受試者體內纖溶酶原的含量或活性比正常人低,低至足以影響所述受試者的正常生理功能;所述纖溶酶原“缺失”的含義為受試者體內纖溶酶原的含量或活性顯著低於正常人,甚至活性或表達極微,只有通過外源提供才能維持正常生理功能。
本領域技術人員可以理解,本發明纖溶酶原的所有技術方案適用於纖溶酶,因此,本發明描述的技術方案涵蓋了纖溶酶原和纖溶酶。
在循環過程中,纖溶酶原採用封閉的非活性構象,但當結合至血栓或細胞表面時,在纖溶酶原啟動劑(plasminogen activator,PA)的介導下,其轉變為呈開放性構象的活性纖溶酶。具有活性的纖溶酶可進一步將纖維蛋白凝塊水解為纖維蛋白降解產物和D-二聚體,進而溶解血栓。其中纖溶酶原的PAp結構域包含維持纖溶酶原處於非活性封閉構象的重要決定簇,而KR結構域則能夠與存在於受體和底物上的賴氨酸殘基結合。已知多種能夠作為纖溶酶原啟動劑的酶,包括:組織纖溶酶原啟動劑(tPA)、尿激酶纖溶酶原啟動劑(uPA)、激肽釋放酶和凝血因數XII(哈格曼因數)等。
“纖溶酶原活性片段”是指在纖溶酶原蛋白中,能夠與底物中的靶序列結合並發揮蛋白水解功能的活性片段。本發明涉及纖溶酶原的技術方案涵蓋了用纖溶酶原活性片段代替纖溶酶原的技術方案。本發明所述的纖溶酶原活性片段為包含纖溶酶原的絲氨酸蛋白酶域的蛋白質,較佳地,本發明所述的纖溶酶原活性片段包含序列14、與序列14具有至少80%、90%、95%、96%、97%、98%、99%同源性的氨基酸序列的蛋白質。因此,本發明所述的纖溶酶原包括含有該纖溶酶原活性片段、並且仍然保持該纖溶酶原活性的蛋白。
目前,對於血液中纖溶酶原及其活性測定方法包括:對組織纖溶酶原啟動劑活性的檢測(t-PAA)、血漿組織纖溶酶原啟動劑抗原的檢測(t-PAAg)、對血漿組織纖溶酶原活性的檢測(plgA)、血漿組織纖溶酶原抗原的檢測(plgAg)、血漿組織纖溶酶原啟動劑抑制物活性的檢測、血漿組織纖溶酶原啟動劑抑制物抗原的檢測、血漿纖維蛋白溶酶-抗纖維蛋白溶酶複合物檢測(PAP)。其中最常用的檢測方法為發色底物法:向受檢血漿中加鏈激酶(SK)和發色底物,受檢血漿中的PLG在SK的作用下,轉變成PLM,後者作用於發色底物,隨後用分光光度計測定,吸光度增加與纖溶酶原活性成正比。此外也可採用免疫化學法、凝膠電泳、免疫比濁法、放射免疫擴散法等對血液中的纖溶酶原活性進行測定。
“直系同源物或直系同系物(ortholog)”指不同物種之間的同源物,既包括蛋白同源物也包括DNA同源物,也稱為直向同源物、垂直同源物。其具體指不同物種中由同一祖先基因進化而來的蛋白或基因。本發明的纖溶酶原包括人的天然纖溶酶原,還包括來源於不同物種的、具有纖溶酶原活性的纖溶酶原直系同源物或直系同系物。
“保守取代變體”是指其中一個給定的氨基酸殘基改變但不改變蛋白質或酶的整體構象和功能,這包括但不限於以相似特性(如酸性,鹼性,疏水性,等)的氨基酸取代親本蛋白質中氨基酸序列中的氨基酸。具有類似性質的氨基酸是眾所周知的。例如,精氨酸、組氨酸和賴氨酸是親水性的鹼性氨基酸並可以互換。同樣,異亮氨酸是疏水氨基酸,則可被亮氨酸,蛋氨酸或纈氨酸替換。因此,相似功能的兩個蛋白或氨基酸序列的相似性可能會不同。例如,基於MEGALIGN演算法的70%至99%的相似度(同一性)。“保守取代變體”還 包括通過BLAST或FASTA演算法確定具有60%以上的氨基酸同一性的多肽或酶,若能達75%以上更好,最好能達85%以上,甚至達90%以上為最佳,並且與天然或親本蛋白質或酶相比具有相同或基本相似的性質或功能。
“分離的”纖溶酶原是指從其天然環境分離和/或回收的纖溶酶原蛋白。在一些實施方案中,所述纖溶酶原會純化(1)至大於90%、大於95%、或大於98%的純度(按重量計),如通過Lowry法所確定的,例如超過99%(按重量計),(2)至足以通過使用旋轉杯序列分析儀獲得N端或內部氨基酸序列的至少15個殘基的程度,或(3)至同質性,該同質性是通過使用考馬斯藍或銀染在還原性或非還原性條件下的十二烷基硫酸鈉-聚丙烯醯胺凝膠電泳(SDS-PAGE)確定的。分離的纖溶酶原也包括通過生物工程技術從重組細胞製備,並通過至少一個純化步驟分離的纖溶酶原。
術語“多肽”、“肽”和“蛋白質”在本文中可互換使用,指任何長度的氨基酸的聚合形式,其可以包括遺傳編碼的和非遺傳編碼的氨基酸,化學或生物化學修飾的或衍生化的氨基酸,和具有經修飾的肽主鏈的多肽。該術語包括融合蛋白,包括但不限於具有異源氨基酸序列的融合蛋白,具有異源和同源前導序列(具有或沒有N端甲硫氨酸殘基)的融合物;等等。
關於參照多肽序列的“氨基酸序列同一性百分數(%)”定義為在必要時引入缺口以實現最大百分比序列同一性後,且不將任何保守替代視為序列同一性的一部分時,候選序列中與參照多肽序列中的氨基酸殘基相同的氨基酸殘基的百分率。為測定百分比氨基酸序列同一性目的的對比可以以本領域技術範圍內的多種方式實現,例如使用公眾可得到的電腦軟體,諸如BLAST、BLAST-2、ALIGN或Megalign(DNASTAR)軟體。本領域技術人員能決定用於比對序列的適宜參數,包括對所比較序列全長實現最大對比需要的任何演算法。然而,為了本發明的目的,氨基酸序列同一性百分數值是使用序列比較電腦程式ALIGN-2產生的。
在採用ALIGN-2來比較氨基酸序列的情況中,給定氨基酸序列A相對於給定氨基酸序列B的%氨基酸序列同一性(或者可表述為具有或包含相對 於、與、或針對給定氨基酸序列B的某一%氨基酸序列同一性的給定氨基酸序列A)如下計算:
分數X/Y乘100
其中X是由序列比對程式ALIGN-2在該程式的A和B比對中評分為相同匹配的氨基酸殘基的數目,且其中Y是B中的氨基酸殘基的總數。應當領會,在氨基酸序列A的長度與氨基酸序列B的長度不相等的情況下,A相對於B的%氨基酸序列同一性會不等於B相對於A的%氨基酸序列同一性。除非另有明確說明,本文中使用的所有%氨基酸序列同一性值都是依照上一段所述,使用ALIGN-2電腦程式獲得的。
如本文中使用的,術語“治療”和“處理”指獲得期望的藥理和/或生理效果。所述效果可以是完全或部分預防疾病或其症狀,和/或部分或完全治癒疾病和/或其症狀,並且包括:(a)預防疾病在受試者體內發生,所述受試者可以具有疾病的素因,但是尚未診斷為具有疾病;(b)抑制疾病,即阻滯其形成;和(c)減輕疾病和/或其症狀,即引起疾病和/或其症狀消退。
術語“個體”、“受試者”和“患者”在本文中可互換使用,指哺乳動物,包括但不限於鼠(大鼠、小鼠)、非人靈長類、人、犬、貓、有蹄動物(例如馬、牛、綿羊、豬、山羊)等。
“治療有效量”或“有效量”指在對哺乳動物或其它受試者施用以治療疾病時足以實現對疾病的所述預防和/或治療的纖溶酶原的量。“治療有效量”會根據所使用的纖溶酶原、要治療的受試者的疾病和/或其症狀的嚴重程度以及年齡、體重等而變化。
本發明纖溶酶原的製備
纖溶酶原可以從自然界分離並純化用於進一步的治療用途,也可以通過標準的化學肽合成技術來合成。當通過化學合成多肽時,可以經液相或固相進行合成。固相多肽合成(SPPS)(其中將序列的C末端氨基酸附接於不溶性支援物,接著序貫添加序列中剩餘的氨基酸)是適合纖溶酶原化學合成的方法。各種形式的SPPS,諸如Fmoc和Boc可用於合成纖溶酶原。用於固相合成的技術描述於Barany和Solid-Phase Peptide Synthesis;第3-284頁於The Peptides:Analysis, Synthesis,Biology.第2卷:Special Methods in Peptide Synthesis,Part A.,Merrifield,等J.Am.Chem.Soc.,85:2149-2156(1963);Stewart等,Solid Phase Peptide Synthesis,2nd ed.Pierce Chem.Co.,Rockford,Ill.(1984);和Ganesan A.2006 Mini Rev.Med Chem.6:3-10和Camarero JA等2005 Protein Pept Lett.12:723-8中。簡言之,用其上構建有肽鏈的功能性單元處理小的不溶性多孔珠。在偶聯/去保護的重複循環後,將附接的固相遊離N末端胺與單個受N保護的氨基酸單元偶聯。然後,將此單元去保護,露出可以與別的氨基酸附接的新的N末端胺。肽保持固定在固相上,之後將其切掉。
可以使用標準重組方法來生產本發明的纖溶酶原。例如,將編碼纖溶酶原的核酸插入表達載體中,使其與表達載體中的調控序列可操作連接。表達調控序列包括但不限於啟動子(例如天然關聯的或異源的啟動子)、信號序列、增強子元件、和轉錄終止序列。表達調控可以是載體中的真核啟動子系統,所述載體能夠轉化或轉染真核宿主細胞(例如COS或CHO細胞)。一旦將載體摻入合適的宿主中,在適合於核苷酸序列的高水準表達及纖溶酶原的收集和純化的條件下維持宿主。
合適的表達載體通常在宿主生物體中作為附加體或作為宿主染色體DNA的整合部分複製。通常,表達載體含有選擇標誌物(例如氨苄青黴素抗性、潮黴素抗性、四環素抗性、卡那黴素抗性或新黴素抗性)以有助於對外源用期望的DNA序列轉化的那些細胞進行檢測。
大腸桿菌(Escherichia coli)是可以用於克隆主題抗體編碼多核苷酸的原核宿主細胞的例子。適合於使用的其它微生物宿主包括桿菌,諸如枯草芽孢桿菌(Bacillus subtilis)和其他腸桿菌科(enterobacteriaceae),諸如沙門氏菌屬(Salmonella)、沙雷氏菌屬(Serratia)、和各種假單胞菌屬(Pseudomonas)物種。在這些原核宿主中,也可以生成表達載體,其通常會含有與宿主細胞相容的表達控制序列(例如複製起點)。另外,會存在許多公知的啟動子,諸如乳糖啟動子系統,色氨酸(trp)啟動子系統,beta-內醯胺酶啟動子系統,或來自噬菌體λ的啟動子系統。啟動子通常會控制表達,任選在操縱基因序列的情況中,並且具有核糖體結合位點序列等,以啟動並完成轉錄和翻譯。
其他微生物,諸如酵母也可用於表達。酵母(例如釀酒酵母(S.cerevisiae))和畢赤酵母(Pichia)是合適的酵母宿主細胞的例子,其中合適的載體根據需要具有表達控制序列(例如啟動子)、複製起點、終止序列等。典型的啟動子包含3-磷酸甘油酸激酶和其它糖分解酶。誘導型酵母啟動於特別包括來自醇脫氫酶、異細胞色素C、和負責麥芽糖和半乳糖利用的酶的啟動子。
在微生物外,哺乳動物細胞(例如在體外細胞培養物中培養的哺乳動物細胞)也可以用於表達並生成本發明的抗-Tau抗體(例如編碼主題抗-Tau抗體的多核苷酸)。參見Winnacker,From Genes to Clones,VCH Publishers,N.Y.,N.Y.(1987)。合適的哺乳動物宿主細胞包括CHO細胞系、各種Cos細胞系、HeLa細胞、骨髓瘤細胞系、和經轉化的B細胞或雜交瘤。用於這些細胞的表達載體可以包含表達控制序列,如複製起點,啟動子和增強子(Queen等,Immunol.Rev.89:49(1986)),以及必需的加工資訊位元點,諸如核糖體結合位點,RNA剪接位點,多聚腺苷酸化位點,和轉錄終止子序列。合適的表達控制序列的例子是白免疫球蛋白基因、SV40、腺病毒、牛乳頭瘤病毒、巨細胞病毒等衍生的啟動子。參見Co等,J.Immunol.148:1149(1992)。
一旦合成(化學或重組方式),可以依照本領域的標準規程,包括硫酸銨沉澱,親和柱,柱層析,高效液相層析(HPLC),凝膠電泳等來純化本發明所述的纖溶酶原。該纖溶酶原是基本上純的,例如至少約80%至85%純的,至少約85%至90%純的,至少約90%至95%純的,或98%至99%純的或更純的,例如不含污染物,所述污染物如細胞碎片,除主題抗體以外的大分子,等等。
藥物配製劑
可以通過將具有所需純度的纖溶酶原與可選的藥用載體,賦形劑,或穩定劑(Remington's Pharmaceutical Sciences,16版,Osol,A.ed.(1980))混合形成凍乾製劑或水溶液製備治療配製劑。可接受的載體、賦形劑、穩定劑在所用劑量及濃度下對受者無毒性,並包括緩衝劑例如磷酸鹽,檸檬酸鹽及其它有機酸;抗氧化劑包括抗壞血酸和蛋氨酸;防腐劑(例如十八烷基二甲基苄基氯化銨;氯化己烷雙胺;氯化苄烷銨(benzalkonium chloride),苯索氯銨;酚、丁醇或苯甲醇;烷基對羥基苯甲酸酯如甲基或丙基對羥基苯甲酸酯;鄰苯二酚;間苯二酚;環己醇;3-戊醇;間甲酚);低分子量多肽(少於約10個殘基);蛋白質如血 清白蛋白,明膠或免疫球蛋白;親水聚合物如聚乙烯吡咯烷酮;氨基酸如甘氨酸,穀氨醯胺、天冬醯胺、組氨酸、精氨酸或賴氨酸;單糖,二糖及其它碳水化合物包括葡萄糖、甘露糖、或糊精;螯合劑如EDTA;糖類如蔗糖、甘露醇、岩藻糖或山梨醇;成鹽反離子如鈉;金屬複合物(例如鋅-蛋白複合物);和/或非離子表面活性劑,例如TWEENTM,PLURONICSTM或聚乙二醇(PEG)。較佳為凍乾的抗-VEGF抗體配製劑在WO 97/04801中描述,其包含在本文中作為參考。
本發明的配製劑也可含有需治療的具體病症所需的一種以上的活性化合物,較佳為活性互補並且相互之間沒有副作用的那些。例如,抗高血壓的藥物,抗心律失常的藥物,治療糖尿病的藥物等。
本發明的纖溶酶原可包裹在通過諸如凝聚技術或介面聚合而製備的微膠囊中,例如,可置入在膠質藥物傳送系統(例如,脂質體,白蛋白微球,微乳劑,納米顆粒和納米膠囊)中或置入粗滴乳狀液中的羥甲基纖維素或凝膠-微膠囊和聚-(甲基丙烯酸甲酯)微膠囊中。這些技術公開於Remington's Pharmaceutical Sciences 16th edition,Osol,A.Ed.(1980)。
用於體內給藥的本發明的纖溶酶原必需是無菌的。這可以通過在冷凍乾燥和重新配製之前或之後通過除菌濾膜過濾而輕易實現。
本發明的纖溶酶原可製備緩釋製劑。緩釋製劑的適當實例包括具有一定形狀且含有糖蛋白的固體疏水聚合物半通透基質,例如膜或微膠囊。緩釋基質實例包括聚酯、水凝膠(如聚(2-羥基乙基-異丁烯酸酯)(Langer等,J.Biomed.Mater.Res.,15:167-277(1981);Langer,Chem.Tech.,12:98-105(1982))或聚(乙烯醇),聚交酯(美國專利3773919,EP 58,481),L-谷氨酸與γ乙基-L-谷氨酸的共聚物(Sidman,等,Biopolymers 22:547(1983)),不可降解的乙烯-乙烯乙酸酯(ethylene-vinyl acetate)(Langer,等,出處同上),或可降解的乳酸-羥基乙酸共聚物如Lupron DepotTM(由乳酸-羥基乙酸共聚物和亮氨醯脯氨酸(leuprolide)乙酸酯組成的可注射的微球體),以及聚D-(-)-3-羥丁酸。聚合物如乙烯-乙酸乙烯酯和乳酸-羥基乙酸能持續釋放分子100天以上,而一些水凝膠釋放蛋白的時間卻較短。可以根據相關機理來設計使蛋白穩定的合理策略。例如,如果發現凝聚的機理是通過硫代二硫鍵互換而形成分子間S-S鍵,則可通過修飾巰基殘基、從酸 性溶液中凍乾、控制濕度、採用合適的添加劑、和開發特定的聚合物基質組合物來實現穩定。
給藥和劑量
可以通過不同方式,例如通過靜脈內,腹膜內,皮下,顱內,鞘內,動脈內(例如經由頸動脈),肌內來實現本發明藥物組合物的施用。
用於胃腸外施用的製備物包括無菌水性或非水性溶液、懸浮液和乳劑。非水性溶劑的例子是丙二醇、聚乙二醇、植物油如橄欖油,和可注射有機酯,如油酸乙酯。水性載體包括水、醇性/水性溶液、乳劑或懸浮液,包括鹽水和緩衝介質。胃腸外媒介物包含氯化鈉溶液、林格氏右旋糖、右旋糖和氯化鈉、或固定油。靜脈內媒介物包含液體和營養補充物、電解質補充物,等等。也可以存在防腐劑和其他添加劑,諸如例如,抗微生物劑、抗氧化劑、螯合劑、和惰性氣體等等。
醫務人員會基於各種臨床因素確定劑量方案。如醫學領域中公知的,任一患者的劑量取決於多種因素,包括患者的體型、體表面積、年齡、要施用的具體化合物、性別、施用次數和路徑、總體健康、和同時施用的其它藥物。本發明包含纖溶酶原的藥物組合物的劑量範圍可以例如為例如每天約0.0001至2000mg/kg,或約0.001至500mg/kg(例如0.02mg/kg,0.25mg/kg,0.5mg/kg,0.75mg/kg,10mg/kg,50mg/kg等等)受試者體重。例如,劑量可以是1mg/kg體重或50mg/kg體重或在1-50mg/kg的範圍,或至少1mg/kg。高於或低於此例示性範圍的劑量也涵蓋在內,特別是考慮到上述的因素。上述範圍中的中間劑量也包含在本發明的範圍內。受試者可以每天、隔天、每週或根據通過經驗分析確定的任何其它日程表施用此類劑量。例示性的劑量日程表包括連續幾天1-10mg/kg。在本發明的藥物施用過程中需要即時評估治療效果和安全性。
製品或藥盒
本發明的一個實施方案涉及一種製品或藥盒,其包含可用於治療由糖尿病引起的心血管病及其相關病症的本發明纖溶酶原或纖溶酶。所述製品較佳包括一個容器,標籤或包裝插頁。適當的容器有瓶子,小瓶,注射器等。容器可由各種材料如玻璃或塑膠製成。所述容器含有組合物,所述組合物可有 效治療本發明的疾病或病症並具有無菌入口(例如所述容器可為靜脈內溶液包或小瓶,其含有可被皮下注射針穿透的塞子的)。所述組合物中至少一種活性劑為纖溶酶原/纖溶酶。所述容器上或所附的標籤說明所述組合物用於治療本發明所述由糖尿病引起的心血管病及其相關病症。所述製品可進一步包含含有可藥用緩衝液的第二容器,諸如磷酸鹽緩衝的鹽水,林格氏溶液以及葡萄糖溶液。其可進一步包含從商業和使用者角度來看所需的其它物質,包括其它緩衝液,稀釋劑,過濾物,針和注射器。此外,所述製品包含帶有使用說明的包裝插頁,包括例如指示所述組合物的使用者將纖溶酶原組合物以及治療伴隨的疾病的其它藥物給藥患者。
實施例
實施例1 纖溶酶原降低系統性硬化症小鼠腎臟纖維化
取12周齡C57雄鼠10隻以隨機分為兩組,給溶媒PBS對照組和給纖溶酶原組各5隻。實驗開始當天記為第0天並稱重分組,第1天開始造模給藥,所有小鼠按0.1mg/0.1ml/隻/天皮下注射博萊黴素誘導系統性硬化症,並開始給纖溶酶原或PBS,連續造模給藥21天。給纖溶酶原組小鼠按1mg/0.1ml/隻/天尾靜脈注射纖溶酶原,給溶媒PBS對照組尾靜脈注射相同體積的PBS。在第22天處死小鼠並取腎臟在4%多聚甲醛固定液中固定24小時。固定後的腎臟經酒精梯度脫水和二甲苯透明後進行石蠟包埋。組織切片厚度為3μm,切片脫蠟至水後水洗1次,以0.1%天狼星紅飽和苦味酸染色30分鐘後,流水沖洗2min,蘇木素染色1分鐘,流水沖洗,1%鹽酸酒精分化,氨水返藍,流水沖洗,烘乾後中性樹膠封片,在200倍光學顯微鏡下觀察。
結果顯示,在博萊黴素誘導的系統性硬化症小鼠模型中,給溶媒PBS對照組(圖1A)腎臟膠原纖維化(箭頭標識)程度比給纖溶酶原組(圖1B)高。說明纖溶酶原能有效降低博萊黴素誘導的腎臟纖維化。
實施例2 纖溶酶原降低糖尿病小鼠腎臟膠原蛋白沉積
24-25周齡db/db雄鼠10隻,隨機分為兩組,給溶媒PBS對照組和給纖溶酶原組,每組各5隻。實驗開始當天記為第0天並稱重分組,第1天開始給纖溶酶原或PBS,連續給藥31天。給纖溶酶原組小鼠按2mg/0.2ml/隻/天尾靜脈注射纖溶酶原,給溶媒PBS對照組給予相同體積的PBS。給纖溶酶原31天後處死小鼠 並取腎臟組織在4%多聚甲醛固定液中固定24小時。固定後的腎臟組織經酒精梯度脫水和二甲苯透明後進行石蠟包埋。組織切片厚度為4μm,切片脫蠟複水後水洗1次。以3%雙氧水孵育15分鐘,0.01MPBS洗2次,每次5分鐘。10%正常羊血清(Vector laboratories,Inc.,USA)封閉1小時,時間到後甩去血清,用PAP筆圈出組織。針對IV膠原的兔抗小鼠多克隆抗體(Abcam)4℃孵育過夜,TBS洗2次,每次5分鐘。山羊抗兔IgG(HRP)抗體(Abcam)二抗室溫孵育1小時,TBS洗2次。按DAB試劑盒(Vector laboratories,Inc.,USA)顯色,水洗3次後蘇木素複染30秒,流水沖洗5分鐘,梯度酒精脫水,二甲苯透明透明,中性樹膠封片,切片在200倍光學顯微鏡下觀察。
糖尿病腎病是糖尿病慢性併發症,腎小球硬化以及腎間質纖維化是其典型的病理改變[27]
結果顯示,給纖溶酶原組(圖2B)IV膠原陽性著色明顯多於給溶媒PBS對照組(圖2A),說明纖溶酶原能降低腎臟組織膠原蛋白的沉積(箭頭標識),提示纖溶酶原有望通過降低腎臟組織膠原蛋白的沉積,阻止糖尿病所致的腎臟組織纖維化。
實施例3 纖溶酶原改善糖尿病小鼠腎臟纖維化
26周齡db/db雄鼠10隻,隨機分為兩組,給溶媒PBS對照組和給纖溶酶原組,每組各5隻。實驗開始當天記為第0天並稱重分組,第1天開始給纖溶酶原或PBS,連續給藥35天。給纖溶酶原組小鼠按2mg/0.2ml/隻/天尾靜脈注射纖溶酶原,給溶媒PBS對照組給予相同體積的PBS。第36天處死小鼠並取腎臟組織在4%多聚甲醛固定液中固定24小時。固定後的腎臟組織經酒精梯度脫水和二甲苯透明後進行石蠟包埋。組織切片厚度為4μm,切片脫蠟複水後放入重鉻酸鉀溶液過夜。鐵蘇木素染3到5分鐘,流水稍洗。1%鹽酸酒精分化,氨水處理1秒,水洗。麗春紅酸性品紅液染8分鐘,水中快速漂洗。1%磷鉬酸水溶液處理約2分鐘,苯胺藍液複染6分鐘。1%冰醋酸漂洗1分鐘左右。無水乙醇脫水二甲苯透明後封片,切片在200倍光學顯微鏡下觀察。
Masson染色可以顯示組織的纖維化。結果顯示,給溶媒PBS對照組(圖3A)腎小球系膜增生,系膜基質增多,腎間質輕度纖維化(箭頭標識), 增生的纖維化呈藍色。給纖溶酶原組(圖3B)腎小球系膜細胞及基質明顯比對照組少,腎間質纖維化明顯減少。說明纖溶酶原能改善糖尿病小鼠腎臟的纖維化。
實施例4 纖溶酶原降低順鉑腎臟纖維化模型小鼠腎臟的纖維化
8-9周齡健康的雄性C57小鼠10隻,隨機分為兩組,給溶媒PBS對照組和給纖溶酶原組,每組各5隻。分組完成後,按10mg/Kg體重單次腹腔注射順鉑,建立腎臟纖維化模型[30]。建立模型後,給纖溶酶原組1mg/0.1ml/隻/天經尾靜脈注射給予纖溶酶原,給溶媒PBS對照組給予相同體積的PBS。實驗開始當天記為第0天稱體重並分組,第1天開始腹腔注射順鉑造模,造模後3小時內給予纖溶酶原或溶媒PBS,給藥週期7天。第8天處死小鼠,取腎臟在4%多聚甲醛固定液中固定24小時。固定後的腎臟組織經酒精梯度脫水和二甲苯透明後進行石蠟包埋。組織切片厚度為5μm,切片脫蠟複水後水洗1次。檸檬酸修復30分鐘,室溫冷卻10分鐘後水輕柔沖洗。以3%雙氧水孵育15分鐘,用PAP筆圈出組織。10%的羊血清(Vector laboratories,Inc.,USA)封閉1小時;時間到後,棄除羊血清液。兔抗小鼠IV膠原抗體(Abcam)4℃孵育過夜,TBS洗2次,每次5分鐘。山羊抗兔IgG(HRP)抗體(Abcam)二抗室溫孵育1小時,TBS洗2次,每次5分鐘。按DAB試劑盒(Vector laboratories,Inc.,USA)顯色,水洗3次後蘇木素複染30秒,流水返藍5分鐘,然後TBS洗1次。梯度脫水透明並封片,切片在200倍光學顯微鏡下觀察。
順鉑是臨床上應用廣泛、療效可靠的廣譜抗腫瘤藥物,但具有嚴重的腎毒性,主要是腎小管及腎間質損傷,最終發展為腎纖維化[30]。該實驗結果顯示,給溶媒PBS對照組(圖4A)腎臟IV型膠原陽性表達(箭頭標識)明顯高於給溶纖溶酶原組(圖4B)。說明纖溶酶原可改善順鉑腎臟纖維化模型小鼠腎臟的纖維化。
實施例5 纖溶酶原修復慢性腎衰竭模型腎臟的纖維化
8-9周齡的PLG活性正常雄性小鼠12隻以及PLG活性受損雄性小鼠6隻,PLG活性正常小鼠隨機分為兩組,給纖溶酶原組和給溶媒PBS對照組各6隻。三組小鼠每天飼餵0.25%嘌呤飼料(南通特洛菲),建立慢性腎衰竭模型[35]。造模當天記為第1天,同時開始給藥。給纖溶酶原組按1mg/0.1ml/隻/天給予纖溶 酶原,給溶媒PBS對照組以相同方式給予相同體積的PBS,連續造模給藥10天,PLG活性受損小鼠不做處理。第11天處死小鼠取腎臟於4%多聚甲醛中固定24小時。固定後的腎臟經酒精梯度脫水和二甲苯透明後進行石蠟包埋。組織切片厚度為3μm,切片脫蠟至水後水洗1次,以0.1%天狼星紅染色60分鐘後,流水沖洗,蘇木素染色1分鐘,流水沖洗,1%鹽酸酒精和氨水分化返藍,流水沖洗,烘乾後封片,切片在200倍光學顯微鏡下觀察。
結果顯示,給纖溶酶原組(圖5B)膠原的沉積(箭頭標識)要明顯少於給溶媒PBS對照組(圖5A)和PLG活性受損組(圖5C),且給纖溶酶原組與PLG活性受損組統計差異顯著(P=0.018)(圖5D)。說明纖溶酶原能顯著減輕慢性腎損傷動物腎臟組織中膠原蛋白的沉積,阻止和減輕慢性腎損傷所致的腎臟纖維化。
實施例6 纖溶酶原降低3%膽固醇高脂血症模型小鼠腎臟纖維化
9周齡雄性C57小鼠16隻飼餵3%膽固醇高脂飼料(南通特洛菲)4周,誘導高脂血症[30,31],此模型定為3%膽固醇高脂血症模型,成模後的小鼠繼續飼餵3%膽固醇高脂飼料。另取相同周齡的雄性C57小鼠5隻作為空白對照組,實驗期間飼餵普通維持飼料。在給藥前三天每隻小鼠取血50μL,檢測總膽固醇,模型小鼠根據總膽固醇濃度和體重隨機分為兩組,給纖溶酶原組和給溶媒PBS對照組,每組各8隻。開始給藥記為第1天,給纖溶酶原組小鼠尾靜脈注射人源纖溶酶原1mg/0.1ml/隻/天,給溶媒PBS對照組尾靜脈注射同體積的PBS。在第30天給藥後小鼠給藥30天,於第31天處死小鼠,取材腎臟於4%多聚甲醛固定24-48小時。固定後的組織經酒精梯度脫水和二甲苯透明後進行石蠟包埋。切片厚度為3μm,切片脫蠟複水後水洗1次,以0.1%天狼星紅飽和苦味酸染色30分鐘後,流水沖洗2min,蘇木素染色1分鐘,流水沖洗,1%鹽酸酒精分化,氨水返藍,流水沖洗,烘乾後中性樹膠封片,在200倍光學顯微鏡下觀察。
結果顯示,給纖溶酶原組(圖6C)腎臟膠原蛋白沉積(箭頭標識)明顯少於給溶媒PBS對照組(圖6B),且統計差異顯著(圖6D);給纖溶酶原組纖維化基本恢復到正常水準(圖6A)。說明纖溶酶原能有效的減少3%膽固醇高脂血症模型小鼠腎臟纖維化。
實施例7 纖溶酶原降低系統性硬化症小鼠皮膚纖維化
取12周齡C57雄鼠15隻,隨機分為三組,空白對照組、給溶媒PBS(PBS為磷酸緩衝鹽溶液(Phosphate Buffer Saline),本文中為纖溶酶原的溶媒。)對照組和給纖溶酶原組,每組各5隻,並取13周齡PLG活性受損小鼠5隻。實驗開始當天記為第0天稱重分組,第二天開始造模給藥,給溶媒PBS對照組、給纖溶酶原組以及PLG活性受損小鼠按0.1mg/0.1ml/隻/天皮下注射博萊黴素誘導系統性硬化症[26]。空白對照組按0.1ml/隻/天皮下注射生理鹽水,同時開始給纖溶酶原或PBS並記為第1天,連續造模給藥21天。給纖溶酶原組小鼠按1mg/0.1ml/隻/天尾靜脈注射纖溶酶原,給溶媒PBS對照組給予相同體積的PBS,正常小鼠組和PLG活性受損小鼠不做給藥處理。在第22天處死小鼠並取背部皮膚組織在4%多聚甲醛固定液中固定24小時。固定的皮膚組織經酒精梯度脫水和二甲苯透明後進行石蠟包埋。組織切片厚度為3μm,切片脫蠟至水後水洗1次,以0.1%天狼星紅飽和苦味酸染色30分鐘後,流水沖洗2min,蘇木素染色1分鐘,流水沖洗,1%鹽酸酒精分化,氨水返藍,流水沖洗,烘乾後中性樹膠封片,在100倍光學顯微鏡下觀察。
天狼星紅染色可使膠原持久染色,作為病理切片特殊染色方法,天狼星紅染色可以特異顯示膠原組織。
結果顯示,在博萊黴素誘導的系統性硬化症小鼠模型中,顯微鏡下觀察到給溶媒PBS組(圖7B)和PLG活性受損組小鼠(圖7D)真皮上部膠原纖維束明顯增多,膠原纖維粗大,排列緻密,真皮層增厚;給纖溶酶原組(圖7C),真皮層中成纖維細胞明顯少於給溶媒PBS對照組,皮膚真皮層厚度基本接近正常水準(圖7A)。說明纖溶酶原能有效降低博萊黴素誘導的皮膚纖維化。
實施例8 纖溶酶原降低系統性硬化症小鼠肺纖維化
取12周齡C57雄鼠17隻,隨機分為兩組,給溶媒PBS對照組11隻和給纖溶酶原組6隻。實驗開始當天記為第0天並稱重分組,第1天開始造模給藥,兩組小鼠按0.1mg/0.1m1/隻/天皮下注射博萊黴素誘導系統性硬化症[26],並開始給纖溶酶原或PBS,連續造模給藥21天。給纖溶酶原組小鼠按1mg/0.1ml/隻/天尾靜脈注射纖溶酶原,給溶媒PBS對照組以相同方式給予相同體積的PBS。第22天處死小鼠並取肺組織在4%多聚甲醛固定液中固定24小時。固定後的肺組織 經酒精梯度脫水和二甲苯透明後進行石蠟包埋。組織切片厚度為3μm,切片脫蠟至水後水洗1次,以0.1%天狼星紅飽和苦味酸染色30分鐘後,流水沖洗2min,蘇木素染色1分鐘,流水沖洗,1%鹽酸酒精分化,氨水返藍,流水沖洗,烘乾後中性樹膠封片,在200倍光學顯微鏡下觀察。
研究發現,在博萊黴素誘導的系統性硬化症小鼠模型中,鏡下觀察給溶媒PBS組(圖8A)膠原纖維化(箭頭標識)程度比給纖溶酶原組(圖8B)高;給纖溶酶原組小鼠肺部肺泡壁形態接近正常水準,炎症細胞明顯減少,纖維化程度明顯低於給溶媒PBS組,且統計差異顯著(圖8C)。說明纖溶酶原可有效降低博萊黴素誘導的系統性硬化症小鼠肺組織纖維化。
實施例9 纖溶酶原降低系統性硬化症小鼠心臟纖維化
取12周齡C57雄鼠10隻,隨機分為兩組,給溶媒PBS對照組和給纖溶酶原組各5隻。實驗開始當天記為第0天並稱重分組,第1天開始造模給藥,按0.1mg/0.1ml/隻/天皮下注射博萊黴素誘導系統性硬化症[26],並開始給纖溶酶原或PBS,連續給藥21天。給纖溶酶原組小鼠按1mg/0.1ml/隻/天尾靜脈注射纖溶酶原,給溶媒PBS對照組尾靜脈注射相同體積的PBS,在第22天處死小鼠並取心臟在4%多聚甲醛固定液中固定24小時。固定後的心臟經酒精梯度脫水和二甲苯透明後進行石蠟包埋。組織切片厚度為3μm,切片脫蠟至水後水洗1次,以0.1%天狼星紅飽和苦味酸染色30分鐘後,流水沖洗2min,蘇木素染色1分鐘,流水沖洗,1%鹽酸酒精分化,氨水返藍,流水沖洗,烘乾後中性樹膠封片,在200倍光學顯微鏡下觀察。
研究發現,在博萊黴素誘導的系統性硬化症小鼠模型中,鏡下觀察到給溶媒PBS對照組(圖9A)心臟膠原蛋白沉積比給纖溶酶原組(圖9B)高。說明纖溶酶原能有效降低博萊黴素誘導的心臟纖維化。
實施例10 纖溶酶原改善24-25周齡糖尿病小鼠心臟纖維化
24-25周齡db/db雄鼠10隻,隨機分為兩組,給溶媒PBS對照組和給纖溶酶原組,每組各5隻。實驗開始當天記為第0天並稱重分組,第1天開始給纖溶酶原或PBS,連續給藥31天。給纖溶酶原組小鼠按2mg/0.2ml/隻/天尾靜脈注射纖溶酶原,給溶媒PBS對照組給予相同體積的PBS。給纖溶酶原31天後處死小鼠 並取心臟組織在4%多聚甲醛固定液中固定24小時。固定後的心臟組織經酒精梯度脫水和二甲苯透明後進行石蠟包埋。組識切片厚度為4μm,切片脫蠟複水後放入重鉻酸鉀溶液過夜。鐵蘇木素染3到5分鐘,流水稍洗。1%鹽酸酒精分化,氨水處理1秒,水洗。麗春紅酸性品紅液染8分鐘,水中快速漂洗。1%磷鉬酸水溶液處理約2分鐘,苯胺藍液複染6分鐘。1%冰醋酸漂洗大概1分鐘左右。無水乙醇脫水二甲苯透明後封片,切片在200倍光學顯微鏡下觀察。
糖尿病最常見的併發症是結締組織過度累積(病理性纖維化),心肌間質纖維化可能是糖尿病心肌病變的特徵性病理改變[28-29]
Masson染色可以顯示組織的纖維化。結果顯示,給溶媒PBS對照組(圖10A)心肌纖維之間可見著藍色的增生的膠原纖維(箭頭標識),呈輕度心肌纖維化;給纖溶酶原組(圖10B)心肌纖維之間可見少量的淺藍色的增生的膠原纖維,較之於對照組,心肌纖維化明顯減輕。說明纖溶酶原能改善糖尿病小鼠心臟的纖維化。
實施例11 纖溶酶原降低17-18周齡糖尿病小鼠心臟膠原蛋白沉積
17-18周齡db/db雄鼠8隻,隨機分為兩組,給溶媒PBS對照組和給纖溶酶原組,每組各4隻。實驗開始當天記為第0天並稱重分組,第1天開始給纖溶酶原或PBS,連續給藥35天。給纖溶酶原組小鼠按2mg/0.2ml/隻/天尾靜脈注射纖溶酶原,給溶媒PBS對照組給予相同體積的PBS。給纖溶酶原35天後處死小鼠並取心臟組織在4%多聚甲醛固定液中固定24小時。固定後的心臟經酒精梯度脫水和二甲苯透明後進行石蠟包埋。組織切片厚度為3μm,切片脫蠟至水後水洗1次,以0.1%天狼星紅飽和苦味酸染色30分鐘後,流水沖洗2min,蘇木素染色1分鐘,流水沖洗,1%鹽酸酒精分化,氨水返藍,流水沖洗,烘乾後中性樹膠封片,在200倍光學顯微鏡下觀察。
結果顯示,給纖溶酶原組(圖11B)小鼠膠原纖維的沉積(箭頭標識)明顯少於給溶媒PBS對照組(圖11A)。說明纖溶酶原能降低心臟組織膠原蛋白的沉積,提示纖溶酶原有望通過降低心臟組織膠原蛋白的沉積,減少相對年輕(17-18周齡)糖尿病小鼠心臟組織纖維化。
實施例12 纖溶酶原降低26-27周齡糖尿病小鼠心臟膠原蛋白沉積
26-27周齡db/db雄鼠9隻,隨機分為兩組,給溶媒PBS對照組5隻和給纖溶酶原組4隻。實驗開始當天記為第0天並稱重分組,第1天開始給纖溶酶原或PBS,連續給藥35天。給纖溶酶原組小鼠按2mg/0.2ml/隻/天尾靜脈注射纖溶酶原,給溶媒PBS對照組給予相同體積的PBS。給纖溶酶原35天後處死小鼠並取心臟組織在4%多聚甲醛固定液中固定24小時。固定後的心臟經酒精梯度脫水和二甲苯透明後進行石蠟包埋。組織切片厚度為3μm,切片脫蠟至水後水洗1次,以0.1%天狼星紅染色60分鐘後,流水沖洗,蘇木素染色1分鐘,流水沖洗,1%鹽酸酒精和氨水分化返藍,流水沖洗,烘乾後封片,在200倍光學顯微鏡下觀察。
結果顯示,給纖溶酶原組(圖12B)小鼠膠原纖維的沉積(箭頭標識)明顯少於給溶媒PBS對照組(圖12A)。說明纖溶酶原能降低心臟組織膠原蛋白的沉積,提示纖溶酶原有望通過降低心臟組織膠原蛋白的沉積,減少相對年老(26-27周齡)糖尿病小鼠心臟組織纖維化。
實施例13 纖溶酶原改善ApoE動脈粥樣硬化小鼠心臟纖維化水準
6周齡ApoE雄性小鼠13隻飼餵高脂高膽固醇飼料(南通特洛菲,TP2031)16周,誘導動脈粥樣硬化[31,32]。在給藥前三天每隻小鼠取血50μL,檢測總膽固醇濃度,並根據檢測結果將小鼠隨機分為兩組,給溶媒PBS對照組7隻以及給纖溶酶原組6隻。開始給藥定為第1天,給纖溶酶原組小鼠尾靜脈注射人源纖溶酶原1mg/0.1ml/隻/天,給溶媒PBS對照組尾靜脈注射同體積的PBS。給藥30天,期間一直飼餵高脂高膽固醇飼料。於第31天處死小鼠,取心臟於4%多聚甲醛固定24-48小時。固定後的組織經酒精梯度脫水和二甲苯透明後進行石蠟包埋。組織切片厚度為3μm,切片脫蠟複水後水洗1次,以0.1%天狼星紅飽和苦味酸染色30分鐘後,流水沖洗2min,蘇木素染色1分鐘,流水沖洗,1%鹽酸酒精分化,氨水返藍,流水沖洗,烘乾後中性樹膠封片,在200倍光學顯微鏡下觀察。
結果顯示,給纖溶酶原組(圖13B)膠原的沉積(箭頭標識)明顯少於給溶媒PBS對照組(圖13A),提示纖溶酶原能通過減少ApoE動脈粥樣硬化模型小鼠心臟組織的膠原蛋白沉積,阻止和降低動脈粥樣硬化所致的心臟纖維化。
實施例14 纖溶酶原降低高血脂模型小鼠心臟纖維化
6周齡C57雄性小鼠11隻飼餵高脂高膽固醇飼料(南通特洛菲,TP2031)16周,誘導高血脂[33,34]。在給藥前三天每隻小鼠取血50μL,檢測總膽固醇濃度,並據其將小鼠隨機分為兩組,給溶媒PBS對照組6隻以及給纖溶酶原組5隻。開始給藥記為第1天,給纖溶酶原組小鼠尾靜脈注射人源纖溶酶原1mg/0.1ml/隻/天,給溶媒PBS對照組尾靜脈注射同體積的PBS。給藥30天,期間一直飼餵高脂高膽固醇飼料。於第31天處死小鼠,取心臟組織於4%多聚甲醛固定24-48小時。固定後的組織經酒精梯度脫水和二甲苯透明後進行石蠟包埋。組織切片厚度為3μm,切片脫蠟複水後水洗1次,以0.1%天狼星紅飽和苦味酸染色30分鐘後,流水沖洗2min,蘇木素染色1分鐘,流水沖洗,1%鹽酸酒精分化,氨水返藍,流水沖洗,烘乾後中性樹膠封片,在200倍光學顯微鏡下觀察。
結果顯示,給纖溶酶原組(圖14B)膠原沉積(箭頭標識)明顯少於給溶媒PBS對照組(圖14A),提示纖溶酶原能通過減少高血脂模型小鼠心臟組織膠原蛋白沉積,從而阻止和降低高血脂所致的心臟纖維化。
實施例15纖溶酶原減少糖尿病小鼠胰島膠原沉積
24-25周齡db/db雄性小鼠16隻,隨機分為兩組,給纖溶酶原組10隻,給溶媒PBS對照組6隻。給纖溶酶原組尾靜脈注射人源纖溶酶原2mg/0.2ml/隻/天,給溶媒PBS對照組尾靜脈注射同體積的PBS。實驗開始當天記為第0天稱重分組,第1天開始給纖溶酶原或PBS,連續給藥31天。在第32天處死小鼠,取胰臟在4%多聚甲醛中固定。固定後的胰臟組織經酒精梯度脫水和二甲苯透明後進行石蠟包埋。組織切片厚度為3μm,切片脫蠟至水後水洗1次,以0.1%天狼星紅染色60分鐘後,流水沖洗,蘇木素染色1分鐘,流水沖洗,1%鹽酸酒精和氨水分化返藍,流水沖洗,烘乾後封片,切片在200倍光學顯微鏡下觀察。
結果顯示,給纖溶酶原組小鼠(圖15B)胰島膠原沉積(箭頭標識)明顯低於給溶媒PBS對照組(圖15A),且統計差異顯著(圖15C)。說明纖溶酶原能顯著減輕糖尿病小鼠胰腺組織中膠原蛋白的沉積,阻止和減輕胰腺的損傷和纖維化。
實施例16 纖溶酶原改善ApoE動脈粥樣硬化小鼠主動脈竇纖維化
6周齡雄性ApoE小鼠13隻飼餵高脂高膽固醇飼料(南通特洛菲,TP2031)16周以誘導動脈粥樣硬化模型[31,32]。成模後的小鼠在給藥前三天每隻取血50μl以檢測總膽固醇(T-CHO)含量,並根據T-CHO含量隨機分為兩組,給溶媒PBS對照組7隻,給纖溶酶原組6隻。開始給藥定為第1天,給纖溶酶原組小鼠尾靜脈注射人源纖溶酶原1mg/0.1mL/隻/天,給溶媒PBS對照組尾靜脈注射同體積的PBS。給藥30天,並於第31天處死小鼠,取心臟於4%多聚甲醛固定24-48小時,分別於15%、30%蔗糖中4℃過夜沉底,OCT包埋,冰凍切片厚度8μm,以0.1%天狼星紅飽和苦味酸染色30分鐘後,流水沖洗2min,蘇木素染色1分鐘,流水沖洗,1%鹽酸酒精分化,氨水返藍,流水沖洗,烘乾後中性樹膠封片,切片在40倍(圖16A、圖16B)、200倍(圖16C、圖16D)光學顯微鏡下觀察。
結果顯示,給纖溶酶原組(圖16B、D)主動脈竇管壁內膜膠原蛋白沉積(箭頭標識)的面積明顯小於給溶媒PBS對照組(圖16A、C),說明纖溶酶原能夠消減動脈粥硬化模型小鼠主動脈竇纖維化水準。
實施例17 纖溶酶原改善四氯化碳誘導的肝臟纖維化
9周齡C57雌性小鼠15隻,隨機分為三組,空白對照組、給溶媒PBS對照組和給纖溶酶原組,每組各5隻。給溶媒PBS對照組和給纖溶酶原組
小鼠按照1mL/kg體重腹腔注射四氯化碳,每週三次,連續注射兩周,建立肝纖維化模型[36,37],空白對照小鼠按照模型小鼠注射方式注射相應體積的玉米油。四氯化碳需用玉米油稀釋,四氯化碳與玉米油稀釋比例為1:3。模型建立後開始給藥,開始給藥當天記為第1天,給纖溶酶原組小鼠按照1mg/0.1mL/隻/天尾靜脈注射人源纖溶酶原,給溶媒PBS對照組尾靜脈注射同體積的PBS,空白對照組不做注射處理,連續給藥14天。第15天處死小鼠取肝臟,於4%多聚甲醛中固定24小時。固定後的肝臟經酒精梯度脫水和二甲苯透明後進行石蠟包埋。組織切片厚度為3μm,切片脫蠟至水後水洗1次,以0.1%天狼星紅染色60分鐘後,流水沖洗,蘇木素染色1分鐘,流水沖洗,1%鹽酸酒精和氨水分化返藍,流水沖洗,烘乾後封片,切片在200倍光學顯微鏡下觀察。
結果顯示,給纖溶酶原組(圖17C)膠原蛋白沉積明顯少於給溶媒PBS對照組(圖17B),且給纖溶酶原組比給PBS組膠原蛋白沉積水準更接近 空白對照小鼠(圖17A)。說明纖溶酶原能減少肝臟膠原蛋白的沉積,改善肝纖維化模型小鼠肝臟纖維化。
實施例18 纖溶酶原降低16周高脂血症模型小鼠主動脈竇纖維化
6周齡雄性C57小鼠11隻飼餵高脂高膽固醇飼料(南通特洛菲,貨號TP2031)16周以誘導高脂血症模型[30,31],此模型定為16周高脂血症模型。成模後的小鼠繼續飼餵高膽固醇飼料。在給藥前三天每隻取血50μl以檢測總膽固醇(T-CHO)含量,並根據T-CHO含量隨機分為兩組,給溶媒PBS對照組6隻,給纖溶酶原組5隻。開始給藥記為第1天,給纖溶酶原組尾靜脈注射人源纖溶酶原1mg/0.1ml/隻/天,給溶媒PBS對照組尾靜脈注射同體積的PBS。給藥30天,於第31天處死小鼠,取材心臟於4%多聚甲醛固定24-48小時。固定後的組織經酒精梯度脫水和二甲苯透明後進行石蠟包埋。主動脈竇切片厚度為3μm,切片脫蠟複水後水洗1次,以0.1%天狼星紅飽和苦味酸染色30分鐘後,流水沖洗2min,蘇木素染色1分鐘,流水沖洗,1%鹽酸酒精分化,氨水返藍,流水沖洗,烘乾後中性樹膠封片,在40倍(圖18A、圖18B)、200倍(圖18C、圖18D)光學顯微鏡下觀察。
結果顯示,給纖溶酶原組(圖18B、18D)主動脈竇管壁內膜膠原蛋白沉積(箭頭標識)的面積明顯小於給溶媒PBS對照組(圖18A、18C),說明纖溶酶原能夠消減高脂血症模型小鼠主動脈竇纖維化水準。
實施例19纖溶酶原減少四氯化碳誘導肝臟纖維化過程肝臟膠原蛋白沉積
7-8周齡C57雌性小鼠20隻,隨機分為三組,空白對照組5隻、給溶媒PBS對照組7隻和給纖溶酶原組8隻。給溶媒PBS對照組和給纖溶酶原組小鼠按照1mL/kg體重腹腔注射四氯化碳,每週三次,連續注射四周,建立肝纖維化模型[36,37],空白對照小鼠腹腔注射相應體積的玉米油。四氯化碳需用玉米油稀釋,四氯化碳與玉米油稀釋比例為1:3。造模當天開始給藥,記為第1天,給纖溶酶原組小鼠尾靜脈注射人源纖溶酶原1mg/0.1mL/隻/天,給溶媒PBS對照組尾靜脈注射同體積的PBS,空白對照組不做注射處理,連續給藥28天。第29天處死小鼠取肝臟於4%多聚甲醛中固定24小時。固定後的肝臟經酒精梯度脫水和二甲苯透明後進行石蠟包埋。組織切片厚度為3μm,切片脫蠟至水後水洗1次,以0.1% 天狼星紅染色60分鐘後,流水沖洗,蘇木素染色1分鐘,流水沖洗,1%鹽酸酒精和氨水分化返藍,流水沖洗,烘乾後封片,切片在200倍光學顯微鏡下觀察。
結果顯示,給纖溶酶原組(圖19C)膠原蛋白沉積明顯少於給溶媒PBS對照組(圖19B),且統計差異顯著(圖19D);與給溶媒PBS對照組相比,給纖溶酶原組膠原沉積(箭頭標識)水準更加接近空白對照小鼠(圖19A)。說明纖溶酶原能減少肝纖維化模型小鼠肝臟膠原蛋白的沉積,改善肝臟纖維化。
參考文獻:
[1] Denton CP, Black CM, Abraham DJ. Mechanisms and consequences of fibosis in systemic sclerosis[J]. Nat Clin Pract Rheumatol, 2006, 2(3): 134-144.
[2] Wilson MS, Wynn TA. Pulmonary fibrosis: pathogenesis, etiology and regulation [J]. Mucosal Immunol, 2009, 2(2): 103-121.
[3] Liu Y. Renal fibrosis: new insights into the pathogenesis and therapeutics[J]. Kidney Int, 2006, 69: 213-217.
[4] Alexander, C.M. and Werb, Z. (1989). Proteinases and extracellular matrix remodeling. Curr. Opin. Cell Biol. 1, 974-982.
[5] Alexander CM and Werb, Z. (1991). Extracellular matrix degradation. In Cell Biology of Extracellular Matrix, Hay ED, ed. (New York: Plenum Press), pp. 255-302
[6] Werb, Z., Mainardi, C.L., Vater, C.A., and Harris, E.D., Jr. (1977). Endogenous activiation of latent collagenase by rheumatoid synovial cells. Evidence for a role of plasminogen activator. N. Engl. J. Med. 296, 1017-1023.
[7] He, C.S., Wilhelm, S.M., Pentland, A.P., Marmer, B.L., Grant, G.A., Eisen, A.Z., and Goldberg, G.I. (1989). Tissue cooperation in a proteolytic cascade activating human interstitial collagenase. Proc. Natl. Acad. Sci. U. S. A 86, 2632-2636
[8] Stoppelli, M.P., Corti, A., Soffientini, A., Cassani, G., Blasi, F., and Assoian, R.K. (1985). Differentiation-enhanced binding of the amino-terminal fragment of human urokinase plasminogen activator to a specific receptor on U937 monocytes. Proc. Natl. Acad. Sci. U. S. A 82, 4939-4943.
[9]Vassalli, J.D., Baccino, D., and Belin, D. (1985). A cellular binding site for the Mr 55, 000 form of the human plasminogen activator, urokinase. J. Cell Biol. 100, 86-92.
[10] Wiman, B. and Wallen, P. (1975). Structural relationship between "glutamic acid" and "lysine" forms of human plasminogen and their interaction with the NH2-terminal activation peptide as studied by affinity chromatography. Eur. J. Biochem. 50, 489-494.
[11] Saksela, O. and Rifkin, D.B. (1988). Cell-associated plasminogen activation: regulation and physiological functions. Annu. Rev. Cell Biol. 4, 93-126
[12] Raum, D., Marcus, D., Alper, C.A., Levey, R., Taylor, P.D., and Starzl, T.E. (1980). Synthesis of human plasminogen by the liver. Science 208, 1036-1037
[13] Wallén P (1980). Biochemistry of plasminogen. In Fibrinolysis, Kline DL and Reddy KKN, eds. (Florida: CRC
[14] Sottrup-Jensen, L., Zajdel, M., Claeys, H., Petersen, T.E., and Magnusson, S. (1975). Amino-acid sequence of activation cleavage site in plasminogen: homology with "pro" part of prothrombin. Proc. Natl. Acad. Sci. U. S. A 72, 2577-2581.
[15] Collen, D. and Lijnen, H.R. (1991). Basic and clinical aspects of fibrinolysis and thrombolysis. Blood 78, 3114-3124.
[16] Alexander, C.M. and Werb, Z. (1989). Proteinases and extracellular matrix remodeling. Curr. Opin. Cell Biol. 1, 974-982.
[17] Mignatti, P. and Rifkin, D.B. (1993). Biology and biochemistry of proteinases in tumor invasion. Physiol Rev. 73, 161-195.
[18] Collen, D. (2001). Ham-Wasserman lecture: role of the plasminogen system in fibrin-homeostasis and tissue remodeling. Hematology. (Am. Soc. Hematol. Educ. Program.) 1-9.
[19] Rifkin, D.B., Moscatelli, D., Bizik, J., Quarto, N., Blei, F., Dennis, P., Flaumenhaft, R., and Mignatti, P. (1990). Growth factor control of extracellular proteolysis. Cell Differ. Dev. 32, 313-318.
[20] Andreasen, P.A., Kjoller, L., Christensen, L., and Duffy, M.J. (1997). The urokinase-type plasminogen activator system in cancer metastasis: a review. Int. J. Cancer 72, 1-22.
[21] Rifkin, D.B., Mazzieri, R., Munger, J.S., Noguera, I., and Sung, J. (1999). Proteolytic control of growth factor availability. APMIS 107, 80-85.
[22] Marder V J, Novokhatny V. Direct fibrinolytic agents: biochemical attributes, preclinical foundation and clinical potential [J]. Journal of Thrombosis and Haemostasis, 2010, 8(3): 433-444.
[23] Hunt J A, Petteway Jr S R, Scuderi P, et al. Simplified recombinant plasmin: production and fu-nctional comparison of a novel thrombolytic molecule with plasma-derived plasmin [J]. Thromb Haemost, 2008, 100(3): 413-419.
[24]Sottrup-Jensen L, Claeys H, Zajdel M, et al. The primary structure of human plasminogen: Isolation of two lysine-binding fragments and one “mini”-plasminogen (MW, 38, 000) by elastase-catalyzed-specific limited proteolysis [J]. Progress in chemical fibrinolysis and thrombolysis, 1978, 3: 191-209
[25]Nagai N, Demarsin E, Van Hoef B, et al. Recombinant human microplasmin: production and potential therapeutic properties [J]. Journal of Thrombosis and Haemostasis, 2003, 1(2): 307-313.
[26] Yosuke Kanno, En Shu, Hiroyuki Kanoh et al. The Antifibrotic Effect of a2AP Neutralization in Systemic Sclerosis Dermal Fibroblasts and Mouse Models of Systemic Sclerosis. J Invest Dermatol. 2016 Apr;136(4):762-9.
[27] Donnelly SM, Zhou XP, Huang JT et al. Prevention of early glomerulopathy with tolrestat in the streptozotocin-induced diabetic rat. Biochem Cell Biol. 1996;74(3):355-62.
[28] Ashish Aneja, W.H. Wilson Tang, Sameer Bansilal et al. Diabetic Cardiomyopathy: Insights into Pathogenesis, Diagnostic Challenges, and Therapeutic Options. Am J Med. 2008 Sep;121(9):748-57.
[29]SamuelCS1, HewitsonTD, ZhangYetal.Relaxin ameliorates fibrosis in experimen tal diabetc cardiomyopathy. Endocrinology. 2008 Jul;149(7):3286-93.
[30] Yutaka Nakashima, Andrew S. Plump, Elaine W. Raines et al. Arterioscler Thromb. 1994 Jan;14(1):133-40.
[31] Yutaka Nakashima, Andrew S. Plump, Elaine W. Raines et al. Arterioscler Thromb. 1994 Jan;14(1):133-40.
[32] Yvonne Nitschke, Gabriele Weissen-Plenz, Robert Terkeltaub et al. Npp1 promotes atherosclerosis in ApoE knockout mice. J. Cell. Mol. Med. Vol 15, No 11, 2011 pp. 2273-2283
[33] Dominika Nackiewicz, Paromita Dey, Barbara Szczerba et al. Inhibitor of differentiation 3, a transcription factor regulates hyperlipidemia associated kidney disease. Nephron Exp Nephrol. 2014; 126(3): 141-147.
[34] Ming Gul, Yu Zhang., Shengjie Fan et al. Extracts of Rhizoma Polygonati Odorati Prevent High-Fat Diet-Induced Metabolic Disorders in C57BL/6 Mice. PLoS ONE 8(11): e81724.
[35] Cristhiane Favero Aguiar,Cristiane Naffah-de-Souza, Angela Castoldi et al. Administration of α-Galactosylceramide Improves Adenine-Induced Renal Injury. Mol Med. 2015 Jun 18;21:553-62.
[36] Mark A. Barnes,Megan R. McMullen,Sanjoy Roychowdhury et al. Macrophage migration inhibitory factor is required for recruitment of scar-associated macrophages during liver fibrosis. J Leukoc Biol. 2015 Jan;97(1):161-9.
[37] Takayoshi Yamaza, Fatima Safira Alatas, Ratih Yuniartha et al. In vivo hepatogenic capacity and therapeutic potential of stem cells from human exfoliated deciduous teeth in liver fibrosis in mice. Stem Cell Res Ther. 2015 Sep 10;6:171.
<110> 深圳瑞健生命科學研究院有限公司
<120> 一種預防和治療腎纖維化的方法
<130> F17W0382TW
<160> 14
<170> PatentIn version 3.5
<210> 1
<211> 2376
<212> DNA
<213> 不含有信號肽的天然纖溶酶原(Glu-PLG,Glu-纖維蛋白溶酶原)核酸序列
<400> 1
Figure 110102361-A0101-12-0042-1
Figure 110102361-A0101-12-0043-2
Figure 110102361-A0101-12-0044-3
<210> 2
<211> 791
<212> PRT
<213> 不含有信號肽的天然纖溶酶原(Glu-PLG,Glu-纖維蛋白溶酶原)氨基酸序列
<400> 2
Figure 110102361-A0101-12-0044-4
Figure 110102361-A0101-12-0045-5
Figure 110102361-A0101-12-0046-6
Figure 110102361-A0101-12-0047-7
Figure 110102361-A0101-12-0048-8
Figure 110102361-A0101-12-0049-9
<210> 3
<211> 2433
<212> DNA
<213> 含有信號肽的天然纖溶酶原(來源於swiss prot)的核酸序列
<400> 3
Figure 110102361-A0101-12-0049-10
Figure 110102361-A0101-12-0050-11
Figure 110102361-A0101-12-0051-12
<210> 4
<211> 810
<212> PRT
<213> 含有信號肽的天然纖溶酶原(來源於swiss prot)的氨基酸序列
<400> 4
Figure 110102361-A0101-12-0051-13
Figure 110102361-A0101-12-0052-14
Figure 110102361-A0101-12-0053-15
Figure 110102361-A0101-12-0054-16
Figure 110102361-A0101-12-0055-17
Figure 110102361-A0101-12-0056-18
<210> 5
<211> 2145
<212> DNA
<213> LYS77-PLG(Lys-纖溶酶原)核酸序列
<400> 5
Figure 110102361-A0101-12-0056-19
Figure 110102361-A0101-12-0057-20
<210> 6
<211> 714
<212> PRT
<213> LYS77-PLG(Lys-纖溶酶原)氨基酸序列
<400> 6
Figure 110102361-A0101-12-0058-21
Figure 110102361-A0101-12-0059-22
Figure 110102361-A0101-12-0060-23
Figure 110102361-A0101-12-0061-24
Figure 110102361-A0101-12-0062-25
<210> 7
<211> 1245
<212> DNA
<213> delta-plg(delta-纖溶酶原)核酸序列
<400> 7
Figure 110102361-A0101-12-0062-26
Figure 110102361-A0101-12-0063-27
<210> 8
<211> 414
<212> PRT
<213> delta-plg(delta-纖溶酶原)氨基酸序列
<400> 8
Figure 110102361-A0101-12-0063-28
Figure 110102361-A0101-12-0064-29
Figure 110102361-A0101-12-0065-30
<210> 9
<211> 1104
<212> DNA
<213> Mini-plg(小纖維蛋白溶酶原)核酸序列
<400> 9
Figure 110102361-A0101-12-0066-31
<210> 10
<211> 367
<212> PRT
<213> Mini-plg(小纖維蛋白溶酶原)氨基酸序列
<400> 10
Figure 110102361-A0101-12-0067-32
Figure 110102361-A0101-12-0068-33
Figure 110102361-A0101-12-0069-34
<210> 11
<211> 750
<212> DNA
<213> Micro-plg(微纖維蛋白溶酶原)核酸序列
<400> 11
Figure 110102361-A0101-12-0069-35
Figure 110102361-A0101-12-0070-36
<210> 12
<211> 249
<212> PRT
<213> Micro-plg(微纖維蛋白溶酶原)氨基酸序列
<400> 12
Figure 110102361-A0101-12-0070-37
Figure 110102361-A0101-12-0071-38
<210> 13
<211> 684
<212> DNA
<213> 絲氨酸蛋白酶(結構)域的核酸序列
<400> 13
Figure 110102361-A0101-12-0071-39
Figure 110102361-A0101-12-0072-40
<210> 14
<211> 228
<212> PRT
<213> 絲氨酸蛋白酶(結構)域的氨基酸序列
<400> 14
Figure 110102361-A0101-12-0072-41
Figure 110102361-A0101-12-0073-42

Claims (19)

  1. 一種纖溶酶原在製備預防或治療受試者急性或慢性腎臟疾病導致的腎臟膠原蛋白沉積或腎纖維化之藥物的用途。
  2. 如申請專利範圍第1項所述的用途,其中所述慢性腎臟疾病包括慢性腎小球腎炎,慢性腎盂腎炎、腎病綜合症、腎功能不全、腎衰、尿毒症、或癌症。
  3. 一種纖溶酶原在製備預防或治療受試者慢性腎臟組織損傷導致的腎臟膠原蛋白沉積或腎纖維化之藥物的用途。
  4. 如申請專利範圍第3項所述的用途,其中所述慢性腎臟組織損傷為脂肪在腎臟的異常沉積導致的損傷。
  5. 如申請專利範圍第4項所述的用途,其中所述慢性腎臟組織損傷為糖尿病,高脂血症、或動脈粥樣硬化導致的腎臟組織損傷。
  6. 如申請專利範圍第4項所述的用途,其中所述慢性腎臟組織損傷為缺血導致的腎臟組織損傷。
  7. 如申請專利範圍第6項所述的用途,其中所述腎臟組織缺血由選自如下的一項或多項導致:高血壓、血管腔狹窄、血管阻塞、血栓、心臟功能不全、靜脈淤血、貧血、及癌症。
  8. 一種纖溶酶原在製備預防或治療受試者糖尿病併發的腎膠原蛋白沉積或腎纖維化之藥物的用途。
  9. 如申請專利範圍第8項所述的用途,其中所述腎纖維化為糖尿病腎間質纖維化。
  10. 一種纖溶酶原在製備預防或治療受試者高脂血症併發的腎膠原蛋白沉積或腎纖維化之藥物的用途。
  11. 如申請專利範圍第10項所述的用途,其中所述高脂血症係選自如下的一項或多項:血甘油三酯水準升高、血總膽固醇水準升高、血低密度脂蛋白升高、血極低密度脂蛋白升高。
  12. 一種纖溶酶原在製備預防或治療受試者動脈粥樣硬化併發的腎膠原蛋白沉積或腎纖維化之藥物的用途。
  13. 一種纖溶酶原在製備治療受試者藥物導致的腎膠原蛋白沉積或腎纖維化之藥物的用途。
  14. 如申請專利範圍第13項所述的用途,其中所述藥物為腎毒性藥物。
  15. 如申請專利範圍第14項所述的用途,其中所述藥物包括化療藥物、抗生素藥物、降血脂藥物、抗高血壓藥物、或降糖藥物。
  16. 如申請專利範圍第15項所述的用途,其中所述藥物為順鉑
  17. 一種纖溶酶原在製備預防或治療受試者炎症或自身免疫反應導致的腎臟膠原蛋白沉積或腎纖維化之藥物的用途。
  18. 如申請專利範圍第17項所述的用途,其中所述腎臟膠原蛋白沉積或腎纖維化為系統性硬化症導致的腎臟膠原蛋白沉積或腎纖維化。
  19. 一種纖溶酶原在製備預防或治療受試者腎纖維化導致的腎功能不全、腎衰、尿毒癥之藥物的用途。
TW110102361A 2016-12-15 2017-06-19 一種預防和治療腎纖維化的方法 TW202123962A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2016110174 2016-12-15
WOPCT/CN2016/110174 2016-12-15
CN2016110169 2016-12-15
WOPCT/CN2016/110169 2016-12-15

Publications (1)

Publication Number Publication Date
TW202123962A true TW202123962A (zh) 2021-07-01

Family

ID=62557856

Family Applications (4)

Application Number Title Priority Date Filing Date
TW106120455A TW201822797A (zh) 2016-12-15 2017-06-19 一種預防和治療腎纖維化的方法
TW110102361A TW202123962A (zh) 2016-12-15 2017-06-19 一種預防和治療腎纖維化的方法
TW106120521A TWI642441B (zh) 2016-12-15 2017-06-20 一種預防和治療藥物性腎損傷的方法
TW106120523A TWI661838B (zh) 2016-12-15 2017-06-20 一種預防和治療病理性腎組織損傷的方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW106120455A TW201822797A (zh) 2016-12-15 2017-06-19 一種預防和治療腎纖維化的方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW106120521A TWI642441B (zh) 2016-12-15 2017-06-20 一種預防和治療藥物性腎損傷的方法
TW106120523A TWI661838B (zh) 2016-12-15 2017-06-20 一種預防和治療病理性腎組織損傷的方法

Country Status (7)

Country Link
US (2) US20190343930A1 (zh)
EP (2) EP3556386A4 (zh)
JP (2) JP7242057B2 (zh)
CN (2) CN110167582A (zh)
CA (2) CA3047170A1 (zh)
TW (4) TW201822797A (zh)
WO (3) WO2018107700A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3556380A4 (en) 2016-12-15 2020-05-13 Talengen International Limited METHOD FOR PREVENTING AND TREATING FABRIC OF TISSUE AND ORGAN
EP3643321A4 (en) 2017-06-19 2021-05-05 Talengen International Limited PROCEDURES FOR THE REGULATION AND CONTROL OF GLP-1 / GLP-1R AND MEDICINAL PRODUCTS
TW201904990A (zh) 2017-06-23 2019-02-01 美商波麥堤克生物治療股份有限公司 與pai-1過表現相關之病狀的纖維蛋白溶酶原治療
CN113456579B (zh) * 2021-07-12 2023-04-25 南开大学 具有双靶点的hdac抑制剂的纳米胶束-水凝胶制剂在治疗急性肾损伤药物中的应用

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773919A (en) 1969-10-23 1973-11-20 Du Pont Polylactide-drug mixtures
IE52535B1 (en) 1981-02-16 1987-12-09 Ici Plc Continuous release pharmaceutical compositions
CN87104683A (zh) * 1986-05-15 1988-12-21 埃默里大学 改善血纤维蛋白溶解作用的组合物
JPH11510170A (ja) 1995-07-27 1999-09-07 ジェネンテック インコーポレーテッド タンパク質の処方
US7202066B2 (en) * 2002-01-29 2007-04-10 Carrington Laboratories, Inc. Combination of a growth factor and a protease enzyme
AU2003210137A1 (en) * 2002-02-06 2003-09-02 N-Zyme Biotec Gmbh Method for producing recombinant proteins in micro-organisms
US20040043026A1 (en) * 2002-05-13 2004-03-04 Tai-Lan Tuan Treatment and prevention of abnormal scar formation in keloids and other cutaneous or internal wounds or lesions
CN1723197A (zh) * 2002-12-10 2006-01-18 惠氏公司 作为纤溶酶原激活物抑制剂-1(pai-1)的抑制剂的取代3-烷基和3-芳基烷基1h-吲哚-1-基乙酸衍生物
US20050250694A1 (en) * 2003-10-10 2005-11-10 Ma Jian-Xing Compounds useful in inhibiting vascular leakage, inflammation and fibrosis and methods of making and using same
JP2008510814A (ja) * 2004-08-23 2008-04-10 ワイス Pai−1阻害剤としてのピロロ−ナフチル酸
US8741260B2 (en) 2005-10-07 2014-06-03 Armagen Technologies, Inc. Fusion proteins for delivery of GDNF to the CNS
CN101563100B (zh) * 2006-08-28 2013-08-07 李季男 用于预防和治疗牙周病、改善牙周创伤愈合以及促进口腔健康的新药物靶标
WO2010136059A1 (en) * 2009-05-26 2010-12-02 Universidad De Salamanca Urinary gm2 activator protein as a marker of acute renal failure or the risk of developing acute renal failure
NZ597452A (en) * 2009-07-10 2013-10-25 Thrombogenics Nv Variants of plasminogen and plasmin
CN102121023B (zh) * 2010-12-22 2012-07-04 中山大学 突变型人纤溶酶原kringle5及其制备方法及应用
DK2661493T3 (en) * 2011-01-05 2016-07-18 Thrombogenics Nv PLASMINOGEN AND PLASMIN VARIANS
CN102154253A (zh) 2011-01-06 2011-08-17 郑州大学 具有抑制血小板凝集功能的微小纤溶酶原突变体及其制备方法和用途
JP6157481B2 (ja) 2011-09-29 2017-07-05 メイヨ ファンデーション フォア メディカル エディケイション アンド リサーチ 芳香族陽イオン性ペプチドおよびその使用方法
PE20160244A1 (es) * 2013-08-13 2016-05-10 Sanofi Sa Anticuerpos contra el inhibidor del activador de plasminogeno tipo 1 (pai-1) y usos de los mismos
EP3109320B1 (en) * 2014-02-21 2019-03-27 Astellas Pharma Inc. New anti-human pai-1 antibody

Also Published As

Publication number Publication date
TWI642441B (zh) 2018-12-01
WO2018107699A1 (zh) 2018-06-21
TWI661838B (zh) 2019-06-11
EP3556388A4 (en) 2020-07-08
TW201822797A (zh) 2018-07-01
JP7242057B2 (ja) 2023-03-20
CN110366427A (zh) 2019-10-22
EP3556388A1 (en) 2019-10-23
TW201822794A (zh) 2018-07-01
US20190328848A1 (en) 2019-10-31
CA3047171A1 (en) 2018-06-21
EP3556386A1 (en) 2019-10-23
WO2018107700A1 (zh) 2018-06-21
JP2020502135A (ja) 2020-01-23
JP7182793B2 (ja) 2022-12-05
JP2020502134A (ja) 2020-01-23
CA3047170A1 (en) 2018-06-21
US20190343930A1 (en) 2019-11-14
EP3556386A4 (en) 2020-07-08
TW201822793A (zh) 2018-07-01
WO2018107695A1 (zh) 2018-06-21
CN110167582A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
TWI734798B (zh) 一種預防和治療肺纖維化的方法
TWI684459B (zh) 一種治療動脈粥樣硬化及其併發症的方法
TW202123962A (zh) 一種預防和治療腎纖維化的方法
TWI853151B (zh) 一種預防和治療血壓異常病症的方法和藥物