TW202106384A - Organic hydrogen storage raw material dehydrogenation catalyst, carrier of catalyst, hydrogen storage alloy, and method for providing high-purity hydrogen gas - Google Patents

Organic hydrogen storage raw material dehydrogenation catalyst, carrier of catalyst, hydrogen storage alloy, and method for providing high-purity hydrogen gas Download PDF

Info

Publication number
TW202106384A
TW202106384A TW109115135A TW109115135A TW202106384A TW 202106384 A TW202106384 A TW 202106384A TW 109115135 A TW109115135 A TW 109115135A TW 109115135 A TW109115135 A TW 109115135A TW 202106384 A TW202106384 A TW 202106384A
Authority
TW
Taiwan
Prior art keywords
hydrogen
weight
hydrogen storage
carrier
catalyst
Prior art date
Application number
TW109115135A
Other languages
Chinese (zh)
Inventor
林偉
楊雪
宋海濤
孫敏
Original Assignee
大陸商中國石油化工科技開發有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商中國石油化工科技開發有限公司 filed Critical 大陸商中國石油化工科技開發有限公司
Publication of TW202106384A publication Critical patent/TW202106384A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/468Iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • B01J23/6562Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • B01J23/6567Rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/835Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8966Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8986Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1853Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0238Impregnation, coating or precipitation via the gaseous phase-sublimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • C01B3/0042Intermetallic compounds; Metal alloys; Treatment thereof only containing magnesium and nickel; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • C01B3/0047Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • C01B3/0047Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof
    • C01B3/0052Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof also containing titanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • C01B3/0047Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof
    • C01B3/0057Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof also containing nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/508Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by selective and reversible uptake by an appropriate medium, i.e. the uptake being based on physical or chemical sorption phenomena or on reversible chemical reactions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • F17C7/04Discharging liquefied gases with change of state, e.g. vaporisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

The present invention relates to a catalyst used for the dehydrogenation of an organic hydrogen storage raw material to generate hydrogen gas, a carrier of the catalyst and a preparation method therefor; the present invention further relates to a hydrogen storage alloy and a preparation method therefor; and the present invention also relates to: a method for providing high-purity hydrogen gas; an efficient distributed method for producing high-purity, high-pressure hydrogen gas; a system for providing high-purity, high-pressure hydrogen gas; and a mobile hydrogen supply system and a distributed hydrogen supply device.

Description

有機儲氫原料脫氫催化劑以及該催化劑的載體、儲氫合金、和提供高純度氫氣的方法Organic hydrogen storage raw material dehydrogenation catalyst, carrier of the catalyst, hydrogen storage alloy, and method for providing high-purity hydrogen

本發明涉及一種用於有機儲氫原料脫氫生成氫氣的催化劑及該催化劑的載體以及其製備方法;本發明還涉及一種儲氫合金以及其製備方法;本發明還涉及一種提供高純度氫氣的方法、一種高效分散式製高純高壓氫氣的方法、一種提供高純高壓氫氣的系統、一種移動式供氫系統和一種分散式供氫裝置。The present invention relates to a catalyst used for dehydrogenation of organic hydrogen storage raw materials to generate hydrogen, a carrier of the catalyst and a preparation method thereof; the present invention also relates to a hydrogen storage alloy and a preparation method thereof; the present invention also relates to a method for providing high-purity hydrogen , An efficient and decentralized method for producing high-purity and high-pressure hydrogen, a system for providing high-purity and high-pressure hydrogen, a mobile hydrogen supply system, and a decentralized hydrogen supply device.

氫氣作為可再生能源,不僅能效高,而且幾乎不產生廢棄物。發展氫氣能源有望成為提高能效,降低石油消費,改善生態環境,保障能源安全的重要途徑,可持續,高效率的規模製氫技術的開發,已成為氫能時代的迫切需求。As a renewable energy source, hydrogen not only has high energy efficiency, but also produces almost no waste. The development of hydrogen energy is expected to become an important way to improve energy efficiency, reduce oil consumption, improve the ecological environment, and ensure energy security. The development of sustainable and efficient large-scale hydrogen production technology has become an urgent need in the hydrogen energy era.

氫氣在通常條件下以氣態形式存在,且易燃,易爆,易擴散,使得人們在實際應用中要優先考慮氫的儲存和運輸中的安全,高效和無洩漏損失問題,這就給儲存和運輸帶來很大的困難。因此,氫能利用需要解決氫氣的儲運問題。Hydrogen exists in gaseous form under normal conditions, and is flammable, explosive, and easy to diffuse. In practical applications, people should give priority to the safety, efficiency and no leakage of hydrogen storage and transportation. Transportation brings great difficulties. Therefore, hydrogen energy utilization needs to solve the problem of hydrogen storage and transportation.

氫氣直接從生產場地通過高壓氣態運輸到加氫站,運輸成本較高,且長距離運輸也存在一定的交通安全隱患;採用高壓氣態儲存氫氣,儲氫罐成本高,占地面積大,也存在較大的安全隱患。Hydrogen is directly transported from the production site to the hydrogen refueling station in high-pressure gaseous state. The transportation cost is high, and long-distance transportation also has certain traffic safety hazards; the use of high-pressure gaseous storage of hydrogen requires high cost and large area of hydrogen storage tanks. Larger security risks.

本發明要解決的一個技術問題是提供一種用於有機儲氫化合物脫氫製備氫氣的催化劑以及該催化劑的載體。本發明要解決的另一個技術問題是提供一種用於含有機物氫氣純化方法的儲氫合金及其製備方法。本發明要解決的另一個技術問題是提供一種提供高純度氫氣的方法、一種高效分散式製高純高壓氫氣的方法、一種提供高純高壓氫氣的系統、一種移動式供氫系統和一種分散式供氫裝置。A technical problem to be solved by the present invention is to provide a catalyst for the dehydrogenation of organic hydrogen storage compounds to prepare hydrogen and a support for the catalyst. Another technical problem to be solved by the present invention is to provide a hydrogen storage alloy used in a method for purifying hydrogen containing organic matter and a preparation method thereof. Another technical problem to be solved by the present invention is to provide a method for providing high-purity hydrogen, a method for efficient and decentralized production of high-purity and high-pressure hydrogen, a system for providing high-purity and high-pressure hydrogen, a mobile hydrogen supply system, and a decentralized system. Hydrogen supply device.

為此,本發明提供以下技術方案:To this end, the present invention provides the following technical solutions:

1.  一種提供高純度氫氣的方法,該方法包括:1. A method for providing high-purity hydrogen, the method includes:

(1)使有機液體儲氫原料與脫氫催化劑接觸反應,得到含有氫氣的脫氫反應產物;(1) The organic liquid hydrogen storage raw material is contacted and reacted with a dehydrogenation catalyst to obtain a dehydrogenation reaction product containing hydrogen;

(2)將脫氫反應產物冷卻,得到液體產物和富氫氣體產物,收集液體產物;(2) Cooling the dehydrogenation reaction product to obtain a liquid product and a hydrogen-rich gas product, and collect the liquid product;

(3)使富氫氣體與儲氫合金接觸,得到含氫合金,收集未吸附的氣體;(3) Contact the hydrogen-rich gas with the hydrogen storage alloy to obtain the hydrogen-containing alloy, and collect the unadsorbed gas;

(3a)任選地,除去含氫合金儲存容器中的有機物;(3a) Optionally, remove the organic matter in the hydrogen-containing alloy storage container;

(4)加熱含氫合金,釋放氫氣。(4) Heating the hydrogen-containing alloy to release hydrogen.

2.  根據前述技術方案中任一項的提供高純度氫氣的方法,其特徵在於,在(1)中:2. The method for providing high-purity hydrogen according to any one of the foregoing technical solutions is characterized in that in (1):

有機液體儲氫原料與脫氫催化劑接觸反應的反應溫度為150-450℃(例如,200-400℃,300-350℃);The reaction temperature of the contact reaction of the organic liquid hydrogen storage raw material with the dehydrogenation catalyst is 150-450°C (for example, 200-400°C, 300-350°C);

有機液體儲氫原料與脫氫催化劑接觸反應的重時空速0.5-50小時-1 (例如,1-45小時-1 ,2-30小時-1 );The weight hourly space velocity of the contact reaction between the organic liquid hydrogen storage raw material and the dehydrogenation catalyst is 0.5-50 h -1 (for example, 1-45 h -1 , 2-30 h -1 );

有機液體儲氫原料與脫氫催化劑接觸反應的壓力為0.03-5MPa(錶壓)(例如0.3-5MPa,0.1-3MPa,0.5-2MPa或0.2-1.6MPa);The contact reaction pressure of the organic liquid hydrogen storage raw material and the dehydrogenation catalyst is 0.03-5MPa (gauge pressure) (for example, 0.3-5MPa, 0.1-3MPa, 0.5-2MPa or 0.2-1.6MPa);

任選地,使有機液體儲氫原料與氫氣混合後與脫氫催化劑接觸,氫烴比(氫氣與有機液體儲氫原料的摩爾比)為0-10(例如0-8)。Optionally, the organic liquid hydrogen storage raw material is mixed with hydrogen and then contacted with the dehydrogenation catalyst, and the hydrogen-to-hydrocarbon ratio (the molar ratio of hydrogen to the organic liquid hydrogen storage raw material) is 0-10 (for example, 0-8).

3.  根據前述技術方案中任一項的提供高純度氫氣的方法,其特徵在於,在(2)中,3. The method for providing high-purity hydrogen according to any one of the foregoing technical solutions, characterized in that, in (2),

將脫氫反應產物冷卻的冷卻溫度低於液體產物中的有機物的沸點溫度;優選的,低於其中的常溫常壓下為液態的沸點最低的有機物的沸點溫度。The cooling temperature for cooling the dehydrogenation reaction product is lower than the boiling point temperature of the organic substance in the liquid product; preferably, it is lower than the boiling point temperature of the organic substance with the lowest boiling point that is liquid under normal temperature and pressure.

4.  根據前述技術方案中任一項的提供高純度氫氣的方法,其特徵在於,在(3)中,4. The method for providing high-purity hydrogen according to any one of the foregoing technical solutions, characterized in that, in (3),

所述的富氫氣體為富氫氣體產物或富氫氣體產物經過進一步分離得到的含氫氣的氣體,所述的進一步分離的方法包括變溫分離,膜分離,變壓吸附分離或它們的組合;The hydrogen-rich gas is a hydrogen-rich gas product or a hydrogen-containing gas obtained by further separation of the hydrogen-rich gas product, and the further separation method includes temperature swing separation, membrane separation, pressure swing adsorption separation or a combination thereof;

所述的富氫氣體中氫氣的質量份數為≥80%(例如80-99%,優選為≥85%,更優選為≥90%)。The mass fraction of hydrogen in the hydrogen-rich gas is ≥80% (for example, 80-99%, preferably ≥85%, more preferably ≥90%).

5.  根據前述技術方案中任一項的提供高純度氫氣的方法,其特徵在於,在(3)中,5. The method for providing high-purity hydrogen according to any one of the foregoing technical solutions is characterized in that, in (3),

所述的富氫氣體與儲氫合金的接觸在一個或多個儲氫合金儲存容器中進行;The contact between the hydrogen-rich gas and the hydrogen storage alloy is carried out in one or more hydrogen storage alloy storage containers;

所述的儲氫合金可以是一種或者多種,多種儲氫合金可以混合使用,也可以串聯使用或並聯使用或串並聯混合使用;The hydrogen storage alloys can be one or more types, and multiple hydrogen storage alloys can be used in a mixture, and can also be used in series or in parallel or in series and parallel;

所述的富氫氣體與儲氫合金接觸的壓力為0.001-5MPa(例如,0.01-5MPa,0.03-4MPa,0.05-5MPa,0.08-2MPa,0.05-3MPa,0.1-1MPa),當儲氫合金儲存容器為多個,且存在儲氫容器串聯的情況,按照富氫氣體物流方向,最後接觸儲氫合金的接觸壓力(也稱為吸氫壓力)為0.05-5MPa(例如0.1-1MPa);The pressure at which the hydrogen-rich gas contacts the hydrogen storage alloy is 0.001-5MPa (for example, 0.01-5MPa, 0.03-4MPa, 0.05-5MPa, 0.08-2MPa, 0.05-3MPa, 0.1-1MPa), when the hydrogen storage alloy is stored There are multiple containers, and hydrogen storage containers are connected in series. According to the direction of the hydrogen-rich gas flow, the contact pressure (also called hydrogen absorption pressure) of the final contact with the hydrogen storage alloy is 0.05-5MPa (for example, 0.1-1MPa);

所述的富氫氣體與儲氫合金接觸的溫度(也稱為吸氫溫度)為-70至100℃(例如,-50至90℃,-30至80℃);The temperature at which the hydrogen-rich gas contacts the hydrogen storage alloy (also called the hydrogen absorption temperature) is -70 to 100°C (for example, -50 to 90°C, -30 to 80°C);

與儲氫合金接觸時,所述的富氫氣體的溫度低於有機液體儲氫原料在常壓下的沸點溫度。When in contact with the hydrogen storage alloy, the temperature of the hydrogen-rich gas is lower than the boiling point temperature of the organic liquid hydrogen storage raw material under normal pressure.

6.  根據前述技術方案中任一項的提供高純度氫氣的方法,其特徵在於,在(3)中,6. The method for providing high-purity hydrogen according to any one of the foregoing technical solutions, characterized in that, in (3),

所述的儲氫合金儲存容器為一個或多個,其中按照接觸氫氣的順序,最後與氫氣接觸的儲氫合金儲存容器中的儲氫合金為具有高平衡壓力的儲氫合金,所述的具有高平衡壓力的儲氫合金為在溫度為150-450℃之間至少存在一個溫度點,氫氣吸收的平衡壓力大於等於35MPa;優選的,至少一個儲氫合金儲存容器中的儲氫合金為具有高平衡壓力的儲氫合金。The hydrogen storage alloy storage container is one or more, wherein the hydrogen storage alloy in the hydrogen storage alloy storage container that contacts the hydrogen last in the order of contact with hydrogen is a hydrogen storage alloy with a high equilibrium pressure, and the hydrogen storage alloy has a high equilibrium pressure. The hydrogen storage alloy with high equilibrium pressure has at least one temperature point between 150-450℃, and the equilibrium pressure of hydrogen absorption is greater than or equal to 35MPa; preferably, the hydrogen storage alloy in at least one hydrogen storage alloy storage container has a high Hydrogen storage alloy that balances pressure.

7.  根據前述技術方案中任一項的提供高純度氫氣的方法,其特徵在於,進行步驟(3a),其中除去含氫合金儲存容器中的有機物採用吹掃的方法(例如使用氫氣吹掃,其方法例如:儲氫合金達到預定的吸附量以後,停止向儲氫合金供應富氫氣體,使氫氣通過含氫合金,將含氫合金和含氫合金儲存容器(也稱儲氫合金儲存容器)中的有機氣體帶出,引入儲罐儲存或者使用其它儲氫合金儲存容器中的儲氫合金吸收;其中優選的,吹掃用氫氣的純度大於90重量%,更優選大於95重量%,例如大於99重量%)。7. The method for providing high-purity hydrogen according to any one of the foregoing technical solutions is characterized in that step (3a) is performed, in which the organic matter in the hydrogen-containing alloy storage container is removed by a purging method (for example, using hydrogen purging, The method is for example: after the hydrogen storage alloy reaches a predetermined adsorption capacity, stop supplying hydrogen-rich gas to the hydrogen storage alloy, let the hydrogen pass through the hydrogen-containing alloy, and transfer the hydrogen-containing alloy and the hydrogen-containing alloy storage container (also called the hydrogen storage alloy storage container) The organic gas in the hydrogen storage alloy is taken out, stored in the storage tank or absorbed by the hydrogen storage alloy in other hydrogen storage alloy storage containers; among them, the purity of the purging hydrogen gas is preferably greater than 90% by weight, more preferably greater than 95% by weight, for example, greater than 99% by weight).

8.  根據前述技術方案中任一項的提供高純度氫氣的方法,其特徵在於,在(4)中:8. The method for providing high-purity hydrogen according to any one of the foregoing technical solutions is characterized in that in (4):

儲氫合金釋放的氫氣的溫度(即,加熱儲氫合金的溫度,簡稱放氫溫度)為150-450℃,釋放的氫氣的壓力為≥35MPa(例如為35-100MPa)以得到高純高壓氫氣,或者釋放的氫氣的分壓為0.1-5MPa以得到高純氫氣,其中放氫溫度高於吸氫溫度。The temperature of the hydrogen released by the hydrogen storage alloy (ie, the temperature at which the hydrogen storage alloy is heated, referred to as the hydrogen release temperature) is 150-450°C, and the pressure of the released hydrogen is ≥35MPa (for example, 35-100MPa) to obtain high-purity and high-pressure hydrogen , Or the partial pressure of the released hydrogen is 0.1-5 MPa to obtain high-purity hydrogen, wherein the hydrogen release temperature is higher than the hydrogen absorption temperature.

9.  根據前述技術方案中任一項的提供高純度氫氣的方法,其特徵在於,還包括使含氫合金釋放氫氣,釋放的氫氣與不同的儲氫合金接觸形成含氫合金,該過程重複一次或多次,其中至少最後一次的重複過程所用的儲氫合金為具有高平衡壓力的儲氫合金。9. The method for providing high-purity hydrogen according to any one of the foregoing technical solutions, which is characterized in that it also includes allowing hydrogen-containing alloys to release hydrogen, and the released hydrogen contacts with different hydrogen storage alloys to form hydrogen-containing alloys, and the process is repeated once Or multiple times, wherein the hydrogen storage alloy used in at least the last repetition process is a hydrogen storage alloy with a high equilibrium pressure.

10.  根據前述技術方案中任一項的提供高純度氫氣的方法,其特徵在於,10. The method for providing high-purity hydrogen according to any one of the foregoing technical solutions, characterized in that:

所述的儲氫合金為第一儲氫合金與第二儲氫合金聯用;The hydrogen storage alloy is a combination of the first hydrogen storage alloy and the second hydrogen storage alloy;

第一儲氫合金為鎂系A2 B型儲氫合金,用於富氫氣體接觸,The first hydrogen storage alloy is a magnesium-based A 2 B hydrogen storage alloy for contact with hydrogen-rich gas,

第二儲氫合金用於將第一儲氫氫氣增壓,第二儲氫合金為具有高平衡壓力的儲氫合金,第二儲氫合金為稀土系AB5 型,鋯鈦系AB2 型,鈦系AB型儲氫合金中的一種或者多種;The second hydrogen storage alloy is used to pressurize the first hydrogen storage hydrogen, the second hydrogen storage alloy is a hydrogen storage alloy with a high equilibrium pressure, the second hydrogen storage alloy is rare earth type AB 5 and zirconium titanium type AB 2, One or more of titanium-based AB-type hydrogen storage alloys;

富氫氣體先經過第一儲氫合金,進行雜質分離;然後使第一儲氫合金釋放出的高純氫氣與第二儲氫合金進行接觸,然後使第二儲氫合金在高壓下釋放氫氣。The hydrogen-rich gas first passes through the first hydrogen storage alloy to separate impurities; then the high-purity hydrogen released from the first hydrogen storage alloy is brought into contact with the second hydrogen storage alloy, and then the second hydrogen storage alloy releases hydrogen under high pressure.

第一儲氫合金放氫溫度高於第二儲氫合金吸氫溫度,溫差優選≥100℃(例如350℃≥溫差≥150℃);The hydrogen release temperature of the first hydrogen storage alloy is higher than the hydrogen absorption temperature of the second hydrogen storage alloy, and the temperature difference is preferably ≥100°C (for example, 350°C≥temperature difference ≥150°C);

第一儲氫合金和第二儲氫合金在不同的儲氫合金儲存罐中,且第一儲氫合金儲存罐和第二儲氫合金儲存罐中間有熱交換系統;The first hydrogen storage alloy and the second hydrogen storage alloy are in different hydrogen storage alloy storage tanks, and there is a heat exchange system between the first hydrogen storage alloy storage tank and the second hydrogen storage alloy storage tank;

富氫氣體與第一儲氫合金接觸的吸氫溫度為20-150℃(例如50-100℃),氫氣分壓為0.001-0.1MPa(0.001-0.03MPa);The hydrogen absorption temperature at which the hydrogen-rich gas contacts the first hydrogen storage alloy is 20-150°C (for example, 50-100°C), and the hydrogen partial pressure is 0.001-0.1MPa (0.001-0.03MPa);

第一儲氫合金釋放氫氣的溫度(放氫溫度)為150-450℃(例如200-350℃),放氫的氫氣分壓為0.1-5MPa(例如0.1-1MPa);The temperature at which the first hydrogen storage alloy releases hydrogen (hydrogen release temperature) is 150-450°C (for example, 200-350°C), and the hydrogen partial pressure for hydrogen release is 0.1-5 MPa (for example, 0.1-1 MPa);

第二儲氫合金吸收氫氣的吸氫溫度為-70至100℃(例如-30至100℃),吸氫的氫氣分壓為0.1-5MPa(例如0.1-1MPa),The hydrogen absorption temperature of the second hydrogen storage alloy to absorb hydrogen is -70 to 100°C (for example, -30 to 100°C), and the hydrogen partial pressure for hydrogen absorption is 0.1 to 5 MPa (for example, 0.1 to 1 MPa),

第二儲氫合金放氫溫度為150-450℃(例如200-350℃),放氫的氫氣分壓為≥35MPa(例如35-100MPa)。The hydrogen release temperature of the second hydrogen storage alloy is 150-450°C (for example, 200-350°C), and the hydrogen partial pressure for hydrogen release is ≥35MPa (for example, 35-100MPa).

11.  根據前述技術方案中任一項的提供高純度氫氣的方法,其特徵在於,11. The method for providing high-purity hydrogen according to any one of the foregoing technical solutions, characterized in that:

所述的有機液體儲氫原料為分子中含有環的有機化合物,其任選地含有雜原子,所述的雜原子可以處於環上;The organic liquid hydrogen storage raw material is an organic compound containing a ring in the molecule, which optionally contains heteroatoms, and the heteroatoms may be on the ring;

例如,含有環烷烴環的飽和或不飽和烴,如不含雜環原子的含有環烷烴環的飽和或不飽和烴,更具體地,芳環和環烷烴的環總數小於等於2的不含雜環原子的含有環烷烴環的飽和或不飽和烴,例如,環己烷,甲基環己烷,十氫萘,雙環己烷;以及含雜原子的含有環烷烴環的飽和或不飽和烴,例如,含氮雜環化合物,以及含氮/硼雜環化合物,所述的含氮雜環化合物包括十氫哢唑,十二氫乙基哢唑,二氫吲哚,4-胺基呱啶,呱啶-4-羧胺,全氫-4,7-菲洛林,2-甲基-1,2,3,4-四氫喹啉,2,6-二甲基十氫-1,5-萘啶中的一種或者幾種;所述的含氮/硼雜環化合物包括:1,2-硼雜氮雜-環己烷,3-甲基-1,2-硼雜氮雜-環戊烷中的一種或者多種。For example, saturated or unsaturated hydrocarbons containing cycloalkane rings, such as saturated or unsaturated hydrocarbons containing cycloalkane rings that do not contain heterocyclic atoms, more specifically, the total number of aromatic and cycloalkane rings is less than or equal to 2 and contains no hetero Saturated or unsaturated hydrocarbons containing cycloalkane rings with ring atoms, for example, cyclohexane, methylcyclohexane, decalin, bicyclohexane; and saturated or unsaturated hydrocarbons containing cycloalkane rings containing heteroatoms, For example, nitrogen-containing heterocyclic compounds, and nitrogen/boron heterocyclic compounds, the nitrogen-containing heterocyclic compounds include decahydroxazole, dodecahydroethyl azole, indoline, 4-aminopiperidine , Piperidine-4-carboxyamine, perhydro-4,7-phenanthroline, 2-methyl-1,2,3,4-tetrahydroquinoline, 2,6-dimethyldecahydro-1, One or more of 5-naphthyridine; the nitrogen-containing/boron heterocyclic compound includes: 1,2-borazepine-cyclohexane, 3-methyl-1,2-borazepine- One or more of cyclopentane.

12.  根據前述技術方案中任一項的提供高純度氫氣的方法,其特徵在於,12. The method for providing high-purity hydrogen according to any one of the foregoing technical solutions, characterized in that:

還包括將釋放的氫氣引入到氫氣儲罐以儲存氫氣;或者所得到的高純高壓氫氣可以直接用於氫燃料電池車加注。It also includes introducing the released hydrogen into a hydrogen storage tank to store hydrogen; or the obtained high-purity and high-pressure hydrogen can be directly used for hydrogen fuel cell vehicle refueling.

13.  一種高效分散式製高純高壓氫氣的方法,該方法包括:13. An efficient and decentralized method for producing high-purity and high-pressure hydrogen, the method includes:

在脫氫反應器中,將液體有機儲氫原料在脫氫催化劑的存在下進行脫氫反應得到包括氫氣的脫氫反應產物;In the dehydrogenation reactor, the liquid organic hydrogen storage raw material is subjected to a dehydrogenation reaction in the presence of a dehydrogenation catalyst to obtain a dehydrogenation reaction product including hydrogen;

在冷卻分離裝置中,將脫氫反應產物冷卻並分離,得到富氫物流和有機液體;In the cooling separation device, the dehydrogenation reaction product is cooled and separated to obtain a hydrogen-rich stream and an organic liquid;

在儲氫合金儲存容器中,使富氫物流或純化後的富氫物流與儲氫合金接觸,得到含氫合金;In the hydrogen storage alloy storage container, the hydrogen-rich stream or purified hydrogen-rich stream is brought into contact with the hydrogen storage alloy to obtain the hydrogen-containing alloy;

氫氣吹掃除去儲氫合金儲存容器中的有機物;其中,吹掃氫氣的純度優選大於90重量%(例如大於95重量%,大於99重量%);Hydrogen purging removes organic matter in the hydrogen storage alloy storage container; wherein the purity of the purged hydrogen is preferably greater than 90% by weight (for example, greater than 95% by weight, greater than 99% by weight);

將含氫合金加熱釋放氫氣,得到高壓氫氣和將得到的高壓氫氣提供給用氫裝置或高壓氫氣儲存罐儲存。The hydrogen-containing alloy is heated to release hydrogen to obtain high-pressure hydrogen and the obtained high-pressure hydrogen is supplied to a hydrogen device or a high-pressure hydrogen storage tank for storage.

14.  一種提供高純高壓氫氣的系統,包括:14. A system for providing high-purity and high-pressure hydrogen, including:

有機液體儲氫原料儲存和供應裝置,用於儲存有機液體儲氫原料和向脫氫反應器提供有機液體儲氫原料;Organic liquid hydrogen storage raw material storage and supply device, used to store organic liquid hydrogen storage raw materials and provide organic liquid hydrogen storage raw materials to the dehydrogenation reactor;

脫氫後液體儲存裝置,用於儲存有機液體儲氫原料脫氫後得到的液體產物;Dehydrogenated liquid storage device for storing liquid products obtained after dehydrogenation of organic liquid hydrogen storage raw materials;

脫氫反應器裝置,用於將有機液體儲氫原料在脫氫催化劑的作用下進行脫氫反應得到包括氫氣的脫氫反應產物;Dehydrogenation reactor device, used for dehydrogenation reaction of organic liquid hydrogen storage raw materials under the action of dehydrogenation catalyst to obtain dehydrogenation reaction product including hydrogen;

冷卻分離裝置,用於將脫氫反應產物分離得到富氫氣體產物和液體產物;Cooling separation device for separating dehydrogenation reaction products to obtain hydrogen-rich gas products and liquid products;

儲氫-供氫裝置,其包括儲氫合金儲存容器,儲氫合金加熱系統,用於將富氫氣體與儲氫合金在低溫低壓下接觸吸氫,吸附飽和後加熱脫氫;The hydrogen storage-hydrogen supply device includes a hydrogen storage alloy storage container and a hydrogen storage alloy heating system, which is used to contact the hydrogen-rich gas with the hydrogen storage alloy to absorb hydrogen at low temperature and low pressure, and heat to dehydrogenate after the adsorption is saturated;

任選的吹掃裝置用於除去儲氫容器中的有機物;An optional purge device is used to remove organic matter in the hydrogen storage container;

氫氣供應裝置,將高壓氫氣提供給用氫裝置或氫氣儲存罐;Hydrogen supply device, which supplies high-pressure hydrogen to the hydrogen consuming device or hydrogen storage tank;

優選地,所述的系統設置集成建造在貨櫃內,作為貨櫃式製氫系統置於加氫站使用,或直接建造在加氫站使用;Preferably, the system is configured to be integrated and built in a container, and used as a container-type hydrogen production system in a hydrogen refueling station, or directly built in a hydrogen refueling station for use;

優選地,所述的儲氫-供氫裝置包括一個或多個儲氫合金儲存容器,多個儲氫合金儲存容器可以並聯或串聯或者並聯和串聯混合聯接;Preferably, the hydrogen storage-hydrogen supply device includes one or more hydrogen storage alloy storage containers, and a plurality of hydrogen storage alloy storage containers can be connected in parallel or in series or a mixture of parallel and series connections;

優選地,至少一個所述的儲氫合金儲存容器為耐高壓容器和/或所述的氫氣供應裝置為耐高壓的裝置,例如其耐受壓力為35MPa以上。Preferably, at least one of the hydrogen storage alloy storage container is a high-pressure container and/or the hydrogen supply device is a high-pressure-resistant device, for example, its withstand pressure is 35 MPa or more.

15.  一種移動式供氫系統,包括運輸車輛和設置在運輸車輛上的根據前述技術方案中任一項的提供高純高壓氫氣的系統。15. A mobile hydrogen supply system, including a transportation vehicle and a system for providing high-purity and high-pressure hydrogen according to any one of the foregoing technical solutions arranged on the transportation vehicle.

16.  一種分散式供氫裝置,包括根據前述技術方案中任一項的提供高純高壓氫氣的系統,並且任選地包括高壓氫氣貯存罐。16. A decentralized hydrogen supply device, including the system for providing high-purity and high-pressure hydrogen according to any one of the foregoing technical solutions, and optionally including a high-pressure hydrogen storage tank.

17.  一種儲氫合金或者根據前述技術方案中任一項的方法、系統或裝置,其特徵在於,所述的儲氫合金為稀土系AB5 型,鋯鈦系AB2 型,鈦系AB型,鎂系A2 B型以及釩基固溶體型儲氫合金中的一種或者多種,其中17. A hydrogen storage alloy or the method, system or device according to any one of the foregoing technical solutions, characterized in that the hydrogen storage alloy is rare earth AB 5 type, zirconium titanium AB 2 type, and titanium AB type , One or more of magnesium-based A 2 B-type and vanadium-based solid solution hydrogen storage alloys, of which

所述的稀土系AB5 型儲氫合金的分子運算式為:Mm Nix1 Cox2 Mnx3 Fex4 Alx5 Snx6The molecular formula of the rare earth AB 5 type hydrogen storage alloy is: M m Ni x1 Co x2 Mn x3 Fe x4 Al x5 Sn x6 ,

4.5≤x1+x2+x3+x4+x5+x6≤5.5,4.5≤x1+x2+x3+x4+x5+x6≤5.5,

其中,Mm 為Lay1 Cey2 Ndy3 Pry4 Yy5Among them, M m is La y1 Ce y2 Nd y3 Pr y4 Y y5 ,

y1+y2+y3+y4+y5=1,y1+y2+y3+y4+y5=1,

其中,among them,

0.4≤y1≤0.99(例如,0.4≤y1≤0.8),0≤y2≤0.45(例如,0.1≤y2≤0.45),0≤y3≤0.2(例如,0≤y3≤0.2),0≤y4≤0.05(例如,0≤y4≤0.05),0.01≤y5≤0.1(例如,0.01≤y5≤0.05),3≤x1≤5.45(例如,3≤x1≤4.9),0≤x2≤1.5(例如,0.1≤x2≤1),0≤x3≤0.8(例如,0.1≤x3≤0.6),0≤x4≤0.8(例如,0.1≤x4≤0.6),0≤x5≤0.75(例如,0.05≤x5≤0.5),0≤x6≤0.2;(例如,0≤x6≤0.15);0.4≤y1≤0.99 (for example, 0.4≤y1≤0.8), 0≤y2≤0.45 (for example, 0.1≤y2≤0.45), 0≤y3≤0.2 (for example, 0≤y3≤0.2), 0≤y4≤0.05 (E.g., 0≤y4≤0.05), 0.01≤y5≤0.1 (e.g., 0.01≤y5≤0.05), 3≤x1≤5.45 (e.g., 3≤x1≤4.9), 0≤x2≤1.5 (e.g., 0.1≤ x2≤1), 0≤x3≤0.8 (for example, 0.1≤x3≤0.6), 0≤x4≤0.8 (for example, 0.1≤x4≤0.6), 0≤x5≤0.75 (for example, 0.05≤x5≤0.5), 0≤x6≤0.2; (for example, 0≤x6≤0.15);

所述的鋯鈦系AB2 型儲氫合金的的分子運算式為AB2 ,其中The molecular formula of the zirconium-titanium series AB 2 type hydrogen storage alloy is AB 2 , where

A=Mgx1 Cax2 Tix3 Zrx4 Yx5 Lax6 ,x1+x2+x3+x4+x5+x6=0.9-1.1,A=Mg x1 Ca x2 Ti x3 Zr x4 Y x5 La x6 , x1+x2+x3+x4+x5+x6=0.9-1.1,

B=Vy1 Cry2 Mny3 Fey4 Coy5 Niy6 Cuy7 ,y1+y2+y3+y4+y5+y6+y7=1.9-2.1,B=V y1 Cr y2 Mn y3 Fe y4 Co y5 Ni y6 Cu y7 , y1+y2+y3+y4+y5+y6+y7=1.9-2.1,

0≤x1≤0.54(例如,0.01≤x1≤0.3,0.01≤x1≤0.1),0≤x2≤0.54(例如,0≤x2≤0.25),0.5≤x3≤1.04(例如,0.6≤x3≤1),0.05≤x4≤0.58(例如,0.1≤x4≤0.58),0.01≤x5≤0.2(例如,0.01≤x5≤0.05),0≤x6≤0.2(例如,0≤x6≤0.05),0.05≤y1≤1.95(例如,0.05≤y1≤1.8),0≤y2≤1.9(例如,0≤y2≤1.85),0.05≤y3≤1.95(例如,0.1≤y3≤1.95),0≤y4≤1.6(例如,0≤y4≤1.5),0≤y5≤0.5(例如,0≤y5≤0.3),0.1≤y6≤0.5(例如,0.1≤y6≤0.3),0≤y7≤0.5(例如,0.1≤y7≤0.2),0≤x1≤0.54 (for example, 0.01≤x1≤0.3, 0.01≤x1≤0.1), 0≤x2≤0.54 (for example, 0≤x2≤0.25), 0.5≤x3≤1.04 (for example, 0.6≤x3≤1) , 0.05≤x4≤0.58 (for example, 0.1≤x4≤0.58), 0.01≤x5≤0.2 (for example, 0.01≤x5≤0.05), 0≤x6≤0.2 (for example, 0≤x6≤0.05), 0.05≤y1≤ 1.95 (e.g., 0.05≤y1≤1.8), 0≤y2≤1.9 (e.g., 0≤y2≤1.85), 0.05≤y3≤1.95 (e.g., 0.1≤y3≤1.95), 0≤y4≤1.6 (e.g., 0 ≤y4≤1.5), 0≤y5≤0.5 (for example, 0≤y5≤0.3), 0.1≤y6≤0.5 (for example, 0.1≤y6≤0.3), 0≤y7≤0.5 (for example, 0.1≤y7≤0.2) ,

優選地,0.7≤x3:(x3+x4)≤0.95,Preferably, 0.7≤x3:(x3+x4)≤0.95,

優選地,1.7≤y1+y2+y3+y4≤2;Preferably, 1.7≤y1+y2+y3+y4≤2;

所述的鈦系AB型儲氫合金的分子運算式為AB,其中The molecular formula of the titanium AB type hydrogen storage alloy is AB, where

A=Tix1 Zrx2 Yx3 Lax4 ,x1+x2+x3+x4=0.85-1.1,A=Ti x1 Zr x2 Y x3 La x4 , x1+x2+x3+x4=0.85-1.1,

B=Vy1 Cry2 Mny3 Fey4 Coy5 Niy6 Cuy7 ,y1+y2+y3+y4+y5+y6+y7=0.95-1.05,B=V y1 Cr y2 Mn y3 Fe y4 Co y5 Ni y6 Cu y7 , y1+y2+y3+y4+y5+y6+y7=0.95-1.05,

0≤x1≤1.09(例如,0.9≤x1≤1.05),0≤x2≤1.09(例如,0≤x2≤0.5),0.01≤x3≤0.2(例如,0.01≤x3≤0.05),0≤x4≤0.2(例如,0≤x4≤0.05),0.05≤y1≤0.5(例如,0.05≤y1≤0.2),0≤y2≤0.8(例如,0≤y2≤0.2),0≤y3≤0.8(例如,0.05≤y3≤0.4,或0.1≤y3≤0.4),0.2≤y4≤1(例如,0.5≤y4≤0.9),0≤y5≤0.35(例如,0≤y5≤0.1),0≤y6≤0.45(例如,0≤y6≤0.2),0≤y7≤0.3(例如,0≤y7≤0.2),0≤x1≤1.09 (for example, 0.9≤x1≤1.05), 0≤x2≤1.09 (for example, 0≤x2≤0.5), 0.01≤x3≤0.2 (for example, 0.01≤x3≤0.05), 0≤x4≤0.2 (E.g., 0≤x4≤0.05), 0.05≤y1≤0.5 (e.g., 0.05≤y1≤0.2), 0≤y2≤0.8 (e.g., 0≤y2≤0.2), 0≤y3≤0.8 (e.g., 0.05≤ y3≤0.4, or 0.1≤y3≤0.4), 0.2≤y4≤1 (for example, 0.5≤y4≤0.9), 0≤y5≤0.35 (for example, 0≤y5≤0.1), 0≤y6≤0.45 (for example, 0≤y6≤0.2), 0≤y7≤0.3 (for example, 0≤y7≤0.2),

優選地,x1和x2不同時為零;Preferably, x1 and x2 are not zero at the same time;

所述的鎂系A2 B型儲氫合金的分子運算式為A2 B,其中The molecular formula of the magnesium-based A 2 B hydrogen storage alloy is A 2 B, where

A=Mgx1 Cax2 Tix3 Lax4 Yx5 ,x1+x2+x3+x4+x5=1.9-2.1,A=Mg x1 Ca x2 Ti x3 La x4 Y x5 , x1+x2+x3+x4+x5=1.9-2.1,

B=Cry1 Fey2 Coy3 Niy4 Cuy5 Moy6 ;y1+y2+y3+y4+y5+y6=0.9-1.1;B=Cr y1 Fe y2 Co y3 Ni y4 Cu y5 Mo y6 ; y1+y2+y3+y4+y5+y6=0.9-1.1;

其中,among them,

1.29≤x1≤2.09(例如,1.7≤x1≤2.05),0≤x2≤0.5(例如,0≤x2≤0.2),0≤x3≤0.8(例如,0≤x3≤0.5),0≤x4≤0.5(例如,0≤x4≤0.2),0.01≤x5≤0.2(例如,0.05≤x5≤0.1),0≤y1≤0.3(例如,0≤y1≤0.2,0.05≤y1≤0.2),0≤y2≤0.2(例如,0≤y2≤0.1),0≤y3≤0.6(例如,0≤y3≤0.5),0.2≤y4≤1.1(例如,0.7≤y4≤1.05),0≤y5≤0.5(例如,0≤y5≤0.4),0≤y6≤0.15(例如,0≤y6≤0.1);1.29≤x1≤2.09 (for example, 1.7≤x1≤2.05), 0≤x2≤0.5 (for example, 0≤x2≤0.2), 0≤x3≤0.8 (for example, 0≤x3≤0.5), 0≤x4≤0.5 (For example, 0≤x4≤0.2), 0.01≤x5≤0.2 (for example, 0.05≤x5≤0.1), 0≤y1≤0.3 (for example, 0≤y1≤0.2, 0.05≤y1≤0.2), 0≤y2≤ 0.2 (e.g., 0≤y2≤0.1), 0≤y3≤0.6 (e.g., 0≤y3≤0.5), 0.2≤y4≤1.1 (e.g., 0.7≤y4≤1.05), 0≤y5≤0.5 (e.g., 0 ≤y5≤0.4), 0≤y6≤0.15 (for example, 0≤y6≤0.1);

所述的釩基固溶體型儲氫合金的分子運算式為Ax1 Bx2 ,其中x1+x2=1,The molecular formula of the vanadium-based solid solution hydrogen storage alloy is A x1 B x2 , where x1+x2=1,

其中A=Tiy1 Vy2 Zry3 Nby4 Yy5 Lay6 Cay7 ,y1+y2+y3+y4+y5+y6+y7=1,Where A=Ti y1 V y2 Zr y3 Nb y4 Y y5 La y6 Ca y7 , y1+y2+y3+y4+y5+y6+y7=1,

B=Mnz1 Fez2 Coz3 Niz4 ,z1+z2+z3+z4=1,B=Mn z1 Fe z2 Co z3 Ni z4 , z1+z2+z3+z4=1,

0.7≤x1≤0.95(例如,0.8≤x1≤0.95,0.9≤x1≤0.95),0.05≤x2≤0.3(例如,0.05≤x2≤0.2,0.05≤x2≤0.1),0.40≤y1≤0.9(例如,0.45≤y1≤0.9,0.5≤y1≤0.8),0≤y2≤0.5(例如,0≤y2≤0.4),0≤y3≤0.5(例如,0≤y3≤0.4),0≤y4≤0.55(例如,0≤y4≤0.4),0≤y5≤0.2(例如,0.01≤y5≤0.2,0.05≤y5≤0.2),0≤y6≤0.1(例如,0≤y6≤0.05),0≤y7≤0.1(例如,0≤y7≤0.05),0≤z1≤1(例如,0.1≤z1≤1,0.2≤z1≤0.95),0≤z2≤0.95(例如,0≤z2≤0.9),0≤z3≤0.3(例如,0≤z3≤0.2),0≤z4≤0.45(例如,0.05≤z4≤0.45,0.05≤z4≤0.3),0.55≤z1+z2≤1(例如,0.7≤z1+z2≤1)。0.7≤x1≤0.95 (for example, 0.8≤x1≤0.95, 0.9≤x1≤0.95), 0.05≤x2≤0.3 (for example, 0.05≤x2≤0.2, 0.05≤x2≤0.1), 0.40≤y1≤0.9 (for example, 0.45≤y1≤0.9, 0.5≤y1≤0.8), 0≤y2≤0.5 (e.g., 0≤y2≤0.4), 0≤y3≤0.5 (e.g., 0≤y3≤0.4), 0≤y4≤0.55 (e.g. , 0≤y4≤0.4), 0≤y5≤0.2 (for example, 0.01≤y5≤0.2, 0.05≤y5≤0.2), 0≤y6≤0.1 (for example, 0≤y6≤0.05), 0≤y7≤0.1 ( For example, 0≤y7≤0.05), 0≤z1≤1 (for example, 0.1≤z1≤1, 0.2≤z1≤0.95), 0≤z2≤0.95 (for example, 0≤z2≤0.9), 0≤z3≤0.3 (For example, 0≤z3≤0.2), 0≤z4≤0.45 (for example, 0.05≤z4≤0.45, 0.05≤z4≤0.3), 0.55≤z1+z2≤1 (for example, 0.7≤z1+z2≤1).

18.  根據前述技術方案中任一項的儲氫合金、方法、系統或裝置,其特徵在於,所述的儲氫合金選自以下:18. The hydrogen storage alloy, method, system or device according to any one of the foregoing technical solutions, characterized in that the hydrogen storage alloy is selected from the following:

La0.61 Ce0.16 Pr0.04 Nd0.19 Ni3.55 Co0.75 Mn0.4 Al0.3 ,(Ti0.8 V0.2 )0.95 (Fe1 )0.05 ,(Ti0.8 Y0.2 )0.95 (Mn0.95 Ni0.05 )0.05 ,(Ti0.4 V0.4 Y0.2 )0.9 (Fe0.05 Mn0.95 )0.1 ,(Ti0.4 V0.4 Y0.2 )0.9 (Fe0.05 Mn0.9 Ni0.05 )0.1 ,(Ti0.7 Nb0.1 Y0.2 )0.9 (Mn1 )0.1 ,(Ti0.7 Nb0.1 Y0.2 )0.9 (Mn0.7 Ni0.3 )0.1 ,(Ti0.4 Zr0.4 Y0.2 )0.93 (Fe0.2 Mn0.7 Co0.1 )0.07 ,(Ti0.4 Zr0.4 Y0.2 )0.93 (Fe0.2 Mn0.7 Ni0.1 )0.07 ,(Ti0.4 V0.4 Zr0.2 )0.95 (Fe0.6 Mn0.2 Co0.1 Ni0.1 )0.05 ,(Ti0.4 V0.35 Zr0.2 Y0.05 )0.95 (Fe0.6 Mn0.2 Co0.1 Ni0.1 )0.05 ,(Ti0.88 Y0.1 Ca0.02 )0.95 (Fe0.3 Mn0.6 Co0.1 )0.05 ,(Ti0.88 Y0.1 Ca0.02 )0.95 (Fe0.3 Mn0.6 Ni0.1 )0.05 ,(Ti0.7 Nb0.1 Y0.2 )0.8 (Mn0.7 Ni0.3 )0.2 ,Ti0.64 Zr0.45 Y0.01 VMn0.9 Ni0.1 ,Mg0.01 Ti0.93 Zr0.15 Y0.01 VMn0.9 Ni0.1 ,Ti0.55 Zr0.48 Y0.05 La0.02 V0.33 Cr0.05 Mn1.5 Fe0.09 Ni0.1 ,Ti0.85 Zr0.18 Y0.05 La0.02 V0.23 Cr0.05 Mn1.5 Fe0.09 Ni0.1 Cu0.1 ,Ti0.6 Zr0.4 Y0.05 V0.1 Mn1.8 Ni0.2 ,Mg0.1 Ti0.7 Zr0.2 Y0.05 V0.1 Mn1.6 Ni0.2 Cu0.2 ,Ca0.01 Ti0.9 Zr0.05 Y0.05 V1.2 Mn0.6 Ni0.3 ,Ca0.01 Ti0.85 Zr0.05 Y0.05 V1.2 Mn0.6 Ni0.1 Cu0.2 ,TiZr0.05 Y0.05 V0.1 Cr1.4 Mn0.2 Co0.1 Ni0.3 ,Mg0.1 Ti0.8 Zr0.15 Y0.05 V0.1 Cr1.4 Mn0.2 Co0.1 Ni0.1 Cu0.2 ,Ti0.5 Zr0.55 Y0.05 V1.79 Mn0.1 Fe0.01 Ni0.2 ,Ti0.8 Zr0.25 Y0.05 V1.79 Mn0.1 Fe0.01 Ni0.1 Cu0.1 ,Mg0.01 Ti0.63 Zr0.45 Y0.01 VMn0.9 Ni0.1 ,Mg1.8 Y0.1 Ni1 ,Mg1.8 Y0.1 Cr0.05 Ni1 ,Mg1.5 Ti0.5 Y0.05 Ni1.1 ,Mg1.5 Ti0.5 Y0.05 Cr0.1 Ni1 ,Mg2 Y0.1 Ni0.6 Cu0.4 ,Mg2 Y0.1 Cr0.05 Ni0.6 Cu0.4 ,Mg1.92 Y0.08 Ni0.95 Fe0.05 ,Mg1.92 Y0.08 Cr0.2 Ni0.75 Fe0.05 ,Mg1.9 Y0.1 Fe0.1 Ni0.8 Cu0.1 ,Mg1.9 Y0.1 Cr0.1 Fe0.1 Ni0.7 Cu0.1 ,Mg1.9 Y0.1 Ni0.8 Co0.2 ,Mg1.9 Y0.1 Cr0.1 Ni0.8 Co0.2 ,Mg1.8 Y0.1 La0.1 Ni0.9 Co0.1 ,Mg1.8 Y0.1 La0.1 Cr0.05 Ni0.9 Co0.1 ,Mg1.7 Ti0.2 Y0.1 Ni0.7 Co0.32 ,Mg1.7 Ti0.2 Y0.1 Cr0.05 Ni0.7 Co0.3 ,TiY0.01 V0.1 Fe0.7 Ni0.2 ,TiY0.01 V0.1 Fe0.7 Mn0.1 Ni0.1 ,TiY0.02 V0.2 Fe0.8 TiY0.02 V0.2 Fe0.7 Mn0.1 ,Ti0.97 Y0.03 V0.05 Cr0.03 Fe0.9 ,Ti0.97 Y0.03 V0.05 Cr0.03 Fe0.5 Mn0.4 ,Ti0.9 Y0.04 V0.15 Fe0.9 ,Ti0.9 Y0.04 V0.05 Fe0.9 Mn0.1 ,Ti0.91 Zr0.05 Y0.04 V0.1 Cr0.2 Fe0.7 ,Ti0.91 Zr0.05 Y0.04 V0.1 Cr0.2 Fe0.6 Mn0.1 ,Ti0.95 Y0.05 V0.26 Fe0.7 Cu0.05 ,Ti0.95 Y0.05 V0.05 Fe0.7 Mn0.21 Cu0.05 ,Ti1.02 Y0.03 V0.05 Fe0.9 Ni0.1 ,Ti1.02 Y0.03 V0.05 Fe0.8 Mn0.1 Ni0.1 ,La0.5 Ce0.32 Nd0.15 Pr0.02 Y0.01 Ni4.4 Fe0.55 Al0.05 ,La0.5 Ce0.32 Nd0.15 Pr0.02 Y0.01 Ni4.4 Fe0.6 ,La0.8 Ce0.15 Y0.05 Ni4 Mn0.5 Al0.5 ,La0.8 Ce0.15 Y0.05 Ni4.5 Mn0.5 ,La0.45 Ce0.4 Nd0.1 Pr0.03 Y0.02 Ni4 Co0.8 Al0.2 ,La0.45 Ce0.4 Nd0.1 Pr0.03 Y0.02 Ni4.2 Co0.8 ,La0.75 Ce0.15 Nd0.05 Pr0.02 Y0.03 Ni4.7 Al0.1 Fe0.2 ,La0.75 Ce0.15 Nd0.05 Pr0.02 Y0.03 Ni4.8 Fe0.2 ,La0.8 Ce0.15 Nd0.03 Y0.02 Ni4.5 Co0.3 Mn0.1 Al0.1 ,La0.8 Ce0.15 Nd0.03 Y0.02 Ni4.5 Co0.4 Mn0.1 ,La0.97 Y0.03 Ni4 Co1La 0.61 Ce 0.16 Pr 0.04 Nd 0.19 Ni 3.55 Co 0.75 Mn 0.4 Al 0.3 , (Ti 0.8 V 0.2 ) 0.95 (Fe 1 ) 0.05 , (Ti 0.8 Y 0.2 ) 0.95 (Mn 0.95 Ni 0.05 ) 0.05 , (Ti 0.4 V 0.4 Y 0.2 ) 0.9 (Fe 0.05 Mn 0.95 ) 0.1 , (Ti 0.4 V 0.4 Y 0.2 ) 0.9 (Fe 0.05 Mn 0.9 Ni 0.05 ) 0.1 , (Ti 0.7 Nb 0.1 Y 0.2 ) 0.9 (Mn 1 ) 0.1 , (Ti 0.7 Nb 0.1 Y 0.2 ) 0.9 (Mn 0.7 Ni 0.3 ) 0.1 , (Ti 0.4 Zr 0.4 Y 0.2 ) 0.93 (Fe 0.2 Mn 0.7 Co 0.1 ) 0.07 , (Ti 0.4 Zr 0.4 Y 0.2 ) 0.93 (Fe 0.2 Mn 0.7 Ni 0.1 ) 0.07 , (Ti 0.4 V 0.4 Zr 0.2 ) 0.95 (Fe 0.6 Mn 0.2 Co 0.1 Ni 0.1 ) 0.05 , (Ti 0.4 V 0.35 Zr 0.2 Y 0.05 ) 0.95 (Fe 0.6 Mn 0.2 Co 0.1 Ni 0.1 ) 0.05 , (Ti 0.88 Y 0.1 Ca 0.02 ) 0.95 (Fe 0.3 Mn 0.6 Co 0.1 ) 0.05 , (Ti 0.88 Y 0.1 Ca 0.02 ) 0.95 (Fe 0.3 Mn 0.6 Ni 0.1 ) 0.05 , (Ti 0.7 Nb 0.1 Y 0.2 ) 0.8 (Mn 0.7 Ni 0.3 ) 0.2 , Ti 0.64 Zr 0.45 Y 0.01 VMn 0.9 Ni 0.1 , Mg 0.01 Ti 0.93 Zr 0.15 Y 0.01 VMn 0.9 Ni 0.1 , Ti 0.55 Zr 0.48 Y 0.05 La 0.02 V 0.33 Cr 0.05 Mn 1.5 Fe 0.09 Ni 0.1 , Ti 0.85 Zr 0.18 Y 0.05 La 0.02 V 0.23 Cr 0.05 Mn 1.5 Fe 0.09 Ni 0.1 Cu 0.1 , Ti 0.6 Zr 0.4 Y 0.05 V 0.1 Mn 1.8 Ni 0.2 , Mg 0.1 Ti 0.7 Zr 0.2 Y 0.05 V 0.1 Mn 1.6 Ni 0.2 Cu 0.2 , Ca 0.01 Ti 0.9 Zr 0.05 Y 0.05 V 1.2 Mn 0.6 Ni 0.3 , Ca 0.01 Ti 0.85 Zr 0.05 Y 0.05 V 1.2 Mn 0.6 Ni 0.1 Cu 0.2 , TiZr 0.05 Y 0.05 V 0.1 Cr 1.4 Mn 0.2 Co 0.1 Ni 0.3 , Mg 0.1 Ti 0.8 Zr 0.15 Y 0.05 V 0.1 Cr 1.4 Mn 0.2 Co 0.1 Ni 0.1 Cu 0.2 , Ti 0.5 Zr 0.55 Y 0.05 V 1.79 Mn 0.1 Fe 0.01 Ni 0.2 , Ti 0.8 Zr 0.25 Y 0.05 V 1.79 Mn 0.1 Fe 0.01 Ni 0.1 Cu 0.1 , Mg 0.01 Ti 0.63 Zr 0.45 Y 0.01 VMn 0.9 Ni 0.1 , Mg 1.8 Y 0.1 Ni 1 , Mg 1.8 Y 0.1 Cr 0.05 Ni 1 , Mg 1.5 Ti 0.5 Y 0.05 Ni 1.1 , Mg 1.5 Ti 0.5 Y 0.05 Cr 0.1 Ni 1 , Mg 2 Y 0.1 Ni 0.6 Cu 0.4 , Mg 2 Y 0.1 Cr 0.05 Ni 0.6 Cu 0.4 , Mg 1.92 Y 0.08 Ni 0.95 Fe 0.05 , Mg 1.92 Y 0.08 Cr 0.2 Ni 0.75 Fe 0.05 , Mg 1.9 Y 0.1 Fe 0.1 Ni 0.8 Cu 0.1 , Mg 1.9 Y 0.1 Cr 0.1 Fe 0.1 Ni 0.7 Cu 0.1 , Mg 1.9 Y 0.1 Ni 0.8 Co 0.2 , Mg 1.9 Y 0.1 Cr 0.1 Ni 0.8 Co 0.2 , Mg 1.8 Y 0.1 La 0.1 Ni 0.9 Co 0.1 , Mg 1.8 Y 0.1 La 0.1 Cr 0.05 Ni 0.9 Co 0.1 , Mg 1.7 Ti 0.2 Y 0.1 Ni 0.7 Co 0.32 , Mg 1.7 Ti 0.2 Y 0.1 Cr 0.05 Ni 0.7 Co 0.3 , TiY 0.01 V 0.1 Fe 0.7 Ni 0.2 , TiY 0.01 V 0.1 Fe 0.7 Mn 0.1 Ni 0.1 , TiY 0.02 V 0.2 Fe 0.8 , TiY 0.02 V 0.2 Fe 0.7 Mn 0.1 , Ti 0.97 Y 0.03 V 0.05 Cr 0.03 Fe 0.9 , Ti 0.97 Y 0.03 V 0.05 Cr 0.03 Fe 0.5 Mn 0.4 , Ti 0.9 Y 0.04 V 0.15 Fe 0.9 , Ti 0.9 Y 0.04 V 0.05 Fe 0.9 Mn 0.1 , Ti 0.91 Zr 0.05 Y 0.04 V 0.1 Cr 0.2 Fe 0.7 , Ti 0.91 Zr 0.05 Y 0.04 V 0.1 Cr 0.2 Fe 0.6 Mn 0.1 , Ti 0.95 Y 0.05 V 0.26 Fe 0.7 Cu 0.05 , Ti 0.95 Y 0.05 V 0.05 Fe 0.7 Mn 0.21 Cu 0.05 , Ti 1.02 Y 0.03 V 0.05 Fe 0.9 Ni 0.1 , Ti 1.02 Y 0.03 V 0.05 Fe 0.8 Mn 0.1 Ni 0.1 , La 0.5 Ce 0.32 Nd 0.15 Pr 0.02 Y 0.01 Ni 4.4 Fe 0.55 Al 0.05 , La 0.5 Ce 0.32 Nd 0.15 Pr 0.02 Y 0.01 Ni 4.4 Fe 0.6 , La 0.8 Ce 0.15 Y 0.05 Ni 4 Mn 0.5 Al 0.5 , La 0.8 Ce 0.15 Y 0.05 Ni 4.5 Mn 0.5 , La 0.45 Ce 0.4 Nd 0.1 Pr 0.03 Y 0.02 Ni 4 Co 0.8 Al 0.2 , La 0.45 Ce 0.4 Nd 0.1 Pr 0.03 Y 0.02 Ni 4.2 Co 0.8 , La 0.75 Ce 0.15 Nd 0.05 Pr 0.02 Y 0.03 Ni 4.7 Al 0.1 Fe 0.2 , La 0.75 Ce 0.15 Nd 0.05 Pr 0.02 Y 0.03 Ni 4.8 Fe 0.2 , La 0.8 Ce 0.15 Nd 0.03 Y 0.02 Ni 4.5 Co 0.3 Mn 0.1 Al 0.1 , La 0.8 Ce 0.15 Nd 0.03 Y 0.02 Ni 4.5 Co 0.4 Mn 0.1 , La 0.97 Y 0.03 Ni 4 Co 1 .

19.  根據前述技術方案中任一項的儲氫合金、方法、系統或裝置,其特徵在於,所述的儲氫合金選自以下:19. The hydrogen storage alloy, method, system or device according to any one of the foregoing technical solutions, characterized in that the hydrogen storage alloy is selected from the following:

(Ti0.8 Y0.2 )0.95 (Mn0.95 Ni0.05 )0.05 ,(Ti0.4 V0.4 Y0.2 )0.9 (Fe0.05 Mn0.9 Ni0.05 )0.1 ,(Ti0.7 Nb0.1 Y0.2 )0.9 (Mn0.7 Ni0.3 )0.1 ,(Ti0.4 Zr0.4 Y0.2 )0.93 (Fe0.2 Mn0.7 Ni0.1 )0.07 ,(Ti0.4 V0.35 Zr0.2 Y0.05 )0.95 (Fe0.6 Mn0.2 Co0.1 Ni0.1 )0.05 ,(Ti0.88 Y0.1 Ca0.02 )0.95 (Fe0.3 Mn0.6 Ni0.1 )0.05 ,Mg0.01 Ti0.93 Zr0.15 Y0.01 VMn0.9 Ni0.1 ,Ti0.85 Zr0.18 Y0.05 La0.02 V0.23 Cr0.05 Mn1.5 Fe0.09 Ni0.1 Cu0.1 ,Mg0.1 Ti0.7 Zr0.2 Y0.05 V0.1 Mn1.6 Ni0.2 Cu0.2 ,Ca0.01 Ti0.85 Zr0.05 Y0.05 V1.2 Mn0.6 Ni0.1 Cu0.2 ,Mg0.1 Ti0.8 Zr0.15 Y0.05 V0.1 Cr1.4 Mn0.2 Co0.1 Ni0.1 Cu0.2 ,Ti0.8 Zr0.25 Y0.05 V1.79 Mn0.1 Fe0.01 Ni0.1 Cu0.1 ,Mg1.8 Y0.1 Cr0.05 Ni1 ,Mg1.5 Ti0.5 Y0.05 Cr0.1 Ni1 ,Mg2 Y0.1 Cr0.05 Ni0.6 Cu0.4 ,Mg1.92 Y0.08 Cr0.2 Ni0.75 Fe0.05 ,Mg1.9 Y0.1 Cr0.1 Fe0.1 Ni0.7 Cu0.1 ,Mg1.9 Y0.1 Cr0.1 Ni0.8 Co0.2 ,Mg1.8 Y0.1 La0.1 Cr0.05 Ni0.9 Co0.1 ,Mg1.7 Ti0.2 Y0.1 Cr0.05 Ni0.7 Co0.3 ,TiY0.01 V0.1 Fe0.7 Mn0.1 Ni0.1 ,TiY0.02 V0.2 Fe0.7 Mn0.1 ,Ti0.97 Y0.03 V0.05 Cr0.03 Fe0.5 Mn0.4 ,Ti0.9 Y0.04 V0.05 Fe0.9 Mn0.1 ,Ti0.91 Zr0.05 Y0.04 V0.1 Cr0.2 Fe0.6 Mn0.1 ,Ti0.95 Y0.05 V0.05 Fe0.7 Mn0.21 Cu0.05 ,Ti1.02 Y0.03 V0.05 Fe0.8 Mn0.1 Ni0.1 ,La0.5 Ce0.32 Nd0.15 Pr0.02 Y0.01 Ni4.4 Fe0.55 Al0.05 ,La0.8 Ce0.15 Y0.05 Ni4 Mn0.5 Al0.5 ,La0.45 Ce0.4 Nd0.1 Pr0.03 Y0.02 Ni4 Co0.8 Al0.2 ,La0.75 Ce0.15 Nd0.05 Pr0.02 Y0.03 Ni4.7 Al0.1 Fe0.2 ,La0.8 Ce0.15 Nd0.03 Y0.02 Ni4.5 Co0.3 Mn0.1 Al0.1(Ti 0.8 Y 0.2 ) 0.95 (Mn 0.95 Ni 0.05 ) 0.05 , (Ti 0.4 V 0.4 Y 0.2 ) 0.9 (Fe 0.05 Mn 0.9 Ni 0.05 ) 0.1 , (Ti 0.7 Nb 0.1 Y 0.2 ) 0.9 (Mn 0.7 Ni 0.3 ) 0.1 , (Ti 0.4 Zr 0.4 Y 0.2 ) 0.93 (Fe 0.2 Mn 0.7 Ni 0.1 ) 0.07 , (Ti 0.4 V 0.35 Zr 0.2 Y 0.05 ) 0.95 (Fe 0.6 Mn 0.2 Co 0.1 Ni 0.1 ) 0.05 , (Ti 0.88 Y 0.1 Ca 0.02 ) 0.95 (Fe 0.3 Mn 0.6 Ni 0.1 ) 0.05 , Mg 0.01 Ti 0.93 Zr 0.15 Y 0.01 VMn 0.9 Ni 0.1 , Ti 0.85 Zr 0.18 Y 0.05 La 0.02 V 0.23 Cr 0.05 Mn 1.5 Fe 0.09 Ni 0.1 Cu 0.1 , Mg 0.1 Ti 0.7 Zr 0.2 Y 0.05 V 0.1 Mn 1.6 Ni 0.2 Cu 0.2 , Ca 0.01 Ti 0.85 Zr 0.05 Y 0.05 V 1.2 Mn 0.6 Ni 0.1 Cu 0.2 , Mg 0.1 Ti 0.8 Zr 0.15 Y 0.05 V 0.1 Cr 1.4 Mn 0.2 Co 0.1 Ni 0.1 Cu 0.2 , Ti 0.8 Zr 0.25 Y 0.05 V 1.79 Mn 0.1 Fe 0.01 Ni 0.1 Cu 0.1 , Mg 1.8 Y 0.1 Cr 0.05 Ni 1 , Mg 1.5 Ti 0.5 Y 0.05 Cr 0.1 Ni 1 , Mg 2 Y 0.1 Cr 0.05 Ni 0.6 Cu 0.4 , Mg 1.92 Y 0.08 Cr 0.2 Ni 0.75 Fe 0.05 , Mg 1.9 Y 0.1 Cr 0.1 Fe 0.1 Ni 0.7 Cu 0.1 , Mg 1.9 Y 0.1 Cr 0.1 Ni 0.8 Co 0.2 , Mg 1.8 Y 0.1 La 0.1 Cr 0.05 Ni 0.9 Co 0.1 , Mg 1.7 Ti 0.2 Y 0.1 Cr 0.05 Ni 0.7 Co 0.3 , TiY 0.01 V 0.1 Fe 0.7 Mn 0.1 Ni 0.1 , TiY 0.02 V 0.2 Fe 0.7 Mn 0.1 , Ti 0.97 Y 0.03 V 0.05 Cr 0.03 Fe 0.5 Mn 0.4 , Ti 0.9 Y 0.04 V 0.05 Fe 0.9 Mn 0.1 , Ti 0.91 Zr 0.05 Y 0.04 V 0.1 Cr 0.2 Fe 0.6 Mn 0.1 , Ti 0.95 Y 0.05 V 0.05 Fe 0.7 Mn 0.21 Cu 0.05 , Ti 1.02 Y 0.03 V 0.05 Fe 0.8 Mn 0.1 Ni 0.1 , La 0.5 Ce 0.32 Nd 0.15 Pr 0.02 Y 0.01 Ni 4.4 Fe 0.55 Al 0.05 , La 0.8 Ce 0.15 Y 0.05 Ni 4 Mn 0.5 Al 0.5 , La 0.45 Ce 0.4 Nd 0.1 Pr 0.03 Y 0.02 Ni 4 Co 0.8 Al 0.2 , La 0.75 Ce 0.15 Nd 0.05 Pr 0.02 Y 0.03 Ni 4.7 Al 0.1 Fe 0.2 , La 0.8 Ce 0.15 Nd 0.03 Y 0.02 Ni 4.5 Co 0.3 Mn 0.1 Al 0.1 .

20.  根據前述技術方案中任一項的儲氫合金、方法、系統或裝置,其特徵在於,所述的儲氫合金是通過下述方法製備的,其中所述的方法包括以下步驟:20. The hydrogen storage alloy, method, system or device according to any one of the foregoing technical solutions, characterized in that the hydrogen storage alloy is prepared by the following method, wherein the method includes the following steps:

(1)以達到儲氫合金組成的方式稱量各儲氫合金原料進行混合;(1) Weigh and mix the raw materials of each hydrogen storage alloy in a way to reach the composition of the hydrogen storage alloy;

(2)將步驟(1)混合得到的物質進行熔煉,然後進行退火;(2) Melt the material obtained by mixing in step (1), and then perform annealing;

其中,所述熔煉為電爐熔煉或者感應熔煉;Wherein, the smelting is electric furnace smelting or induction smelting;

優選地,所述熔煉的條件包括:在真空或者惰性氣氛下進行,溫度為1200-3000℃,優選為1800-2200℃;Preferably, the smelting conditions include: under vacuum or an inert atmosphere, at a temperature of 1200-3000°C, preferably 1800-2200°C;

更優選地,在真空下進行,所述熔煉的壓力為1x10-5 -1x10-3 帕(絕對壓力),優選為0.5x10-4 -5x10-4 帕(絕對壓力);More preferably, under vacuum, the melting pressure of 1x10 -5 -1x10 -3 Pa (absolute pressure), preferably 0.5x10 -4 -5x10 -4 Pa (absolute pressure);

更優選地,在惰性氣氛下進行,所述熔煉的壓力為0.5-1巴(例如0.6-1巴, 0.7-1巴)(錶壓),More preferably, it is carried out under an inert atmosphere, and the pressure of the smelting is 0.5-1 bar (for example, 0.6-1 bar, 0.7-1 bar) (gauge pressure),

其中,所述退火的條件包括:在真空或者惰性氣氛(如氬氣氣氛)下進行,溫度為500-900℃(例如700-1000℃),時間為12-360小時;Wherein, the annealing conditions include: performing under vacuum or an inert atmosphere (such as an argon atmosphere), a temperature of 500-900°C (for example, 700-1000°C), and a time of 12-360 hours;

任選地,該方法還包括將步驟(2)退火得到的物質降溫後進行破碎處理以得到10-400目(例如20-400目)的產品,Optionally, the method further includes cooling the material obtained by annealing in step (2) and then performing a crushing treatment to obtain a product of 10-400 mesh (for example, 20-400 mesh),

任選地,該方法還包括將步驟(2)退火得到的物質進行活化處理;優選地,所述活化處理的條件包括:在真空下,溫度為50-300℃,時間為1-10小時。Optionally, the method further includes subjecting the material obtained by annealing in step (2) to activation treatment; preferably, the conditions of the activation treatment include: under vacuum, a temperature of 50-300° C., and a time of 1-10 hours.

21.   一種用於有機物脫氫催化劑的載體組合物,其特徵在於,該載體組合物包括氧化鋁和改性金屬氧化物,所述的改性金屬氧化物為鈦氧化物和/或鋯氧化物,其中,η<0.3,優選地,η=0;θ≥5,優選地,θ為5-40(例如5.4-34.3);21. A carrier composition for an organic dehydrogenation catalyst, characterized in that the carrier composition includes alumina and a modified metal oxide, and the modified metal oxide is titanium oxide and/or zirconium oxide , Where η<0.3, preferably, η=0; θ≥5, preferably, θ is 5-40 (for example, 5.4-34.3);

η=載體組合物中晶相改性金屬氧化物的重量百分含量/載體組合物中改性金屬氧化物的化學組成重量百分含量,η=weight percentage of the crystal phase modified metal oxide in the carrier composition/weight percentage of the chemical composition of the modified metal oxide in the carrier composition,

θ=載體組合物表面上改性金屬氧化物的重量百分含量/載體組合物中改性金屬氧化物的化學組成重量百分含量,鈦氧化物以TiO2 計,鋯氧化物以ZrO2 計。θ=weight percentage of the modified metal oxide on the surface of the carrier composition/weight percentage of the chemical composition of the modified metal oxide in the carrier composition, titanium oxide is calculated as TiO 2 and zirconium oxide is calculated as ZrO 2 .

22.  根據前述技術方案中任一項所述的用於有機物脫氫催化劑的載體組合物,其特徵在於,所述的載體組合物中氧化鋁質量份數為80-98.5%(例如83-97.5%,85-95%或90-95%),改性金屬氧化物的質量份數為1.5-20%(例如2.5-17%,5-15%,或5-10%)。22. The carrier composition for an organic dehydrogenation catalyst according to any one of the foregoing technical solutions, characterized in that the alumina mass fraction in the carrier composition is 80-98.5% (for example, 83-97.5 %, 85-95% or 90-95%), and the mass fraction of the modified metal oxide is 1.5-20% (for example, 2.5-17%, 5-15%, or 5-10%).

23.  根據前述技術方案中任一項所述的用於有機物脫氫催化劑的載體組合物,其特徵在於,所述的改性金屬氧化物包括鈦氧化物;所述的載體組合物中,二氧化鈦的質量份數為2-20%(例如2.5-17%,5-15%或5-10%),二氧化鋯的質量份數為0-8%(例如0-6%,0-3%或1-6%);優選地,所述的改性金屬氧化物(例如二氧化鈦)單層分散於氧化鋁基質上。23. The carrier composition for an organic dehydrogenation catalyst according to any one of the foregoing technical solutions, wherein the modified metal oxide includes titanium oxide; in the carrier composition, titanium dioxide The mass parts of zirconium dioxide is 2-20% (for example, 2.5-17%, 5-15% or 5-10%), and the mass parts of zirconium dioxide is 0-8% (for example, 0-6%, 0-3%). Or 1-6%); preferably, the modified metal oxide (for example, titanium dioxide) is dispersed in a single layer on the alumina matrix.

24.  根據前述技術方案中任一項所述的用於有機物脫氫催化劑的載體組合物,其特徵在於,相對於TiO2 純物相,所述的載體組合物XPS圖譜中,Ti 2P3/2 軌道電子結合能為458.8eV處的峰向高結合能偏移0.6-0.7eV和/或Ti 2P1/2 軌道電子結合能為464.5eV處的峰向高結合能方向偏移0.8-0.9eV。24. The carrier composition for an organic dehydrogenation catalyst according to any one of the preceding technical solutions, characterized in that, relative to the pure phase of TiO 2 , in the XPS map of the carrier composition, Ti 2P 3/ The peak at the 2- orbital electron binding energy of 458.8eV is shifted from 0.6-0.7eV to the high binding energy and/or the peak at the Ti 2P 1/2 orbital electron binding energy of 464.5eV is shifted from 0.8-0.9eV to the high binding energy .

25.  根據前述技術方案中任一項所述的用於有機物脫氫催化劑的載體組合物,其特徵在於,所述的載體組合物具有γ-氧化鋁,η-氧化鋁,ρ-氧化鋁或χ-氧化鋁中至少一種的物相結構。25. The carrier composition for an organic dehydrogenation catalyst according to any one of the foregoing technical solutions, characterized in that the carrier composition has γ-alumina, η-alumina, ρ-alumina or The phase structure of at least one of χ-alumina.

26.   根據前述技術方案中任一項所述的用於有機物脫氫催化劑的載體組合物,其特徵在於,所述的載體組合物的比表面積為100-350 m2 /g,所述的載體組合物的孔體積為0.3-1.3 mL/g。26. The carrier composition for an organic dehydrogenation catalyst according to any one of the foregoing technical solutions, characterized in that the specific surface area of the carrier composition is 100-350 m 2 /g, and the carrier The pore volume of the composition is 0.3-1.3 mL/g.

27.  一種根據前述技術方案中任一項所述的用於有機物脫氫催化劑的載體組合物的製備方法,包括如下步驟:27. A method for preparing a carrier composition for an organic dehydrogenation catalyst according to any one of the foregoing technical solutions, including the following steps:

(1)將氧化鋁基質與氣體攜帶的改性金屬氧化物前驅物氣流接觸,得到負載改性金屬氧化物前驅物的氧化鋁基質,所述的改性金屬氧化物前驅物為氧化鈦前驅物和/或氧化鋯前驅物;(1) The alumina matrix is contacted with the modified metal oxide precursor carried by the gas in a gas flow to obtain the alumina matrix supporting the modified metal oxide precursor, and the modified metal oxide precursor is a titanium oxide precursor And/or zirconia precursors;

(2)使負載改性金屬氧化物前驅物的氧化鋁基質水解,焙燒,得到載體組合物。(2) Hydrolyzing and calcining the alumina matrix supporting the modified metal oxide precursor to obtain a carrier composition.

28.  根據前述技術方案中任一項所述的載體組合物的製備方法,其特徵在於,所述的氧化鈦前驅物選自四氯化鈦,鈦酸(四)乙酯,鈦酸四丁酯,鈦酸(四)異丙酯,醋酸鈦的一種或者多種(優選四氯化鈦);所述的氧化鋯前驅物選自四氯化鋯,乙醇鋯,甲醇鋯,異丙醇鋯,鋯酸四丁酯中的一種或多種(優選四氯化鋯和/或甲醇鋯)。28. The preparation method of the carrier composition according to any one of the foregoing technical solutions, wherein the titanium oxide precursor is selected from the group consisting of titanium tetrachloride, (tetra)ethyl titanate, and tetrabutyl titanate. One or more of titanium ester, (tetra) isopropyl titanate, and titanium acetate (preferably titanium tetrachloride); the zirconium oxide precursor is selected from zirconium tetrachloride, zirconium ethoxide, zirconium methoxide, zirconium isopropoxide, One or more of tetrabutyl zirconate (preferably zirconium tetrachloride and/or zirconium methoxide).

29.  根據前述技術方案中任一項所述的載體組合物的製備方法,其特徵在於,所述的氧化鋁基質選自γ-氧化鋁,η-氧化鋁,ρ-氧化鋁,χ-氧化鋁,水合氧化鋁中的一種或多種。29. The preparation method of the carrier composition according to any one of the foregoing technical solutions, wherein the alumina matrix is selected from the group consisting of γ-alumina, η-alumina, ρ-alumina, and χ-oxidation. One or more of aluminum and alumina hydrate.

30.  根據前述技術方案中任一項所述的載體組合物的製備方法,其特徵在於,所述的氧化鋁基質的比表面積為100-350m2 /g;優選地,所述的載體組合物的比表面積與所述的氧化鋁基質的比表面積之比不低於90%。30. The preparation method of the carrier composition according to any one of the foregoing technical solutions, characterized in that the specific surface area of the alumina matrix is 100-350m 2 /g; preferably, the carrier composition The ratio of the specific surface area to the specific surface area of the alumina matrix is not less than 90%.

31.   根據前述技術方案中任一項所述的載體組合物的製備方法,其特徵在於,所述的氧化鋁基質的孔體積為0.3-1.3mL/g。31. The preparation method of the carrier composition according to any one of the foregoing technical solutions, characterized in that the pore volume of the alumina matrix is 0.3-1.3 mL/g.

32.  根據前述技術方案中任一項所述的載體組合物的製備方法,其特徵在於,所述的氣體為無水的非活性氣體(例如氮氣,氦氣,氖氣,氬氣),所述的無水的非活性氣體中的水含量不超過10ppm;優選的,所述的氣體攜帶的改性金屬氧化物前驅物氣流中改性金屬氧化物前驅物的含量為0.1-3g/L(例如,0.2-2g/L),其中改性金屬氧化物前驅物含量以金屬氧化物計。32. The preparation method of the carrier composition according to any one of the foregoing technical solutions, wherein the gas is an anhydrous inert gas (for example, nitrogen, helium, neon, argon), and the The water content in the anhydrous inert gas does not exceed 10 ppm; preferably, the content of the modified metal oxide precursor in the modified metal oxide precursor gas stream carried by the gas is 0.1-3 g/L (for example, 0.2-2g/L), in which the modified metal oxide precursor content is calculated as the metal oxide.

33.  根據前述技術方案中任一項所述的載體組合物的製備方法,其特徵在於,步驟(1)中,所述的氣體的溫度為室溫至350℃(例如為室溫(室溫是指15-40℃)至300℃,或15至300℃)。33. The preparation method of the carrier composition according to any one of the foregoing technical solutions, characterized in that, in step (1), the temperature of the gas is from room temperature to 350°C (for example, room temperature (room temperature) Means 15-40℃) to 300℃, or 15 to 300℃).

34.  根據前述技術方案中任一項所述的載體組合物的製備方法,其特徵在於,步驟(1)中接觸的壓力為0.05-5atm(例如1-3atm)(錶壓)。34. The preparation method of the carrier composition according to any one of the foregoing technical solutions, characterized in that the contact pressure in step (1) is 0.05-5 atm (for example, 1-3 atm) (gauge pressure).

35.  根據前述技術方案中任一項所述的載體組合物的製備方法,其特徵在於,所述的氣體每分鐘的體積流量與氧化鋁基質體積的比值為3-80:1(例如,5-30:1,10-25:1);其中氣體的體積以標準狀況下的體積計,氧化鋁基質的體積以堆積體積計。35. The preparation method of the carrier composition according to any one of the foregoing technical solutions, characterized in that the ratio of the volumetric flow rate of the gas per minute to the volume of the alumina matrix is 3-80:1 (for example, 5 -30:1, 10-25:1); the volume of the gas is calculated by the volume under standard conditions, and the volume of the alumina matrix is calculated by the bulk volume.

36.  根據前述技術方案中任一項所述的載體組合物的製備方法,其特徵在於,所述的氧化鋁基質在流化態下與氣體攜帶的改性金屬氧化物前驅物氣流接觸,或是在攪拌下與所述的氣流接觸;流化態例如可以是鼓泡床,湍動床,快速床或輸送床。36. The preparation method of the carrier composition according to any one of the foregoing technical solutions, characterized in that the alumina matrix is in fluidized state in contact with the gas stream of the modified metal oxide precursor carried by the gas, or It is in contact with the air flow under stirring; the fluidized state can be, for example, a bubbling bed, a turbulent bed, a fast bed or a conveying bed.

37.  根據前述技術方案中任一項所述的載體組合物的製備方法,其特徵在於,步驟(2)所述的使負載改性金屬氧化物前驅物的氧化鋁基質水解,方法如下:使所述的負載改性金屬氧化物前驅物的氧化鋁基質與含水蒸氣的氣體接觸。37. The preparation method of the carrier composition according to any one of the foregoing technical solutions, characterized in that, in step (2), the method for hydrolyzing the alumina matrix supporting the modified metal oxide precursor is as follows: The alumina matrix supporting the modified metal oxide precursor is in contact with a gas containing water vapor.

38.  根據前述技術方案中任一項所述的載體組合物的製備方法,其特徵在於,步驟(2)所述的水解,所述的含水蒸氣的氣體與氧化鋁基質接觸的比值(標準狀態下含水蒸氣的氣體與氧化鋁基質堆積體積之比)為3-80:1(例如5-30:1,或10-25:1),所述的含水蒸氣的氣體中水蒸氣占氣體總體積的比例為0.1體積%-100體積%(例如3體積%-100體積%);所述的含水蒸氣的氣體中水蒸汽以外的其它氣體可以是惰性氣體,氮氣或空氣。38. The preparation method of the carrier composition according to any one of the foregoing technical solutions, characterized in that, in the hydrolysis described in step (2), the ratio of the contact between the gas containing water vapor and the alumina matrix (standard state The ratio of the gas containing water vapor to the bulk volume of the alumina matrix is 3-80:1 (for example, 5-30:1, or 10-25:1), and the water vapor in the gas containing water vapor accounts for the total volume of the gas The ratio of is 0.1% by volume to 100% by volume (for example, 3% by volume to 100% by volume); the gas other than water vapor in the gas containing water vapor may be an inert gas, nitrogen or air.

39.   根據前述技術方案中任一項所述的載體組合物的製備方法,其特徵在於,步驟(2)所述的水解,水解時間為1小時至50小時,例如2小時至30小時。39. The preparation method of the carrier composition according to any one of the foregoing technical solutions, characterized in that, for the hydrolysis in step (2), the hydrolysis time is 1 hour to 50 hours, for example, 2 hours to 30 hours.

40.  根據前述技術方案中任一項所述的載體組合物的製備方法,其特徵在於,對於所述的焙燒來說,焙燒溫度為350℃-700℃,焙燒時間為0.5-12小時(焙燒氣氛可以為不含氧氣或含氧氣的氣氛。一種實施方式情況,所述的含氧氣的氣氛中氧氣的含量可以為3-100%體積,例如為空氣氣氛或者氧氣氣氛)。40. The preparation method of the carrier composition according to any one of the foregoing technical solutions, characterized in that, for the calcination, the calcination temperature is 350°C-700°C, and the calcination time is 0.5-12 hours (calcination The atmosphere may be oxygen-free or oxygen-containing atmosphere. In one embodiment, the oxygen content in the oxygen-containing atmosphere may be 3-100% by volume, for example, an air atmosphere or an oxygen atmosphere).

41.  一種用於有機物脫氫製氫氣的催化劑或者根據前述技術方案中任一項的儲氫合金、方法、系統或裝置,其特徵在於所述的催化劑含有前述技術方案中任一項所述的用於有機物脫氫催化劑的載體組合物和活性組份。41. A catalyst for the dehydrogenation of organic matter to produce hydrogen or the hydrogen storage alloy, method, system or device according to any one of the foregoing technical solutions, characterized in that the catalyst contains the one described in any one of the foregoing technical solutions Support composition and active component for organic dehydrogenation catalyst.

42.  根據前述技術方案中任一項所述的用於有機物脫氫製氫氣的催化劑或者根據前述技術方案中任一項的儲氫合金、方法、系統或裝置,其中活性組份是以下(1),(2)和(3)中的一種:42. The catalyst for the dehydrogenation of organic matter to produce hydrogen according to any one of the preceding technical solutions or the hydrogen storage alloy, method, system or device according to any one of the preceding technical solutions, wherein the active component is the following (1 ), one of (2) and (3):

(1)貴金屬組中的至少一種元素,優選地,活性組份是Pt以及任選地貴金屬組中的除Pt以外的至少一種元素;(1) At least one element in the noble metal group, preferably, the active component is Pt and optionally at least one element other than Pt in the noble metal group;

(2)Pt和第一金屬組中的至少一種元素;(2) Pt and at least one element in the first metal group;

(3)Ni,第二金屬組中的至少一種元素,和任選的磷;(3) Ni, at least one element of the second metal group, and optionally phosphorus;

其中among them

貴金屬組是由選自Pt,Pd,Ru,Re,Rh,Ir,Os的元素構成的組;The noble metal group is a group consisting of elements selected from Pt, Pd, Ru, Re, Rh, Ir, Os;

第一金屬組是由選自Sn,V,Mo,Cr,Mn,Fe,Co,Ni,Cu,Ag,Ce,W,Cu,Ca的元素構成的組;The first metal group is a group consisting of elements selected from Sn, V, Mo, Cr, Mn, Fe, Co, Ni, Cu, Ag, Ce, W, Cu, and Ca;

第二金屬組是由選自Zn,Sn,Cu,Fe,Ag,In,Re,Mo,Co,Ca,W的元素構成的組;The second metal group is a group consisting of elements selected from Zn, Sn, Cu, Fe, Ag, In, Re, Mo, Co, Ca, W;

所述的催化劑中,載體的含量為70-99.9重量%;活性組份的含量為0.1-30重量%。In the catalyst, the content of the carrier is 70-99.9% by weight; the content of the active component is 0.1-30% by weight.

43.  根據前述技術方案中任一項所述的用於有機物脫氫製氫氣的催化劑或者根據前述技術方案中任一項的儲氫合金、方法、系統或裝置,其中活性組份是(1)貴金屬組中的至少一種元素,所述的催化劑中,載體的含量為90-99.9重量%(例如92-99.4重量%,92-99.5重量%,95-99.4重量%,98-99.2重量%,98.5-99.5重量%);活性組份的含量為0.1-10重量%(例如0.6-8重量%,0.5-8重量%,0.6-5重量%,0.8-2重量%或0.5-1.5重量%);43. The catalyst for hydrogen production from organic matter dehydrogenation according to any one of the preceding technical solutions or the hydrogen storage alloy, method, system or device according to any one of the preceding technical solutions, wherein the active component is (1) At least one element in the noble metal group, in the catalyst, the content of the carrier is 90-99.9% by weight (for example, 92-99.4% by weight, 92-99.5% by weight, 95-99.4% by weight, 98-99.2% by weight, 98.5 -99.5 wt%); the content of the active component is 0.1-10 wt% (for example, 0.6-8 wt%, 0.5-8 wt%, 0.6-5 wt%, 0.8-2 wt% or 0.5-1.5 wt%);

優選地,活性組份是Pt以及任選地貴金屬組中的除Pt以外的至少一種元素,其中Pt的含量為0.1-10重量%(例如0.1-2重量%,0.6-10重量%或0.6-0.8重量%),貴金屬組中的除Pt以外的至少一種元素的含量為0-9.9重量%(例如0.1-2重量%或0.1-0.8重量%)。Preferably, the active component is Pt and optionally at least one element other than Pt in the noble metal group, wherein the content of Pt is 0.1-10% by weight (for example, 0.1-2% by weight, 0.6-10% by weight, or 0.6- 0.8% by weight), the content of at least one element other than Pt in the noble metal group is 0-9.9% by weight (for example, 0.1-2% by weight or 0.1-0.8% by weight).

44.  根據前述技術方案中任一項所述的用於有機物脫氫製氫氣的催化劑或者根據前述技術方案中任一項的儲氫合金、方法、系統或裝置,其中活性組份是(2)Pt和第一金屬組中的至少一種元素;44. The catalyst for the dehydrogenation of organic matter to produce hydrogen according to any one of the preceding technical solutions or the hydrogen storage alloy, method, system or device according to any one of the preceding technical solutions, wherein the active component is (2) Pt and at least one element in the first metal group;

所述的催化劑中,載體的含量為;75-99.5重量%(例如75-99.4重量%,79.9-98.5重量%),活性組份的含量為0.5-25重量%(例如0.6-25重量%,1.5-20.1重量%);In the catalyst, the content of the carrier is 75-99.5 wt% (for example, 75-99.4 wt%, 79.9-98.5 wt%), and the content of the active component is 0.5-25 wt% (for example, 0.6-25 wt%, 1.5-20.1% by weight);

在所述的活性組份中,以單質計的Pt的含量為0.01-10重量%(例如,0.2-8重量%,0.4-2重量%,0.3-0.6重量%,0.1-0.7重量%);以氧化物計的第一金屬組中的至少一種元素的含量為0.5-20重量%(例如0.5-15重量%或1-10重量%);優選地,第一金屬組中的至少一種元素為Ni或為Ni和選自第一金屬組中的除Ni以外的至少一種元素的組合,其中Pt(以單質計)與Ni(以NiO計)的質量比為(0.01:16)至(0.5:0.1)。In the active component, the content of Pt based on the simple substance is 0.01-10% by weight (for example, 0.2-8% by weight, 0.4-2% by weight, 0.3-0.6% by weight, 0.1-0.7% by weight); The content of at least one element in the first metal group as an oxide is 0.5-20% by weight (for example, 0.5-15% by weight or 1-10% by weight); preferably, at least one element in the first metal group is Ni or a combination of Ni and at least one element other than Ni selected from the first metal group, wherein the mass ratio of Pt (calculated by simple substance) to Ni (calculated by NiO) is (0.01:16) to (0.5: 0.1).

45.  根據前述技術方案中任一項所述的用於有機物脫氫製氫氣的催化劑或者根據前述技術方案中任一項的儲氫合金、方法、系統或裝置,其中活性組份是(3)Ni,第二金屬組中的至少一種元素,和任選的磷;45. The catalyst for the dehydrogenation of organic matter to produce hydrogen according to any one of the preceding technical solutions or the hydrogen storage alloy, method, system or device according to any one of the preceding technical solutions, wherein the active component is (3) Ni, at least one element of the second metal group, and optionally phosphorus;

在所述的催化劑中,載體的含量為70-95重量%(例如,75-93重量%,或75-90重量%),以氧化物計的活性組份的含量為5-30重量%(例如,7-25重量%);In the catalyst, the content of the carrier is 70-95% by weight (for example, 75-93% by weight, or 75-90% by weight), and the content of the active component based on the oxide is 5-30% by weight ( For example, 7-25% by weight);

在所述的活性組份中,以NiO計的鎳的含量為0.5-25重量%(例如,5-25重量%,6-20重量%,或6-11重量%);以氧化物計的第二金屬組中的至少一種元素的含量為0-15重量%(例如0-10重量%);以P2 O5 計的磷的含量為0-15重量%。In the active component, the content of nickel based on NiO is 0.5-25% by weight (for example, 5-25% by weight, 6-20% by weight, or 6-11% by weight); The content of at least one element in the second metal group is 0-15% by weight (for example, 0-10% by weight); the content of phosphorus in terms of P 2 O 5 is 0-15% by weight.

46.  一種催化劑的製備方法,其包括如下步驟根據前述技術方案中任一項所述的載體組合物的製備方法中的步驟(1)和(2):46. A preparation method of a catalyst, comprising the following steps according to steps (1) and (2) in the preparation method of the carrier composition according to any one of the foregoing technical solutions:

(1)將氧化鋁基質與氣體攜帶的改性金屬氧化物前驅物氣流接觸,得到負載改性金屬氧化物前驅物的氧化鋁基質,所述的改性金屬氧化物前驅物為氧化鈦前驅物和/或氧化鋯前驅物;(1) The alumina matrix is contacted with the modified metal oxide precursor carried by the gas in a gas flow to obtain the alumina matrix supporting the modified metal oxide precursor, and the modified metal oxide precursor is a titanium oxide precursor And/or zirconia precursors;

(2)使負載改性金屬氧化物前驅物的氧化鋁基質水解,焙燒,得到載體組合物;(2) Hydrolyzing and calcining the alumina matrix supporting the modified metal oxide precursor to obtain a carrier composition;

其中所述的催化劑的製備方法還包括如下的步驟:The preparation method of the catalyst further includes the following steps:

(3)用活性組份前驅物溶液浸漬所述的載體組合物,得到浸漬活性組份前驅物的載體;(3) Impregnating the carrier composition with the active component precursor solution to obtain the carrier impregnated with the active component precursor;

(4)浸漬活性組份前驅物的載體乾燥,焙燒;(4) The carrier impregnated with the precursor of the active component is dried and roasted;

優選地,活性組份是以下(1),(2)和(3)中的一種:Preferably, the active ingredient is one of the following (1), (2) and (3):

(1)貴金屬組中的至少一種元素,優選地,活性組份是Pt以及任選地貴金屬組中的除Pt以外的至少一種元素;(1) At least one element in the noble metal group, preferably, the active component is Pt and optionally at least one element other than Pt in the noble metal group;

(2)Pt和第一金屬組中的至少一種元素;(2) Pt and at least one element in the first metal group;

(3)Ni,第二金屬組中的至少一種元素,和任選的磷;(3) Ni, at least one element of the second metal group, and optionally phosphorus;

其中among them

貴金屬組是由選自Pt,Pd,Ru,Re,Rh,Ir,Os的元素構成的組;The noble metal group is a group consisting of elements selected from Pt, Pd, Ru, Re, Rh, Ir, Os;

第一金屬組是由選自Sn,V,Mo,Cr,Mn,Fe,Co,Ni,Cu,Ag,Ce,W,Cu,Ca的元素構成的組;The first metal group is a group consisting of elements selected from Sn, V, Mo, Cr, Mn, Fe, Co, Ni, Cu, Ag, Ce, W, Cu, and Ca;

第二金屬組是由選自Zn,Sn,Cu,Fe,Ag,In,Re,Mo,Co,Ca,W的元素構成的組。The second metal group is a group consisting of elements selected from Zn, Sn, Cu, Fe, Ag, In, Re, Mo, Co, Ca, and W.

47.  根據前述技術方案中任一項所述的催化劑的製備方法,其特徵在於,步驟(4)所述的焙燒,焙燒溫度為400-700℃,焙燒時間為0.5-12小時。47. The method for preparing the catalyst according to any one of the foregoing technical solutions, characterized in that, in the calcination described in step (4), the calcination temperature is 400-700° C., and the calcination time is 0.5-12 hours.

48.  根據前述技術方案中任一項所述的催化劑的製備方法,其特徵在於,48. The preparation method of the catalyst according to any one of the foregoing technical solutions, characterized in that:

活性組份前驅物是活性組份的可溶性鹽(例如,金屬硝酸鹽,乙酸鹽,金屬氯化鹽,金屬碳酸鹽,金屬醋酸錯合物,金屬氫氧化物,金屬草酸鹽錯合物,高價金屬酸,高價金屬酸鹽,金屬藕合物,銨鹽中的一種或多種)。Active ingredient precursors are soluble salts of active ingredients (for example, metal nitrates, acetates, metal chlorides, metal carbonates, metal acetate complexes, metal hydroxides, metal oxalate complexes, One or more of high-valent metal acid, high-valent metal salt, metal lotion, and ammonium salt).

49.  根據前述技術方案中任一項所述的催化劑的製備方法,其特徵在於,49. The preparation method of the catalyst according to any one of the foregoing technical solutions, characterized in that:

將浸漬活性組份前驅物的載體於低於-40℃的環境中放置1小時至24小時;然後進行抽真空乾燥,除去載體上吸附的水,然後焙燒,得到催化劑。The carrier impregnated with the active component precursor is placed in an environment below -40°C for 1 hour to 24 hours; then vacuum drying is performed to remove water adsorbed on the carrier, and then calcined to obtain a catalyst.

本發明所述的壓力均指錶壓,除非特別說明。The pressure in the present invention refers to gauge pressure, unless otherwise specified.

在本發明的一個方面中,本發明提供了一種用於有機物脫氫催化劑的載體組合物,該載體組合物包括氧化鋁和改性金屬氧化物,所述的改性金屬氧化物為鈦氧化物和/或鋯氧化物,其中,η<0.3,優選地,η=0;θ≥5,優選地,θ為5-40(例如5.4-34.3);In one aspect of the present invention, the present invention provides a carrier composition for an organic dehydrogenation catalyst. The carrier composition includes alumina and a modified metal oxide, and the modified metal oxide is titanium oxide. And/or zirconium oxide, wherein η<0.3, preferably η=0; θ≥5, preferably θ is 5-40 (for example, 5.4-34.3);

η=載體組合物中晶相改性金屬氧化物的重量百分含量/載體組合物中改性金屬氧化物的化學組成重量百分含量,η=weight percentage of the crystal phase modified metal oxide in the carrier composition/weight percentage of the chemical composition of the modified metal oxide in the carrier composition,

θ=載體組合物表面上改性金屬氧化物的重量百分含量/載體組合物中改性金屬氧化物的化學組成重量百分含量,鈦氧化物以TiO2 計,鋯氧化物以ZrO2 計。θ=weight percentage of the modified metal oxide on the surface of the carrier composition/weight percentage of the chemical composition of the modified metal oxide in the carrier composition, titanium oxide is calculated as TiO 2 and zirconium oxide is calculated as ZrO 2 .

優選的,所述的氧化鋁和改性金屬氧化物部分或全部形成載體組合物。在一種實施方式中,所述的改性金屬氧化物負載在載體的表面。Preferably, the alumina and the modified metal oxide partly or completely form a carrier composition. In one embodiment, the modified metal oxide is supported on the surface of the carrier.

根據本發明的載體組合物,所述的載體組合物中氧化鋁質量份數為80-98.5%(例如83-97.5%,85-95%或90-95%),改性金屬氧化物的質量份數為1.5-20%(例如2.5-17%,5-15%,或5-10%)。According to the carrier composition of the present invention, the mass fraction of alumina in the carrier composition is 80-98.5% (for example, 83-97.5%, 85-95% or 90-95%), and the mass of the modified metal oxide The number of copies is 1.5-20% (e.g. 2.5-17%, 5-15%, or 5-10%).

根據本發明的載體組合物,所述的改性金屬氧化物包括鈦氧化物;所述的載體組合物中,二氧化鈦的質量份數為2-20%(例如2.5-17%,5-15%或5-10%),二氧化鋯的質量份數為0-8%(例如0-6%,0-3%或1-6%);優選地,所述的改性金屬氧化物(例如二氧化鈦)單層分散於氧化鋁基質上。According to the carrier composition of the present invention, the modified metal oxide includes titanium oxide; in the carrier composition, the mass fraction of titanium dioxide is 2-20% (for example, 2.5-17%, 5-15% Or 5-10%), the mass fraction of zirconium dioxide is 0-8% (for example, 0-6%, 0-3% or 1-6%); preferably, the modified metal oxide (for example Titanium dioxide) monolayer is dispersed on the alumina matrix.

根據本發明的一種實施方案,如果通過XPS測量,在載體表面0-5nm厚的表面層中,所述的改性金屬氧化物的含量高於90原子個數%,優選高於95原子個數%的話,就稱為改性金屬氧化物單層分散於氧化鋁基質上。According to an embodiment of the present invention, if measured by XPS, the content of the modified metal oxide in the 0-5nm thick surface layer of the support surface is higher than 90 atomic number %, preferably higher than 95 atomic number %, it is called the modified metal oxide monolayer dispersed on the alumina matrix.

根據本發明的載體組合物,相對於TiO2 純物相,所述的載體組合物XPS圖譜中,Ti 2P3/2 軌道電子結合能為458.8eV處的峰向高結合能偏移0.6-0.7eV和/或Ti 2P1/2 軌道電子結合能為464.5eV處的峰向高結合能方向偏移0.8-0.9eV。According to the carrier composition of the present invention, relative to the pure phase of TiO 2 , in the XPS map of the carrier composition , the peak at which the Ti 2P 3/2 orbital electron binding energy is 458.8 eV shifts to high binding energy by 0.6-0.7 The peak at 464.5 eV of eV and/or Ti 2P 1/2 orbital electron binding energy shifts 0.8-0.9 eV to the high binding energy direction.

根據本發明的載體組合物,所述的載體組合物具有γ-氧化鋁,η-氧化鋁,ρ-氧化鋁或χ-氧化鋁中至少一種的物相結構。According to the carrier composition of the present invention, the carrier composition has a phase structure of at least one of γ-alumina, η-alumina, ρ-alumina or χ-alumina.

根據本發明的載體組合物,所述的載體組合物的比表面積為100-350m2 /g(例如,110-340m2 /g或130-250m2 /g或140-200m2 /g),所述的載體組合物的孔體積為0.3-1.3 mL/g(例如,0.32-1.0mL/g或0.35-0.6mL/g或0.35-0.8mL/g)。所述的載體組合物的比表面積與所述的氧化鋁基質的比表面積之比不低於90%,即所述的載體組合物比表面積相比純氧化鋁(未引入改性元素改性的氧化鋁),減少的比例≤10%。According to the carrier composition of the present invention, the specific surface area of the carrier composition is 100-350m 2 /g (for example, 110-340m 2 /g or 130-250m 2 /g or 140-200m 2 /g), so The pore volume of the carrier composition is 0.3-1.3 mL/g (for example, 0.32-1.0 mL/g or 0.35-0.6 mL/g or 0.35-0.8 mL/g). The ratio of the specific surface area of the carrier composition to the specific surface area of the alumina matrix is not less than 90%, that is, the specific surface area of the carrier composition is compared with that of pure alumina (the modified element is not introduced Alumina), the reduction ratio is ≤10%.

本發明提供的載體組合物可用於製備有機物脫氫製備氫氣的催化劑,也可以用於烷烴類有機物氧化脫氫製備烯烴或含氧有機物催化劑。通常所述的催化劑包括本發明提供的載體組合物以及負載在該載體組合物上的活性金屬組份,所述的活性金屬組份為活性金屬的氧化物和/或活性金屬的單質。所述的活性金屬例如第八副族金屬,第七副族金屬,第五副族金屬,第六副族金屬,第一副族金屬,稀土元素,鹼土金屬,第四主族金屬中的一種或多種。可以較使用現有載體和同樣的活性金屬製備的催化劑具有更高的脫氫活性和/或具有更高的選擇性。The carrier composition provided by the present invention can be used to prepare a catalyst for the dehydrogenation of organic substances to prepare hydrogen, and can also be used for the oxidative dehydrogenation of alkane organic substances to prepare olefins or oxygen-containing organic catalysts. Generally, the catalyst includes the carrier composition provided by the present invention and the active metal component supported on the carrier composition, and the active metal component is an oxide of the active metal and/or a simple substance of the active metal. The active metal is, for example, one of the eighth subgroup metal, the seventh subgroup metal, the fifth subgroup metal, the sixth subgroup metal, the first subgroup metal, the rare earth element, the alkaline earth metal, and the fourth main group metal Or multiple. It can have higher dehydrogenation activity and/or higher selectivity than a catalyst prepared by using existing supports and the same active metal.

本發明提供的載體組合物,η值比較低,θ值比較高,可作為脫氫催化劑載體,尤其是用於含環烷烴環的有機液體儲氫化合物脫氫製備氫氣催化劑,可以改善催化劑的脫氫活性和/或選擇性。The carrier composition provided by the present invention has a relatively low η value and a relatively high θ value. It can be used as a dehydrogenation catalyst carrier, especially for the dehydrogenation of a cycloalkane ring-containing organic liquid hydrogen storage compound to prepare a hydrogen catalyst, which can improve the dehydrogenation of the catalyst. Hydrogen activity and/or selectivity.

本發明提供的載體組合物製備方法,可以得到本發明提供的載體組合物,所得到的載體組合物η值比較低,θ值比較高,製備方法易於實施。The carrier composition preparation method provided by the present invention can obtain the carrier composition provided by the present invention. The obtained carrier composition has a relatively low η value and a relatively high θ value, and the preparation method is easy to implement.

用本發明提供載體組合物製備的有機液體儲氫化合物脫氫製備氫氣的脫氫催化劑,具有更高的活性,氫氣選擇性較高。製備的氧化脫氫催化劑活性較高,具有更高的氧化選擇性。The dehydrogenation catalyst for preparing hydrogen from the organic liquid hydrogen storage compound prepared by using the carrier composition provided by the invention has higher activity and higher hydrogen selectivity. The prepared oxidative dehydrogenation catalyst has higher activity and higher oxidation selectivity.

本發明提供的載體可以用於製備有機儲氫化合物脫氫製備氫氣催化劑,還可以用於其它涉氫反應催化劑或氧化催化劑作為載體,例如用於有機物氧化脫氫催化劑,不飽和烴氫化催化劑,有機物完全氧化催化劑或NO氧化催化劑。The carrier provided by the present invention can be used to prepare organic hydrogen storage compound dehydrogenation to prepare hydrogen catalyst, and can also be used as a carrier for other hydrogen-related reaction catalysts or oxidation catalysts, for example, for organic matter oxidative dehydrogenation catalyst, unsaturated hydrocarbon hydrogenation catalyst, organic matter Complete oxidation catalyst or NO oxidation catalyst.

在本發明的一個方面中,本發明提供了一種載體組合物的製備方法,包括如下步驟:(1)將氧化鋁基質與氣體攜帶的改性金屬氧化物前驅物氣流接觸,得到負載改性金屬氧化物前驅物的氧化鋁基質,所述的改性金屬氧化物前驅物為氧化鈦前驅物和/或氧化鋯前驅物;(2)使負載改性金屬氧化物前驅物的氧化鋁基質水解,焙燒,得到載體組合物。In one aspect of the present invention, the present invention provides a method for preparing a carrier composition, including the following steps: (1) contacting an alumina matrix with a gas-carrying modified metal oxide precursor gas stream to obtain a supported modified metal The alumina matrix of the oxide precursor, wherein the modified metal oxide precursor is a titania precursor and/or a zirconia precursor; (2) hydrolyzing the alumina matrix supporting the modified metal oxide precursor, It is calcined to obtain a carrier composition.

根據本發明的載體組合物的製備方法,所述的改性金屬氧化物前驅物優選為在室溫至350℃能夠氣化形成氣態金屬氧化物前驅物的物質。所述的氧化鈦前驅物選自四氯化鈦,鈦酸(四)乙酯,鈦酸四丁酯,鈦酸(四)異丙酯,醋酸鈦的一種或者多種(優選四氯化鈦);所述的氧化鋯前驅物選自四氯化鋯,乙醇鋯,甲醇鋯,異丙醇鋯,鋯酸四丁酯中的一種或多種(優選四氯化鋯和/或甲醇鋯)。According to the preparation method of the carrier composition of the present invention, the modified metal oxide precursor is preferably a substance that can be vaporized at room temperature to 350° C. to form a gaseous metal oxide precursor. The titanium oxide precursor is selected from one or more of titanium tetrachloride, (tetra) ethyl titanate, tetrabutyl titanate, (tetra) isopropyl titanate, and titanium acetate (preferably titanium tetrachloride) The zirconium oxide precursor is selected from one or more of zirconium tetrachloride, zirconium ethoxide, zirconium methoxide, zirconium isopropoxide, tetrabutyl zirconate (preferably zirconium tetrachloride and/or zirconium methoxide).

根據本發明的載體組合物的製備方法,所述的氧化鋁基質選自γ-氧化鋁,η-氧化鋁,ρ-氧化鋁,χ-氧化鋁,水合氧化鋁(例如一軟水鋁石,一水硬鋁石,擬薄水鋁石,三水鋁石(gibbsite),拜鋁石(bayerite),諾水鋁石(nordstrandite),無定形氫氧化鋁)中的一種或多種,優選地,所述的氧化鋁基質平均粒徑(直徑)為5-100μm,例如為5-50μm。According to the preparation method of the carrier composition of the present invention, the alumina matrix is selected from the group consisting of γ-alumina, η-alumina, rho-alumina, χ-alumina, hydrated alumina (such as boehmite, one One or more of diaspore, pseudo-boehmite, gibbsite, bayerite, nordstrandite, amorphous aluminum hydroxide), preferably, The average particle size (diameter) of the alumina matrix is 5-100 μm, for example, 5-50 μm.

根據本發明的載體組合物的製備方法,所述的氧化鋁基質的比表面積為不低於100m2 /g(例如大於100且不超過380m2 /g,100-350m2 /g,125-335m2 /g);優選地,所述的載體組合物的比表面積與所述的氧化鋁基質的比表面積之比不低於90%,即所得到的載體組合物比表面積相比氧化鋁基質比表面積,減少的比例≤10%。According to the preparation method of the carrier composition of the present invention, the specific surface area of the alumina matrix is not less than 100m 2 /g (for example, greater than 100 and not more than 380m 2 /g, 100-350m 2 /g, 125-335m 2 /g); Preferably, the ratio of the specific surface area of the carrier composition to the specific surface area of the alumina matrix is not less than 90%, that is, the ratio of the specific surface area of the carrier composition obtained is compared with that of the alumina matrix Surface area, the reduction ratio is ≤10%.

根據本發明的載體組合物的製備方法,所述的氧化鋁基質的孔體積為不低於0.3 mL/g(例如大於0.3且不超過1.45mL/g,0.3-1.3mL/g,0.35-1.2mL/g,0.35-1.0或0.4-0.8 mL/g)。According to the preparation method of the carrier composition of the present invention, the pore volume of the alumina matrix is not less than 0.3 mL/g (for example, greater than 0.3 and not more than 1.45 mL/g, 0.3-1.3 mL/g, 0.35-1.2 mL/g, 0.35-1.0 or 0.4-0.8 mL/g).

根據本發明的載體組合物的製備方法,所述的氣體為無水的非活性氣體(例如氮氣,氦氣,氖氣,氬氣),所述的無水的非活性氣體中的水含量不超過10ppm;優選的,所述的氣體攜帶的改性金屬氧化物前驅物氣流中改性金屬氧化物前驅物的含量為0.1-3g/L(例如,0.2-2g/L),其中改性金屬氧化物前驅物含量以金屬氧化物計。According to the preparation method of the carrier composition of the present invention, the gas is an anhydrous inert gas (such as nitrogen, helium, neon, argon), and the water content in the anhydrous inert gas does not exceed 10 ppm Preferably, the content of the modified metal oxide precursor in the modified metal oxide precursor gas stream carried by the gas is 0.1-3g/L (for example, 0.2-2g/L), wherein the modified metal oxide The precursor content is calculated as metal oxide.

根據本發明的載體組合物的製備方法,步驟(1)中,所述的氣體的溫度為室溫至350℃(例如為室溫(室溫是指15-40℃)至300℃,或15至300℃),接觸的溫度為15-350℃(例如15-300℃或15-100℃或15-200℃或18-60℃或15-40℃)。According to the preparation method of the carrier composition of the present invention, in step (1), the temperature of the gas is from room temperature to 350°C (for example, room temperature (room temperature refers to 15-40°C) to 300°C, or 15 To 300°C), the contact temperature is 15-350°C (for example, 15-300°C or 15-100°C or 15-200°C or 18-60°C or 15-40°C).

根據本發明的載體組合物的製備方法,步驟(1)中接觸的壓力為0.05-5atm(例如1-3atm)(錶壓)。According to the preparation method of the carrier composition of the present invention, the contact pressure in step (1) is 0.05-5 atm (for example, 1-3 atm) (gauge pressure).

根據本發明的載體組合物的製備方法,所述的氣體每分鐘的體積流量與氧化鋁基質體積的比值為3-80:1(例如,5-30:1,10-25:1);其中氣體的體積以標準狀況下的體積計,氧化鋁基質的體積以堆積體積計。According to the preparation method of the carrier composition of the present invention, the ratio of the volumetric flow rate of the gas per minute to the volume of the alumina matrix is 3-80:1 (for example, 5-30:1, 10-25:1); The volume of the gas is based on the volume under standard conditions, and the volume of the alumina matrix is based on the bulk volume.

根據本發明的載體組合物的製備方法,所述的氧化鋁基質在流化態下與氣體攜帶的改性金屬氧化物前驅物氣流接觸,或是在攪拌下與所述的氣流接觸;流化態例如可以是鼓泡床,湍動床,快速床或輸送床。According to the preparation method of the carrier composition of the present invention, the alumina matrix is in fluidized state in contact with the gas-carrying modified metal oxide precursor gas stream, or in contact with the gas stream under agitation; fluidization The state can be, for example, a bubbling bed, a turbulent bed, a fast bed or a transport bed.

在一種實施方式中,將氧化鋁基質與氣體攜帶的改性金屬氧化物前驅物氣流(也稱為氣流)接觸,所述的氧化鋁基質在固定床下與所述的氣流接觸,或在流化態下與所述的氣體攜帶的改性金屬氧化物前驅物氣流接觸,也可以是在攪拌下與所述的氣流接觸。所述的流化態下接觸例如可以是以鼓泡床,湍動床,快速床或輸送床的方式接觸。所述的氣體每分鐘的體積流量與氧化鋁基質的體積的比值為3-80:1,例如5-30:1,或10-25:1。其中氣體的體積為以標準狀況下的體積計,氧化鋁基質的體積以堆積體積計。在另一種實施方式中,所述的氣流和氧化鋁基質在流化床中接觸,接觸的體積空速為3-80:1分鐘-1 ,例如5-30:1分鐘-1 或者10-25:1分鐘-1 ,其中,所述的氣流流動的體積流量以所述的氣體在標準狀況下的體積計,所述的氧化鋁基質以堆積體積計,所述的流化床可以是散式流化床,鼓泡床或湍動床。In one embodiment, the alumina matrix is contacted with a gas-carrying modified metal oxide precursor gas stream (also referred to as gas stream), and the alumina matrix is in contact with the gas stream under a fixed bed, or in fluidization. In the state, contact with the modified metal oxide precursor gas carried by the gas in the gas stream, or contact with the gas stream under stirring. The contact in the fluidized state can be, for example, a bubbling bed, a turbulent bed, a fast bed or a conveying bed. The ratio of the volumetric flow rate of the gas per minute to the volume of the alumina matrix is 3-80:1, for example, 5-30:1, or 10-25:1. The volume of the gas is based on the volume under standard conditions, and the volume of the alumina matrix is based on the bulk volume. In another embodiment, the gas stream is in contact with the alumina substrate in a fluidized bed, and the volumetric space velocity of the contact is 3-80:1 min -1 , for example, 5-30:1 min -1 or 10-25 :1 minute -1 , wherein the volumetric flow rate of the gas flow is based on the volume of the gas under standard conditions, the alumina matrix is based on the bulk volume, and the fluidized bed can be a bulk type Fluidized bed, bubbling bed or turbulent bed.

根據本發明的載體組合物的製備方法,步驟(2)所述的使負載改性金屬氧化物前驅物的氧化鋁基質水解,方法如下:使所述的負載改性金屬氧化物前驅物的氧化鋁基質與含水蒸氣的氣體接觸。According to the preparation method of the carrier composition of the present invention, in step (2), the alumina matrix supporting the modified metal oxide precursor is hydrolyzed, and the method is as follows: oxidizing the modified metal oxide precursor The aluminum matrix is in contact with a gas containing water vapor.

根據本發明的載體組合物的製備方法,步驟(2)所述的水解,所述的含水蒸氣的氣體與氧化鋁基質接觸的比值(標準狀態下含水蒸氣的氣體與氧化鋁基質堆積體積之比)為3-80:1(例如5-30:1,或10-25:1),所述的含水蒸氣的氣體中水蒸氣占氣體總體積的比例為0.1體積%-100體積%(例如3體積%-100體積%,10體積%-70體積%);所述的含水蒸氣的氣體中水蒸汽以外的其它氣體可以是惰性氣體,氮氣或空氣。According to the preparation method of the carrier composition of the present invention, the hydrolysis in step (2), the contact ratio of the gas containing water vapor to the alumina matrix (the ratio of the gas containing water vapor to the bulk volume of the alumina matrix in the standard state ) Is 3-80:1 (for example, 5-30:1, or 10-25:1), and the ratio of water vapor in the gas containing water vapor to the total volume of the gas is 0.1% by volume to 100% by volume (for example, 3 Volume%-100% by volume, 10%-70% by volume); the gas other than water vapor in the gas containing water vapor may be an inert gas, nitrogen or air.

根據本發明的載體組合物的製備方法,步驟(2)所述的水解,水解時間為1小時至50小時,例如2小時至30小時(通常,水解時間大於等於負載時間,負載時間是指氧化鋁基質與氣體攜帶的改性金屬氧化物前驅物氣流接觸的時間)。According to the preparation method of the carrier composition of the present invention, for the hydrolysis in step (2), the hydrolysis time is 1 hour to 50 hours, for example, 2 hours to 30 hours (usually, the hydrolysis time is greater than or equal to the loading time, and the loading time refers to oxidation The time that the aluminum matrix is in contact with the modified metal oxide precursor gas stream carried by the gas).

根據本發明的載體組合物的製備方法,焙燒氣氛可以為不含氧氣或含氧氣的氣氛。一種實施方式情況,所述的含氧氣的氣氛中氧氣的含量可以為3-100%體積,例如為空氣氣氛或者氧氣氣氛。焙燒溫度為350℃-700℃(如400-700℃),焙燒時間為0.5-12小時(例如1-10小時,或2-9小時,或4-8小時)。According to the preparation method of the carrier composition of the present invention, the firing atmosphere may be an atmosphere that does not contain oxygen or contains oxygen. In one embodiment, the oxygen content in the oxygen-containing atmosphere may be 3-100% by volume, for example, an air atmosphere or an oxygen atmosphere. The firing temperature is 350°C-700°C (such as 400-700°C), and the firing time is 0.5-12 hours (such as 1-10 hours, or 2-9 hours, or 4-8 hours).

在本發明的一個方面中,本發明提供了一種用於有機物脫氫製氫氣的催化劑,其含有本發明的用於有機物脫氫催化劑的載體組合物和活性組份。In one aspect of the present invention, the present invention provides a catalyst for the dehydrogenation of organic matter to produce hydrogen, which contains the carrier composition and active components of the present invention for the organic matter dehydrogenation catalyst.

本發明提供的催化劑中,活性組份可以以氧化物和/或活性金屬單質的形式存在。In the catalyst provided by the present invention, the active components may exist in the form of oxides and/or active metal elements.

根據本發明的用於有機物脫氫製氫氣的催化劑,活性組份是以下(1),(2)和(3)中的一種:(1)貴金屬組中的至少一種元素,優選地,活性組份是Pt以及任選地貴金屬組中的除Pt以外的至少一種元素;(2)Pt和第一金屬組中的至少一種元素;(3)Ni,第二金屬組中的至少一種元素,和任選的磷;其中貴金屬組是由選自Pt,Pd,Ru,Re,Rh,Ir,Os的元素構成的組;第一金屬組是由選自Sn,V,Mo,Cr,Mn,Fe,Co,Ni,Cu,Ag,Ce,W,Cu,Ca的元素構成的組;第二金屬組是由選自Zn,Sn,Cu,Fe,Ag,In,Re,Mo,Co,Ca,W的元素構成的組;所述的催化劑中,載體的含量為70-99.9重量%;活性組份的含量為0.1-30重量%。According to the catalyst for the dehydrogenation of organic substances to produce hydrogen gas, the active component is one of the following (1), (2) and (3): (1) At least one element in the noble metal group, preferably the active component The component is Pt and optionally at least one element in the noble metal group other than Pt; (2) Pt and at least one element in the first metal group; (3) Ni, at least one element in the second metal group, and Optional phosphorus; wherein the noble metal group is a group consisting of elements selected from Pt, Pd, Ru, Re, Rh, Ir, Os; the first metal group is a group consisting of elements selected from Sn, V, Mo, Cr, Mn, Fe , Co, Ni, Cu, Ag, Ce, W, Cu, Ca; the second metal group is selected from Zn, Sn, Cu, Fe, Ag, In, Re, Mo, Co, Ca, In the catalyst, the content of the carrier is 70-99.9% by weight; the content of the active component is 0.1-30% by weight.

根據本發明的用於有機物脫氫製氫氣的催化劑,活性組份是(1)貴金屬組中的至少一種元素,所述的催化劑中,載體的含量為90-99.9重量%(例如92-99.4重量%,92-99.5重量%,95-99.4重量%,98-99.2重量%,98.5-99.5重量%);活性組份的含量為0.1-10重量%(例如0.6-8重量%,0.5-8重量%,0.6-5重量%,0.8-2重量%或0.5-1.5重量%);優選地,活性組份是Pt以及任選地貴金屬組中的除Pt以外的至少一種元素,其中Pt的含量為0.1-10重量%(例如0.1-2重量%,0.6-10重量%或0.6-0.8重量%),貴金屬組中的除Pt以外的至少一種元素的含量為0-9.9重量%(例如0.1-2重量%或0.1-0.8重量%)。According to the catalyst for the dehydrogenation of organic matter to produce hydrogen according to the present invention, the active component is (1) at least one element in the noble metal group, and in the catalyst, the content of the carrier is 90-99.9% by weight (for example, 92-99.4% by weight). %, 92-99.5% by weight, 95-99.4% by weight, 98-99.2% by weight, 98.5-99.5% by weight); the content of the active component is 0.1-10% by weight (for example, 0.6-8% by weight, 0.5-8% by weight) %, 0.6-5% by weight, 0.8-2% by weight or 0.5-1.5% by weight); preferably, the active component is Pt and optionally at least one element other than Pt in the noble metal group, wherein the content of Pt is 0.1-10% by weight (for example, 0.1-2% by weight, 0.6-10% by weight, or 0.6-0.8% by weight), the content of at least one element other than Pt in the noble metal group is 0-9.9% by weight (for example, 0.1-2 % By weight or 0.1-0.8% by weight).

根據本發明的用於有機物脫氫製氫氣的催化劑,活性組份是(2)Pt和第一金屬組中的至少一種元素(例如Sn,Ni,Mn,Cu中的一種或多種);所述的催化劑中,載體的含量為;75-99.5重量%(例如75-99.4重量%,79.9-98.5重量%),活性組份的含量為0.5-25重量%(例如0.6-25重量%,1.5-20.1重量%);在所述的活性組份中,以單質計的Pt的含量為0.01-10重量%(例如,0.2-8重量%,0.4-2重量%,0.3-0.6重量%,0.1-0.7重量%);以氧化物計的第一金屬組中的至少一種元素的含量為0.5-20重量%(例如0.5-15重量%或1-10重量%);優選地,第一金屬組中的至少一種元素為Ni或為Ni和選自第一金屬組中的除Ni以外的至少一種元素(例如Sn,Mn,和Cu,優選Cu)的組合,其中Pt(以單質計)與Ni(以NiO計)的質量比為(0.01:16)至(0.5:0.1)。優選地,所述的催化劑中Pt的含量為0.1-0.5重量%,以氧化物計Ni的含量為0.5-15重量%,例如1-10重量%,以氧化物計第一金屬組中的除Ni以外的元素的含量為0-10重量%,例如1-6重量%。所述的活性組份更進一步優選為Pt,Ni和Cu。According to the catalyst for the dehydrogenation of organic substances to produce hydrogen gas according to the present invention, the active component is (2) Pt and at least one element of the first metal group (for example, one or more of Sn, Ni, Mn, and Cu); In the catalyst, the content of the carrier is: 75-99.5 wt% (for example, 75-99.4 wt%, 79.9-98.5 wt%), and the content of the active component is 0.5-25 wt% (for example, 0.6-25 wt%, 1.5- 20.1% by weight); in the active component, the content of Pt based on the element is 0.01-10% by weight (for example, 0.2-8% by weight, 0.4-2% by weight, 0.3-0.6% by weight, 0.1- 0.7% by weight); the content of at least one element in the first metal group as an oxide is 0.5-20% by weight (for example, 0.5-15% by weight or 1-10% by weight); preferably, in the first metal group At least one element of is Ni or a combination of Ni and at least one element other than Ni selected from the first metal group (for example, Sn, Mn, and Cu, preferably Cu), wherein Pt (calculated as a simple substance) and Ni ( The mass ratio of NiO is (0.01:16) to (0.5:0.1). Preferably, the content of Pt in the catalyst is 0.1-0.5% by weight, and the content of Ni in terms of oxide is 0.5-15% by weight, for example, 1-10% by weight. The content of elements other than Ni is 0-10% by weight, for example, 1-6% by weight. The active components are more preferably Pt, Ni and Cu.

根據本發明的用於有機物脫氫製氫氣的催化劑,其中活性組份是(3)Ni,第二金屬組中的至少一種元素(優選,Sn,Cu,Zn,Fe,Ag,更優選,Sn,Ag,Cu和Zn,進一步優選Sn,Zn和Cu,更進一步優選Sn和Zn),和任選的磷。根據該優選的實施方式,可以具有較高的轉化率和氫氣生成速率,並且相對於其它活性金屬可以具有較高的氫氣選擇性。在所述的催化劑中,載體的含量為70-95重量%(例如,75-93重量%,或75-90重量%),以氧化物計的活性組份的含量為5-30重量%(例如,7-25重量%,10-25重量%,8-20重量%,或10-16重量%);在所述的活性組份中,以NiO計的鎳的含量為0.5-25重量%(例如,0.5-20重量%,5-25重量%,6-20重量%,5-15重量%,8-10重量%,或6-11重量%);以氧化物計的第二金屬組中的至少一種元素的含量為0-15重量%(例如0-10重量%,2-6重量%);以P2 O5 計的磷的含量為0-15重量%(例如,0-8重量%,0-6重量%)。According to the catalyst for the dehydrogenation of organic substances to produce hydrogen gas, the active component is (3) Ni, and at least one element in the second metal group (preferably, Sn, Cu, Zn, Fe, Ag, more preferably, Sn) , Ag, Cu and Zn, more preferably Sn, Zn and Cu, still more preferably Sn and Zn), and optionally phosphorus. According to this preferred embodiment, it can have a higher conversion rate and hydrogen generation rate, and can have a higher hydrogen selectivity relative to other active metals. In the catalyst, the content of the carrier is 70-95% by weight (for example, 75-93% by weight, or 75-90% by weight), and the content of the active component based on the oxide is 5-30% by weight ( For example, 7-25% by weight, 10-25% by weight, 8-20% by weight, or 10-16% by weight); in the active component, the content of nickel based on NiO is 0.5-25% by weight (For example, 0.5-20% by weight, 5-25% by weight, 6-20% by weight, 5-15% by weight, 8-10% by weight, or 6-11% by weight); the second metal group in terms of oxides The content of at least one element in P 2 O 5 is 0-15% by weight (for example, 0-10% by weight, 2-6% by weight); the content of phosphorus in terms of P 2 O 5 is 0-15% by weight (for example, 0-8 % By weight, 0-6% by weight).

根據本發明的用於有機物脫氫製氫氣的催化劑,所述的催化劑比表面積為100-350m2 /g(例如120-330m2 /g),所述的催化劑的孔體積為0.3-1.3mL/g(例如0.35-1.2mL/g)。The catalyst for the dehydrogenation of organic compounds of the present invention the hydrogen, the catalyst specific surface area of 100-350m 2 / g (e.g. 120-330m 2 / g), the pore volume of the catalyst is 0.3-1.3mL / g (for example, 0.35-1.2mL/g).

在本發明的一個方面中,本發明提供了一種本發明的用於有機物脫氫製氫氣的催化劑的製備方法,其包括如下步驟:(1)將氧化鋁基質與氣體攜帶的改性金屬氧化物前驅物氣流接觸,得到負載改性金屬氧化物前驅物的氧化鋁基質,所述的改性金屬氧化物前驅物為氧化鈦前驅物和/或氧化鋯前驅物;(2)使負載改性金屬氧化物前驅物的氧化鋁基質水解,焙燒,得到載體組合物;(3)用活性組份前驅物溶液浸漬所述的載體組合物,得到浸漬活性組份前驅物的載體;(4)浸漬活性組份前驅物的載體乾燥,焙燒;優選地,活性組份是以下(1),(2)和(3)中的一種:(1)貴金屬組中的至少一種元素,優選地,活性組份是Pt以及任選地貴金屬組中的除Pt以外的至少一種元素;(2)Pt和第一金屬組中的至少一種元素;(3)Ni,第二金屬組中的至少一種元素,和任選的磷;其中貴金屬組是由選自Pt,Pd,Ru,Re,Rh,Ir,Os的元素構成的組;第一金屬組是由選自Sn,V,Mo,Cr,Mn,Fe,Co,Ni,Cu,Ag,Ce,W,Cu,Ca的元素構成的組;第二金屬組是由選自Zn,Sn,Cu,Fe,Ag,In,Re,Mo,Co,Ca,W的元素構成的組。In one aspect of the present invention, the present invention provides a method for preparing the catalyst for the dehydrogenation of organic matter to produce hydrogen according to the present invention, which comprises the following steps: (1) The alumina matrix and the gas-carrying modified metal oxide The precursor is contacted by airflow to obtain an alumina matrix supporting a modified metal oxide precursor, where the modified metal oxide precursor is a titania precursor and/or a zirconia precursor; (2) loading the modified metal The alumina matrix of the oxide precursor is hydrolyzed and calcined to obtain a carrier composition; (3) impregnating the carrier composition with the active component precursor solution to obtain a carrier impregnated with the active component precursor; (4) impregnating activity The carrier of the component precursor is dried and calcined; preferably, the active component is one of the following (1), (2) and (3): (1) At least one element in the noble metal group, preferably, the active component Is Pt and optionally at least one element in the precious metal group other than Pt; (2) Pt and at least one element in the first metal group; (3) Ni, at least one element in the second metal group, and any The selected phosphorus; wherein the noble metal group is a group consisting of elements selected from Pt, Pd, Ru, Re, Rh, Ir, Os; the first metal group is selected from Sn, V, Mo, Cr, Mn, Fe, A group consisting of Co, Ni, Cu, Ag, Ce, W, Cu, and Ca elements; the second metal group is selected from Zn, Sn, Cu, Fe, Ag, In, Re, Mo, Co, Ca, W Group of elements.

根據本發明的用於有機物脫氫製氫氣的催化劑的製備方法,步驟(4)所述的焙燒,焙燒溫度為400-700℃,焙燒時間為0.5-12小時。According to the preparation method of the catalyst for the dehydrogenation of organic matter to produce hydrogen according to the present invention, in the calcination described in step (4), the calcination temperature is 400-700° C., and the calcination time is 0.5-12 hours.

在一種實施方式中,在用活性組份前驅物的溶液浸漬載體組合物時,通常包括所述的將活性金屬組份前驅物溶解在水中,浸漬載體組合物,得到浸漬活性金屬組份前驅物的載體。其中浸漬的方法可採用現有浸漬方法,例如可以是等體積浸漬,過量浸漬的方法。所述的水例如去離子水,蒸餾水或脫陽離子水中的一種或多種。也可以將金屬前驅物溶解在水中,得到金屬前驅物溶液;將金屬前驅物溶液以共浸或分步浸漬的方法引入到載體上,浸漬可採用飽和浸漬或過飽和浸漬。當催化劑中含有兩種以上金屬活性時,所述的共浸漬為兩種以上金屬元素可以共同溶解在去離子水中,再將浸漬液浸漬到載體上,在進行乾燥和焙燒。所述的分步浸漬為,將兩種以上金屬元素分別溶解在去離子水中;分別將金屬浸漬液浸漬在載體上,每次浸漬後得到的載體均需進行乾燥和焙燒,對引入金屬的先後次序沒有要求。例如,可以將Pt的前驅物和第一金屬組中的一種元素的前驅物配成溶液,用來浸漬所述的載體組合物,也可以先浸漬Pt的前驅物,乾燥後,浸漬第一金屬組中的該元素的前驅物。例如,浸漬時浸漬液與載體的液/固體積比為0.3-5.0,優選0.6-4.0,浸漬溫度為10-50℃,優選15-40℃。優選地,浸漬後於室溫下靜置2-10小時,將浸漬後的固體乾燥後進行焙燒,焙燒溫度優選400-700℃,焙燒時間優選0.5-12小時,例如1-10小時或2-9小時或4-8小時。焙燒的氣氛沒有特殊要求,例如可以在空氣中進行焙燒,焙燒時的空氣(標況)/催化劑體積比例如為400-1000:1,焙燒時間優選4-8小時。In one embodiment, when the carrier composition is impregnated with the solution of the active component precursor, it usually includes the above-mentioned dissolving the active metal component precursor in water and immersing the carrier composition to obtain the impregnated active metal component precursor a. The impregnation method can adopt the existing impregnation method, for example, it may be equal volume impregnation or excessive impregnation. The water is one or more of deionized water, distilled water or deionized water. It is also possible to dissolve the metal precursor in water to obtain a metal precursor solution; the metal precursor solution is introduced onto the support by co-immersion or stepwise impregnation, and the impregnation may be saturated impregnation or supersaturation impregnation. When the catalyst contains two or more metal activities, the co-impregnation means that two or more metal elements can be co-dissolved in deionized water, and then the impregnating solution is impregnated on the carrier, and then dried and calcined. The step-by-step impregnation includes dissolving two or more metal elements in deionized water separately; impregnating the metal impregnation liquid on the carrier separately, and the carrier obtained after each impregnation needs to be dried and roasted, and the sequence of introducing the metal No order is required. For example, the precursor of Pt and the precursor of one element in the first metal group can be prepared into a solution to impregnate the carrier composition, or the precursor of Pt can be impregnated first, and after drying, the first metal can be impregnated. The precursor of this element in the group. For example, the liquid/solid product ratio of the impregnating liquid to the carrier during impregnation is 0.3-5.0, preferably 0.6-4.0, and the impregnation temperature is 10-50°C, preferably 15-40°C. Preferably, the impregnated solid is allowed to stand at room temperature for 2-10 hours, and the impregnated solid is dried and then calcined. The calcining temperature is preferably 400-700°C, and the calcining time is preferably 0.5-12 hours, such as 1-10 hours or 2- 9 hours or 4-8 hours. The calcination atmosphere has no special requirements. For example, the calcination can be performed in air. The air (standard condition)/catalyst volume ratio during calcination is, for example, 400-1000:1, and the calcination time is preferably 4-8 hours.

根據本發明的用於有機物脫氫製氫氣的催化劑的製備方法,活性組份前驅物是活性組份的可溶性鹽(例如,金屬硝酸鹽,乙酸鹽,金屬氯化鹽,金屬碳酸鹽,金屬醋酸錯合物,金屬氫氧化物,金屬草酸鹽錯合物,高價金屬酸,高價金屬酸鹽,金屬藕合物,銨鹽中的一種或多種)。在一種實施方案中,所述的高價金屬酸/高價金屬酸鹽例如是氯鉑酸,氯鉑酸銨,四氨合硝酸鉑,四氨合氫氧化鉑中的一種或多種。所述的磷的前驅物例如磷酸銨,磷酸二氫銨,磷酸氫二銨,磷酸,金屬磷酸鹽中的一種或多種。According to the preparation method of the catalyst for the dehydrogenation of organic matter to produce hydrogen according to the present invention, the active component precursor is a soluble salt of the active component (for example, metal nitrate, acetate, metal chloride, metal carbonate, metal acetic acid). One or more of complexes, metal hydroxides, metal oxalate complexes, high-valent metal acids, high-valent metal salts, metal lotions, and ammonium salts). In one embodiment, the high-valent metal acid/high-valent metal salt is, for example, one or more of chloroplatinic acid, ammonium chloroplatinate, tetraammine platinum nitrate, and tetraammine platinum hydroxide. The phosphorus precursors are, for example, one or more of ammonium phosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, phosphoric acid, and metal phosphate.

根據本發明的用於有機物脫氫製氫氣的催化劑的製備方法,將浸漬活性組份前驅物的載體於低於-40℃的環境中放置1小時至24小時;然後進行抽真空乾燥,除去載體上吸附的水,然後焙燒,得到催化劑。According to the preparation method of the catalyst for the dehydrogenation of organic matter to produce hydrogen of the present invention, the carrier impregnated with the active component precursor is placed in an environment below -40°C for 1 hour to 24 hours; then vacuum drying is performed to remove the carrier The adsorbed water is then calcined to obtain a catalyst.

在本發明的一個方面中,本發明提供了一種儲氫合金,所述的儲氫合金為稀土系AB5 型,鋯鈦系AB2 型,鈦系AB型,鎂系A2 B型以及釩基固溶體型儲氫合金中的一種或者多種,其中In one aspect of the present invention, the present invention provides a hydrogen storage alloy. The hydrogen storage alloy is rare earth AB 5 type, zirconium titanium AB 2 type, titanium AB type, magnesium A 2 B type, and vanadium. One or more of the base solid solution hydrogen storage alloys, of which

所述的稀土系AB5 型儲氫合金的分子運算式為:Mm Nix1 Cox2 Mnx3 Fex4 Alx5 Snx6The molecular formula of the rare earth AB 5 type hydrogen storage alloy is: M m Ni x1 Co x2 Mn x3 Fe x4 Al x5 Sn x6 ,

4.5≤x1+x2+x3+x4+x5+x6≤5.5,4.5≤x1+x2+x3+x4+x5+x6≤5.5,

其中,Mm 為Lay1 Cey2 Ndy3 Pry4 Yy5Among them, M m is La y1 Ce y2 Nd y3 Pr y4 Y y5 ,

y1+y2+y3+y4+y5=1,y1+y2+y3+y4+y5=1,

其中,among them,

0.4≤y1≤0.99(例如,0.4≤y1≤0.8),0≤y2≤0.45(例如,0.1≤y2≤0.45),0≤y3≤0.2(例如,0≤y3≤0.2),0≤y4≤0.05(例如,0≤y4≤0.05),0.01≤y5≤0.1(例如,0.01≤y5≤0.05),3≤x1≤5.45(例如,3≤x1≤4.9),0≤x2≤1.5(例如,0.1≤x2≤1),0≤x3≤0.8(例如,0.1≤x3≤0.6),0≤x4≤0.8(例如,0.1≤x4≤0.6),0≤x5≤0.75(例如,0.05≤x5≤0.5),0≤x6≤0.2;(例如,0≤x6≤0.15)。0.4≤y1≤0.99 (for example, 0.4≤y1≤0.8), 0≤y2≤0.45 (for example, 0.1≤y2≤0.45), 0≤y3≤0.2 (for example, 0≤y3≤0.2), 0≤y4≤0.05 (E.g., 0≤y4≤0.05), 0.01≤y5≤0.1 (e.g., 0.01≤y5≤0.05), 3≤x1≤5.45 (e.g., 3≤x1≤4.9), 0≤x2≤1.5 (e.g., 0.1≤ x2≤1), 0≤x3≤0.8 (for example, 0.1≤x3≤0.6), 0≤x4≤0.8 (for example, 0.1≤x4≤0.6), 0≤x5≤0.75 (for example, 0.05≤x5≤0.5), 0≤x6≤0.2; (for example, 0≤x6≤0.15).

所述的鋯鈦系AB2 型儲氫合金的的分子運算式為AB2 ,其中The molecular formula of the zirconium-titanium series AB 2 type hydrogen storage alloy is AB 2 , where

A=Mgx1 Cax2 Tix3 Zrx4 Yx5 Lax6 ,x1+x2+x3+x4+x5+x6=0.9-1.1,A=Mg x1 Ca x2 Ti x3 Zr x4 Y x5 La x6 , x1+x2+x3+x4+x5+x6=0.9-1.1,

B=Vy1 Cry2 Mny3 Fey4 Coy5 Niy6 Cuy7 ,y1+y2+y3+y4+y5+y6+y7=1.9-2.1,B=V y1 Cr y2 Mn y3 Fe y4 Co y5 Ni y6 Cu y7 , y1+y2+y3+y4+y5+y6+y7=1.9-2.1,

0≤x1≤0.54(例如,0.01≤x1≤0.3,0.01≤x1≤0.1),0≤x2≤0.54(例如,0≤x2≤0.25),0.5≤x3≤1.04(例如,0.6≤x3≤1),0.05≤x4≤0.58(例如,0.1≤x4≤0.58),0.01≤x5≤0.2(例如,0.01≤x5≤0.05),0≤x6≤0.2(例如,0≤x6≤0.05),0.05≤y1≤1.95(例如,0.05≤y1≤1.8),0≤y2≤1.9(例如,0≤y2≤1.85),0.05≤y3≤1.95(例如,0.1≤y3≤1.95),0≤y4≤1.6(例如,0≤y4≤1.5),0≤y5≤0.5(例如,0≤y5≤0.3),0.1≤y6≤0.5(例如,0.1≤y6≤0.3),0≤y7≤0.5(例如,0.1≤y7≤0.2),優選地,0.7≤x3:(x3+x4)≤0.95;優選地,1.7≤y1+y2+y3+y4≤2。0≤x1≤0.54 (for example, 0.01≤x1≤0.3, 0.01≤x1≤0.1), 0≤x2≤0.54 (for example, 0≤x2≤0.25), 0.5≤x3≤1.04 (for example, 0.6≤x3≤1) , 0.05≤x4≤0.58 (for example, 0.1≤x4≤0.58), 0.01≤x5≤0.2 (for example, 0.01≤x5≤0.05), 0≤x6≤0.2 (for example, 0≤x6≤0.05), 0.05≤y1≤ 1.95 (e.g., 0.05≤y1≤1.8), 0≤y2≤1.9 (e.g., 0≤y2≤1.85), 0.05≤y3≤1.95 (e.g., 0.1≤y3≤1.95), 0≤y4≤1.6 (e.g., 0 ≤y4≤1.5), 0≤y5≤0.5 (for example, 0≤y5≤0.3), 0.1≤y6≤0.5 (for example, 0.1≤y6≤0.3), 0≤y7≤0.5 (for example, 0.1≤y7≤0.2) , Preferably, 0.7≤x3:(x3+x4)≤0.95; preferably, 1.7≤y1+y2+y3+y4≤2.

所述的鈦系AB型儲氫合金的分子運算式為AB,其中The molecular formula of the titanium AB type hydrogen storage alloy is AB, where

A=Tix1 Zrx2 Yx3 Lax4 ,x1+x2+x3+x4=0.85-1.1,A=Ti x1 Zr x2 Y x3 La x4 , x1+x2+x3+x4=0.85-1.1,

B=Vy1 Cry2 Mny3 Fey4 Coy5 Niy6 Cuy7 ,y1+y2+y3+y4+y5+y6+y7=0.95-1.05,B=V y1 Cr y2 Mn y3 Fe y4 Co y5 Ni y6 Cu y7 , y1+y2+y3+y4+y5+y6+y7=0.95-1.05,

0≤x1≤1.09(例如,0.9≤x1≤1.05),0≤x2≤1.09(例如,0≤x2≤0.5),0.01≤x3≤0.2(例如,0.01≤x3≤0.05),0≤x4≤0.2(例如,0≤x4≤0.05),0.05≤y1≤0.5(例如,0.05≤y1≤0.2),0≤y2≤0.8(例如,0≤y2≤0.2),0≤y3≤0.8(例如,0.05≤y3≤0.4,或0.1≤y3≤0.4),0.2≤y4≤1(例如,0.5≤y4≤0.9),0≤y5≤0.35(例如,0≤y5≤0.1),0≤y6≤0.45(例如,0≤y6≤0.2),0≤y7≤0.3(例如,0≤y7≤0.2),優選地,x1和x2不同時為零;0≤x1≤1.09 (for example, 0.9≤x1≤1.05), 0≤x2≤1.09 (for example, 0≤x2≤0.5), 0.01≤x3≤0.2 (for example, 0.01≤x3≤0.05), 0≤x4≤0.2 (E.g., 0≤x4≤0.05), 0.05≤y1≤0.5 (e.g., 0.05≤y1≤0.2), 0≤y2≤0.8 (e.g., 0≤y2≤0.2), 0≤y3≤0.8 (e.g., 0.05≤ y3≤0.4, or 0.1≤y3≤0.4), 0.2≤y4≤1 (for example, 0.5≤y4≤0.9), 0≤y5≤0.35 (for example, 0≤y5≤0.1), 0≤y6≤0.45 (for example, 0≤y6≤0.2), 0≤y7≤0.3 (for example, 0≤y7≤0.2), preferably, x1 and x2 are not zero at the same time;

所述的鎂系A2 B型儲氫合金的分子運算式為A2 B,其中The molecular formula of the magnesium-based A 2 B hydrogen storage alloy is A 2 B, where

A=Mgx1 Cax2 Tix3 Lax4 Yx5 ,x1+x2+x3+x4+x5=1.9-2.1,A=Mg x1 Ca x2 Ti x3 La x4 Y x5 , x1+x2+x3+x4+x5=1.9-2.1,

B=Cry1 Fey2 Coy3 Niy4 Cuy5 Moy6 ;y1+y2+y3+y4+y5+y6=0.9-1.1;B=Cr y1 Fe y2 Co y3 Ni y4 Cu y5 Mo y6 ; y1+y2+y3+y4+y5+y6=0.9-1.1;

其中,1.29≤x1≤2.09(例如,1.7≤x1≤2.05),0≤x2≤0.5(例如,0≤x2≤0.2),0≤x3≤0.8(例如,0≤x3≤0.5),0≤x4≤0.5(例如,0≤x4≤0.2),0.01≤x5≤0.2(例如,0.05≤x5≤0.1),0≤y1≤0.3(例如,0≤y1≤0.2,0.05≤y1≤0.2),0≤y2≤0.2(例如,0≤y2≤0.1),0≤y3≤0.6(例如,0≤y3≤0.5),0.2≤y4≤1.1(例如,0.7≤y4≤1.05),0≤y5≤0.5(例如,0≤y5≤0.4),0≤y6≤0.15(例如,0≤y6≤0.1);Among them, 1.29≤x1≤2.09 (for example, 1.7≤x1≤2.05), 0≤x2≤0.5 (for example, 0≤x2≤0.2), 0≤x3≤0.8 (for example, 0≤x3≤0.5), 0≤x4 ≤0.5 (for example, 0≤x4≤0.2), 0.01≤x5≤0.2 (for example, 0.05≤x5≤0.1), 0≤y1≤0.3 (for example, 0≤y1≤0.2, 0.05≤y1≤0.2), 0≤ y2≤0.2 (e.g., 0≤y2≤0.1), 0≤y3≤0.6 (e.g., 0≤y3≤0.5), 0.2≤y4≤1.1 (e.g., 0.7≤y4≤1.05), 0≤y5≤0.5 (e.g. , 0≤y5≤0.4), 0≤y6≤0.15 (for example, 0≤y6≤0.1);

所述的釩基固溶體型儲氫合金的分子運算式為Ax1 Bx2 ,其中x1+x2=1,The molecular formula of the vanadium-based solid solution hydrogen storage alloy is A x1 B x2 , where x1+x2=1,

其中A=Tiy1 Vy2 Zry3 Nby4 Yy5 Lay6 Cay7 ,y1+y2+y3+y4+y5+y6+y7=1,Where A=Ti y1 V y2 Zr y3 Nb y4 Y y5 La y6 Ca y7 , y1+y2+y3+y4+y5+y6+y7=1,

B=Mnz1 Fez2 Coz3 Niz4 ,z1+z2+z3+z4=1,B=Mn z1 Fe z2 Co z3 Ni z4 , z1+z2+z3+z4=1,

0.7≤x1≤0.95(例如,0.8≤x1≤0.95,0.9≤x1≤0.95),0.05≤x2≤0.3(例如,0.05≤x2≤0.2,0.05≤x2≤0.1),0.4≤y1≤0.9(例如,0.45≤y1≤0.9,0.5≤y1≤0.8),0≤y2≤0.5(例如,0≤y2≤0.4),0≤y3≤0.5(例如,0≤y3≤0.4),0≤y4≤0.55(例如,0≤y4≤0.4),0≤y5≤0.2(例如,0.01≤y5≤0.2,0.05≤y5≤0.2),0≤y6≤0.1(例如,0≤y6≤0.05),0≤y7≤0.1(例如,0≤y7≤0.05),0≤z1≤1(例如,0.1≤z1≤1,0.2≤z1≤0.95),0≤z2≤0.95(例如,0≤z2≤0.9),0≤z3≤0.3(例如,0≤z3≤0.2),0≤z4≤0.45(例如,0.05≤z4≤0.45,0.05≤z4≤0.3),0.55≤z1+z2≤1(例如,0.7≤z1+z2≤1)。0.7≤x1≤0.95 (e.g., 0.8≤x1≤0.95, 0.9≤x1≤0.95), 0.05≤x2≤0.3 (e.g., 0.05≤x2≤0.2, 0.05≤x2≤0.1), 0.4≤y1≤0.9 (e.g., 0.45≤y1≤0.9, 0.5≤y1≤0.8), 0≤y2≤0.5 (e.g., 0≤y2≤0.4), 0≤y3≤0.5 (e.g., 0≤y3≤0.4), 0≤y4≤0.55 (e.g. , 0≤y4≤0.4), 0≤y5≤0.2 (for example, 0.01≤y5≤0.2, 0.05≤y5≤0.2), 0≤y6≤0.1 (for example, 0≤y6≤0.05), 0≤y7≤0.1 ( For example, 0≤y7≤0.05), 0≤z1≤1 (for example, 0.1≤z1≤1, 0.2≤z1≤0.95), 0≤z2≤0.95 (for example, 0≤z2≤0.9), 0≤z3≤0.3 (For example, 0≤z3≤0.2), 0≤z4≤0.45 (for example, 0.05≤z4≤0.45, 0.05≤z4≤0.3), 0.55≤z1+z2≤1 (for example, 0.7≤z1+z2≤1).

在一種實施方案中,本發明的儲氫合金選自:In one embodiment, the hydrogen storage alloy of the present invention is selected from:

La0.61 Ce0.16 Pr0.04 Nd0.19 Ni3.55 Co0.75 Mn0.4 Al0.3 ,(Ti0.8 V0.2 )0.95 (Fe1 )0.05 ,(Ti0.8 Y0.2 )0.95 (Mn0.95 Ni0.05 )0.05 ,(Ti0.4 V0.4 Y0.2 )0.9 (Fe0.05 Mn0.95 )0.1 ,(Ti0.4 V0.4 Y0.2 )0.9 (Fe0.05 Mn0.9 Ni0.05 )0.1 ,(Ti0.7 Nb0.1 Y0.2 )0.9 (Mn1 )0.1 ,(Ti0.7 Nb0.1 Y0.2 )0.9 (Mn0.7 Ni0.3 )0.1 ,(Ti0.4 Zr0.4 Y0.2 )0.93 (Fe0.2 Mn0.7 Co0.1 )0.07 ,(Ti0.4 Zr0.4 Y0.2 )0.93 (Fe0.2 Mn0.7 Ni0.1 )0.07 ,(Ti0.4 V0.4 Zr0.2 )0.95 (Fe0.6 Mn0.2 Co0.1 Ni0.1 )0.05 ,(Ti0.4 V0.35 Zr0.2 Y0.05 )0.95 (Fe0.6 Mn0.2 Co0.1 Ni0.1 )0.05 ,(Ti0.88 Y0.1 Ca0.02 )0.95 (Fe0.3 Mn0.6 Co0.1 )0.05 ,(Ti0.88 Y0.1 Ca0.02 )0.95 (Fe0.3 Mn0.6 Ni0.1 )0.05 ,(Ti0.7 Nb0.1 Y0.2 )0.8 (Mn0.7 Ni0.3 )0.2 ,Ti0.64 Zr0.45 Y0.01 VMn0.9 Ni0.1 ,Mg0.01 Ti0.93 Zr0.15 Y0.01 VMn0.9 Ni0.1 ,Ti0.55 Zr0.48 Y0.05 La0.02 V0.33 Cr0.05 Mn1.5 Fe0.09 Ni0.1 ,Ti0.85 Zr0.18 Y0.05 La0.02 V0.23 Cr0.05 Mn1.5 Fe0.09 Ni0.1 Cu0.1 ,Ti0.6 Zr0.4 Y0.05 V0.1 Mn1.8 Ni0.2 ,Mg0.1 Ti0.7 Zr0.2 Y0.05 V0.1 Mn1.6 Ni0.2 Cu0.2 ,Ca0.01 Ti0.9 Zr0.05 Y0.05 V1.2 Mn0.6 Ni0.3 ,Ca0.01 Ti0.85 Zr0.05 Y0.05 V1.2 Mn0.6 Ni0.1 Cu0.2 ,TiZr0.05 Y0.05 V0.1 Cr1.4 Mn0.2 Co0.1 Ni0.3 ,Mg0.1 Ti0.8 Zr0.15 Y0.05 V0.1 Cr1.4 Mn0.2 Co0.1 Ni0.1 Cu0.2 ,Ti0.5 Zr0.55 Y0.05 V1.79 Mn0.1 Fe0.01 Ni0.2 ,Ti0.8 Zr0.25 Y0.05 V1.79 Mn0.1 Fe0.01 Ni0.1 Cu0.1 ,Mg0.01 Ti0.63 Zr0.45 Y0.01 VMn0.9 Ni0.1 ,Mg1.8 Y0.1 Ni1 ,Mg1.8 Y0.1 Cr0.05 Ni1 ,Mg1.5 Ti0.5 Y0.05 Ni1.1 ,Mg1.5 Ti0.5 Y0.05 Cr0.1 Ni1 ,Mg2 Y0.1 Ni0.6 Cu0.4 ,Mg2 Y0.1 Cr0.05 Ni0.6 Cu0.4 ,Mg1.92 Y0.08 Ni0.95 Fe0.05 ,Mg1.92 Y0.08 Cr0.2 Ni0.75 Fe0.05 ,Mg1.9 Y0.1 Fe0.1 Ni0.8 Cu0.1 ,Mg1.9 Y0.1 Cr0.1 Fe0.1 Ni0.7 Cu0.1 ,Mg1.9 Y0.1 Ni0.8 Co0.2 ,Mg1.9 Y0.1 Cr0.1 Ni0.8 Co0.2 ,Mg1.8 Y0.1 La0.1 Ni0.9 Co0.1 ,Mg1.8 Y0.1 La0.1 Cr0.05 Ni0.9 Co0.1 ,Mg1.7 Ti0.2 Y0.1 Ni0.7 Co0.32 ,Mg1.7 Ti0.2 Y0.1 Cr0.05 Ni0.7 Co0.3 ,TiY0.01 V0.1 Fe0.7 Ni0.2 ,TiY0.01 V0.1 Fe0.7 Mn0.1 Ni0.1 ,TiY0.02 V0.2 Fe0.8 TiY0.02 V0.2 Fe0.7 Mn0.1 ,Ti0.97 Y0.03 V0.05 Cr0.03 Fe0.9 ,Ti0.97 Y0.03 V0.05 Cr0.03 Fe0.5 Mn0.4 ,Ti0.9 Y0.04 V0.15 Fe0.9 ,Ti0.9 Y0.04 V0.05 Fe0.9 Mn0.1 ,Ti0.91 Zr0.05 Y0.04 V0.1 Cr0.2 Fe0.7 ,Ti0.91 Zr0.05 Y0.04 V0.1 Cr0.2 Fe0.6 Mn0.1 ,Ti0.95 Y0.05 V0.26 Fe0.7 Cu0.05 ,Ti0.95 Y0.05 V0.05 Fe0.7 Mn0.21 Cu0.05 ,Ti1.02 Y0.03 V0.05 Fe0.9 Ni0.1 ,Ti1.02 Y0.03 V0.05 Fe0.8 Mn0.1 Ni0.1 ,La0.5 Ce0.32 Nd0.15 Pr0.02 Y0.01 Ni4.4 Fe0.55 Al0.05 ,La0.5 Ce0.32 Nd0.15 Pr0.02 Y0.01 Ni4.4 Fe0.6 ,La0.8 Ce0.15 Y0.05 Ni4 Mn0.5 Al0.5 ,La0.8 Ce0.15 Y0.05 Ni4.5 Mn0.5 ,La0.45 Ce0.4 Nd0.1 Pr0.03 Y0.02 Ni4 Co0.8 Al0.2 ,La0.45 Ce0.4 Nd0.1 Pr0.03 Y0.02 Ni4.2 Co0.8 ,La0.75 Ce0.15 Nd0.05 Pr0.02 Y0.03 Ni4.7 Al0.1 Fe0.2 ,La0.75 Ce0.15 Nd0.05 Pr0.02 Y0.03 Ni4.8 Fe0.2 ,La0.8 Ce0.15 Nd0.03 Y0.02 Ni4.5 Co0.3 Mn0.1 Al0.1 ,La0.8 Ce0.15 Nd0.03 Y0.02 Ni4.5 Co0.4 Mn0.1 ,La0.97 Y0.03 Ni4 Co1La 0.61 Ce 0.16 Pr 0.04 Nd 0.19 Ni 3.55 Co 0.75 Mn 0.4 Al 0.3 , (Ti 0.8 V 0.2 ) 0.95 (Fe 1 ) 0.05 , (Ti 0.8 Y 0.2 ) 0.95 (Mn 0.95 Ni 0.05 ) 0.05 , (Ti 0.4 V 0.4 Y 0.2 ) 0.9 (Fe 0.05 Mn 0.95 ) 0.1 , (Ti 0.4 V 0.4 Y 0.2 ) 0.9 (Fe 0.05 Mn 0.9 Ni 0.05 ) 0.1 , (Ti 0.7 Nb 0.1 Y 0.2 ) 0.9 (Mn 1 ) 0.1 , (Ti 0.7 Nb 0.1 Y 0.2 ) 0.9 (Mn 0.7 Ni 0.3 ) 0.1 , (Ti 0.4 Zr 0.4 Y 0.2 ) 0.93 (Fe 0.2 Mn 0.7 Co 0.1 ) 0.07 , (Ti 0.4 Zr 0.4 Y 0.2 ) 0.93 (Fe 0.2 Mn 0.7 Ni 0.1 ) 0.07 , (Ti 0.4 V 0.4 Zr 0.2 ) 0.95 (Fe 0.6 Mn 0.2 Co 0.1 Ni 0.1 ) 0.05 , (Ti 0.4 V 0.35 Zr 0.2 Y 0.05 ) 0.95 (Fe 0.6 Mn 0.2 Co 0.1 Ni 0.1 ) 0.05 , (Ti 0.88 Y 0.1 Ca 0.02 ) 0.95 (Fe 0.3 Mn 0.6 Co 0.1 ) 0.05 , (Ti 0.88 Y 0.1 Ca 0.02 ) 0.95 (Fe 0.3 Mn 0.6 Ni 0.1 ) 0.05 , (Ti 0.7 Nb 0.1 Y 0.2 ) 0.8 (Mn 0.7 Ni 0.3 ) 0.2 , Ti 0.64 Zr 0.45 Y 0.01 VMn 0.9 Ni 0.1 , Mg 0.01 Ti 0.93 Zr 0.15 Y 0.01 VMn 0.9 Ni 0.1 , Ti 0.55 Zr 0.48 Y 0.05 La 0.02 V 0.33 Cr 0.05 Mn 1.5 Fe 0.09 Ni 0.1 , Ti 0.85 Zr 0.18 Y 0.05 La 0.02 V 0.23 Cr 0.05 Mn 1.5 Fe 0.09 Ni 0.1 Cu 0.1 , Ti 0.6 Zr 0.4 Y 0.05 V 0.1 Mn 1.8 Ni 0.2 , Mg 0.1 Ti 0.7 Zr 0.2 Y 0.05 V 0.1 Mn 1.6 Ni 0.2 Cu 0.2 , Ca 0.01 Ti 0.9 Zr 0.05 Y 0.05 V 1.2 Mn 0.6 Ni 0.3 , Ca 0.01 Ti 0.85 Zr 0.05 Y 0.05 V 1.2 Mn 0.6 Ni 0.1 Cu 0.2 , TiZr 0.05 Y 0.05 V 0.1 Cr 1.4 Mn 0.2 Co 0.1 Ni 0.3 , Mg 0.1 Ti 0.8 Zr 0.15 Y 0.05 V 0.1 Cr 1.4 Mn 0.2 Co 0.1 Ni 0.1 Cu 0.2 , Ti 0.5 Zr 0.55 Y 0.05 V 1.79 Mn 0.1 Fe 0.01 Ni 0.2 , Ti 0.8 Zr 0.25 Y 0.05 V 1.79 Mn 0.1 Fe 0.01 Ni 0.1 Cu 0.1 , Mg 0.01 Ti 0.63 Zr 0.45 Y 0.01 VMn 0.9 Ni 0.1 , Mg 1.8 Y 0.1 Ni 1 , Mg 1.8 Y 0.1 Cr 0.05 Ni 1 , Mg 1.5 Ti 0.5 Y 0.05 Ni 1.1 , Mg 1.5 Ti 0.5 Y 0.05 Cr 0.1 Ni 1 , Mg 2 Y 0.1 Ni 0.6 Cu 0.4 , Mg 2 Y 0.1 Cr 0.05 Ni 0.6 Cu 0.4 , Mg 1.92 Y 0.08 Ni 0.95 Fe 0.05 , Mg 1.92 Y 0.08 Cr 0.2 Ni 0.75 Fe 0.05 , Mg 1.9 Y 0.1 Fe 0.1 Ni 0.8 Cu 0.1 , Mg 1.9 Y 0.1 Cr 0.1 Fe 0.1 Ni 0.7 Cu 0.1 , Mg 1.9 Y 0.1 Ni 0.8 Co 0.2 , Mg 1.9 Y 0.1 Cr 0.1 Ni 0.8 Co 0.2 , Mg 1.8 Y 0.1 La 0.1 Ni 0.9 Co 0.1 , Mg 1.8 Y 0.1 La 0.1 Cr 0.05 Ni 0.9 Co 0.1 , Mg 1.7 Ti 0.2 Y 0.1 Ni 0.7 Co 0.32 , Mg 1.7 Ti 0.2 Y 0.1 Cr 0.05 Ni 0.7 Co 0.3 , TiY 0.01 V 0.1 Fe 0.7 Ni 0.2 , TiY 0.01 V 0.1 Fe 0.7 Mn 0.1 Ni 0.1 , TiY 0.02 V 0.2 Fe 0.8 , TiY 0.02 V 0.2 Fe 0.7 Mn 0.1 , Ti 0.97 Y 0.03 V 0.05 Cr 0.03 Fe 0.9 , Ti 0.97 Y 0.03 V 0.05 Cr 0.03 Fe 0.5 Mn 0.4 , Ti 0.9 Y 0.04 V 0.15 Fe 0.9 , Ti 0.9 Y 0.04 V 0.05 Fe 0.9 Mn 0.1 , Ti 0.91 Zr 0.05 Y 0.04 V 0.1 Cr 0.2 Fe 0.7 , Ti 0.91 Zr 0.05 Y 0.04 V 0.1 Cr 0.2 Fe 0.6 Mn 0.1 , Ti 0.95 Y 0.05 V 0.26 Fe 0.7 Cu 0.05 , Ti 0.95 Y 0.05 V 0.05 Fe 0.7 Mn 0.21 Cu 0.05 , Ti 1.02 Y 0.03 V 0.05 Fe 0.9 Ni 0.1 , Ti 1.02 Y 0.03 V 0.05 Fe 0.8 Mn 0.1 Ni 0.1 , La 0.5 Ce 0.32 Nd 0.15 Pr 0.02 Y 0.01 Ni 4.4 Fe 0.55 Al 0.05 , La 0.5 Ce 0.32 Nd 0.15 Pr 0.02 Y 0.01 Ni 4.4 Fe 0.6 , La 0.8 Ce 0.15 Y 0.05 Ni 4 Mn 0.5 Al 0.5 , La 0.8 Ce 0.15 Y 0.05 Ni 4.5 Mn 0.5 , La 0.45 Ce 0.4 Nd 0.1 Pr 0.03 Y 0.02 Ni 4 Co 0.8 Al 0.2 , La 0.45 Ce 0.4 Nd 0.1 Pr 0.03 Y 0.02 Ni 4.2 Co 0.8 , La 0.75 Ce 0.15 Nd 0.05 Pr 0.02 Y 0.03 Ni 4.7 Al 0.1 Fe 0.2 , La 0.75 Ce 0.15 Nd 0.05 Pr 0.02 Y 0.03 Ni 4.8 Fe 0.2 , La 0.8 Ce 0.15 Nd 0.03 Y 0.02 Ni 4.5 Co 0.3 Mn 0.1 Al 0.1 , La 0.8 Ce 0.15 Nd 0.03 Y 0.02 Ni 4.5 Co 0.4 Mn 0.1 , La 0.97 Y 0.03 Ni 4 Co 1 .

在一種優選的實施方案中,本發明的儲氫合金選自:In a preferred embodiment, the hydrogen storage alloy of the present invention is selected from:

(Ti0.8 Y0.2 )0.95 (Mn0.95 Ni0.05 )0.05 ,(Ti0.4 V0.4 Y0.2 )0.9 (Fe0.05 Mn0.9 Ni0.05 )0.1 ,(Ti0.7 Nb0.1 Y0.2 )0.9 (Mn0.7 Ni0.3 )0.1 ,(Ti0.4 Zr0.4 Y0.2 )0.93 (Fe0.2 Mn0.7 Ni0.1 )0.07 ,(Ti0.4 V0.35 Zr0.2 Y0.05 )0.95 (Fe0.6 Mn0.2 Co0.1 Ni0.1 )0.05 ,(Ti0.88 Y0.1 Ca0.02 )0.95 (Fe0.3 Mn0.6 Ni0.1 )0.05 ,Mg0.01 Ti0.93 Zr0.15 Y0.01 VMn0.9 Ni0.1 ,Ti0.85 Zr0.18 Y0.05 La0.02 V0.23 Cr0.05 Mn1.5 Fe0.09 Ni0.1 Cu0.1 ,Mg0.1 Ti0.7 Zr0.2 Y0.05 V0.1 Mn1.6 Ni0.2 Cu0.2 ,Ca0.01 Ti0.85 Zr0.05 Y0.05 V1.2 Mn0.6 Ni0.1 Cu0.2 ,Mg0.1 Ti0.8 Zr0.15 Y0.05 V0.1 Cr1.4 Mn0.2 Co0.1 Ni0.1 Cu0.2 ,Ti0.8 Zr0.25 Y0.05 V1.79 Mn0.1 Fe0.01 Ni0.1 Cu0.1 ,Mg1.8 Y0.1 Cr0.05 Ni1 ,Mg1.5 Ti0.5 Y0.05 Cr0.1 Ni1 ,Mg2 Y0.1 Cr0.05 Ni0.6 Cu0.4 ,Mg1.92 Y0.08 Cr0.2 Ni0.75 Fe0.05 ,Mg1.9 Y0.1 Cr0.1 Fe0.1 Ni0.7 Cu0.1 ,Mg1.9 Y0.1 Cr0.1 Ni0.8 Co0.2 ,Mg1.8 Y0.1 La0.1 Cr0.05 Ni0.9 Co0.1 ,Mg1.7 Ti0.2 Y0.1 Cr0.05 Ni0.7 Co0.3 ,TiY0.01 V0.1 Fe0.7 Mn0.1 Ni0.1 ,TiY0.02 V0.2 Fe0.7 Mn0.1 ,Ti0.97 Y0.03 V0.05 Cr0.03 Fe0.5 Mn0.4 ,Ti0.9 Y0.04 V0.05 Fe0.9 Mn0.1 ,Ti0.91 Zr0.05 Y0.04 V0.1 Cr0.2 Fe0.6 Mn0.1 ,Ti0.95 Y0.05 V0.05 Fe0.7 Mn0.21 Cu0.05 ,Ti1.02 Y0.03 V0.05 Fe0.8 Mn0.1 Ni0.1 ,La0.5 Ce0.32 Nd0.15 Pr0.02 Y0.01 Ni4.4 Fe0.55 Al0.05 ,La0.8 Ce0.15 Y0.05 Ni4 Mn0.5 Al0.5 ,La0.45 Ce0.4 Nd0.1 Pr0.03 Y0.02 Ni4 Co0.8 Al0.2 ,La0.75 Ce0.15 Nd0.05 Pr0.02 Y0.03 Ni4.7 Al0.1 Fe0.2 ,La0.8 Ce0.15 Nd0.03 Y0.02 Ni4.5 Co0.3 Mn0.1 Al0.1(Ti 0.8 Y 0.2 ) 0.95 (Mn 0.95 Ni 0.05 ) 0.05 , (Ti 0.4 V 0.4 Y 0.2 ) 0.9 (Fe 0.05 Mn 0.9 Ni 0.05 ) 0.1 , (Ti 0.7 Nb 0.1 Y 0.2 ) 0.9 (Mn 0.7 Ni 0.3 ) 0.1 , (Ti 0.4 Zr 0.4 Y 0.2 ) 0.93 (Fe 0.2 Mn 0.7 Ni 0.1 ) 0.07 , (Ti 0.4 V 0.35 Zr 0.2 Y 0.05 ) 0.95 (Fe 0.6 Mn 0.2 Co 0.1 Ni 0.1 ) 0.05 , (Ti 0.88 Y 0.1 Ca 0.02 ) 0.95 (Fe 0.3 Mn 0.6 Ni 0.1 ) 0.05 , Mg 0.01 Ti 0.93 Zr 0.15 Y 0.01 VMn 0.9 Ni 0.1 , Ti 0.85 Zr 0.18 Y 0.05 La 0.02 V 0.23 Cr 0.05 Mn 1.5 Fe 0.09 Ni 0.1 Cu 0.1 , Mg 0.1 Ti 0.7 Zr 0.2 Y 0.05 V 0.1 Mn 1.6 Ni 0.2 Cu 0.2 , Ca 0.01 Ti 0.85 Zr 0.05 Y 0.05 V 1.2 Mn 0.6 Ni 0.1 Cu 0.2 , Mg 0.1 Ti 0.8 Zr 0.15 Y 0.05 V 0.1 Cr 1.4 Mn 0.2 Co 0.1 Ni 0.1 Cu 0.2 , Ti 0.8 Zr 0.25 Y 0.05 V 1.79 Mn 0.1 Fe 0.01 Ni 0.1 Cu 0.1 , Mg 1.8 Y 0.1 Cr 0.05 Ni 1 , Mg 1.5 Ti 0.5 Y 0.05 Cr 0.1 Ni 1 , Mg 2 Y 0.1 Cr 0.05 Ni 0.6 Cu 0.4 , Mg 1.92 Y 0.08 Cr 0.2 Ni 0.75 Fe 0.05 , Mg 1.9 Y 0.1 Cr 0.1 Fe 0.1 Ni 0.7 Cu 0.1 , Mg 1.9 Y 0.1 Cr 0.1 Ni 0.8 Co 0.2 , Mg 1.8 Y 0.1 La 0.1 Cr 0.05 Ni 0.9 Co 0.1 , Mg 1.7 Ti 0.2 Y 0.1 Cr 0.05 Ni 0.7 Co 0.3 , TiY 0.01 V 0.1 Fe 0.7 Mn 0.1 Ni 0.1 , TiY 0.02 V 0.2 Fe 0.7 Mn 0.1 , Ti 0.97 Y 0.03 V 0.05 Cr 0.03 Fe 0.5 Mn 0.4 , Ti 0.9 Y 0.04 V 0.05 Fe 0.9 Mn 0.1 , Ti 0.91 Zr 0.05 Y 0.04 V 0.1 Cr 0.2 Fe 0.6 Mn 0.1 , Ti 0.95 Y 0.05 V 0.05 Fe 0.7 Mn 0.21 Cu 0.05 , Ti 1.02 Y 0.03 V 0.05 Fe 0.8 Mn 0.1 Ni 0.1 , La 0.5 Ce 0.32 Nd 0.15 Pr 0.02 Y 0.01 Ni 4.4 Fe 0.55 Al 0.05 , La 0.8 Ce 0.15 Y 0.05 Ni 4 Mn 0.5 Al 0.5 , La 0.45 Ce 0.4 Nd 0.1 Pr 0.03 Y 0.02 Ni 4 Co 0.8 Al 0.2 , La 0.75 Ce 0.15 Nd 0.05 Pr 0.02 Y 0.03 Ni 4.7 Al 0.1 Fe 0.2 , La 0.8 Ce 0.15 Nd 0.03 Y 0.02 Ni 4.5 Co 0.3 Mn 0.1 Al 0.1 .

在本發明的一個方面中,本發明提供了一種本發明的儲氫合金的製備方法,其中所述的方法包括以下步驟:(1)以達到儲氫合金組成的方式稱量各儲氫合金原料進行混合;(2)將步驟(1)混合得到的物質進行熔煉,然後進行退火;其中,所述熔煉為電爐熔煉或者感應熔煉;優選地,所述熔煉的條件包括:在真空或者惰性氣氛下進行,溫度為1200-3000℃,優選為1800-2200℃;更優選地,在真空下進行,所述熔煉的壓力為1x10-5 -1x10-3 帕(絕對壓力),優選為0.5x10-4 -5x10-4 帕(絕對壓力);更優選地,在惰性氣氛下進行,所述熔煉的壓力為0.5-1巴(例如0.6-1巴,0.7-1巴)(錶壓);所述退火的條件包括:在真空或者惰性氣氛(如氬氣氣氛)下進行,溫度為500-900℃(例如700-1000℃),時間為12-360小時;任選地,該方法還包括將步驟(2)退火得到的物質降溫後進行破碎處理以得到10-400目(例如20-400目)的產品;並且任選地,該方法還包括將步驟(2)退火得到的物質進行活化處理,優選地,所述活化處理的條件包括:在真空下,溫度為50-300℃,時間為1-10小時。In one aspect of the present invention, the present invention provides a method for preparing the hydrogen storage alloy of the present invention, wherein the method includes the following steps: (1) Weigh each hydrogen storage alloy raw material in a manner to achieve the composition of the hydrogen storage alloy (2) smelting the material obtained by mixing in step (1) and then annealing; wherein, the smelting is electric furnace smelting or induction smelting; preferably, the smelting conditions include: under vacuum or inert atmosphere The temperature is 1200-3000°C, preferably 1800-2200°C; more preferably, it is carried out under vacuum, and the pressure of the smelting is 1x10 -5 -1x10 -3 Pa (absolute pressure), preferably 0.5x10 -4 -5x10 -4 Pa (absolute pressure); more preferably, performed under an inert atmosphere, the pressure of the smelting is 0.5-1 bar (for example, 0.6-1 bar, 0.7-1 bar) (gauge pressure); the annealing The conditions include: under vacuum or inert atmosphere (such as argon atmosphere), the temperature is 500-900 ℃ (such as 700-1000 ℃), the time is 12-360 hours; optionally, the method also includes the step ( 2) The material obtained by annealing is crushed after cooling to obtain a product of 10-400 mesh (for example, 20-400 mesh); and optionally, the method further includes subjecting the material obtained by annealing in step (2) to activation treatment, preferably The conditions of the activation treatment include: under vacuum, a temperature of 50-300° C., and a time of 1-10 hours.

在本發明的一個方面中,本發明提供了一種提供高純度氫氣的方法,該方法包括:(1)使有機液體儲氫原料與脫氫催化劑接觸反應,得到含有氫氣的脫氫反應產物;(2)將脫氫反應產物冷卻,得到液體產物和富氫氣體產物,收集液體產物;(3)使富氫氣體與儲氫合金接觸,得到含氫合金,收集未吸附的氣體;(3a)任選地,除去含氫合金儲存容器中的有機物;(4)加熱含氫合金,釋放氫氣。In one aspect of the present invention, the present invention provides a method for providing high-purity hydrogen, the method comprising: (1) contacting and reacting an organic liquid hydrogen storage raw material with a dehydrogenation catalyst to obtain a dehydrogenation reaction product containing hydrogen; ( 2) Cool the dehydrogenation reaction products to obtain liquid products and hydrogen-rich gas products, and collect the liquid products; (3) Contact the hydrogen-rich gas with the hydrogen storage alloy to obtain the hydrogen-containing alloy, and collect the unadsorbed gas; (3a) any Optionally, remove the organic matter in the hydrogen-containing alloy storage container; (4) Heat the hydrogen-containing alloy to release hydrogen.

根據本發明的提供高純度氫氣的方法,使用本發明的用於有機物脫氫製氫氣的催化劑和/或本發明的儲氫合金。According to the method for providing high-purity hydrogen gas of the present invention, the catalyst for the dehydrogenation of organic matter to produce hydrogen gas of the present invention and/or the hydrogen storage alloy of the present invention are used.

根據本發明的提供高純度氫氣的方法,在(1)中:有機液體儲氫原料與脫氫催化劑接觸反應的反應溫度為150-450℃(例如,200-400℃,300-350℃);有機液體儲氫原料與脫氫催化劑接觸反應的重時空速0.5-50小時-1 (例如,1-45小時-1 ,2-30小時-1 );有機液體儲氫原料與脫氫催化劑接觸反應的壓力為0.03-5MPa(錶壓)(例如0.3-5MPa,0.1-3MPa,0.5-2MPa或0.2-1.6MPa);任選地,使有機液體儲氫原料與氫氣混合後與脫氫催化劑接觸,氫烴比(氫氣與有機液體儲氫原料的摩爾比)為0-10(例如0-8)。引入氫氣有利於減少脫氫反應的焦炭生成。According to the method for providing high-purity hydrogen of the present invention, in (1): the reaction temperature of the contact reaction of the organic liquid hydrogen storage raw material with the dehydrogenation catalyst is 150-450°C (for example, 200-400°C, 300-350°C); The weight hourly space velocity of the contact reaction of the organic liquid hydrogen storage raw material with the dehydrogenation catalyst is 0.5-50 h -1 (for example, 1-45 h -1 , 2-30 h -1 ); the organic liquid hydrogen storage raw material reacts in contact with the dehydrogenation catalyst The pressure is 0.03-5MPa (gauge pressure) (for example, 0.3-5MPa, 0.1-3MPa, 0.5-2MPa or 0.2-1.6MPa); optionally, the organic liquid hydrogen storage raw material is mixed with hydrogen and then contacted with the dehydrogenation catalyst, The hydrogen-to-hydrocarbon ratio (the molar ratio of hydrogen to the organic liquid hydrogen storage raw material) is 0-10 (for example, 0-8). The introduction of hydrogen is beneficial to reduce coke production in the dehydrogenation reaction.

根據本發明的提供高純度氫氣的方法,在(2)中,將脫氫反應產物冷卻的冷卻溫度低於液體產物中的有機物的沸點溫度;優選的,低於其中的常溫常壓下為液態的沸點最低的有機物的沸點溫度。According to the method for providing high-purity hydrogen gas of the present invention, in (2), the cooling temperature at which the dehydrogenation reaction product is cooled is lower than the boiling point temperature of the organic matter in the liquid product; preferably, it is liquid at room temperature and pressure lower than that The boiling point temperature of the lowest boiling point organics.

根據本發明的提供高純度氫氣的方法,在(3)中,所述的富氫氣體為富氫氣體產物或富氫氣體產物經過進一步分離得到的含氫氣的氣體,所述的進一步分離的方法包括變溫分離,膜分離,變壓吸附分離或它們的組合;所述的富氫氣體中氫氣的質量份數為≥80%(例如80-99%,優選為≥85%,更優選為≥90%)。通過冷卻分離為一定氫氣含量的富氫氣體再進行儲氫合金吸收,可以充分利用儲氫合金吸收能力,改善儲氫合金的吸收的效果。According to the method for providing high-purity hydrogen of the present invention, in (3), the hydrogen-rich gas is a hydrogen-rich gas product or a hydrogen-containing gas obtained by further separation of the hydrogen-rich gas product, and the further separation method Including temperature swing separation, membrane separation, pressure swing adsorption separation or a combination thereof; the mass fraction of hydrogen in the hydrogen-rich gas is ≥80% (for example, 80-99%, preferably ≥85%, more preferably ≥90 %). By cooling and separating the hydrogen-rich gas with a certain hydrogen content and then absorbing the hydrogen storage alloy, the absorption capacity of the hydrogen storage alloy can be fully utilized and the absorption effect of the hydrogen storage alloy can be improved.

根據本發明的提供高純度氫氣的方法,在(3)中,所述的富氫氣體與儲氫合金的接觸在一個或多個儲氫合金儲存容器中進行;所述的儲氫合金可以是一種或者多種,多種儲氫合金可以混合使用,也可以串聯使用或並聯使用或串並聯混合使用;所述的富氫氣體與儲氫合金接觸的壓力為0.001-5MPa(例如,0.01-5MPa,0.03-4MPa,0.05-5MPa,0.08-2MPa,0.05-3MPa,0.1-1MPa),當儲氫合金儲存容器為多個,且存在儲氫容器串聯的情況,按照富氫氣體物流方向,最後接觸儲氫合金的接觸壓力(也稱為吸氫壓力)為0.05-5MPa(例如0.1-1MPa);所述的富氫氣體與儲氫合金接觸的溫度(也稱為吸氫溫度)為-70至100℃(例如,-50至90℃,-30至80℃);與儲氫合金接觸時,所述的富氫氣體的溫度低於有機液體儲氫原料在常壓下的沸點溫度。According to the method for providing high-purity hydrogen gas of the present invention, in (3), the contact between the hydrogen-rich gas and the hydrogen storage alloy is performed in one or more hydrogen storage alloy storage containers; the hydrogen storage alloy may be One or more, multiple hydrogen storage alloys can be used in combination, or in series or in parallel or in series and parallel; the pressure at which the hydrogen-rich gas contacts the hydrogen storage alloy is 0.001-5 MPa (for example, 0.01-5 MPa, 0.03 -4MPa, 0.05-5MPa, 0.08-2MPa, 0.05-3MPa, 0.1-1MPa), when there are multiple hydrogen storage alloy storage containers, and there are hydrogen storage containers connected in series, follow the direction of the hydrogen-rich gas flow, and finally contact the hydrogen storage The contact pressure of the alloy (also called the hydrogen absorption pressure) is 0.05-5MPa (for example, 0.1-1MPa); the temperature at which the hydrogen-rich gas contacts the hydrogen storage alloy (also called the hydrogen absorption temperature) is -70 to 100°C (For example, -50 to 90°C, -30 to 80°C); when in contact with the hydrogen storage alloy, the temperature of the hydrogen-rich gas is lower than the boiling point temperature of the organic liquid hydrogen storage raw material under normal pressure.

根據本發明的提供高純度氫氣的方法,在(3)中,所述的儲氫合金儲存容器為一個或多個,其中按照接觸氫氣的順序,最後與氫氣接觸的儲氫合金儲存容器中的儲氫合金為具有高平衡壓力的儲氫合金,所述的具有高平衡壓力的儲氫合金為在溫度為150-450℃之間至少存在一個溫度點,氫氣吸收的平衡壓力大於等於35MPa;優選的,至少一個儲氫合金儲存容器中的儲氫合金為具有高平衡壓力的儲氫合金。通過具有高平衡壓力的儲氫合金可以獲得高純高壓氫氣,所得到的高純高壓氫氣可以直接用於氫燃料電池車加注。According to the method for providing high-purity hydrogen gas according to the present invention, in (3), there are one or more hydrogen storage alloy storage containers, wherein in the order of contacting hydrogen, the hydrogen storage alloy storage container that contacts the hydrogen last The hydrogen storage alloy is a hydrogen storage alloy with a high equilibrium pressure. The hydrogen storage alloy with a high equilibrium pressure has at least one temperature point between 150-450°C, and the equilibrium pressure of hydrogen absorption is greater than or equal to 35MPa; preferably Yes, the hydrogen storage alloy in at least one hydrogen storage alloy storage container is a hydrogen storage alloy with a high equilibrium pressure. High-purity and high-pressure hydrogen can be obtained through the hydrogen storage alloy with high equilibrium pressure, and the obtained high-purity and high-pressure hydrogen can be directly used for hydrogen fuel cell vehicle filling.

根據本發明的提供高純度氫氣的方法,進行步驟(3a),其中除去含氫合金儲存容器中的有機物採用吹掃的方法。例如使用氫氣吹掃,其方法例如:儲氫合金達到預定的吸附量以後,停止向儲氫合金供應富氫氣體,使氫氣通過含氫合金,將含氫合金和含氫合金儲存容器(也稱儲氫合金儲存容器)中的有機氣體帶出,引入儲罐儲存或者使用其它儲氫合金儲存容器中的儲氫合金吸收;其中優選的,吹掃用氫氣的純度大於90重量%,更優選大於95重量%,例如大於99重量%。According to the method for providing high-purity hydrogen gas of the present invention, step (3a) is performed, in which the organic matter in the hydrogen-containing alloy storage container is removed by a purge method. For example, hydrogen purge is used. The method is such as: after the hydrogen storage alloy reaches a predetermined adsorption capacity, stop the supply of hydrogen-rich gas to the hydrogen storage alloy, let the hydrogen pass through the hydrogen-containing alloy, and transfer the hydrogen-containing alloy and the hydrogen-containing alloy storage container (also called The organic gas in the hydrogen storage alloy storage container) is taken out and introduced into the storage tank for storage or absorbed by the hydrogen storage alloy in other hydrogen storage alloy storage containers; wherein preferably, the purging hydrogen has a purity greater than 90% by weight, more preferably greater than 95% by weight, for example greater than 99% by weight.

根據本發明的提供高純度氫氣的方法,在(4)中:儲氫合金釋放的氫氣的溫度(即,加熱儲氫合金的溫度,簡稱放氫溫度)為150-450℃,釋放的氫氣的壓力為≥35MPa(例如為35-100MPa)以得到高純高壓氫氣,或者釋放的氫氣的分壓為0.1-5MPa以得到高純氫氣,其中放氫溫度高於吸氫溫度。According to the method for providing high-purity hydrogen of the present invention, in (4): the temperature of hydrogen released by the hydrogen storage alloy (ie, the temperature at which the hydrogen storage alloy is heated, referred to as the hydrogen release temperature) is 150-450°C, and the temperature of the released hydrogen The pressure is ≥ 35 MPa (for example, 35-100 MPa) to obtain high-purity high-pressure hydrogen, or the partial pressure of the released hydrogen is 0.1-5 MPa to obtain high-purity hydrogen, wherein the hydrogen release temperature is higher than the hydrogen absorption temperature.

根據本發明的提供高純度氫氣的方法,還包括使含氫合金釋放氫氣,釋放的氫氣與不同的儲氫合金接觸形成含氫合金,該過程重複一次或多次,其中至少最後一次的重複過程所用的儲氫合金為具有高平衡壓力的儲氫合金。The method for providing high-purity hydrogen gas according to the present invention further includes allowing the hydrogen-containing alloy to release hydrogen gas, and the released hydrogen gas is contacted with different hydrogen storage alloys to form the hydrogen-containing alloy, and the process is repeated one or more times, wherein the process is repeated at least for the last time The hydrogen storage alloy used is a hydrogen storage alloy with a high equilibrium pressure.

根據本發明的提供高純度氫氣的方法,所述的儲氫合金為第一儲氫合金與第二儲氫合金聯用;第一儲氫合金為本發明所述的鎂系A2 B型儲氫合金,用於富氫氣體接觸,第二儲氫合金用於將第一儲氫氫氣增壓,第二儲氫合金為具有高平衡壓力的儲氫合金,第二儲氫合金為本發明所述的稀土系AB5 型,鋯鈦系AB2 型,鈦系AB型儲氫合金中的一種或者多種;富氫氣體先經過第一儲氫合金,進行雜質分離;然後使第一儲氫合金釋放出的高純氫氣與第二儲氫合金進行接觸,然後使第二儲氫合金在高壓下釋放氫氣;第一儲氫合金放氫溫度高於第二儲氫合金吸氫溫度,溫差優選≥100℃(例如350℃≥溫差≥150℃);第一儲氫合金和第二儲氫合金在不同的儲氫合金儲存罐中,且第一儲氫合金儲存罐和第二儲氫合金儲存罐中間有熱交換系統;富氫氣體與第一儲氫合金接觸的吸氫溫度為20-150℃(例如50-100℃),氫氣分壓為0.001-0.1MPa(0.001-0.03MPa);第一儲氫合金釋放氫氣的溫度(放氫溫度)為150-450℃(例如200-350℃),放氫的氫氣分壓為0.1-5MPa(例如0.1-1MPa);第二儲氫合金吸收氫氣的吸氫溫度為-70至100℃(例如-30至100℃),吸氫的氫氣分壓為0.1-5MPa(例如0.1-1MPa),第二儲氫合金放氫溫度為150-450℃(例如200-350℃),放氫的氫氣分壓為≥35MPa(例如35-100MPa)。According to the method for providing high-purity hydrogen gas according to the present invention, the hydrogen storage alloy is a combination of a first hydrogen storage alloy and a second hydrogen storage alloy; the first hydrogen storage alloy is the magnesium-based A 2 B type storage alloy according to the present invention. Hydrogen alloy is used for hydrogen-rich gas contact, the second hydrogen storage alloy is used to pressurize the first hydrogen storage hydrogen gas, the second hydrogen storage alloy is a hydrogen storage alloy with a high equilibrium pressure, and the second hydrogen storage alloy is used by the present invention One or more of the rare earth series AB 5 type, zirconium titanium series AB 2 type, and titanium series AB type hydrogen storage alloy; the hydrogen-rich gas first passes through the first hydrogen storage alloy for impurity separation; then the first hydrogen storage alloy The released high-purity hydrogen is in contact with the second hydrogen storage alloy, and then the second hydrogen storage alloy releases hydrogen under high pressure; the hydrogen release temperature of the first hydrogen storage alloy is higher than the hydrogen absorption temperature of the second hydrogen storage alloy, and the temperature difference is preferably ≥ 100℃ (for example, 350℃≥temperature difference≥150℃); the first hydrogen storage alloy and the second hydrogen storage alloy are in different hydrogen storage alloy storage tanks, and the first hydrogen storage alloy storage tank and the second hydrogen storage alloy storage tank There is a heat exchange system in the middle; the hydrogen absorption temperature of the hydrogen-rich gas in contact with the first hydrogen storage alloy is 20-150°C (for example, 50-100°C), and the hydrogen partial pressure is 0.001-0.1MPa (0.001-0.03MPa); The hydrogen storage alloy releases hydrogen at a temperature (hydrogen release temperature) of 150-450°C (eg 200-350°C), and the hydrogen partial pressure for hydrogen release is 0.1-5MPa (eg 0.1-1MPa); the second hydrogen storage alloy absorbs hydrogen The hydrogen absorption temperature is -70 to 100°C (for example, -30 to 100°C), the hydrogen partial pressure for hydrogen absorption is 0.1-5 MPa (for example, 0.1-1 MPa), and the hydrogen release temperature of the second hydrogen storage alloy is 150-450°C (for example 200-350℃), the partial pressure of hydrogen to release hydrogen is ≥35MPa (for example, 35-100MPa).

根據本發明的提供高純度氫氣的方法,所述的有機液體儲氫原料為分子中含有環的有機化合物,其任選地含有雜原子,所述的雜原子可以處於環上;例如,含有環烷烴環的飽和或不飽和烴,如不含雜環原子的含有環烷烴環的飽和或不飽和烴,更具體地,芳環和環烷烴的環總數小於等於2的不含雜環原子的含有環烷烴環的飽和或不飽和烴,例如,環己烷,甲基環己烷,十氫萘,雙環己烷;以及含雜原子的含有環烷烴環的飽和或不飽和烴,例如,含氮雜環化合物,以及含氮/硼雜環化合物,所述的含氮雜環化合物包括十氫哢唑,十二氫乙基哢唑,二氫吲哚,4-胺基呱啶,呱啶-4-羧胺,全氫-4,7-菲洛林,2-甲基-1,2,3,4-四氫喹啉,2,6-二甲基十氫-1,5-萘啶中的一種或者幾種;所述的含氮/硼雜環化合物包括:1,2-硼雜氮雜-環己烷,3-甲基-1,2-硼雜氮雜-環戊烷中的一種或者多種。According to the method for providing high-purity hydrogen gas of the present invention, the organic liquid hydrogen storage raw material is an organic compound containing a ring in the molecule, which optionally contains a heteroatom, and the heteroatom may be on the ring; for example, it contains a ring. Saturated or unsaturated hydrocarbons of an alkane ring, such as saturated or unsaturated hydrocarbons containing a cycloalkane ring without heterocyclic atoms, more specifically, those containing no heterocyclic atoms with the total number of aromatic rings and cycloalkanes being less than or equal to 2 Saturated or unsaturated hydrocarbons of cycloalkane ring, for example, cyclohexane, methylcyclohexane, decalin, bicyclohexane; and saturated or unsaturated hydrocarbons containing cycloalkane ring containing heteroatoms, for example, nitrogen-containing Heterocyclic compounds, and nitrogen-containing/boron heterocyclic compounds, the nitrogen-containing heterocyclic compounds include decahydroxazole, dodecahydroethyl azole, indole, 4-aminopiperidine, piperidine- 4-Carboxyamine, perhydro-4,7-phenanthroline, 2-methyl-1,2,3,4-tetrahydroquinoline, 2,6-dimethyldecahydro-1,5-naphthyridine One or more of them; the nitrogen-containing/boron heterocyclic compound includes: 1,2-boraza-cyclohexane, 3-methyl-1,2-boraza-cyclopentane One or more of them.

根據本發明的提供高純度氫氣的方法,還包括將釋放的氫氣引入到氫氣儲罐以儲存氫氣;或者所得到的高純高壓氫氣可以直接用於氫燃料電池車加注。The method for providing high-purity hydrogen according to the present invention further includes introducing the released hydrogen into a hydrogen storage tank to store the hydrogen; or the obtained high-purity and high-pressure hydrogen can be directly used for hydrogen fuel cell vehicle filling.

在本發明的一個方面中,本發明提供了一種高效分散式製高純高壓氫氣的方法,該方法包括:在脫氫反應器中,將液體有機儲氫原料在脫氫催化劑的存在下進行脫氫反應得到包括氫氣的脫氫反應產物;在冷卻分離裝置中,將脫氫反應產物冷卻並分離,得到富氫物流和有機液體;在儲氫合金儲存容器中,使富氫物流或純化後的富氫物流與儲氫合金接觸,得到含氫合金;氫氣吹掃除去儲氫合金儲存容器中的有機物;其中,吹掃氫氣的純度優選大於90重量%(例如大於95重量%,大於99重量%);將含氫合金加熱釋放氫氣,得到高壓氫氣和將得到的高壓氫氣提供給用氫裝置或高壓氫氣儲存罐儲存,例如得到的高壓氫氣可以直接用於氫燃料電池車加注。In one aspect of the present invention, the present invention provides an efficient decentralized method for producing high-purity and high-pressure hydrogen, the method comprising: in a dehydrogenation reactor, the liquid organic hydrogen storage raw material is dehydrogenated in the presence of a dehydrogenation catalyst The hydrogen reaction obtains dehydrogenation reaction products including hydrogen; in the cooling separation device, the dehydrogenation reaction products are cooled and separated to obtain a hydrogen-rich stream and an organic liquid; in a hydrogen storage alloy storage container, the hydrogen-rich stream or purified The hydrogen-rich stream is contacted with the hydrogen storage alloy to obtain the hydrogen-containing alloy; the hydrogen purging removes the organic matter in the hydrogen storage alloy storage container; wherein, the purity of the purging hydrogen is preferably greater than 90% by weight (for example, greater than 95% by weight, greater than 99% by weight) ); The hydrogen-containing alloy is heated to release hydrogen to obtain high-pressure hydrogen and the obtained high-pressure hydrogen is supplied to a hydrogen device or a high-pressure hydrogen storage tank for storage. For example, the obtained high-pressure hydrogen can be directly used for hydrogen fuel cell vehicle refueling.

在本發明的一個方面中,本發明提供了一種提供高純高壓氫氣的系統,包括:有機液體儲氫原料儲存和供應裝置,用於儲存有機液體儲氫原料和向脫氫反應器提供有機液體儲氫原料;脫氫後液體儲存裝置,用於儲存有機液體儲氫原料脫氫後得到的液體產物;脫氫反應器裝置,用於將有機液體儲氫原料在脫氫催化劑的作用下進行脫氫反應得到包括氫氣的脫氫反應產物;冷卻分離裝置,用於將脫氫反應產物分離得到富氫氣體產物和液體產物;儲氫-供氫裝置,其包括儲氫合金儲存容器,儲氫合金加熱系統,用於將富氫氣體與儲氫合金在低溫低壓下接觸吸氫,吸附飽和後加熱脫氫;任選的吹掃裝置用於除去儲氫容器中的有機物;氫氣供應裝置,將高壓氫氣提供給用氫裝置或氫氣儲存罐;優選地,所述的系統設置集成建造在貨櫃內,作為貨櫃式製氫系統置於加氫站使用,或直接建造在加氫站使用;優選地,所述的儲氫-供氫裝置包括一個或多個儲氫合金儲存容器,多個儲氫合金儲存容器可以並聯或串聯或者並聯和串聯混合聯接;優選地,至少一個所述的儲氫合金儲存容器為耐高壓容器和/或所述的氫氣供應裝置為耐高壓的裝置,例如其耐受壓力為35MPa以上。In one aspect of the present invention, the present invention provides a system for providing high-purity and high-pressure hydrogen, including: an organic liquid hydrogen storage raw material storage and supply device for storing organic liquid hydrogen storage raw materials and providing organic liquid to the dehydrogenation reactor Hydrogen storage raw materials; liquid storage device after dehydrogenation, used to store liquid products obtained after dehydrogenation of organic liquid hydrogen storage raw materials; dehydrogenation reactor device, used to dehydrogenate organic liquid hydrogen storage raw materials under the action of a dehydrogenation catalyst Hydrogen reaction obtains dehydrogenation reaction products including hydrogen; cooling separation device for separating dehydrogenation reaction products to obtain hydrogen-rich gas products and liquid products; hydrogen storage-hydrogen supply device, which includes hydrogen storage alloy storage container and hydrogen storage alloy The heating system is used to contact the hydrogen-rich gas with the hydrogen storage alloy to absorb hydrogen at low temperature and low pressure, and heat to dehydrogenate after adsorption saturation; optional purge device is used to remove the organic matter in the hydrogen storage container; the hydrogen supply device is used for high pressure The hydrogen is provided to the hydrogen-using device or the hydrogen storage tank; preferably, the system is integrated and built in a container, and used as a container-type hydrogen production system in a hydrogen refueling station, or directly built in a hydrogen refueling station for use; preferably, The hydrogen storage-hydrogen supply device includes one or more hydrogen storage alloy storage containers, and a plurality of hydrogen storage alloy storage containers can be connected in parallel or in series or a mixture of parallel and series connections; preferably, at least one of the hydrogen storage alloy storage containers The container is a high-pressure-resistant container and/or the hydrogen supply device is a high-pressure-resistant device, for example, its withstand pressure is 35 MPa or more.

如圖3所示,本發明提供了一種提供高純高壓氫氣的系統,其中:1為有機液體儲存罐,2為原料泵,3為熱交換器,4為脫氫反應器,5為熱交換器,6為儲氫罐,7為單向閥,8為能量傳遞體系統,9為吹掃系統,10為儲氫控制系統,圖3中所述的有機液體原料儲存系統包括有機液體儲存罐(1)和與有機液體脫氫反應器相連的原料泵(2),所述的有機液體儲存罐設置有有機液體原料入口和有機液體原料出口;所述的有機液體脫氫反應系統包括有機液體熱交換器(3)與脫氫反應器(4),所述的有機液體熱交換器連接有機液體脫氫反應器出口和入口,用於反應器出口氣體降溫和原料預熱;所述的反應器出口氣體可以經過進一步熱交換降溫(5),降溫後分離得到富氫物料,富氫物流可經過或者不經過膜分離裝置和變壓吸附裝置之中一種或者幾種;所述的純化增壓系統包括一組或者多組儲氫罐(6),且每組儲氫罐與一組防止迴流裝置(7)連接儲氫罐以並聯方式連接到至少一條供氫管線上,至少包括一個能量遞送系統(8),用於向每個儲氫罐中提供能量以便從固體儲氫材料中解析氫氣,至少包括一組真空泵(9)和吹掃系統,用於儲氫罐中雜質氣體的脫除,儲氫罐出入口各與一個流量計連接,包括一個控制系統(10),根據脫氫反應產氫量,控制整個每個儲氫罐吸氫和放氫時間以及能量遞送系統的啟動時間。用儲氫罐入口流量計計算儲氫合金吸氫總量,當單個儲氫罐儲氫合金儲氫量達到飽和吸氫總量80%以上時,關閉儲氫罐富氫物流進氣閥;吹掃系統開啟,除去儲氫罐中雜質,待吹掃管線中氫氣純度達到99%以上時,關閉吹掃系統;儲氫罐同時吸氫總量應高於氫氣產生速度的120%,儲氫合金通過放氫閥連接到至少一條供氫管線上,供氫管線輸送氫氣到氫氣儲存裝置,供氫管線上儲氫合金放氫閥不能同時關閉和開啟。As shown in Figure 3, the present invention provides a system for providing high-purity and high-pressure hydrogen, in which: 1 is an organic liquid storage tank, 2 is a raw material pump, 3 is a heat exchanger, 4 is a dehydrogenation reactor, and 5 is a heat exchange 6 is a hydrogen storage tank, 7 is a one-way valve, 8 is an energy transfer body system, 9 is a purge system, and 10 is a hydrogen storage control system. The organic liquid raw material storage system described in Figure 3 includes an organic liquid storage tank (1) and a raw material pump (2) connected to the organic liquid dehydrogenation reactor, the organic liquid storage tank is provided with an organic liquid raw material inlet and an organic liquid raw material outlet; the organic liquid dehydrogenation reaction system includes an organic liquid The heat exchanger (3) and the dehydrogenation reactor (4), the organic liquid heat exchanger is connected to the outlet and the inlet of the organic liquid dehydrogenation reactor, and is used for cooling the outlet gas of the reactor and preheating the raw materials; the reaction The gas at the outlet of the reactor can be further cooled by heat exchange (5), and the hydrogen-rich material can be separated after cooling. The hydrogen-rich stream can pass through one or more of the membrane separation device and the pressure swing adsorption device; The system includes one or more sets of hydrogen storage tanks (6), and each set of hydrogen storage tanks is connected to a set of backflow prevention devices (7). The hydrogen storage tanks are connected in parallel to at least one hydrogen supply pipeline, including at least one energy delivery The system (8) is used to provide energy to each hydrogen storage tank to resolve hydrogen from the solid hydrogen storage material. It includes at least a set of vacuum pumps (9) and a purge system to remove impurity gases in the hydrogen storage tank The inlet and outlet of the hydrogen storage tank are each connected with a flow meter, including a control system (10), which controls the hydrogen absorption and desorption time of each hydrogen storage tank and the start-up time of the energy delivery system according to the hydrogen production volume of the dehydrogenation reaction. Use the hydrogen storage tank inlet flowmeter to calculate the total hydrogen absorption of the hydrogen storage alloy. When the hydrogen storage capacity of the hydrogen storage alloy in a single hydrogen storage tank reaches more than 80% of the saturated hydrogen absorption total hydrogen absorption, close the hydrogen storage tank hydrogen-rich flow inlet valve; blow; The purge system is turned on to remove impurities in the hydrogen storage tank. When the purity of the hydrogen in the purging pipeline reaches 99% or more, the purge system is closed; the total amount of hydrogen absorbed by the hydrogen storage tank should be higher than 120% of the hydrogen production rate at the same time, hydrogen storage alloy The hydrogen discharge valve is connected to at least one hydrogen supply pipeline, and the hydrogen supply pipeline transports hydrogen to the hydrogen storage device. The hydrogen storage alloy hydrogen discharge valve on the hydrogen supply pipeline cannot be closed and opened at the same time.

在本發明的一個方面中,本發明提供了一種移動式供氫系統,包括運輸車輛和設置在運輸車輛上的根據本發明的提供高純高壓氫氣的系統。In one aspect of the present invention, the present invention provides a mobile hydrogen supply system, including a transport vehicle and a system for providing high-purity and high-pressure hydrogen according to the present invention arranged on the transport vehicle.

在本發明的一個方面中,本發明提供了一種分散式供氫裝置,包括根據本發明的提供高純高壓氫氣的系統,並且任選地包括高壓氫氣貯存罐。In one aspect of the present invention, the present invention provides a decentralized hydrogen supply device, including the system for providing high-purity and high-pressure hydrogen according to the present invention, and optionally a high-pressure hydrogen storage tank.

本發明提供的製備高純度氫氣的方法,可以高效地提供高純度氫氣,在使用具有高平衡壓力的儲氫合金的情況下可以提供高純高壓氫氣。此外,本發明還可以具有以下有益技術效果中的至少一項,優選情況下具有其中的多項有益技術效果: (1) 本發明方法可以具有較高的有機液體儲氫化合物脫氫效率。 (2) 可以具有更高的有機液體儲氫化合物脫氫轉化率。 (3) 可以具有更高的有機液體儲氫化合物脫氫選擇性。 (4) 具有更高的儲氫金屬吸氫效率。 (5) 在存在有機物的情況下儲氫金屬具有較好吸氫效率。 (6) 通過有機物脫氫,冷卻分離和儲氫合金吸氫的耦合,可以取得提高有機物脫氫轉化率的效果。 (7) 有機原料脫氫和儲氫合金吸氫可以更加高效的配合。The method for preparing high-purity hydrogen provided by the present invention can efficiently provide high-purity hydrogen, and can provide high-purity and high-pressure hydrogen when a hydrogen storage alloy with a high equilibrium pressure is used. In addition, the present invention may also have at least one of the following beneficial technical effects, and preferably has multiple beneficial technical effects: (1) The method of the present invention can have higher dehydrogenation efficiency of organic liquid hydrogen storage compounds. (2) It can have a higher dehydrogenation conversion rate of organic liquid hydrogen storage compounds. (3) It can have higher dehydrogenation selectivity of organic liquid hydrogen storage compounds. (4) It has higher hydrogen absorption efficiency of hydrogen storage metal. (5) In the presence of organic matter, hydrogen storage metal has better hydrogen absorption efficiency. (6) Through the coupling of organics dehydrogenation, cooling separation and hydrogen absorption of hydrogen storage alloys, the effect of increasing the conversion rate of organics dehydrogenation can be achieved. (7) Dehydrogenation of organic raw materials and hydrogen absorption of hydrogen storage alloys can be more efficiently combined.

本發明提供的有機物脫氫製氫氣的脫氫催化劑具有較高的脫氫活性、氫氣選擇性和/或氫氣生成速率的優點。The dehydrogenation catalyst for the dehydrogenation of organic matter to produce hydrogen provided by the present invention has the advantages of higher dehydrogenation activity, hydrogen selectivity and/or hydrogen generation rate.

本發明提供的有機物脫氫製氫氣的脫氫催化劑,可以用非貴金屬代替部分貴金屬,可以減少貴金屬的用量,並且保持較高的脫氫活性、氫氣選擇性和/或氫氣生成速率。The dehydrogenation catalyst for hydrogen production from organic matter dehydrogenation provided by the present invention can replace part of noble metals with non-noble metals, can reduce the amount of noble metals, and maintain high dehydrogenation activity, hydrogen selectivity and/or hydrogen generation rate.

本發明提供的催化劑可用於有機儲氫化合物脫氫製備氫氣,尤其是用於含有環例如含環烷烴環或含雜原子環的有機物脫氫製備氫氣,具有較高的轉化率,選擇性和/或氫氣生成速率。The catalyst provided by the present invention can be used for the dehydrogenation of organic hydrogen storage compounds to produce hydrogen, especially for the dehydrogenation of organic substances containing rings, such as cycloalkane rings or heteroatom-containing rings, to produce hydrogen. It has high conversion rate, selectivity and/ Or hydrogen generation rate.

根據本發明,所述的晶相改性金屬氧化物百分含量可採用如下的方法測量:用X-射線繞射和相位濾波經修正的Rietveld模型,採用擬合的方法計算得到晶相改性金屬氧化物的重量百分含量;相位濾波參見R. V. Siriwardane,J. A. Poston,G. Evans,Jr. Ind. Eng. Chem. Res. 33(1994),2810-2818,經修正的Rietveld模型見RIQAS rietveld Analysis,操作手冊,Material Data,Inc.,Berkley,CA(1999)。According to the present invention, the percentage of the crystalline phase modified metal oxide can be measured by the following method: using the Rietveld model corrected by X-ray diffraction and phase filtering, and using the fitting method to calculate the crystalline phase modification The weight percentage of metal oxides; refer to RV Siriwardane, JA Poston, G. Evans, Jr. Ind. Eng. Chem. Res. 33 (1994), 2810-2818 for phase filtering, and refer to RIQAS rietveld Analysis for the revised Rietveld model , Operation Manual, Material Data, Inc., Berkley, CA (1999).

根據本發明,所述的改性金屬氧化物的化學組成百分含量為所述的載體組合物中改性金屬氧化物的總含量,改性金屬氧化物的化學組成百分含量可採用X射線螢光法測定或化學分析的方法測定。According to the present invention, the chemical composition percentage of the modified metal oxide is the total content of the modified metal oxide in the carrier composition, and the chemical composition percentage of the modified metal oxide can be X-ray Fluorescence method or chemical analysis method.

根據本發明,所述的載體組合物表面上改性金屬氧化物的重量百分含量通過XPS方法測量,測量的表面層厚度為從外表面至距離外表面5nm厚度的範圍內。According to the present invention, the weight percentage of the modified metal oxide on the surface of the carrier composition is measured by the XPS method, and the measured surface layer thickness is in the range from the outer surface to a thickness of 5 nm from the outer surface.

另外,本發明還提供了下述方案: 1.    一種用於有機物脫氫製氫氣催化劑的載體組合物,該載體組合物包括氧化鋁和改性金屬氧化物,所述的改性金屬氧化物為鈦氧化物和/或鋯氧化物,其中所述的改性金屬氧化物的ɳ<0.3,其中ɳ=載體組合物中晶相改性金屬氧化物的重量百分含量/載體組合物中改性金屬氧化物的化學組成重量百分含量,鈦氧化物以TiO2計,鋯氧化物以ZrO2計。 2.    根據方案1所述的載體組合物,其特徵在於,ɳ=0,優選的,所述的第一金屬氧化物單層分散於氧化鋁基質上。 3.    根據方案1所述的載體組合物,其特徵在於,所述載體組合物中氧化鋁質量份數為80~98.5%,優選的為83~97.5%或85~95%或為90~95%;改性金屬氧化物的質量份數為1.5~20%,優選為2.5~17%或5~15 %,或為 5~ 10 %。 4.    根據方案3所述的載體組合物,其特徵在於,所述的改性金屬氧化物包括鈦氧化物,其中優選的,所述的載體組合物中,二氧化鈦質量份數優選為2~20%例如5~15%或5~10%或2.5~17%,二氧化鋯質量份數優選0~8%例如0-6%或0-3%或1~6%。 5.    根據方案4所述的載體組合物,其特徵在於,相對於TiO2純物相,所述的載體組合物XPS圖譜中, Ti 2P3/2軌道電子結合能存在偏移,結合能為458.8eV處的峰向高結合能偏移0.6-0.7eV至459.4-459.5 eV,和/或Ti 2P1/2軌道電子結合能為464.5eV處的峰向高結合能方向偏移0.8-0.9eV至465.3~465.4eV。 6.    根據方案1所述的載體組合物,其特徵在於,所述的氧化物基質具有γ氧化物、η-氧化鋁、ρ氧化鋁 或 χ氧化鋁至少一種的物相結構。 7.    根據方案1所述的載體組合物,其特徵在於,所述的載體組合物比表面積為100~ 350 m2/g。 8.    根據方案1所述的載體組合物,其特徵在於,所述載體組合物的孔體積為 0.3 ~ 1.3 ml/g。 9.    一種載體組合物的製備方法,包括如下步驟: (1) 將氧化鋁基質與氣體攜帶的改性金屬氧化物前驅物氣流接觸,待四氯化鈦達到預設負載量時,停止通入氣體攜帶的改性金屬氧化物前驅物氣流,得到負載改性金屬氧化物前驅物的氧化鋁基質,所述的改性金屬氧化物前驅物為氧化鈦前驅物和/或氧化鋯前驅物; (2) 使負載改性金屬氧化物前驅物的氧化鋁基質水解,焙燒,得到載體組合物。 10. 根據方案9所述的載體組合物製備方法,其特徵在於,所述氧化鈦前驅物選自於四氯化鈦、鈦酸乙酯、鈦酸異丙酯、醋酸鈦的一種或者多種,優選四氯化鈦;所述氧化鋯前驅物選自四氯化鋯、乙醇鋯、甲醇鋯、異丙醇鋯、鋯酸四丁酯中的一種或多種,優選四氯化鋯和/或甲醇鋯。 11. 根據方案9所述的載體組合物製備方法,其特徵在於,所述的氧化鋁基質是γ-氧化鋁、η-氧化鋁、ρ氧化鋁、χ氧化鋁中的一種或多種。 12. 根據方案9所述的載體組合物製備方法,其特徵在於,所述氧化鋁基質的比表面積100 ~ 350 m2/g。其中,優選的,所得到的載體組合物比表面積相比氧化鋁基質比表面積,減少的比例≤10%。 13. 根據方案9所述的載體組合物製備方法,其特徵在於,所述氧化鋁基質的孔體積為 0.3 ~ 1.3 ml/g。 14. 根據方案9所述的載體組合物製備方法,其特徵在於,所述的氣體為無水的惰性氣體,所述的無水的惰性氣體中的水含量不超過10ppm。優選的,所述氣體攜帶的改性金屬氧化物前驅物氣流中改性金屬氧化物前驅物的含量為 0.1 ~ 3g/L,其中改性金屬氧化物前驅物含量以金屬氧化物計。 15. 根據方案9所述的載體組合物製備方法,其特徵在於,步驟(1)中,所述氣體的溫度為室溫~350℃,例如為室溫~ 300℃或15~300℃。 16. 根據方案9所述的載體組合物製備方法,其特徵在於,步驟(1)中接觸的壓力為0.05~5atm例如 1 ~3 atm。 17. 根據方案9所述的載體組合物製備方法,其特徵在於,所述氣體每分鐘的體積流量與氧化鋁基質體積的比值為3~80:1例如為5~30:1優選10~25:1;其中氣體的體積以標準狀況下的體積計,氧化鋁基質的體積以堆積體積計。 18. 根據方案9所述的載體組合物製備方法,其特徵在於,所述的氧化鋁基質在流化態下與氣體攜帶的改性金屬氧化物前驅物氣流接觸,或是在攪拌下與所述氣流接觸;流化態例如可以是鼓泡床、湍動床、快速床或輸送床。 19. 根據方案9所述的載體組合物製備方法,其特徵在於,步驟(2)所述水解,方法如下:使所述負載改性金屬氧化物前驅物的氧化鋁基質與含水蒸氣的氣體接觸 。一種實施方式,所述含水蒸氣的氣體與氧化鋁基質接觸的比值(標準狀態下含水蒸氣的氣體與氧化鋁基質堆積體積之比)為3~80:1例如5 ~ 30:1,優選10~25:1,所述含水蒸氣的氣體中水蒸氣占氣體總體積的比例為0.1體積%~100體積%,優選3體積%~100體積%,更優選的為10體積%~70體積%體積;水蒸汽以外的其它氣體可以是惰性氣體或空氣。水解時間例如為1h~50h優選2h~30h。通常的水解時間大於等於負載時間(負載時間是指氧化鋁基質與氣體攜帶的改性金屬氧化物前驅物氣流接觸的時間)。 20. 根據方案9所述的載體組合物製備方法,其特徵在於,所述焙燒,焙燒溫度350℃~700℃,焙燒時間為 0.5~ 12小時。 21. 一種用於有機物脫氫製備氫氣的催化劑,其特徵在於,包括包含氧化鋁和改性金屬氧化物的載體以及活性金屬組份,所述改性金屬氧化物為鈦氧化物和/或鋯氧化物;所述的活性金屬組份為活性金屬的氧化物和/或活性金屬的單質。所述活性金屬例如第八副族金屬、第七副族金屬、第五副族金屬、第六副族金屬、第一副族金屬、稀土元素、鹼土金屬、第四主族金屬中的一種或多種; 優選的,所述的活性金屬包括Pt和/或者Ni,包括或不包括含或者不含其它元素。優選的,所述的其它元素為V、Cr、Mn、Fe、Co、Ni、Cu、Ag、Ce、W、Mo、Sn、Ca、Pt、Pd、Ru、Re、Rh、Ir、Os、Zn、P、In中的一種或多種。優選的,所述的載體為方案1~8任一所述的載體組合物或方案9~20任一項所述方法製備的載體組合物。 22. 一種有機物脫氫製備氫氣的催化劑,包括載體和負載的活性金屬組份,其特徵在於,所述載體為方案1~8任一項所述的載體組合物或為方案9~20任一項所述方法製備的載體組合物,所述的活性金屬包括Pt,含或者不含其它金屬,所述的其它金屬可以是貴金屬也可以是非貴金屬,所述其它金屬為Pd、Ru、Re、Rh、Ir、Os 、Sn、V、Mo、Cr、Mn、Fe、Co、Ni、Cu、Ag、Ce、W、Cu、Ca元素中的一種或多種。 23. 根據方案22所述的催化劑,其特徵在於,所述催化劑中,活性金屬的含量為0.1-20重量%例如0.1~15重量%,載體的含量為85~99.9重量%,Pt的含量為0.1-10重量%。本發明催化劑組成中,活性金屬的含量,貴金屬以單質計,非貴金屬以氧化物計。 24. 根據方案22所述的催化劑,其特徵在於,所述的其它金屬為Pd、Ru、Re、Rh、Ir、Os中的一種或多種。 25. 根據方案24所述的催化劑,其特徵在於,所述催化劑中,所述活性金屬的含量為0.1-10重量%,優選  0.5 ~ 8 重量%;所述載體的含量為90~99.9重量%,優選為92~ 99.5重量%。 26. 根據方案25所述的催化劑,其特徵在於,所述催化劑中,Pt含量為0.1~2重量%例如0.3~1.5重量%或0.5~1重量%,所述其它金屬的含量為0~9.9重量%例如0.1~2或0.2~1重量%或0.1~0.8重量%,所述載體的含量優選為90~99.9重量%例如96~99.6重量%或98~99.5重量%或98.5~99.3重量%。 27. 根據方案22所述的催化劑,其特徵在於,所述的其它金屬為Sn、V、Mo、Cr、Mn、Fe、Co、Ni、Cu、Ag、Ce、W、Cu、Ca中的一種或多種。 28. 根據方案27所述的催化劑,其特徵在於,所述催化劑中,Pt含量為0.1~10重量%,所述其它金屬的含量為0~15重量%。 29. 根據方案28所述的催化劑,其特徵在於,所述催化劑中,Pt含量為0.1~2重量%例如0.5~1.5重量%,其它金屬的含量為0~15重量%例如1~10重量%或2~8重量%或3~7重量%;所述載體的含量優選為85~99.9重量%例如為90~99重量%或90~98重量%或92~97重量%。 30. 一種有機物脫氫製備氫氣的催化劑,包括載體和負載的活性金屬組份,其特徵在於,所述載體為方案1~8任一項所述的載體組合物或者按照方案9~20任一項所述方法製備的載體組合物,所述的活性金屬包括鎳,含或者不含其它金屬,所述其它金屬為Zn、Sn、Cu、Fe、Ag、P、In、Re、Mo、Co、Ca、W中的一種或者多種。 31. 根據方案30所述的催化劑,其特徵在於,所述催化劑中,所述活性金屬質量份數為5%~30%,載體質量份數為70~95%;載體質量份數優選為75~90%,活性金屬質量份數優選為10%~25%。 32. 根據方案30所述的催化劑,其特徵在於,所述催化劑中,鎳的含量以氧化物計為5 ~25重量%,優選 6 ~ 20重量%例如為7~15重量%或7~12重量%或8~11重量% ,所述的其它金屬的含量以氧化物計為0~15重量%優選0 ~ 10重量%例如為0.5~8重量%或1~5重量%。 33. 方案21-32任一項所述催化劑的製備方法,包括: (1) 將活性金屬組份前驅物溶解在水中,浸漬載體,得到浸漬活性金屬組份前驅物的載體; (2) 浸漬活性金屬組份前驅物的載體乾燥、焙燒; 優選的,所述載體為方案1~8任一項所述的載體組合物或按照方案9~20任一項所述的方法製備的載體組合物。 34. 根據方案33所述的催化劑製備方法,其特徵在於,所述的活性金屬包括非貴金屬,步驟(2)為:將浸漬活性金屬組份前驅物的載體於低於-40℃的環境中放置1h~24h;然後進行抽真空乾燥,除去載體上吸附的水,然後焙燒,得到催化組合物。 35. 根據方案33所述的催化劑製備方法,其特徵在於,所述活性金屬組份前驅物為:金屬硝酸鹽、金屬氯化鹽、乙酸鹽、金屬碳酸鹽、金屬醋酸錯合物、金屬氫氧化物、金屬草酸鹽錯合物、高價金屬酸鹽中的一種或多種。 36. 根據方案32所述的催化劑製備方法,其特徵在於,步驟2所述焙燒:焙燒溫度為400~700℃,焙燒時間優選0.5~12小時。 37. 一種所述催化組合物的使用方法,包括:將有機儲氫化合物與方案21~32任一項所述脫氫催化劑或者按照方案33~36任一項所述方法製備的脫氫催化劑接觸進行脫氫反應生成氫氣的步驟。 38. 根據方案37所述的方法,其特徵在於,脫氫反應溫度為150~450℃,重時空速0.5~50h-1,反應壓力0.3~5MPa,所述接觸在臨氫或者不臨氫的條件下進行,氫油比(引入脫氫反應器的氫氣和有機儲氫化合物的摩爾比)為0~10。 39. 根據方案37所述的方法,其特徵在於,所述的有機儲氫化合物為含環烷環的飽和或不飽和烴,例如,所述的有機儲氫化合物為環己烷、甲基環己烷、十氫萘、雙環己烷、十氫哢唑、十二氫乙基哢唑、二氫吲哚、4-胺基呱啶、呱啶-4-羧胺、全氫-4,7-菲洛林、2-甲基-1,2,3,4-四氫喹啉、2,6-二甲基十氫-1,5-萘啶、1,2-BN-環己烷、3-甲基-1,2-BN-環戊烷中的一種或者多種。In addition, the present invention also provides the following solutions: 1. A support composition for a catalyst for the dehydrogenation of organic substances to produce hydrogen, the support composition includes alumina and a modified metal oxide, the modified metal oxide is titanium oxide and/or zirconium oxide, wherein The ɳ<0.3 of the modified metal oxide, where ɳ=weight percentage of the crystal phase modified metal oxide in the carrier composition/weight percentage of the chemical composition of the modified metal oxide in the carrier composition, Titanium oxide is calculated as TiO2, and zirconium oxide is calculated as ZrO2. 2. The carrier composition according to scheme 1, characterized in that ɳ=0, and preferably, the first metal oxide monolayer is dispersed on an alumina matrix. 3. The carrier composition according to scheme 1, characterized in that the mass fraction of alumina in the carrier composition is 80~98.5%, preferably 83~97.5% or 85~95% or 90~95 %; The mass fraction of the modified metal oxide is 1.5-20%, preferably 2.5-17% or 5-15%, or 5-10%. 4. The carrier composition according to scheme 3, characterized in that the modified metal oxide comprises titanium oxide, and preferably, the mass of titanium dioxide in the carrier composition is preferably 2-20 %, for example, 5 to 15%, or 5 to 10%, or 2.5 to 17%, and the mass fraction of zirconium dioxide is preferably 0 to 8%, such as 0 to 6%, or 0 to 3%, or 1 to 6%. 5. The carrier composition according to scheme 4, characterized in that, relative to the pure phase of TiO2, in the XPS map of the carrier composition, the binding energy of Ti 2P3/2 orbital electrons is offset, and the binding energy is 458.8eV The peak at the high binding energy shifted from 0.6-0.7eV to 459.4-459.5 eV, and/or the peak at the Ti 2P1/2 orbital electron binding energy of 464.5eV shifted from 0.8-0.9eV to 465.3 eV in the high binding energy direction. 465.4eV. 6. The carrier composition according to scheme 1, characterized in that the oxide matrix has a phase structure of at least one of γ oxide, η-alumina, rho alumina or χ alumina. 7. The carrier composition according to scheme 1, characterized in that the specific surface area of the carrier composition is 100-350 m2/g. 8. The carrier composition according to scheme 1, characterized in that the pore volume of the carrier composition is 0.3-1.3 ml/g. 9. A preparation method of a carrier composition, including the following steps: (1) The alumina matrix is in contact with the modified metal oxide precursor gas flow carried by the gas, and when the titanium tetrachloride reaches the preset load, the gas flow of the modified metal oxide precursor flow is stopped to obtain the load An alumina matrix of a modified metal oxide precursor, where the modified metal oxide precursor is a titania precursor and/or a zirconia precursor; (2) The alumina matrix supporting the modified metal oxide precursor is hydrolyzed and calcined to obtain a carrier composition. 10. The preparation method of the carrier composition according to scheme 9, wherein the titanium oxide precursor is selected from one or more of titanium tetrachloride, ethyl titanate, isopropyl titanate, and titanium acetate, Preferably titanium tetrachloride; the zirconium oxide precursor is selected from one or more of zirconium tetrachloride, zirconium ethoxide, zirconium methoxide, zirconium isopropoxide, tetrabutyl zirconate, preferably zirconium tetrachloride and/or methanol zirconium. 11. The preparation method of the carrier composition according to scheme 9, characterized in that the alumina matrix is one or more of γ-alumina, η-alumina, rho alumina, and χ alumina. 12. The preparation method of the carrier composition according to scheme 9, characterized in that the specific surface area of the alumina matrix is 100-350 m2/g. Among them, preferably, the specific surface area of the obtained carrier composition is reduced by ≤10% compared to the specific surface area of the alumina matrix. 13. The preparation method of the carrier composition according to scheme 9, characterized in that the pore volume of the alumina matrix is 0.3-1.3 ml/g. 14. The preparation method of the carrier composition according to scheme 9, characterized in that the gas is an anhydrous inert gas, and the water content in the anhydrous inert gas does not exceed 10 ppm. Preferably, the content of the modified metal oxide precursor in the modified metal oxide precursor gas stream carried by the gas is 0.1-3 g/L, wherein the content of the modified metal oxide precursor is calculated as the metal oxide. 15. The preparation method of the carrier composition according to scheme 9, characterized in that, in step (1), the temperature of the gas is room temperature to 350°C, for example, room temperature to 300°C or 15 to 300°C. 16. The preparation method of the carrier composition according to scheme 9, characterized in that the contact pressure in step (1) is 0.05-5 atm, for example, 1-3 atm. 17. The preparation method of the carrier composition according to scheme 9, characterized in that the ratio of the volumetric flow rate of the gas per minute to the volume of the alumina matrix is 3~80:1, for example, 5~30:1, preferably 10~25 :1; The volume of the gas is based on the volume under standard conditions, and the volume of the alumina matrix is based on the bulk volume. 18. The preparation method of the carrier composition according to scheme 9, characterized in that, the alumina matrix is in fluidized state in contact with the modified metal oxide precursor gas stream carried by the gas, or with stirring under agitation. The gas flow is in contact; the fluidized state can be, for example, a bubbling bed, a turbulent bed, a fast bed or a transport bed. 19. The preparation method of the carrier composition according to scheme 9, characterized in that the hydrolysis in step (2) is as follows: the alumina matrix supporting the modified metal oxide precursor is brought into contact with a gas containing water vapor . In one embodiment, the ratio of the gas containing water vapor in contact with the alumina matrix (the ratio of the gas containing water vapor to the bulk volume of the alumina matrix in a standard state) is 3~80:1, such as 5-30:1, preferably 10~ 25:1, the ratio of water vapor in the gas containing water vapor to the total volume of the gas is 0.1% by volume to 100% by volume, preferably 3% by volume to 100% by volume, more preferably 10% by volume to 70% by volume; The gas other than water vapor may be an inert gas or air. The hydrolysis time is, for example, 1 hour to 50 hours, preferably 2 hours to 30 hours. The usual hydrolysis time is greater than or equal to the loading time (loading time refers to the time for the alumina matrix to contact the modified metal oxide precursor gas stream carried by the gas). 20. The preparation method of the carrier composition according to scheme 9, characterized in that the calcination has a calcination temperature of 350°C to 700°C, and a calcination time of 0.5 to 12 hours. 21. A catalyst for the dehydrogenation of organic matter to produce hydrogen, which is characterized by comprising a carrier containing alumina and a modified metal oxide and an active metal component, the modified metal oxide being titanium oxide and/or zirconium Oxide; The active metal component is an oxide of an active metal and/or a simple substance of an active metal. The active metal, for example, one of the eighth subgroup metal, the seventh subgroup metal, the fifth subgroup metal, the sixth subgroup metal, the first subgroup metal, the rare earth element, the alkaline earth metal, the fourth main group metal, or Multiple; Preferably, the active metal includes Pt and/or Ni, with or without other elements. Preferably, the other elements are V, Cr, Mn, Fe, Co, Ni, Cu, Ag, Ce, W, Mo, Sn, Ca, Pt, Pd, Ru, Re, Rh, Ir, Os, Zn One or more of, P, In. Preferably, the carrier is the carrier composition according to any one of the schemes 1-8 or the carrier composition prepared by the method according to any one of the schemes 9-20. 22. A catalyst for the dehydrogenation of organic matter to produce hydrogen, comprising a carrier and a supported active metal component, characterized in that the carrier is the carrier composition according to any one of schemes 1 to 8 or any one of schemes 9 to 20 In the carrier composition prepared by the method described in item, the active metal includes Pt, with or without other metals, the other metals may be noble metals or non-noble metals, and the other metals are Pd, Ru, Re, Rh One or more of, Ir, Os, Sn, V, Mo, Cr, Mn, Fe, Co, Ni, Cu, Ag, Ce, W, Cu, and Ca elements. 23. The catalyst according to claim 22, characterized in that, in the catalyst, the content of the active metal is 0.1-20% by weight, such as 0.1-15% by weight, the content of the carrier is 85-99.9% by weight, and the content of Pt is 0.1-10% by weight. In the composition of the catalyst of the present invention, the content of the active metal is calculated by the elementary substance of the noble metal and the oxide of the non-noble metal. 24. The catalyst according to scheme 22, wherein the other metal is one or more of Pd, Ru, Re, Rh, Ir, and Os. 25. The catalyst according to scheme 24, characterized in that, in the catalyst, the content of the active metal is 0.1-10% by weight, preferably 0.5-8% by weight; the content of the carrier is 90-99.9% by weight , Preferably 92 to 99.5% by weight. 26. The catalyst according to claim 25, wherein the content of Pt in the catalyst is 0.1 to 2% by weight, such as 0.3 to 1.5% by weight or 0.5 to 1% by weight, and the content of other metals is 0 to 9.9 The weight% is, for example, 0.1-2 or 0.2-1% by weight or 0.1-0.8% by weight, and the content of the carrier is preferably 90-99.9% by weight, such as 96-99.6% by weight or 98-99.5% by weight or 98.5-99.3% by weight. 27. The catalyst according to scheme 22, wherein the other metal is one of Sn, V, Mo, Cr, Mn, Fe, Co, Ni, Cu, Ag, Ce, W, Cu, and Ca Or multiple. 28. The catalyst according to claim 27, wherein the content of Pt in the catalyst is 0.1-10% by weight, and the content of the other metals is 0-15% by weight. 29. The catalyst according to claim 28, wherein the content of Pt in the catalyst is 0.1-2% by weight, such as 0.5-1.5% by weight, and the content of other metals is 0-15% by weight, such as 1-10% by weight. Or 2-8% by weight or 3-7% by weight; the content of the carrier is preferably 85-99.9% by weight, for example, 90-99% by weight or 90-98% by weight or 92-97% by weight. 30. A catalyst for the dehydrogenation of organic matter to produce hydrogen, comprising a carrier and a supported active metal component, characterized in that the carrier is the carrier composition according to any one of schemes 1 to 8 or according to any one of schemes 9 to 20 In the carrier composition prepared by the method described in item, the active metal includes nickel, with or without other metals, and the other metals are Zn, Sn, Cu, Fe, Ag, P, In, Re, Mo, Co, One or more of Ca and W. 31. The catalyst according to claim 30, characterized in that, in the catalyst, the active metal is 5% to 30% by mass, the carrier is 70 to 95% by mass, and the carrier is preferably 75% by mass. ~90%, the mass fraction of active metal is preferably 10%-25%. 32. The catalyst according to item 30, wherein the content of nickel in the catalyst is 5-25% by weight, calculated as oxide, preferably 6-20% by weight, for example, 7-15% by weight or 7-12 % By weight or 8-11% by weight, the content of the other metal is 0-15% by weight, preferably 0-10% by weight, such as 0.5-8% by weight or 1-5% by weight, calculated as oxide. 33. The preparation method of the catalyst according to any one of schemes 21-32, comprising: (1) Dissolve the precursor of the active metal component in water and impregnate the carrier to obtain a carrier impregnated with the precursor of the active metal component; (2) Drying and roasting of the carrier impregnated with the precursor of the active metal component; Preferably, the carrier is the carrier composition according to any one of the schemes 1 to 8 or the carrier composition prepared according to the method according to any one of the schemes 9-20. 34. The catalyst preparation method according to scheme 33, characterized in that the active metal includes non-noble metals, and step (2) is: placing the carrier impregnated with the precursor of the active metal component in an environment below -40°C Place for 1h-24h; then vacuum dry to remove water adsorbed on the carrier, and then calcinate to obtain a catalytic composition. 35. The catalyst preparation method according to scheme 33, wherein the active metal component precursor is: metal nitrate, metal chloride, acetate, metal carbonate, metal acetate complex, metal hydrogen One or more of oxides, metal oxalate complexes, and high-valent metal salts. 36. The catalyst preparation method according to scheme 32, characterized in that the calcination in step 2: the calcination temperature is 400-700°C, and the calcination time is preferably 0.5-12 hours. 37. A method of using the catalytic composition, comprising: contacting an organic hydrogen storage compound with the dehydrogenation catalyst according to any one of schemes 21 to 32 or the dehydrogenation catalyst prepared according to any one of schemes 33 to 36 Carry out the step of dehydrogenation reaction to generate hydrogen. 38. The method according to scheme 37, characterized in that the dehydrogenation reaction temperature is 150~450°C, the weight hourly space velocity is 0.5~50h-1, the reaction pressure is 0.3~5MPa, and the contact is in the presence or absence of hydrogen. Under the conditions, the hydrogen-to-oil ratio (the molar ratio of hydrogen introduced into the dehydrogenation reactor to the organic hydrogen storage compound) is 0-10. 39. The method according to scheme 37, wherein the organic hydrogen storage compound is a saturated or unsaturated hydrocarbon containing a cycloalkane ring, for example, the organic hydrogen storage compound is cyclohexane, methyl ring Hexane, decahydronaphthalene, bicyclohexane, decahydronaphthalene, dodecahydroethyl azole, indoline, 4-aminopiperidine, piperidine-4-carboxyamine, perhydro-4,7 -Felorin, 2-methyl-1,2,3,4-tetrahydroquinoline, 2,6-dimethyldecahydro-1,5-naphthyridine, 1,2-BN-cyclohexane, One or more of 3-methyl-1,2-BN-cyclopentane.

此外,本發明還進一步提供了下述方案: 1.        一種提供高純度氫氣的方法,該方法包括:使有機液體儲氫原料與脫氫催化劑接觸反應,得到含有氫氣的脫氫反應產物; (1) 將脫氫反應產物冷卻,得到液體產物和富氫氣體產物,收集液體產物; (2) 使富氫氣體與儲氫合金接觸,得到含氫合金,收集未吸附的氣體; (3) 任選的,除去含氫合金儲存容器中的有機物; (4) 加熱含氫合金,釋放氫氣,得到高純氫氣。 2.        根據方案1所述的方法,其特徵在於,所述的富氫氣體為富氫氣體產物或富氫氣體產物經過進一步分離得到的含氫氣的氣體,所述進一步分離的方法例如:變溫分離、膜分離、變壓吸附分離或它們的組合。 3.        根據方案1或2所述的方法,其特徵在於,所述的富氫氣體中氫氣的質量份數大於等於80%例如80~99%,優選為 ≥85%,更優選為≥90%。 4.        根據方案1所述的方法,其特徵在於,所述富氫氣體與儲氫合金接觸的溫度為 -70~100℃,優選-50 ~ 90℃更優選-30~ 80℃。 5.        根據方案1所述的方法,其特徵在於,脫氫反應產物冷卻的溫度低於有機物的沸點溫度;優選的,低於其中的常溫常壓下為液態沸點最低的有機物的沸點溫度。 6.        根據方案1~5任一項所述的方法,其特徵在於,與儲氫合金接觸時,所述富氫氣體的溫度低於有機液體儲氫原料在常壓下的沸點溫度。 7.        根據方案1所述的方法,其特徵在於,所述的儲氫合金可以是一種或者多種,多種儲氫合金可以混合使用,也可以串聯使用或並聯使用或串並聯混合使用;優選的所述的富氫氣體與儲氫合金接觸壓力為0.001~ 5MPa例如為0.01~ 5MPa 或0.03~4MPa或0.05~ 5MPa或0.08~2MPa或0.0 05~3MPa或 0.1~1MPa。 8.        根據方案1所述的方法,其特徵在於,所述富氫氣體與儲氫合金接觸在儲氫合金儲存容器中進行,儲氫合金儲存容器為一個或者多個;所述的富氫氣體與儲氫合金為接觸壓力為0.05~ 5MPa優選0.1~1MPa; 當儲氫合金儲存容器為多個,且存在儲氫容器串聯的情況,優選情況下,其中按照富氫氣體物流方向,最後接觸的儲氫合金的接觸壓力為0.05~5MPa優選0.1~1MPa。 9.        根據方案1所述的方法,其特徵在於,所述的儲氫合金儲存容器為一個或多個,其中按照接觸氫氣的順序,最後與氫氣接觸的儲氫合金容器中的儲氫合金為具有高平衡壓力的儲氫合金,所述高平衡壓力儲氫合金為在溫度為150~450℃之間至少存在一個溫度點,氫氣吸收的平衡壓力大於等於 35 MPa;優選的,至少一個容器中的儲氫合金為高平衡壓力儲氫合金。 10.    根據方案1所述的方法,其特徵在於,還包括使含氫合金釋放氫氣、釋放的氫氣與不同的儲氫合金接觸形成含氫合金,該過程重複一次或多次,其中至少最後一次的重複過程所用的儲氫合金為高平衡壓力的儲氫合金。 11.    根據方案1~10任一項所述的方法,其特徵在於,所述的儲氫合金為稀土系AB5 型、鋯鈦系AB2 型、鈦系AB型、鎂系A2 B型合金以及釩基固溶體型中的一種或者多種。 12.    根據方案11所述的方法,其特徵在於,所述的稀土系AB5 型儲氫合金,具體分子運算式為:Mm Nix1 Cox2 Mnx3 Fex4 Alx5 Snx6 ,其中,4.5≤x1+x2+x3+x4+x5+x6≤5.5,3≤x1≤5.5,優選3≤x1≤4.9,0≤x2≤1.5,優選0.1≤x2≤1,0≤x3≤0.8,優選0.1≤x3≤0.6,0≤x4≤0.8,優選0.1≤x4≤0.6,0≤x5≤0.75,優選0≤x5≤0.5,0≤x6≤0.2,優選0≤x6≤0.15;Mm為含La、Ce、Pr、Nd、Y的混合稀土金屬,運算式為Mm=Lay1 Cey2 Ndy3 Pry4 Yy5 ,y1+y2+y3+y4+y5=1,0.4≤y1≤1,優選0.4≤y1≤0.8,0≤y2≤0.45,優選0.1≤y2≤0.45,0≤y3≤0.2,0≤y4≤0.05,0≤y5≤0.05。 13.    根據方案11所述的方法,其特徵在於,所述的鋯鈦系AB2 型儲氫合金,其中A=Mgx1 Cax2 Tix3 Zrx4 Yx5 Lax6 ,x1+x2+x3+x4+x5+x6=0.9-1.1,0≤ x1 ≤ 1.1,優選0.90≤ x1≤ 1.05,0≤ x2 ≤ 0.7,優選0≤ x2≤ 0.25,0≤ x3 ≤ 1.05,優選0.8≤ x3≤ 1,0≤ x4 ≤ 1.05,優選0.85≤ x4≤ 1,0≤ x5 ≤ 0.2,優選0≤ x5≤ 0.05,0≤ x6 ≤ 0.2,優選0≤ x6≤ 0.05,且x3/(x3+x4)≥0.7或者x3/(x3+x4)≤0.3;B=Vy1 Cry2 Mny3 Fey4 Coy5 Niy6 Cuy7 ,y1+y2+y3+y4+y5+y6+y7=1.9-2.1,0≤ y1 ≤ 2.1,優選0≤ y1≤ 1.8,0≤ y2 ≤ 2.1,優選0≤ y2≤ 1.85,0≤ y3 ≤ 2.1,優選0≤ y3≤ 2.05,0≤ y4 ≤ 1.6,優選0≤y4≤ 1.5,0≤ y5 ≤0.5,優選0≤ y5≤ 0.3,0≤ y6 ≤ 0.5,優選0≤ y6≤ 0.3,0≤ y7 ≤ 0.5,優選0≤ y7≤ 0.2,且1.7≤y1+y2+y3+y4≤ 2.1。 14.    根據方案11所述的方法,其特徵在於,所述的AB型儲氫合金,其中A=Tix1 Zrx2 Yx3 Lax4 ,x1+x2+x3+x4=0.85-1.1,0≤ x1 ≤ 1.1,優選0.90≤ x1≤ 1.05,0≤ x2 ≤ 1.1,優選0≤ x2≤ 0.5,0≤ x3 ≤ 0.2,優選0≤ x3≤ 0.05,0≤ x4 ≤ 0.2,優選0≤ x4≤ 0.05;B=Vy1 Cry2 Mny3 Fey4 Coy5 Niy6 Cuy7 ,y1+y2+y3+y4 =0.95-1.05,0≤ y1 ≤ 0.5,優選0≤ y1≤ 0.2,0≤ y2 ≤ 0.8,優選0≤ y2≤ 0.2,0≤ y3 ≤ 0.8,優選0.05≤ y3≤ 0.3,0< y4 ≤ 1.05,優選0.7≤y4≤ 1.05,0≤ y5 ≤0.35,優選0≤ y5≤ 0.10,0≤ y6 ≤ 0.45,優選0≤ y6≤ 0.20,0≤ y7 ≤ 0.3,優選0≤ y7≤ 0.2。 15.    根據方案11所述的方法,其特徵在於,所述的釩基固溶體型儲氫合金,具體分子運算式為:Ax1 Bx2 ,x1+x2=1,0.85 ≤ x1 ≤ 0.95,優選0.90≤ x1≤ 0.95,0.05 ≤ x2 ≤ 0.15,優選0.05≤ x2≤ 0.10;其中A=Tiy1 Vy2 Zry3 Nby4 Yy5 Lay6 Cay7 ,y1+y2+y3+y4+y5+y6+y7=1,0≤ y1 ≤ 0.9,優選0≤ y1≤ 0.8,0≤ y2 ≤ 0.95,優選0≤y2≤ 0.95,0≤ y3 ≤ 0.90,優選0≤ y3≤ 0.8,0≤ y4 ≤ 0.55,優選0≤ y4≤ 0.4,0≤ y5 ≤ 0.2,優選0.25≤ y5≤ 0.05,0≤ y6≤ 0.1,優選0≤ y6≤ 0.05,0≤ y7 ≤ 0.1,優選0≤ y7≤ 0.05;B=Mnz1 Fez2 Coz3 Niz4 ,z1+ z2+ z3+ z4=1,0≤ z1 ≤ 1,優選0≤ z1≤0.95,0≤ z2 ≤ 0.95,優選0≤z2≤ 0.95,0.7≤z1+z2≤1.0,0≤ z3 ≤ 0.3,優選0≤ z3≤ 0.2,0≤z4 ≤ 0.45,優選0≤ z4≤ 0.3。 16.    根據方案1或11所述的方法,其特徵在於,所述的儲氫合金為第一儲氫合金與第二儲氫合金聯用;其中,第一儲氫合金為鎂系A2 B型儲氫合金用於富氫氣體接觸,第二儲氫合金用於將第一儲氫氫氣增壓,第二儲氫合金為具有高平衡壓力的儲氫合金。 17.    根據方案16所述的方法,其特徵在於,第二儲氫合金為稀土系AB5 型、鋯鈦系AB2 型、鈦系AB型中的一種或者多種。 18.    根據方案1或16所述的方法,其特徵在於,富氫氣體先經過第一儲氫合金,進行雜質分離;然後使第一儲氫合金釋放出的高純氫氣與第二儲氫合金進行接觸,然後使第二儲氫合金在高壓下釋放氫氣。 19.    根據方案16所述的方法,其特徵在於,第一儲氫合金放氫溫度高於第二儲氫合金吸氫溫度,溫差優選≥100℃,優選350℃≥溫差≥150℃。 20.    根據方案16所述的方法,其特徵在於,第一儲氫合金和第二儲氫合金在不同的儲氫合金儲存罐中,且第一儲氫合金儲存罐和第二儲氫合金儲存罐中間有熱交換系統。 21.    根據方案16或17所述的方法,其特徵在於,所述A2 B型第一儲氫合金,其具體分子運算式為:A=Mgx1 Cax2 Tix3 Lax4 Yx5 ,x1+x2+x3=1.9-2.1,1.5≤x1 ≤2.1,優選1.70≤x1≤2.05,0≤x2 ≤0.5,優選0≤x2≤0.2,0≤x3 ≤0.8,優選0≤x3≤0.50;B=Cry1 Fey2 Coy3 Niy4 Cuy5 Moy6 , y1+y2+y3+y4+y5+y6=0.9-1.1,0≤y1 ≤0.30,優選0≤y1≤0.2,0≤y2≤0.20,優選0≤x2≤0.10,0≤y3 ≤1.1,優選0≤y3≤1,0≤y4 ≤1.1,優選0≤y4≤1.05,0≤y5≤0.4, 0≤y6≤0.15,優選0≤y6≤0.10; 所述AB5型第二儲氫合金,具體分子運算式為:Mm Nix1 Cox2 Mnx3 Fex4 Alx5 Snx6 ,其中,4.5≤x1+x2+x3+x4+x5+x6≤5.5,3≤x1≤5.5,優選3≤x1≤4.9,0≤x2≤1.5,優選0.1≤x2≤1,0≤x3≤0.8,優選0.1≤x3≤0.6,0≤x4≤0.8,優選0.1≤x4≤0.6,0≤x5≤0.75,優選0≤x5≤0.5,0≤x6≤0.2,優選0≤x6≤0.15;Mm為含La、Ce、Pr、Nd、Y的混合稀土金屬,運算式為Mm=Lay1 Cey2 Ndy3 Pry4 Yy5 ,y1+y2+y3+y4+y5=1,0.4≤y1≤1,優選0.4≤y1≤0.8,0≤y2≤0.45,優選0.1≤y2≤0.45,0≤y3≤0.2,0≤y4≤0.05,0≤y5≤0.05; 所述的鋯鈦系AB2 型合金第二儲氫合金中, A=Mgx1 Cax2 Tix3 Zrx4 Yx5 Lax6 ,x1+x2+x3+x4+x5+x6=0.9-1.1,0≤ x1 ≤ 1.1,優選0.90≤ x1≤ 1.05,0≤ x2 ≤ 0.7,優選0≤ x2≤ 0.25,0≤ x3 ≤ 1.05,優選0.8≤ x3≤ 1,0≤ x4 ≤ 1.05,優選0.85≤ x4≤ 1,0≤ x5 ≤ 0.2,優選0≤ x5≤ 0.05,0≤ x6 ≤ 0.2,優選0≤ x6≤ 0.05,且x3/(x3+x4)≥0.7或者x3/(x3+x4)≤0.3;B=Vy1 Cry2 Mny3 Fey4 Coy5 Niy6 Cuy7 ,y1+y2+y3+y4+y5+y6+y7=1.9-2.1,0≤ y1 ≤ 2.1,優選0≤ y1≤ 1.8,0≤ y2 ≤ 2.1,優選0≤ y2≤ 1.85,0≤ y3 ≤ 2.1,優選0≤ y3≤ 2.05,0≤ y4 ≤ 1.6,優選0≤y4≤ 1.5,0≤ y5 ≤0.5,優選0≤ y5≤ 0.3,0≤ y6 ≤ 0.5,優選0≤ y6≤ 0.3,0≤ y7 ≤ 0.5,優選0≤ y7≤ 0.2,且1.7≤y1+y2+y3+y4≤ 2.1; 所述的鈦系AB型合金第二儲氫合金,其中A=Tix1 Zrx2 Yx3 Lax4 ,x1+x2+x3+x4=0.85-1.1,0≤ x1 ≤ 1.1,優選0.90≤ x1≤ 1.05,0≤ x2 ≤ 1.1,優選0≤ x2≤ 0.5,0≤ x3 ≤ 0.2,優選0≤ x3≤ 0.05,0≤ x4 ≤ 0.2,優選0≤ x4≤ 0.05;B=Vy1 Cry2 Mny3 Fey4 Coy5 Niy6 Cuy7 ,y1+y2+y3+y4 =0.95-1.05,0≤ y1 ≤ 0.5,優選0≤ y1≤ 0.2,0≤ y2 ≤ 0.8,優選0≤ y2≤ 0.2,0≤ y3 ≤ 0.8,優選0.05≤ y3≤ 0.3,0< y4 ≤ 1.05,優選0.7≤y4≤ 1.05,0≤ y5 ≤0.35,優選0≤ y5≤ 0.10,0≤ y6 ≤ 0.45,優選0≤ y6≤ 0.20,0≤ y7 ≤ 0.3,優選0≤ y7≤ 0.2。 22.    根據方案16所述的方法,其特徵在於,富氫氣體與第一儲氫合金接觸溫度為20~150℃,氫氣分壓為0.001~ 0.1MPa;第一儲氫合金釋放氫氣的溫度(放氫溫度)為150~450℃,放氫的氫氣分壓為0.1~ 5MPa。 23.    根據方案16或22所述的方法,其特徵在於,第二儲氫合金吸氫溫度為-70~100℃,吸氫的氫氣分壓為0.1~ 5MPa,第二儲氫合金放氫溫度為150~450℃,放氫的氫分壓≥35MPa例如35~100MPa。 24.    根據方案16和22所述的方法,其特徵在於,富氫氣體與第一儲氫合金接觸的吸氫溫度優選為50~100℃,氫氣分壓優選為0.001~ 0.03MPa;第一儲氫合金放氫溫度優選為200~350℃,放氫氫氣分壓優選為0.1~ 1 MPa;第二儲氫合金吸收氫氣的吸氫溫度優選為-30~100℃,吸氫的氫氣分壓優選為0.1~ 1MPa,第二儲氫合金放氫溫度優選為200~350℃,放氫氫分壓優選為≥35 MPa。 25.    根據方案1所述的方法,其特徵在於,儲氫合金釋放氫氣的溫度(儲氫合金加熱的溫度,簡稱放氫溫度)為150~450℃,釋放的氫氣的壓力為≥35MPa例如為35~100MPa以得到高純高壓氫氣,或者放氫的氫氣分壓為0.1~ 5MPa以得到高純氫氣,其中放氫溫度高於吸氫溫度。 26.    根據方案1所述的方法,其特徵在於,除去含氫合金中的有機物採用吹掃的方法例如使用氫氣吹掃,其方法例如:儲氫合金達到預定的吸附量以後,停止向儲氫合金供應富氫氣體,使氫氣通過含氫合金,將含氫合金和(也稱為含氫合金儲存容器)中的有機氣體帶出,引入儲罐儲存或者使用其它儲氫合金儲存容器中的儲氫合金吸收;其中優選的,吹掃用氫氣的純度大於90重量%更優選大於95重量%例如大於99重量%。 27.    根據方案1所述的方法,其特徵在於,有機液體儲氫原料與脫氫催化劑接觸反應的反應溫度為150~450℃,優選200~400℃,更優選 300~350℃。 28.    根據方案1所述的方法,其特徵在於,有機液體儲氫原料與脫氫催化劑接觸重時空速0.5~50h-1 ,優選1~45 h-1 更優選2~30h-1 。 29.    根據方案1所述的方法,其特徵在於,有機液體儲氫原料與脫氫催化劑接觸反應的壓力為0.03~5MPa或0.3~5MPa,優選0.1~3MPa例如0.5 ~2MPa或0.2~1.6MPa。 30.    根據方案1所述的方法,其特徵在於,使有機液體儲氫原料與氫氣混合後與脫氫催化劑接觸,氫烴比(氫氣與有機液體儲氫原料的摩爾比)為0~10。 31.    根據方案1所述的方法,其特徵在於,有機液體脫氫反應在臨氫或者不臨氫的狀態下,有機液體脫氫反應溫度為150~450℃,重時空速0.5~50h-1 ,反應壓力0.3~5MPa,氫烴比為0~10摩爾比,優選的反應溫度為200~400℃,重時空速1~30h-1 ,氫烴比為0~8摩爾比。 32.    根據方案1所述的方法,其特徵在於,所述的脫氫催化劑為金屬負載型催化劑,所述的金屬負載型催化劑包括載體和負載的活性金屬組份;所述載體,所述活性金屬優選包括第VIII族金屬中一種或者多種;更優選,活性金屬組份含有第一活性金屬和任選的第二活性金屬,所述第一活性金屬為Pt、Pd、Ru、Rh、Ir中的一種或多種,所述第二活性金屬Ni、Re、Sn、Mo、Cu、Fe、Ca、Co、W中的一種或者多種,所述第二活性金屬優選為Ni、Re、Sn中的一種或多種;更優選的,所述的第一活性金屬包括Pt; 或者, 所述的脫氫催化劑包括載體和負載的活性金屬組份,載體選自三氧化二鋁、二氧化矽、二氧化鈦、氧化鋯、活性炭、矽鋁材料中的一種或多種,活性金屬選自Ni、Zn、Sn、Cu、Fe、Ag、P、In、Re、Mo、Co、Ca、W中的至少兩種金屬,進一步優選Ni、Zn、Sn、Cu中的兩種或兩種以上或者所述的活性金屬包括Ni以及選自Zn、Sn、Cu、Fe、Ag、P、In、Re、Mo、Co、Ca、W中的一種或多種。 33.    根據方案32所述的方法,其特徵在於,所述的脫氫催化劑中載體質量份數為70~99.9%,金屬組份的質量份數為0.1~30%。 34.    根據方案1所述的方法,其特徵在於,所述的脫氫催化劑包括載體和活性金屬組份,所述的載體為一種載體組合物,該載體組合物包括氧化鋁和改性金屬氧化物,所述的改性金屬氧化物為鈦氧化物和/或鋯氧化物,其中所述的改性金屬氧化物的ɳ<0.3,其中ɳ=載體組合物中晶相改性金屬氧化物的重量百分含量/載體組合物中改性金屬氧化物的化學組成重量百分含量,鈦氧化物以TiO2 計,鋯氧化物以ZrO2 計。 35.    根據方案34所述的方法,其特徵在於,所述的載體組合物ɳ=0,優選的,所述的第一金屬氧化物單層分散於氧化鋁基質上。 36.    根據方案34所述的方法,其特徵在於,所述載體組合物中氧化鋁質量份數為80~98.5%,優選的為83~97.5%或85~95%或為90~95%;改性金屬氧化物的質量份數為1.5~20%,優選為2.5~17%或5~15 %,或為 5~ 10 %。 37.    根據方案34所述的方法,其特徵在於,所述的改性金屬氧化物包括鈦氧化物,其中優選的,所述的載體組合物中,二氧化鈦質量份數優選為2~20%例如5~15%或5~10%或2.5~17%,二氧化鋯質量份數優選0~8%例如0-6%或0-3%或1~6%。 38.    根據方案34所述的方法,其特徵在於,相對於TiO2 純物相,所述的載體組合物XPS圖譜中, Ti 2P3/2 軌道電子結合能存在偏移,結合能為458.8eV處的峰向高結合能偏移0.6-0.7eV至459.4-459.5 eV,和/或Ti 2P1/2 軌道電子結合能為464.5eV處的峰向高結合能方向偏移0.8-0.9eV至465.3~465.4eV。 39.    根據方案34所述的方法,其特徵在於,所述的氧化物基質具有γ氧化物、η-氧化鋁、ρ氧化鋁 或 χ氧化鋁至少一種的物相結構。 40.    根據方案34所述的方法,其特徵在於,所述的載體組合物比表面積為100~ 350 m2 /g。 41.    根據方案34所述的方法,其特徵在於,所述載體組合物的孔體積為 0.3 ~ 1.3 ml/g。 42.    根據方案1或34所述的方法,其特徵在於,所述脫氫催化劑包括包含氧化鋁和改性金屬氧化物的載體以及活性金屬組份,所述改性金屬氧化物為鈦氧化物和/或鋯氧化物;所述的活性金屬組份為活性金屬的氧化物和/或活性金屬的單質。所述活性金屬例如第八副族金屬、第七副族金屬、第五副族金屬、第六副族金屬、第一副族金屬、稀土元素、鹼土金屬、第四主族金屬中的一種或多種; 優選的,所述的活性金屬包括Pt和/或者Ni,包括或不包括含或者不含其它元素;優選的,所述的其它元素為V、Cr、Mn、Fe、Co、Ni、Cu、Ag、Ce、W、Mo、Sn、Ca、Pt、Pd、Ru、Re、Rh、Ir、Os、Zn、P、In中的一種或多種。 43.    根據方案42所述的方法,其特徵在於,所述的活性金屬包括Pt,含或者不含其它金屬,所述的其它金屬可以是貴金屬也可以是非貴金屬,所述其它金屬為Pd、Ru、Re、Rh、Ir、Os 、Sn、V、Mo、Cr、Mn、Fe、Co、Ni、Cu、Ag、Ce、W、Cu、Ca、中的一種或多種。 44.    根據方案42所述的方法,其特徵在於,所述脫氫催化劑中,活性金屬的含量為0.1-20重量%例如0.1~15重量%,載體的含量為75~99.9重量%,Pt的含量為0.1-10重量%;本發明脫氫催化劑組成中,活性金屬的含量,貴金屬以單質計,非貴金屬以氧化物計。 45.    根據方案43所述的方法,其特徵在於,所述的其它金屬為Pd、Ru、Re、Rh、Ir、Os中的一種或多種。 46.    根據方案43所述的方法,其特徵在於,所述脫氫催化劑中,所述活性金屬的含量為0.1-10重量%,優選0.5~8重量%;所述載體的含量為90~99.9重量%,優選為92~ 99.5重量%。 47.    根據方案43所述的方法,其特徵在於,所述催化劑中,Pt含量為0.1~2重量%例如0.3~1.5重量%或0.5~1重量%,所述其它金屬的含量為0~9.9重量%例如0.1~2或0.2~1重量%或0.1~0.8重量%,所述載體的含量優選為90~99.9重量%例如96~99.6重量%或98~99.5重量%或98.5~99.3重量%。 48.    根據方案43所述的方法,其特徵在於,所述的其它金屬元素為Sn、V、Mo、Cr、Mn、Fe、Co、Ni、Cu、Ag、Ce、W、Cu、Ca中的一種或多種。 49.    根據方案43所述的方法,其特徵在於,所述催化劑中,Pt含量為0.1~10重量%,所述其它金屬的含量為0~15重量%。 50.    根據方案43所述的方法,其特徵在於,所述催化劑中,Pt含量為0.1~2重量%例如0.5~1.5重量%,其它金屬的含量為0~15重量%例如1~10重量%或2~8重量%或3~7重量%;所述載體的含量優選為85~99.9重量%例如為90~99重量%或90~98重量%或92~97重量%。 51.    根據方案34所述的方法,其特徵在於,所述的活性金屬包括鎳,含或者不含其它金屬,所述其它金屬為Zn、Sn、Cu、Fe、Ag、P、In、Re、Mo、Co、Ca、W中的一種或者多種。 52.    根據方案51所述的方法,其特徵在於,所述催化劑中,所述活性金屬質量份數為5%~30%,載體質量份數為70~95%;載體質量份數優選為75~90%,活性金屬質量份數優選為10%~25%。 53.    根據方案51所述的方法,其特徵在於,所述催化劑中,鎳的含量以氧化物計為5 ~25重量%,優選 6 ~ 20重量%例如為7~15重量%或7~12重量%或8~11重量% ,所述的其它金屬的含量以氧化物計為0~15重量%優選0~10重量%例如為0.5~8重量%或1~5重量%。 54.    根據方案1所述的方法,其特徵在於,所述的有機液體儲氫原料為含環烷環的飽和/或不飽和烴,含或不含雜原子,含雜原子有機儲氫化合物為含環烷環的烴被雜原子取代得到的有機物,其中雜原子取代發生在環烷環上。其中,有機液體儲氫原料優選不含雜環原子的含有環烷環的飽和或不飽和烴。更優選為芳環和環烷環總數小於等於2的不含雜環原子的飽和或不飽和烴; 更更優選,有機儲氫原料為芳環和環烷環總數小於等於2的不含雜環原子的飽和或不飽和烴;所述的不含雜原子的含有環烷環的飽和與不飽和烴包括:環己烷、甲基環己烷、十氫萘、雙環己烷中的一種或者多種;含雜原子的含有環烷環的飽和或不飽和烴包括:含氮雜環化合物和含氮/硼雜環化合物,例如為含氮雜環化合物包括十氫哢唑、十二氫乙基哢唑、二氫吲哚、4-胺基呱啶、呱啶-4-羧胺、全氫-4,7-菲洛林、2-甲基-1,2,3,4-四氫喹啉、2,6-二甲基十氫-1,5-萘啶中的一種或者幾種;含氮/硼雜原子不飽和烴包括:1,2-BN-環己烷、3-甲基-1,2-BN-環戊烷中的一種或者多種。 55.    根據方案1的方法,其特徵在於,還包括將釋放的氫氣引入到氫氣儲罐以儲存氫氣;或者,所得到的高純高壓氫氣可以直接用於氫燃料電池車加注。 56.    一種高效分散式製高純高壓氫氣的方法,該方法包括: (1) 在脫氫反應器中,將液體有機儲氫原料在脫氫催化劑的存在下進行脫氫反應得到包括氫氣的脫氫反應產物; (2) 在冷卻分離裝置中,將脫氫反應產物冷卻並分離,得到富氫物流和有機液體; (3) 在儲氫合金儲存容器中,使富氫物流或純化後的富氫物流與儲氫合金接觸,得到含氫合金; (4) 氫氣吹掃除去儲氫合金儲存容器中的有機物;其中,吹掃氫氣的純度優選大於90重量%更優選大於95重量%; (5) 將含氫合金加熱釋放氫氣,得到高壓氫氣和將得到的高壓氫氣提供給用氫裝置或高壓氫氣儲存罐儲存。 57.    一種提供高純高壓氫氣的系統,包括: 有機液體儲氫原料儲存和供應裝置,用於儲存有機液體儲氫原料和向脫氫反應器提供有機液體儲氫原料; 脫氫後液體儲存裝置,用於儲存有機液體儲氫原料脫氫後得到的液體產物; 脫氫反應器裝置,用於將有機液體儲氫原料在脫氫催化劑的作用下進行脫氫反應得到包括氫氣的脫氫反應產物; 冷卻分離裝置,用於將脫氫反應產物分離得到富氫氣體產物和液體產物; 儲氫-供氫裝置,其包括儲氫合金儲存容器,儲氫合金加熱系統,用於將富氫氣體與儲氫合金在低溫低壓下接觸吸氫,吸附飽和後加熱脫氫; 任選的吹掃裝置用於除去儲氫容器中的有機物; 氫氣供應裝置,將高壓氫氣提供給用氫裝置或氫氣儲存罐。 58.    根據方案57所述的系統,其特徵在於,所述系統設置集成建造在貨櫃內,作為貨櫃式製氫系統置於加氫站使用,或直接建造在加氫站使用。 59.    根據方案57所述的系統,其特徵在於,所述的儲氫-供氫裝置包括一個或多個儲氫合金儲存容器,多個儲氫合金儲存容器可以並聯或串聯或者並聯和串聯混合聯接。 60.    根據方案57~59任一項所述的系統,其特徵在於,至少一個所述的儲氫合金儲存容器為耐高壓容器和/或所述的氫氣供應裝置為耐高壓的裝置。優選的,其耐受壓力為35MPa以上。 61.    一種移動式供氫系統,包括運輸車輛和設置在運輸車輛上的方案57~60任一項所述的提供高純氫氣的系統。 62.    一種分散式供氫裝置,包括方案57~60任一項所述的提供高純氫氣的系統,任選包括高壓氫氣貯存罐。實施例 In addition, the present invention further provides the following solutions: 1. A method for providing high-purity hydrogen, the method comprising: contacting and reacting an organic liquid hydrogen storage raw material with a dehydrogenation catalyst to obtain a dehydrogenation reaction product containing hydrogen; (1) ) Cool the dehydrogenation reaction products to obtain liquid products and hydrogen-rich gas products, and collect the liquid products; (2) Contact hydrogen-rich gas with hydrogen storage alloy to obtain hydrogen-containing alloy, and collect unadsorbed gas; (3) Optional Yes, remove the organic matter in the hydrogen-containing alloy storage container; (4) Heat the hydrogen-containing alloy to release hydrogen to obtain high-purity hydrogen. 2. The method according to scheme 1, characterized in that the hydrogen-rich gas is a hydrogen-rich gas product or a hydrogen-containing gas obtained by further separation of the hydrogen-rich gas product, and the further separation method is for example: temperature-variable separation , Membrane separation, pressure swing adsorption separation or their combination. 3. The method according to scheme 1 or 2, characterized in that the mass fraction of hydrogen in the hydrogen-rich gas is greater than or equal to 80%, such as 80~99%, preferably ≥85%, more preferably ≥90% . 4. The method according to scheme 1, characterized in that the temperature at which the hydrogen-rich gas contacts the hydrogen storage alloy is -70~100°C, preferably -50~90°C, more preferably -30~80°C. 5. The method according to scheme 1, characterized in that the temperature at which the dehydrogenation reaction product is cooled is lower than the boiling point temperature of the organic substance; preferably, it is lower than the boiling point temperature of the organic substance with the lowest liquid boiling point under normal temperature and pressure. 6. The method according to any one of schemes 1 to 5, characterized in that, when in contact with the hydrogen storage alloy, the temperature of the hydrogen-rich gas is lower than the boiling point temperature of the organic liquid hydrogen storage raw material under normal pressure. 7. The method according to scheme 1, characterized in that the hydrogen storage alloys can be one or more types, and multiple hydrogen storage alloys can be used in combination, or in series or in parallel, or in series and parallel; preferably The contact pressure of the hydrogen-rich gas and the hydrogen storage alloy is 0.001 to 5 MPa, for example, 0.01 to 5 MPa or 0.03 to 4 MPa or 0.05 to 5 MPa or 0.08 to 2 MPa or 0.0 05 to 3 MPa or 0.1 to 1 MPa. 8. The method according to scheme 1, wherein the contact between the hydrogen-rich gas and the hydrogen-storage alloy is performed in a hydrogen-storage alloy storage container, and there are one or more hydrogen-storage alloy storage containers; the hydrogen-rich gas The contact pressure with the hydrogen storage alloy is 0.05~5MPa, preferably 0.1~1MPa; when there are multiple hydrogen storage alloy storage containers, and there are hydrogen storage containers in series, preferably, according to the hydrogen-rich gas flow direction, the last contact The contact pressure of the hydrogen storage alloy is 0.05 to 5 MPa, preferably 0.1 to 1 MPa. 9. The method according to scheme 1, characterized in that there are one or more hydrogen storage alloy storage containers, wherein the hydrogen storage alloy in the hydrogen storage alloy container that is finally in contact with hydrogen according to the order of contact with hydrogen is A hydrogen storage alloy with a high equilibrium pressure, wherein the high equilibrium pressure hydrogen storage alloy has at least one temperature point between 150 and 450°C, and the equilibrium pressure of hydrogen absorption is greater than or equal to 35 MPa; preferably, in at least one container The hydrogen storage alloy is a high equilibrium pressure hydrogen storage alloy. 10. The method according to scheme 1, characterized in that it further comprises allowing the hydrogen-containing alloy to release hydrogen, and the released hydrogen is contacted with different hydrogen storage alloys to form hydrogen-containing alloys, and the process is repeated one or more times, of which at least the last time The hydrogen storage alloy used in the repeated process is a hydrogen storage alloy with high equilibrium pressure. 11. The method according to any one of schemes 1 to 10, wherein the hydrogen storage alloy is rare earth AB 5 type, zirconium titanium AB 2 type, titanium AB type, magnesium A 2 B type One or more of alloy and vanadium-based solid solution type. 12. The method according to scheme 11, characterized in that the rare earth AB 5 type hydrogen storage alloy has a specific molecular formula: M m Ni x1 Co x2 Mn x3 Fe x4 Al x5 Sn x6 , wherein 4.5 ≤x1+x2+x3+x4+x5+x6≤5.5, 3≤x1≤5.5, preferably 3≤x1≤4.9, 0≤x2≤1.5, preferably 0.1≤x2≤1, 0≤x3≤0.8, preferably 0.1≤ x3≤0.6, 0≤x4≤0.8, preferably 0.1≤x4≤0.6, 0≤x5≤0.75, preferably 0≤x5≤0.5, 0≤x6≤0.2, preferably 0≤x6≤0.15; Mm contains La, Ce, Pr, Nd, Y mixed rare earth metals, the calculation formula is Mm=La y1 Ce y2 Nd y3 Pr y4 Y y5 , y1+y2+y3+y4+y5=1, 0.4≤y1≤1, preferably 0.4≤y1≤0.8 , 0≤y2≤0.45, preferably 0.1≤y2≤0.45, 0≤y3≤0.2, 0≤y4≤0.05, 0≤y5≤0.05. 13. The method according to claim 11, characterized in that the zirconium-titanium series AB 2 type hydrogen storage alloy, wherein A=Mg x1 Ca x2 Ti x3 Zr x4 Y x5 La x6 , x1+x2+x3+x4 +x5+x6=0.9-1.1, 0≤ x1 ≤ 1.1, preferably 0.90≤ x1≤ 1.05, 0≤ x2 ≤ 0.7, preferably 0≤ x2≤ 0.25, 0≤ x3 ≤ 1.05, preferably 0.8≤ x3≤ 1, 0≤ x4 ≤ 1.05, preferably 0.85≤ x4≤ 1, 0≤ x5 ≤ 0.2, preferably 0≤ x5≤ 0.05, 0≤ x6 ≤ 0.2, preferably 0≤ x6≤ 0.05, and x3/(x3+x4)≥0.7 or x3/ (x3+x4)≤0.3; B=V y1 Cr y2 Mn y3 Fe y4 Co y5 Ni y6 Cu y7 , y1+y2+y3+y4+y5+y6+y7=1.9-2.1, 0≤ y1 ≤ 2.1, preferably 0≤ y1≤ 1.8, 0≤ y2 ≤ 2.1, preferably 0≤ y2≤ 1.85, 0≤ y3 ≤ 2.1, preferably 0≤ y3≤ 2.05, 0≤ y4 ≤ 1.6, preferably 0≤y4≤ 1.5, 0≤ y5 ≤0.5 , Preferably 0≤y5≤0.3, 0≤y6≤0.5, preferably 0≤y6≤0.3, 0≤y7≤0.5, preferably 0≤y7≤0.2, and 1.7≤y1+y2+y3+y4≤2.1. 14. The method according to scheme 11, characterized in that the AB type hydrogen storage alloy, wherein A=Ti x1 Zr x2 Y x3 La x4 , x1+x2+x3+x4=0.85-1.1, 0≤x1 ≤1.1, preferably 0.90≤x1≤1.05, 0≤x2 ≤1.1, preferably 0≤x2≤0.5, 0≤x3 ≤0.2, preferably 0≤x3≤0.05, 0≤x4 ≤0.2, preferably 0≤x4≤0.05; B =V y1 Cr y2 Mn y3 Fe y4 Co y5 Ni y6 Cu y7 , y1+y2+y3+y4 =0.95-1.05, 0≤ y1 ≤ 0.5, preferably 0≤ y1≤ 0.2, 0≤ y2 ≤ 0.8, preferably 0≤ y2≤ 0.2, 0≤ y3 ≤ 0.8, preferably 0.05≤ y3≤ 0.3, 0< y4 ≤ 1.05, preferably 0.7≤y4≤ 1.05, 0≤ y5 ≤0.35, preferably 0≤ y5≤ 0.10, 0≤ y6 ≤ 0.45, preferably 0≤y6≤0.20, 0≤y7≤0.3, preferably 0≤y7≤0.2. 15. The method according to scheme 11, wherein the vanadium-based solid solution hydrogen storage alloy has a specific molecular formula: A x1 B x2 , x1+x2=1, 0.85 ≤ x1 ≤ 0.95, preferably 0.90≤ x1≤ 0.95, 0.05 ≤ x2 ≤ 0.15, preferably 0.05≤ x2≤ 0.10; where A=Ti y1 V y2 Zr y3 Nb y4 Y y5 La y6 Ca y7 , y1+y2+y3+y4+y5+y6+y7 =1, 0≤ y1 ≤ 0.9, preferably 0≤ y1≤ 0.8, 0≤ y2 ≤ 0.95, preferably 0≤y2≤ 0.95, 0≤ y3 ≤ 0.90, preferably 0≤ y3≤ 0.8, 0≤ y4 ≤ 0.55, preferably 0 ≤ y4≤ 0.4, 0≤ y5 ≤ 0.2, preferably 0.25≤ y5≤ 0.05, 0≤ y6≤ 0.1, preferably 0≤ y6≤ 0.05, 0≤ y7 ≤ 0.1, preferably 0≤ y7≤ 0.05; B=Mn z1 Fe z2 Co z3 Ni z4 , z1+ z2+ z3+ z4=1, 0≤ z1 ≤ 1, preferably 0≤ z1≤0.95, 0≤ z2 ≤ 0.95, preferably 0≤z2≤0.95, 0.7≤z1+z2≤1.0, 0≤z3 ≤ 0.3, preferably 0≤z3≤0.2, 0≤z4≤0.45, preferably 0≤z4≤0.3. 16. The method according to scheme 1 or 11, wherein the hydrogen storage alloy is a combination of a first hydrogen storage alloy and a second hydrogen storage alloy; wherein the first hydrogen storage alloy is magnesium-based A 2 B The type hydrogen storage alloy is used for hydrogen-rich gas contact, the second hydrogen storage alloy is used to pressurize the first hydrogen storage hydrogen, and the second hydrogen storage alloy is a hydrogen storage alloy with a high equilibrium pressure. 17. The method according to claim 16, wherein the second hydrogen storage alloy is one or more of rare earth AB 5 type, zirconium titanium AB 2 type, and titanium AB type. 18. The method according to scheme 1 or 16, characterized in that the hydrogen-rich gas first passes through the first hydrogen storage alloy for impurity separation; then the high-purity hydrogen released by the first hydrogen storage alloy is combined with the second hydrogen storage alloy The contact is made and the second hydrogen storage alloy is then made to release hydrogen gas under high pressure. 19. The method according to claim 16, characterized in that the hydrogen desorption temperature of the first hydrogen storage alloy is higher than the hydrogen absorption temperature of the second hydrogen storage alloy, and the temperature difference is preferably ≥ 100°C, preferably 350°C ≥ temperature difference ≥ 150°C. 20. The method according to claim 16, wherein the first hydrogen storage alloy and the second hydrogen storage alloy are in different hydrogen storage alloy storage tanks, and the first hydrogen storage alloy storage tank and the second hydrogen storage alloy storage tank There is a heat exchange system in the middle of the tank. 21. The method according to scheme 16 or 17, wherein the specific molecular formula of the A 2 B type first hydrogen storage alloy is: A=Mg x1 Ca x2 Ti x3 La x4 Y x5 , x1+ x2+x3=1.9-2.1, 1.5≤x1 ≤2.1, preferably 1.70≤x1≤2.05, 0≤x2 ≤0.5, preferably 0≤x2≤0.2, 0≤x3 ≤0.8, preferably 0≤x3≤0.50; B=Cr y1 Fe y2 Co y3 Ni y4 Cu y5 Mo y6 , y1+y2+y3+y4+y5+y6=0.9-1.1, 0≤y1 ≤0.30, preferably 0≤y1≤0.2, 0≤y2≤0.20, preferably 0≤ x2≤0.10, 0≤y3 ≤1.1, preferably 0≤y3≤1, 0≤y4 ≤1.1, preferably 0≤y4≤1.05, 0≤y5≤0.4, 0≤y6≤0.15, preferably 0≤y6≤0.10; For the AB5 type second hydrogen storage alloy, the specific molecular formula is: M m Ni x1 Co x2 Mn x3 Fe x4 Al x5 Sn x6 , where 4.5≤x1+x2+x3+x4+x5+x6≤5.5, 3≤ x1≤5.5, preferably 3≤x1≤4.9, 0≤x2≤1.5, preferably 0.1≤x2≤1, 0≤x3≤0.8, preferably 0.1≤x3≤0.6, 0≤x4≤0.8, preferably 0.1≤x4≤0.6, 0≤x5≤0.75, preferably 0≤x5≤0.5, 0≤x6≤0.2, preferably 0≤x6≤0.15; Mm is a mixed rare earth metal containing La, Ce, Pr, Nd, and Y, and the calculation formula is Mm=La y1 Ce y2 Nd y3 Pr y4 Y y5 , y1+y2+y3+y4+y5=1, 0.4≤y1≤1, preferably 0.4≤y1≤0.8, 0≤y2≤0.45, preferably 0.1≤y2≤0.45, 0≤y3 ≤0.2, 0≤y4≤0.05, 0≤y5≤0.05; In the second hydrogen storage alloy of the zirconium-titanium series AB 2 type alloy, A=Mg x1 Ca x2 Ti x3 Zr x4 Y x5 La x6 , x1+x2 +x3+x4+x5+x6=0.9-1.1, 0≤x1≤1.1, preferably 0.90≤x1≤1.05, 0≤x2≤0.7, preferably 0≤x2≤0.25, 0≤x3 ≤1.05, preferably 0.8≤x3≤ 1, 0 ≤ x4 ≤ 1.05, preferably 0.85 ≤ x4 ≤ 1, 0 ≤ x5 ≤ 0.2, preferably 0 ≤ x5 ≤ 0.05, 0 ≤ x6 ≤ 0.2, preferably 0 ≤ x6 ≤ 0.05, and x3/(x3+x4) ≥ 0.7 or x3/(x3+x4 )≤0.3; B=V y1 Cr y2 Mn y3 Fe y4 Co y5 Ni y6 Cu y7 , y1+y2+y3+y4+y5+y6+y7=1.9-2.1, 0≤ y1 ≤ 2.1, preferably 0≤ y1≤ 1.8, 0≤ y2 ≤ 2.1, preferably 0≤ y2≤ 1.85, 0≤ y3 ≤ 2.1, preferably 0≤ y3≤ 2.05, 0≤ y4 ≤ 1.6, preferably 0≤y4≤1.5, 0≤ y5 ≤0.5, preferably 0≤ y5≤ 0.3, 0≤ y6 ≤ 0.5, preferably 0≤ y6≤ 0.3, 0≤ y7 ≤ 0.5, preferably 0≤ y7≤ 0.2, and 1.7≤y1+y2+y3+y4≤2.1; said titanium series AB type Alloy second hydrogen storage alloy, where A=Ti x1 Zr x2 Y x3 La x4 , x1+x2+x3+x4=0.85-1.1, 0≤x1≤1.1, preferably 0.90≤x1≤1.05, 0≤x2 ≤1.1, Preferably 0≤x2≤0.5, 0≤x3 ≤0.2, preferably 0≤x3≤0.05, 0≤x4 ≤0.2, preferably 0≤x4≤0.05; B=V y1 Cr y2 Mn y3 Fe y4 Co y5 Ni y6 Cu y7 , y1+y2+y3+y4 =0.95-1.05, 0≤ y1 ≤ 0.5, preferably 0≤ y1≤ 0.2, 0≤ y2 ≤ 0.8, preferably 0≤ y2≤ 0.2, 0≤ y3 ≤ 0.8, preferably 0.05≤ y3≤ 0.3 , 0< y4 ≤ 1.05, preferably 0.7≤y4≤ 1.05, 0≤ y5 ≤0.35, preferably 0≤ y5≤ 0.10, 0≤ y6 ≤ 0.45, preferably 0≤ y6≤ 0.20, 0≤ y7 ≤ 0.3, preferably 0≤ y7 ≤ 0.2. 22. The method according to scheme 16, characterized in that the contact temperature of the hydrogen-rich gas with the first hydrogen storage alloy is 20 to 150°C, the hydrogen partial pressure is 0.001 to 0.1 MPa; the temperature at which the first hydrogen storage alloy releases hydrogen ( The hydrogen release temperature is 150~450℃, and the hydrogen partial pressure for hydrogen release is 0.1~5MPa. 23. The method according to scheme 16 or 22, characterized in that the hydrogen absorption temperature of the second hydrogen storage alloy is -70~100°C, the hydrogen partial pressure for hydrogen absorption is 0.1~5MPa, and the second hydrogen storage alloy has a hydrogen desorption temperature It is 150~450°C, and the hydrogen partial pressure of hydrogen release is ≥35MPa, for example, 35~100MPa. 24. The method according to schemes 16 and 22, characterized in that the hydrogen absorption temperature at which the hydrogen-rich gas contacts the first hydrogen storage alloy is preferably 50~100°C, and the hydrogen partial pressure is preferably 0.001~0.03MPa; The hydrogen release temperature of the hydrogen alloy is preferably 200~350℃, and the hydrogen partial pressure of hydrogen is preferably 0.1~1 MPa; the hydrogen absorption temperature of the second hydrogen storage alloy is preferably -30~100℃, and the hydrogen partial pressure of hydrogen absorption is preferably It is 0.1 to 1 MPa, the hydrogen release temperature of the second hydrogen storage alloy is preferably 200 to 350° C., and the hydrogen partial pressure for hydrogen release is preferably ≥ 35 MPa. 25. The method according to scheme 1, characterized in that the temperature at which the hydrogen storage alloy releases hydrogen (the temperature at which the hydrogen storage alloy is heated, referred to as the hydrogen release temperature) is 150 to 450°C, and the pressure of the released hydrogen is ≥35MPa, for example, 35~100MPa to obtain high-purity and high-pressure hydrogen, or the partial pressure of hydrogen to be released is 0.1~5MPa to obtain high-purity hydrogen, wherein the hydrogen release temperature is higher than the hydrogen absorption temperature. 26. The method according to claim 1, characterized in that the removal of organic matter in the hydrogen-containing alloy adopts a purging method, such as hydrogen purging. The method is such as: after the hydrogen storage alloy reaches a predetermined adsorption capacity, the hydrogen storage is stopped. The alloy supplies hydrogen-rich gas, allows hydrogen to pass through the hydrogen-containing alloy, and takes out the organic gas in the hydrogen-containing alloy and (also known as the hydrogen-containing alloy storage container), and introduces it into the storage tank or uses the storage in other hydrogen storage alloy storage containers. Hydrogen alloy absorption; among them, preferably, the purity of the purging hydrogen gas is greater than 90% by weight, more preferably greater than 95% by weight, for example, greater than 99% by weight. 27. The method according to scheme 1, characterized in that the reaction temperature of the contact reaction of the organic liquid hydrogen storage raw material with the dehydrogenation catalyst is 150-450°C, preferably 200-400°C, more preferably 300-350°C. 28. The method according to scheme 1, characterized in that the weight hourly space velocity of the organic liquid hydrogen storage raw material in contact with the dehydrogenation catalyst is 0.5-50 h -1 , preferably 1 to 45 h -1 and more preferably 2 to 30 h -1 . 29. The method according to scheme 1, characterized in that the contact reaction pressure of the organic liquid hydrogen storage raw material and the dehydrogenation catalyst is 0.03-5 MPa or 0.3-5 MPa, preferably 0.1-3 MPa, such as 0.5-2 MPa or 0.2-1.6 MPa. 30. The method according to scheme 1, characterized in that the organic liquid hydrogen storage raw material is mixed with hydrogen and then contacted with a dehydrogenation catalyst, and the hydrogen-to-hydrocarbon ratio (the molar ratio of hydrogen to the organic liquid hydrogen storage raw material) is 0-10. 31. The method according to scheme 1, characterized in that the dehydrogenation reaction of the organic liquid is in the presence or absence of hydrogen, the reaction temperature of the dehydrogenation of the organic liquid is 150~450℃, and the weight hourly space velocity is 0.5~50h -1 , The reaction pressure is 0.3-5MPa, the hydrogen-to-hydrocarbon ratio is 0-10 mole ratio, the preferred reaction temperature is 200-400℃, the weight hourly space velocity is 1-30h -1 , and the hydrogen-hydrocarbon ratio is 0-8 mole ratio. 32. The method according to scheme 1, wherein the dehydrogenation catalyst is a metal-supported catalyst, and the metal-supported catalyst includes a carrier and a supported active metal component; the carrier, the active The metal preferably includes one or more of Group VIII metals; more preferably, the active metal component contains a first active metal and optionally a second active metal, and the first active metal is Pt, Pd, Ru, Rh, Ir One or more of the second active metal Ni, Re, Sn, Mo, Cu, Fe, Ca, Co, W, the second active metal is preferably one of Ni, Re, Sn Or more; more preferably, the first active metal includes Pt; or, the dehydrogenation catalyst includes a carrier and a supported active metal component, the carrier is selected from aluminum oxide, silicon dioxide, titanium dioxide, oxide One or more of zirconium, activated carbon, and silicon-aluminum materials, and the active metal is selected from at least two metals selected from Ni, Zn, Sn, Cu, Fe, Ag, P, In, Re, Mo, Co, Ca, and W, and further Preferably two or more of Ni, Zn, Sn, Cu or the active metal includes Ni and selected from Zn, Sn, Cu, Fe, Ag, P, In, Re, Mo, Co, Ca, W One or more of. 33. The method according to scheme 32, wherein the mass fraction of the carrier in the dehydrogenation catalyst is 70 to 99.9%, and the mass fraction of the metal component is 0.1 to 30%. 34. The method according to scheme 1, wherein the dehydrogenation catalyst comprises a carrier and an active metal component, and the carrier is a carrier composition, and the carrier composition includes alumina and a modified metal oxide. The modified metal oxide is titanium oxide and/or zirconium oxide, wherein ɳ of the modified metal oxide is less than 0.3, where ɳ = the value of the crystal phase modified metal oxide in the carrier composition Weight percentage/weight percentage of the chemical composition of the modified metal oxide in the carrier composition, titanium oxide is calculated as TiO 2 and zirconium oxide is calculated as ZrO 2. 35. The method according to item 34, wherein the carrier composition ɳ=0, and preferably, the first metal oxide monolayer is dispersed on an alumina matrix. 36. The method according to item 34, characterized in that the mass fraction of alumina in the carrier composition is 80-98.5 %, preferably 83-97.5% or 85-95% or 90-95%; The mass part of the modified metal oxide is 1.5-20%, preferably 2.5-17% or 5-15%, or 5-10%. 37. The method according to item 34, wherein the modified metal oxide comprises titanium oxide, wherein preferably, in the carrier composition, the mass fraction of titanium dioxide is preferably 2-20%, for example 5-15% or 5-10% or 2.5-17%, the mass fraction of zirconium dioxide is preferably 0-8%, such as 0-6% or 0-3% or 1-6%. 38. The method according to scheme 34, characterized in that, relative to the pure phase of TiO 2 , in the XPS map of the carrier composition , the binding energy of Ti 2P 3/2 orbital electrons is offset, and the binding energy is 458.8 eV The peak at the high binding energy shifted from 0.6-0.7eV to 459.4-459.5 eV, and/or the peak at the Ti 2P 1/2 orbital electron binding energy of 464.5eV shifted from 0.8-0.9eV to 465.3 in the high binding energy direction ~465.4eV. 39. The method according to item 34, wherein the oxide matrix has a phase structure of at least one of γ oxide, η-alumina, rho alumina, or χ alumina. 40. The method according to item 34, wherein the specific surface area of the carrier composition is 100-350 m 2 /g. 41. The method according to scheme 34, wherein the pore volume of the carrier composition is 0.3 to 1.3 ml/g. 42. The method according to scheme 1 or 34, wherein the dehydrogenation catalyst comprises a support comprising alumina and a modified metal oxide and an active metal component, and the modified metal oxide is titanium oxide And/or zirconium oxide; the active metal component is an oxide of an active metal and/or a simple substance of an active metal. The active metal, for example, one of the eighth subgroup metal, the seventh subgroup metal, the fifth subgroup metal, the sixth subgroup metal, the first subgroup metal, the rare earth element, the alkaline earth metal, the fourth main group metal, or Multiple; Preferably, the active metal includes Pt and/or Ni, including or not including other elements; preferably, the other elements are V, Cr, Mn, Fe, Co, Ni, Cu One or more of, Ag, Ce, W, Mo, Sn, Ca, Pt, Pd, Ru, Re, Rh, Ir, Os, Zn, P, In. 43. The method according to item 42, wherein the active metal includes Pt, with or without other metals, the other metals may be noble metals or non-noble metals, and the other metals are Pd, Ru One or more of, Re, Rh, Ir, Os, Sn, V, Mo, Cr, Mn, Fe, Co, Ni, Cu, Ag, Ce, W, Cu, Ca. 44. The method according to scheme 42, characterized in that, in the dehydrogenation catalyst, the content of the active metal is 0.1-20% by weight, such as 0.1-15% by weight, the content of the carrier is 75-99.9% by weight, and the content of Pt is The content is 0.1-10% by weight; in the composition of the dehydrogenation catalyst of the present invention, the content of the active metal is calculated by the simple substance of the noble metal and the oxide of the non-noble metal. 45. The method according to scheme 43, wherein the other metal is one or more of Pd, Ru, Re, Rh, Ir, and Os. 46. The method according to scheme 43, characterized in that, in the dehydrogenation catalyst, the content of the active metal is 0.1-10% by weight, preferably 0.5-8% by weight; the content of the carrier is 90-99.9 % By weight, preferably 92 to 99.5% by weight. 47. The method according to scheme 43, wherein the content of Pt in the catalyst is 0.1 to 2% by weight, for example, 0.3 to 1.5% by weight or 0.5 to 1% by weight, and the content of other metals is 0 to 9.9 The weight% is, for example, 0.1-2 or 0.2-1% by weight or 0.1-0.8% by weight, and the content of the carrier is preferably 90-99.9% by weight, such as 96-99.6% by weight or 98-99.5% by weight or 98.5-99.3% by weight. 48. The method according to scheme 43, wherein the other metal elements are Sn, V, Mo, Cr, Mn, Fe, Co, Ni, Cu, Ag, Ce, W, Cu, Ca One or more. 49. The method according to scheme 43, wherein the content of Pt in the catalyst is 0.1-10% by weight, and the content of the other metals is 0-15% by weight. 50. The method according to scheme 43, wherein the content of Pt in the catalyst is 0.1 to 2% by weight, for example, 0.5 to 1.5% by weight, and the content of other metals is 0 to 15% by weight, for example, 1 to 10% by weight. Or 2-8% by weight or 3-7% by weight; the content of the carrier is preferably 85-99.9% by weight, for example, 90-99% by weight or 90-98% by weight or 92-97% by weight. 51. The method according to item 34, wherein the active metal includes nickel, with or without other metals, and the other metals are Zn, Sn, Cu, Fe, Ag, P, In, Re, One or more of Mo, Co, Ca, and W. 52. The method according to item 51, characterized in that, in the catalyst, the active metal is 5% to 30% by mass, and the carrier is 70 to 95% by mass; and the carrier is preferably 75 by mass. ~90%, the mass fraction of active metal is preferably 10%-25%. 53. The method according to item 51, wherein the content of nickel in the catalyst is 5-25% by weight, calculated as oxide, preferably 6-20% by weight, for example, 7-15% by weight or 7-12 % By weight or 8-11% by weight, the content of the other metal is 0-15% by weight, preferably 0-10% by weight, for example, 0.5-8% by weight or 1-5% by weight. 54. The method according to scheme 1, wherein the organic liquid hydrogen storage raw material is a saturated/or unsaturated hydrocarbon containing a naphthenic ring, with or without heteroatoms, and the heteroatom-containing organic hydrogen storage compound is An organic substance obtained by the substitution of a hydrocarbon containing a cycloalkane ring by a heteroatom, wherein the heteroatom substitution occurs on the cycloalkane ring. Among them, the organic liquid hydrogen storage raw material is preferably a saturated or unsaturated hydrocarbon containing a cycloalkane ring that does not contain a heterocyclic atom. More preferably, it is a saturated or unsaturated hydrocarbon without heterocyclic atoms with the total number of aromatic rings and cycloalkane rings less than or equal to 2; more preferably, the organic hydrogen storage raw material is a heterocyclic ring-free hydrocarbon with the total number of aromatic rings and cycloalkane rings less than or equal to 2 Saturated or unsaturated hydrocarbons of atoms; said saturated and unsaturated hydrocarbons containing cycloalkane rings without heteroatoms include: one or more of cyclohexane, methylcyclohexane, decalin, and bicyclohexane ; Heteroatom-containing saturated or unsaturated hydrocarbons containing cycloalkane rings include: nitrogen-containing heterocyclic compounds and nitrogen/boron heterocyclic compounds, for example, nitrogen-containing heterocyclic compounds including decahydrozole, dodecahydroethyl Azole, indoline, 4-aminopiperidine, piperidine-4-carboxamide, perhydro-4,7-phenanthroline, 2-methyl-1,2,3,4-tetrahydroquinoline One or more of 2,6-dimethyldecahydro-1,5-naphthyridine; nitrogen/boron heteroatom-containing unsaturated hydrocarbons include: 1,2-BN-cyclohexane, 3-methyl- One or more of 1,2-BN-cyclopentane. 55. The method according to scheme 1, characterized in that it further includes introducing the released hydrogen into a hydrogen storage tank to store hydrogen; or, the obtained high-purity and high-pressure hydrogen can be directly used for hydrogen fuel cell vehicle refueling. 56. An efficient decentralized method for producing high-purity and high-pressure hydrogen, the method comprising: (1) In a dehydrogenation reactor, the liquid organic hydrogen storage raw material is subjected to a dehydrogenation reaction in the presence of a dehydrogenation catalyst to obtain dehydrogenation including hydrogen. Hydrogen reaction products; (2) In the cooling separation device, the dehydrogenation reaction products are cooled and separated to obtain a hydrogen-rich stream and an organic liquid; (3) In a hydrogen storage alloy storage container, make the hydrogen-rich stream or the purified rich The hydrogen stream contacts the hydrogen storage alloy to obtain the hydrogen-containing alloy; (4) Hydrogen purging removes the organic matter in the hydrogen storage alloy storage container; wherein the purity of the purged hydrogen is preferably greater than 90% by weight, more preferably greater than 95% by weight; (5) ) Heating the hydrogen-containing alloy to release hydrogen to obtain high-pressure hydrogen and supply the obtained high-pressure hydrogen to a hydrogen device or a high-pressure hydrogen storage tank for storage. 57. A system for providing high-purity and high-pressure hydrogen, including: organic liquid hydrogen storage raw material storage and supply device, used to store organic liquid hydrogen storage raw material and provide organic liquid hydrogen storage raw material to the dehydrogenation reactor; liquid storage device after dehydrogenation , Used to store the liquid product obtained after the dehydrogenation of the organic liquid hydrogen storage raw material; dehydrogenation reactor device, used to perform the dehydrogenation reaction of the organic liquid hydrogen storage raw material under the action of a dehydrogenation catalyst to obtain a dehydrogenation reaction product including hydrogen ; Cooling separation device, used to separate the dehydrogenation reaction products to obtain hydrogen-rich gas products and liquid products; Hydrogen storage-hydrogen supply device, which includes a hydrogen storage alloy storage container, a hydrogen storage alloy heating system, used to combine hydrogen-rich gas with The hydrogen storage alloy contacts and absorbs hydrogen at low temperature and low pressure, and heats to dehydrogenate after adsorption saturation; Optional purging device is used to remove organic matter in the hydrogen storage container; Hydrogen supply device, which supplies high-pressure hydrogen to the hydrogen device or the hydrogen storage tank . 58. The system according to item 57, wherein the system is configured to be integrated and built in a container, and used as a container-type hydrogen production system in a hydrogen refueling station, or directly built in a hydrogen refueling station for use. 59. The system according to item 57, wherein the hydrogen storage-hydrogen supply device includes one or more hydrogen storage alloy storage containers, and multiple hydrogen storage alloy storage containers can be connected in parallel or in series or mixed in parallel and in series. Join. 60. The system according to any one of the solutions 57 to 59, wherein at least one of the hydrogen storage alloy storage containers is a high-pressure resistant container and/or the hydrogen supply device is a high-pressure resistant device. Preferably, the withstand pressure is 35MPa or more. 61. A mobile hydrogen supply system, including a transportation vehicle and the system for providing high-purity hydrogen as described in any one of solutions 57 to 60 installed on the transportation vehicle. 62. A decentralized hydrogen supply device, comprising the system for providing high-purity hydrogen according to any one of schemes 57 to 60, optionally including a high-pressure hydrogen storage tank. Example

下面的實施例將對本發明予以進一步說明,但其不應被用於限制本發明。The following examples will further illustrate the present invention, but they should not be used to limit the present invention.

原料和測試方法Raw materials and test methods

SB粉:德國Sasol公司,固含量75重量%。SB powder: Sasol, Germany, with a solid content of 75% by weight.

P25(二氧化鈦):德國Degussa公司,固含量98重量%。P25 (titanium dioxide): Degussa, Germany, with a solid content of 98% by weight.

金屬酸鹽和金屬鹽購買於國藥集團化學試劑北京有限公司。Metal salt and metal salt were purchased from Sinopharm Chemical Reagent Beijing Co., Ltd.

有機液體儲氫原料購買於百靈威科技有限公司。Organic liquid hydrogen storage raw materials were purchased from Bailingwei Technology Co., Ltd.

在各實施例和對照例中,負載型有機液體脫氫催化劑的組成均由X射線螢光法測定,有機液體儲氫原料脫氫的產物由層析分析得到。氫氣純度由氣相層析法分析得到。In each embodiment and comparative example, the composition of the supported organic liquid dehydrogenation catalyst is determined by X-ray fluorescence method, and the dehydrogenation product of the organic liquid hydrogen storage raw material is obtained by chromatographic analysis. The purity of hydrogen is analyzed by gas chromatography.

本發明實施例和對照例的有機液體脫氫實驗是在固定床反應器中進行的。The organic liquid dehydrogenation experiments of the examples of the present invention and the comparative examples were carried out in a fixed-bed reactor.

分離採用冷卻介質冷卻分離,儲氫容器連接在分離系統後,能量遞送介質為熱水或者熱水蒸氣,水蒸氣由水蒸氣產生器產生。The separation uses a cooling medium to cool the separation. After the hydrogen storage container is connected to the separation system, the energy delivery medium is hot water or hot water vapor, and the water vapor is generated by a water vapor generator.

在以下實施例中,在製備有機液體儲氫原料的脫氫催化劑的載體中,所述的晶相改性金屬氧化物百分含量採用如下的方法測量:In the following examples, in the carrier of the dehydrogenation catalyst for preparing organic liquid hydrogen storage raw materials, the percentage of the crystal phase modified metal oxide is measured by the following method:

使用裝配有以40kV,30mA驅動的長細聚集銅X-射線源的Philips XRG3100產生器,Philips3020數位測角儀,Philips3710MPD控制電腦和Kevex PSI Peltier冷卻矽探測器進行所有的X-射線繞射測量。採用Kevex4601離子泵控制器,Kevex4608Peltier電源,Kevex4621檢測器偏壓,Kevex4561A脈衝處理器和Kevex4911-A單通道分析器操作Kevex檢測器。使用Philips APD4.1C版軟體獲得繞射圖案。使用Material Data,Inc.。Riqas 3.1C版軟體(Qutokumpu HSC Chemistry for Windows; 用戶手冊,Qutokumpo Resarch Oy,Pori,芬蘭(1999))進行所有的rietveld計算。A Philips XRG3100 generator equipped with a long and thin concentrated copper X-ray source driven by 40kV, 30mA, a Philips3020 digital goniometer, a Philips3710MPD control computer and a Kevex PSI Peltier cooled silicon detector were used for all X-ray diffraction measurements. The Kevex4601 ion pump controller, the Kevex4608 Peltier power supply, the Kevex4621 detector bias, the Kevex4561A pulse processor and the Kevex4911-A single-channel analyzer were used to operate the Kevex detector. Use Philips APD4.1C software to obtain the diffraction pattern. Use Material Data, Inc.. Riqas version 3.1C software (Qutokumpu HSC Chemistry for Windows; User Manual, Qutokumpo Resarch Oy, Pori, Finland (1999)) performs all rietveld calculations.

在以下實施例中,XPS實驗在Thermo Fisher公司的ESCALab250型X射線光電子能譜儀上進行。激發源為單色化Al Kα X射線,能量為1486.6 eV,功率為150 W。窄掃描所用通透能為30 eV。分析時的基礎真空約為6.5×10-10 mbar。結合能用污染碳的C1s峰(284.8 eV)校正。載體組合物表面上改性金屬氧化物的重量百分含量通過測量10個樣品顆粒,取平均值。In the following examples, the XPS experiment was performed on the ESCALab250 X-ray photoelectron spectrometer from Thermo Fisher. The excitation source is a monochromatic Al K α X-ray with an energy of 1486.6 eV and a power of 150 W. The transmission energy used for the narrow scan is 30 eV. The base vacuum during analysis is about 6.5×10 -10 mbar. The binding energy is corrected by the C1s peak (284.8 eV) of contaminated carbon. The weight percentage of the modified metal oxide on the surface of the carrier composition is measured by measuring 10 sample particles and taking the average value.

在以下實施例中,比表面積和孔體積採用美國Micromertics儀器公司的ASAP 2400型自動吸附儀,通過靜態低溫吸附容量法測定(根據GB/T5816-1995的方法),具體方法為:將待測物在250℃,1.33Pa下抽真空脫氣4小時,在-196℃下使其與作為吸附質的氮氣接觸,靜態吸附達到吸附平衡;由氮氣進氣量與吸附後殘存於氣相中的差值計算出吸附劑吸附氮氣的量,然後用BET公式計算比表面積和孔體積。製備有機液體儲氫原料脫氫催化劑的載體 載體實施例 1In the following examples, the specific surface area and pore volume are determined by the static low-temperature adsorption capacity method (according to the method of GB/T5816-1995) using the ASAP 2400 automatic adsorption instrument of Micromertics Instrument Company of the United States. The specific method is: Vacuum degassing at 250°C and 1.33Pa for 4 hours, contact with nitrogen as adsorbate at -196°C, static adsorption reaches adsorption equilibrium; the difference between the nitrogen gas intake and the remaining in the gas Calculate the amount of nitrogen adsorbed by the adsorbent, and then use the BET formula to calculate the specific surface area and pore volume. Example 1 of carrier carrier for preparing organic liquid hydrogen storage raw material dehydrogenation catalyst

將SB粉在500℃焙燒4小時得到γ-Al2 O3 ,該γ-Al2 O3 的比表面積176m2 /g,孔體積為0.48 mL/g。The SB powder is calcined at 500° C. for 4 hours to obtain γ-Al 2 O 3. The γ-Al 2 O 3 has a specific surface area of 176 m 2 /g and a pore volume of 0.48 mL/g.

取上述γ-Al2 O3 500g置於流化反應器(反應器的內徑為10cm,高度為40cm)內,將四氯化鈦置於20℃恒溫浴槽中,氮氣(溫度是25℃)以10L/min的流速通四氯化鈦再從流化反應器底部進入流化反應器,流化1小時後,停止將氮氣通過四氯化鈦浴槽;將氮氣(溫度是25℃)以10L/min的流速通過放置於50℃恒溫浴槽中的去離子水再從反應器底部進入流化反應器,流化4小時,進行水解,得到水解後的載體。將水解後的載體在空氣氣氛,550℃焙燒4小時,得到最終的載體,命名為載體1。載體組成以及載體性質見表1;其X射線繞射(XRD)圖譜見圖1中的“1”。載體實施例 2-8Take 500g of the above-mentioned γ-Al 2 O 3 and place it in a fluidized reactor (the inner diameter of the reactor is 10cm and the height is 40cm), and place the titanium tetrachloride in a constant temperature bath at 20°C and nitrogen (temperature 25°C) Flow the titanium tetrachloride at a flow rate of 10L/min and then enter the fluidized reactor from the bottom of the fluidized reactor. After fluidizing for 1 hour, stop passing the nitrogen through the titanium tetrachloride bath; change the nitrogen (temperature 25℃) to 10L The flow rate of /min passes through the deionized water placed in a constant temperature bath at 50°C and then enters the fluidized reactor from the bottom of the reactor, fluidized for 4 hours, and hydrolyzed to obtain the hydrolyzed carrier. The hydrolyzed carrier was calcined in an air atmosphere at 550° C. for 4 hours to obtain the final carrier, which was named carrier 1. The carrier composition and carrier properties are shown in Table 1; its X-ray diffraction (XRD) pattern is shown in "1" in 1. Carrier Examples 2-8

載體2-8的製備方法同載體實施例1中的載體1的製備方法,區別在於氮氣攜帶四氯化鈦進入流化床時間,和氮氣通入去離子水的水解時間。載體的製備條件,載體組成以及載體性質見表1。載體實施例 9-11The preparation method of Carrier 2-8 is the same as the preparation method of Carrier 1 in Carrier Example 1. The difference lies in the time for nitrogen to carry titanium tetrachloride into the fluidized bed, and the hydrolysis time for nitrogen to pass into deionized water. The carrier preparation conditions, carrier composition and carrier properties are shown in Table 1. Vector Examples 9-11

載體9-11的製備方法同載體實施例1中的載體1的製備方法,區別在於氮氣先通過四氯化鈦,再通過四氯化鋯蒸汽產生器——其溫度為300℃。載體的製備條件,載體組成以及載體性質見表1。載體對照例 1The preparation method of the carrier 9-11 is the same as the preparation method of the carrier 1 in the carrier example 1, the difference is that the nitrogen first passes through the titanium tetrachloride, and then passes through the zirconium tetrachloride steam generator-the temperature is 300°C. The carrier preparation conditions, carrier composition and carrier properties are shown in Table 1. Vector Comparative Example 1

SB粉經過500℃焙燒4小時直接得到的γ-Al2 O3 ,載體命名為載體C1。載體組成以及載體性質見表1。載體對照例 2SB powder is calcined at 500°C for 4 hours to directly obtain γ-Al 2 O 3 , and the carrier is named carrier C1. The carrier composition and carrier properties are shown in Table 1. Carrier control example 2

參考載體實施例1的方法製備載體,區別在於,SB粉經過500℃焙燒4小時得到的γ-Al2 O3 ,和TiO2 物理混合,載體命名為載體C2。載體組成以及載體性質見表1;其X射線繞射(XRD)圖譜見圖1中的“2”。載體對照例 3The carrier was prepared with reference to the method of carrier embodiment 1, the difference is that the γ-Al 2 O 3 obtained by calcining the SB powder at 500° C. for 4 hours is physically mixed with TiO 2 and the carrier is named carrier C2. The carrier composition and carrier properties are shown in Table 1; its X-ray diffraction (XRD) pattern is shown in "2" in 1. Carrier Comparative Example 3

參考載體對照例2製備載體,載體命名為載體C3。載體組成以及載體性質見表1。載體對照例 4The vector was prepared referring to Vector Control Example 2, and the vector was named vector C3. The carrier composition and carrier properties are shown in Table 1. Vector Comparative Example 4

參考載體 實施例6的方法製備載體,區別在於載體為SB粉經過500℃焙燒4小時得到的γ-Al2 O3 ,和四氯化鈦的水溶液物理混合,載體命名為載體C4。載體組成以及載體性質見表1。載體對照例 5Reference carrier The carrier was prepared by the method of Example 6, the difference is that the carrier is γ-Al 2 O 3 obtained by calcining SB powder for 4 hours at 500° C. and physically mixed with an aqueous solution of titanium tetrachloride. The carrier is named carrier C4. The carrier composition and carrier properties are shown in Table 1. Vector Comparative Example 5

SB粉經過500℃焙燒4小時得到的γ-Al2 O3 ,鈦酸四丁酯與去離子水混合攪拌30min,以等體積浸漬的方式浸漬到γ-Al2 O3 上,經過乾燥,550℃焙燒4小時得到複合氧化物載體。載體命名為載體C5。載體組成以及載體性質見表1;其X射線繞射(XRD)圖譜見圖1中的“5”。載體對照例 6SB powder is calcined at 500°C for 4 hours to obtain γ-Al 2 O 3 , tetrabutyl titanate and deionized water are mixed and stirred for 30 minutes, and then impregnated into γ-Al 2 O 3 by an equal volume impregnation method. After drying, 550 The composite oxide carrier was obtained by firing at °C for 4 hours. The vector was named vector C5. The carrier composition and carrier properties are shown in Table 1; the X-ray diffraction (XRD) pattern is shown in "5" in 1. Vector Comparative Example 6

按照載體實施例9的配方製備載體,區別在於,SB粉經過500℃焙燒4小時得到的γ-Al2 O3 ,和TiO2 ,ZrO2 物理混合。載體命名為載體C6。載體組成以及載體性質見表1。載體對照例 7The carrier was prepared according to the formula of carrier example 9. The difference is that γ-Al 2 O 3 obtained by calcining SB powder at 500° C. for 4 hours is physically mixed with TiO 2 and ZrO 2. The vector was named vector C6. The carrier composition and carrier properties are shown in Table 1. Carrier control example 7

參考載體對照例6製備載體,載體命名為載體C7。載體組成以及載體性質見表1。The vector was prepared referring to the vector control example 6, and the vector was named vector C7. The carrier composition and carrier properties are shown in Table 1.

載體實施例1-11和載體對照例1-7製備的載體性質見表1。製備和評價有機液體儲氫原料脫氫催化劑 實施例 1The properties of the carriers prepared in Carrier Examples 1-11 and Carrier Comparative Examples 1-7 are shown in Table 1. Preparation and evaluation of organic liquid hydrogen storage raw material dehydrogenation catalyst Example 1

取0.34克氯鉑酸與水配成20mL浸漬液,取19.84克載體1,將浸漬液緩慢的加入到載體1中,一邊加入一邊攪拌,使浸漬液均勻負載在複合氧化物載體上,浸漬溫度為25℃,浸漬後的固體在120℃氮氣吹掃下乾燥3小時,然後在空氣中進行焙燒;焙燒溫度600℃,焙燒時氣劑比(空氣/固體的體積比)為600:1,焙燒時間為4小時,得到催化劑。催化劑的組成列於表2中。Take 0.34g of chloroplatinic acid and water to make 20mL dipping solution, take 19.84g of carrier 1, slowly add the dipping solution to carrier 1, and stir while adding, so that the dipping solution is evenly supported on the composite oxide carrier. The dipping temperature The impregnated solid is dried at 120°C for 3 hours under a nitrogen purge at 25°C, and then roasted in air; the roasting temperature is 600°C, and the gas-agent ratio (air/solid volume ratio) during roasting is 600:1, roasting The time is 4 hours to obtain the catalyst. The composition of the catalyst is listed in Table 2.

在固定床反應器中對上述製備的催化劑進行甲基環己烷脫氫反應評價,脫氫反應在固定床微反上進行,評價條件為:反應溫度350℃,反應壓力(反應器進口壓力)1MPa,補充氫氣流速150mL/minH2 ,甲基環己烷進料2mL/min,催化劑裝填量20克。催化劑的評價結果列於表2中,其中轉化率=反應的甲基環己烷/總的甲基環己烷進料;選擇性=生成甲苯的甲基環己烷/反應的甲基環己烷。實施例 5The above-prepared catalyst was subjected to methylcyclohexane dehydrogenation reaction evaluation in a fixed-bed reactor. The dehydrogenation reaction was carried out on a fixed-bed microreactor. The evaluation conditions were: reaction temperature 350℃, reaction pressure (reactor inlet pressure) 1MPa, supplementary hydrogen flow rate 150mL/minH 2 , methylcyclohexane feed 2mL/min, catalyst loading amount 20g. The evaluation results of the catalyst are listed in Table 2, where the conversion rate=reacted methylcyclohexane/total methylcyclohexane feed; selectivity=toluene-forming methylcyclohexane/reacted methylcyclohexane alkyl. Example 5

以類似於實施例1的方式,將氯鉑酸和硝酸鎳與水配成20mL浸漬液,取19.7克載體1,將浸漬液緩慢的加入到載體1中,一邊加入一邊攪拌,使浸漬液均勻負載在複合氧化物載體上,浸漬溫度為25℃,浸漬後的固體在120℃氮氣吹掃下乾燥3小時,然後在空氣中進行焙燒;焙燒溫度600℃,焙燒時氣劑比(空氣/固體的體積比)為600:1,焙燒時間為4小時,得到催化劑。催化劑的組成列於表2中。In a manner similar to Example 1, mix chloroplatinic acid, nickel nitrate and water into 20mL dipping solution, take 19.7 g of carrier 1, slowly add the dipping solution to carrier 1, and stir while adding to make the dipping solution uniform Loaded on the composite oxide carrier, the impregnation temperature is 25℃, the impregnated solid is dried under nitrogen purge at 120℃ for 3 hours, and then calcined in air; the calcining temperature is 600℃, and the air-to-agent ratio (air/solid) The volume ratio) is 600:1, and the calcination time is 4 hours to obtain the catalyst. The composition of the catalyst is listed in Table 2.

在固定床反應器中對上述製備的催化劑進行甲基環己烷脫氫反應評價,脫氫反應在固定床微反上進行,評價條件為:反應溫度350℃,反應壓力(反應器進口壓力)1MPa,補充氫氣流速150mL/minH2 ,甲基環己烷進料2.5mL/min,催化劑裝填量20克。催化劑的評價結果列於表2中,其中轉化率=反應的甲基環己烷/總的甲基環己烷進料;選擇性=生成甲苯的甲基環己烷/反應的甲基環己烷。實施例 10The above-prepared catalyst was subjected to methylcyclohexane dehydrogenation reaction evaluation in a fixed-bed reactor. The dehydrogenation reaction was carried out on a fixed-bed microreactor. The evaluation conditions were: reaction temperature 350℃, reaction pressure (reactor inlet pressure) 1MPa, supplemental hydrogen flow rate 150mL/minH 2 , methylcyclohexane feed 2.5mL/min, catalyst loading amount 20g. The evaluation results of the catalyst are listed in Table 2, where the conversion rate=reacted methylcyclohexane/total methylcyclohexane feed; selectivity=toluene-forming methylcyclohexane/reacted methylcyclohexane alkyl. Example 10

取硝酸鎳和氯化錫與水配成20mL浸漬液,取17.8克載體1,將浸漬液緩慢的加入到載體1中,一邊加入一邊攪拌,使浸漬液均勻負載在複合氧化物載體上,浸漬溫度為25℃,浸漬後的固體在120℃氮氣吹掃下乾燥3小時,然後在空氣中進行焙燒;焙燒溫度600℃,焙燒時氣劑比(空氣/固體的體積比)為600:1,焙燒時間為4小時,得到催化劑。催化劑的組成列於表2中。Take nickel nitrate, tin chloride and water to make 20mL impregnation solution, take 17.8 g of carrier 1, slowly add the impregnation solution to carrier 1, and stir while adding, so that the impregnation solution is evenly supported on the composite oxide carrier, and impregnated The temperature is 25°C. The impregnated solid is dried at 120°C under nitrogen purge for 3 hours, and then calcined in air; the calcining temperature is 600°C, and the air-to-agent ratio (air/solid volume ratio) during calcining is 600:1, The calcination time is 4 hours to obtain a catalyst. The composition of the catalyst is listed in Table 2.

在固定床反應器中對上述製備的催化劑進行甲基環己烷脫氫反應評價,脫氫反應在固定床微反上進行,評價條件為:反應溫度400℃,反應壓力(反應器進口壓力)1MPa,補充氫氣流量150mL/minH2 ,甲基環己烷進料量1.0mL/min,催化劑裝填量20克。催化劑的評價結果列於表2中,其中轉化率=反應的甲基環己烷/總的甲基環己烷進料;選擇性=生成甲苯的甲基環己烷/反應的甲基環己烷。實施例 2,4 7-9,12-39 和對照例 1-17The dehydrogenation reaction of methylcyclohexane was evaluated on the above-prepared catalyst in a fixed-bed reactor. The dehydrogenation reaction was carried out on a fixed-bed microreactor. The evaluation conditions were: reaction temperature 400℃, reaction pressure (reactor inlet pressure) 1MPa, supplementary hydrogen flow rate 150mL/minH 2 , methylcyclohexane feed rate 1.0mL/min, catalyst loading rate 20g. The evaluation results of the catalyst are listed in Table 2, where the conversion rate=reacted methylcyclohexane/total methylcyclohexane feed; selectivity=toluene-forming methylcyclohexane/reacted methylcyclohexane alkyl. Examples 2, 4 , 7-9, 12-39 and comparative examples 1-17

按照實施例1,5或10,採用浸漬的方法製備催化劑。催化劑配方見表2,其中載體按照乾基(800℃焙燒1小時)計算,鉑(Pt)按照單質乾基計算,鈀(Pd)按照單質乾基計算,銥(Ir)按照單質乾基計算,錸(Re)按照單質乾基計算,鎳(Ni)按照NiO計,錫(Sn)按照SnO2計,鋅(Zn)按照ZnO計,銅(Cu)按照CuO計,鐵(Fe)按照Fe2O3計,銀(Ag)按照AgO計,磷(P)按照P2O5計,錳(Mn)按照MnO2 計。According to Examples 1, 5 or 10, the catalyst was prepared by the impregnation method. The catalyst formula is shown in Table 2. The carrier is calculated on a dry basis (calcined at 800°C for 1 hour), platinum (Pt) is calculated on a simple dry basis, palladium (Pd) is calculated on a simple dry basis, and iridium (Ir) is calculated on a simple dry basis. Rhenium (Re) is calculated on the basis of elemental dry basis, nickel (Ni) is calculated as NiO, tin (Sn) is calculated as SnO2, zinc (Zn) is calculated as ZnO, copper (Cu) is calculated as CuO, and iron (Fe) is calculated as Fe2O3. silver (Ag) according to the count AgO, phosphorus (P) in accordance with the count in accordance with MnO 2 meter P2O5, manganese (Mn).

按照實施例1,5或10的評價方法,對所製備的催化劑進行評價,評價條件為:反應壓力(反應器進口壓力)1MPa,催化劑裝填量20克;反應溫度,補充氫氣流速,和甲基環己烷進料量列於表2中。實施例 3,6 11According to the evaluation method of Example 1, 5 or 10, the prepared catalyst was evaluated. The evaluation conditions were as follows: reaction pressure (reactor inlet pressure) 1MPa, catalyst loading amount 20g; reaction temperature, supplementary hydrogen flow rate, and methyl The feed amount of cyclohexane is listed in Table 2. Examples 3, 6 and 11

分別按照實施例2,5和10的方法製備實施例3,6和11的催化劑,區別在於浸漬後的固體在-45℃冷凍10小時,然後於-5℃,0.1atm(絕對壓力)真空條件下乾燥,然後進行所述的焙燒。The catalysts of Examples 3, 6 and 11 were prepared according to the methods of Examples 2, 5 and 10 respectively. The difference is that the impregnated solid was frozen at -45°C for 10 hours, and then at -5°C, 0.1atm (absolute pressure) vacuum conditions Drying is then carried out as described above.

按照實施例1的評價方法,對所製備的催化劑進行評價,評價條件為:反應壓力(反應器進口壓力)1MPa,催化劑裝填量20克;反應溫度,補充氫氣流速,和甲基環己烷進料量列於表2中。According to the evaluation method of Example 1, the prepared catalyst was evaluated. The evaluation conditions were as follows: reaction pressure (reactor inlet pressure) 1MPa, catalyst loading amount 20g; reaction temperature, supplementary hydrogen flow rate, and methylcyclohexane inlet The material quantities are listed in Table 2.

本發明提供的脫氫催化劑,可以較現有方法製備的脫氫催化劑具有更高的轉化活性。在同樣的反應條件下,具有更高的氫氣生成速率。採用冷凍,抽真空乾燥的方法,催化劑的活性和選擇性提高,氫氣的生成速率提高。製備和評價儲氫合金 儲氫合金實例 1-13和C1-C4 The dehydrogenation catalyst provided by the present invention can have higher conversion activity than the dehydrogenation catalyst prepared by the existing method. Under the same reaction conditions, it has a higher hydrogen generation rate. Using freezing and vacuum drying methods, the activity and selectivity of the catalyst are improved, and the hydrogen generation rate is increased. Preparation and evaluation of hydrogen storage alloy Examples 1-13 and C1-C4 of hydrogen storage alloy

按照合金成分稱取金屬共計約1000g,置於真空感應熔煉爐的水冷坩堝中,在真空下熔煉得到合金,製備條件包括:在背景真空1×10-4 Pa下進行,熔煉溫度和時間如 3所示;在背景真空1×10-4 Pa下以10℃/min的速率降溫至退火溫度,進行退火,所述退火的溫度、時間如表3所示;在背景真空1×10-4 Pa下自然冷卻至室溫。將得到的合金粉碎過篩,得到70-200目的金屬粉末,將粉末裝入儲氫罐中,將儲氫罐在0.1Pa真空下加熱至300℃保溫4小時對合金粉末進行活化,得到儲氫合金1-13和C1-C4Weigh a total of about 1000g of metal according to the alloy composition, place it in a water-cooled crucible of a vacuum induction melting furnace, and smelt under vacuum to obtain the alloy. The preparation conditions include: under a background vacuum of 1×10 -4 Pa, the melting temperature and time are as shown in the table 3; under a background vacuum of 1×10 -4 Pa, the temperature is lowered to the annealing temperature at a rate of 10°C/min, and annealing is performed. The annealing temperature and time are shown in Table 3; in the background vacuum of 1×10 -4 Cool down naturally to room temperature under Pa. The obtained alloy is crushed and sieved to obtain 70-200 mesh metal powder. The powder is put into a hydrogen storage tank, and the hydrogen storage tank is heated to 300°C under a vacuum of 0.1 Pa for 4 hours to activate the alloy powder to obtain hydrogen storage. Alloy 1-13 and C1-C4 .

將1kg儲氫合金置於儲氫罐中,將20℃的含有機物氫氣(甲烷含量為0.01體積%)作為模型化合物,通入儲氫罐中,使得氫氣與儲氫合金進行反應形成含氫合金,待儲氫合金儲氫量達到理論容量的75%,停止通入含有機物氫氣,並用純度95%的氫氣進行吹掃20分鐘,然後對儲氫罐進行加熱,保持儲氫合金在50MPa下進行持續放氫,氫氣純度採用氣相層析進行分析。氫氣純度、累計儲氫量和儲氫量衰減率列於表3中。累計儲氫量是指三十次吸氫的總量。循環上述吸氫和放氫三十次後,測定儲氫量的衰減率,所述衰減率=(第一次吸放氫儲氫量-第三十次吸放氫儲氫量)/第一次吸放氫儲氫量×100%。儲氫合金實例 14-26和C5-C10 Place 1kg of hydrogen storage alloy in a hydrogen storage tank, and use 20°C organic hydrogen (with a methane content of 0.01% by volume) as a model compound, and pass it into the hydrogen storage tank to make the hydrogen react with the hydrogen storage alloy to form a hydrogen-containing alloy When the hydrogen storage capacity of the hydrogen storage alloy reaches 75% of the theoretical capacity, stop the introduction of organic hydrogen gas, and purge with hydrogen with a purity of 95% for 20 minutes, and then heat the hydrogen storage tank to keep the hydrogen storage alloy under 50MPa. The hydrogen is continuously released, and the purity of the hydrogen is analyzed by gas chromatography. The hydrogen purity, cumulative hydrogen storage and hydrogen storage decay rate are listed in Table 3. Cumulative hydrogen storage refers to the total amount of hydrogen absorbed 30 times. After cycling the above hydrogen absorption and desorption thirty times, determine the decay rate of the hydrogen storage capacity. The decay rate = (the hydrogen storage capacity of the first hydrogen storage and desorption-the hydrogen storage capacity of the thirtieth hydrogen storage and desorption)/the first Hydrogen storage capacity × 100%. Examples of hydrogen storage alloys 14-26 and C5-C10

按照合金成分稱取金屬共計約1000g,置於真空感應熔煉爐的水冷坩堝中,在真空下熔煉得到合金,製備條件包括:在背景真空1×10-4 Pa下進行,熔煉溫度和時間如 3所示;在背景真空1×10-4 Pa下以10℃/min的速率降溫至退火溫度,進行退火,所述退火的溫度、時間如表3所示;在背景真空1×10-4 Pa下自然冷卻至室溫。將得到的合金粉碎過篩,得到70-200目的金屬粉末,將粉末裝入儲氫罐中,將儲氫罐在0.1Pa真空下加熱至300℃保溫4小時對合金粉末進行活化,得到儲氫合金14-26和C5-C10Weigh a total of about 1000g of metal according to the alloy composition, place it in a water-cooled crucible of a vacuum induction melting furnace, and smelt under vacuum to obtain the alloy. The preparation conditions include: under a background vacuum of 1×10 -4 Pa, the melting temperature and time are as shown in the table 3; under a background vacuum of 1×10 -4 Pa, the temperature is lowered to the annealing temperature at a rate of 10°C/min, and annealing is performed. The annealing temperature and time are shown in Table 3; in the background vacuum of 1×10 -4 Cool down naturally to room temperature under Pa. The obtained alloy is crushed and sieved to obtain 70-200 mesh metal powder. The powder is put into a hydrogen storage tank, and the hydrogen storage tank is heated to 300°C under a vacuum of 0.1 Pa for 4 hours to activate the alloy powder to obtain hydrogen storage. Alloy 14-26 and C5-C10 .

將1kg儲氫合金置於儲氫罐中,將10℃的含有機物氫氣(甲烷含量為0.05體積%)作為模型化合物,通入儲氫罐中,使得氫氣與儲氫合金進行反應形成含氫合金,待儲氫合金儲氫量達到理論容量的75%,停止通入含有機物氫氣,並用純度98%以上的氫氣進行吹掃20min,然後對儲氫罐進行加熱,保持儲氫合金在35MPa下進行持續放氫,氫氣純度採用氣相層析進行分析。氫氣純度、累計儲氫量和儲氫量衰減率列於表3中。累計儲氫量是指十次吸氫的總量。循環上述吸氫和放氫10次後,測定儲氫量的衰減率,所述衰減率=(第一次吸放氫儲氫量-第十次吸放氫儲氫量)/第一次吸放氫儲氫量×100%。儲氫合金實例 27-40和C11-C14 Put 1kg of hydrogen storage alloy in a hydrogen storage tank, and use 10°C hydrogen containing organic matter (methane content of 0.05% by volume) as a model compound and pass it into the hydrogen storage tank to make hydrogen react with the hydrogen storage alloy to form a hydrogen-containing alloy When the hydrogen storage capacity of the hydrogen storage alloy reaches 75% of the theoretical capacity, stop the introduction of organic hydrogen gas, and purify with hydrogen with a purity of 98% or more for 20 minutes, and then heat the hydrogen storage tank to keep the hydrogen storage alloy under 35MPa. The hydrogen is continuously released, and the purity of the hydrogen is analyzed by gas chromatography. The hydrogen purity, cumulative hydrogen storage and hydrogen storage decay rate are listed in Table 3. Cumulative hydrogen storage refers to the total amount of hydrogen absorbed ten times. After cycling the above hydrogen absorption and desorption 10 times, determine the decay rate of the hydrogen storage, the decay rate = (first hydrogen storage and desorption-tenth hydrogen storage and desorption) / first absorption Hydrogen storage capacity×100%. Examples of hydrogen storage alloy 27-40 and C11-C14

按照合金成分稱取金屬共計約1000g,置於真空感應熔煉爐的水冷坩堝中,在真空下熔煉得到合金,製備條件包括:在背景真空1×10-4 Pa下進行,熔煉溫度和時間如 3所示;在背景真空1×10-4 Pa下以10℃/min的速率降溫至退火溫度,進行退火,所述退火的溫度、時間如表3所示;在背景真空1×10-4 Pa下自然冷卻至室溫。將得到的合金粉碎過篩,得到70-200目的金屬粉末,將粉末裝入儲氫罐中,將儲氫罐在0.1Pa真空下加熱至300℃保溫4小時對合金粉末進行活化,得到儲氫合金27-40和C11-C14Weigh a total of about 1000g of metal according to the alloy composition, place it in a water-cooled crucible of a vacuum induction melting furnace, and smelt under vacuum to obtain the alloy. The preparation conditions include: under a background vacuum of 1×10 -4 Pa, the melting temperature and time are as shown in the table 3; under a background vacuum of 1×10 -4 Pa, the temperature is lowered to the annealing temperature at a rate of 10°C/min, and annealing is performed. The annealing temperature and time are shown in Table 3; in the background vacuum of 1×10 -4 Cool down naturally to room temperature under Pa. The obtained alloy is crushed and sieved to obtain 70-200 mesh metal powder. The powder is put into a hydrogen storage tank, and the hydrogen storage tank is heated to 300°C under a vacuum of 0.1 Pa for 4 hours to activate the alloy powder to obtain hydrogen storage. Alloy 27-40 and C11-C14 .

將1kg儲氫合金置於儲氫罐中,將20℃的含有機物氫氣(甲烷含量為0.1體積%)作為模型化合物,以5MPa壓力通入儲氫罐中,使得氫氣與儲氫合金進行反應形成含氫合金,待儲氫合金儲氫量達到理論容量的75%,停止通入含有機物氫氣,並用純度95%的氫氣進行吹掃20min,然後對儲氫罐進行加熱,保持儲氫合金在20MPa下進行持續放氫,氫氣純度採用氣相層析進行分析。氫氣純度、累計儲氫量和儲氫量衰減率列於表3中。累計儲氫量是指十次吸氫的總量。循環上述吸氫和放氫10次後,測定儲氫量的衰減率,所述衰減率=(第一次吸放氫儲氫量-第十次吸放氫儲氫量)/第一次吸放氫儲氫量×100%。儲氫合金實例 41-56和C15-C19 Put 1kg of hydrogen storage alloy in the hydrogen storage tank, use 20℃ organic hydrogen (methane content of 0.1% by volume) as a model compound, and pass it into the hydrogen storage tank at a pressure of 5MPa to make the hydrogen react with the hydrogen storage alloy to form For hydrogen-containing alloys, when the hydrogen storage capacity of the hydrogen storage alloy reaches 75% of the theoretical capacity, stop the introduction of organic hydrogen gas, and purge with hydrogen with a purity of 95% for 20 minutes, and then heat the hydrogen storage tank to keep the hydrogen storage alloy at 20MPa Continue to release hydrogen under the following conditions, and the purity of the hydrogen gas is analyzed by gas chromatography. The hydrogen purity, cumulative hydrogen storage and hydrogen storage decay rate are listed in Table 3. Cumulative hydrogen storage refers to the total amount of hydrogen absorbed ten times. After cycling the above hydrogen absorption and desorption 10 times, determine the decay rate of the hydrogen storage, the decay rate = (first hydrogen storage and desorption-tenth hydrogen storage and desorption) / first absorption Hydrogen storage capacity×100%. Examples of hydrogen storage alloys 41-56 and C15-C19

按照合金成分稱取金屬共計約1000g,置於電弧熔煉爐的水冷坩堝中,在氬氣氣氛下熔煉得到合金,具體製備過程:高純Ar氣氛(純度99.999%)下,進行熔煉,熔煉的溫度、壓力和時間如表3所示;在背景真空1×10-4 Pa下以10℃/min的速率降溫至退火溫度650℃,在該溫度下退火48小時。在真空下自然冷卻至室溫。將得到的合金粉碎過篩,得到70-200目的金屬粉末,將粉末裝入儲氫罐中,將儲氫罐在0.1Pa真空下加熱至300℃保溫4小時對合金粉末進行活化,得到儲氫合金41-56和C15-C19Weigh a total of about 1000g of metal according to the alloy composition, place it in a water-cooled crucible of an arc melting furnace, and smelt under an argon atmosphere to obtain the alloy. The specific preparation process: smelt in a high-purity Ar atmosphere (purity 99.999%), and the melting temperature The pressure and time are shown in Table 3; the temperature is lowered to an annealing temperature of 650°C at a rate of 10°C/min under a background vacuum of 1×10 -4 Pa, and annealed at this temperature for 48 hours. Naturally cool to room temperature under vacuum. The obtained alloy is crushed and sieved to obtain 70-200 mesh metal powder. The powder is put into a hydrogen storage tank, and the hydrogen storage tank is heated to 300°C under a vacuum of 0.1 Pa for 4 hours to activate the alloy powder to obtain hydrogen storage. Alloy 41-56 and C15-C19 .

將1kg儲氫合金置於儲氫罐中,將20℃的含有機物氫氣(甲烷含量為0.1體積%)作為模型化合物,在壓力2MPa通入儲氫罐中,使得氫氣與儲氫合金進行反應形成含氫合金,待儲氫合金儲氫量達到理論容量的75%,停止通入含有機物氫氣,在80℃下,用真空泵抽真空5min,然後對儲氫罐進行加熱,保持儲氫合金在0.1MPa下進行持續放氫,氫氣純度採用氣相層析進行分析。氫氣純度、累計儲氫量和儲氫量衰減率列於表3中。累計儲氫量是指十次吸氫的總量。循環上述吸氫和放氫10次後,測定儲氫量的衰減率,所述衰減率=(第一次吸放氫儲氫量-第十次吸放氫儲氫量)/第一次吸放氫儲氫量×100%。儲氫合金實例 57-67和C20-C24 Put 1kg of hydrogen storage alloy in a hydrogen storage tank, and use 20°C organic hydrogen (methane content of 0.1% by volume) as a model compound, and pass it into the hydrogen storage tank at a pressure of 2MPa, so that hydrogen reacts with the hydrogen storage alloy to form For hydrogen-containing alloys, when the hydrogen storage capacity of the hydrogen storage alloy reaches 75% of the theoretical capacity, stop the introduction of organic hydrogen gas, vacuum with a vacuum pump for 5 minutes at 80°C, and then heat the hydrogen storage tank to keep the hydrogen storage alloy at 0.1 Continuous hydrogen release is performed under MPa, and the purity of hydrogen is analyzed by gas chromatography. The hydrogen purity, cumulative hydrogen storage and hydrogen storage decay rate are listed in Table 3. Cumulative hydrogen storage refers to the total amount of hydrogen absorbed ten times. After cycling the above hydrogen absorption and desorption 10 times, determine the decay rate of the hydrogen storage, the decay rate = (first hydrogen storage and desorption-tenth hydrogen storage and desorption) / first absorption Hydrogen storage capacity×100%. Examples of hydrogen storage alloy 57-67 and C20-C24

按照合金成分稱取金屬共計約1000g,置於電弧熔煉爐的水冷坩堝中,在氬氣氣氛下熔煉得到合金,具體製備過程:高純Ar氣氛(純度99.999%)下,進行熔煉,熔煉的溫度、壓力和時間如表3所示;在Ar氣氛下自然冷卻至室溫,然後轉移至真空退火爐中進行真空退火,背景壓力為1×10-4 Pa,所述退火的溫度、時間如 3所示;自然冷卻至室溫。將得到的合金粉碎過篩,得到70-200目的金屬粉末,將粉末裝入儲氫罐中,將儲氫罐在0.1Pa真空下加熱至50-300℃保溫1-10小時對合金粉末進行活化(活化的具體溫度和時間如表3所示),得到儲氫合金57-67和C20-C24Weigh a total of about 1000g of metal according to the alloy composition, place it in a water-cooled crucible of an arc melting furnace, and smelt under an argon atmosphere to obtain the alloy. The specific preparation process: smelt in a high-purity Ar atmosphere (purity 99.999%), and the melting temperature , Pressure and time are shown in Table 3; natural cooling to room temperature under Ar atmosphere, and then transferred to vacuum annealing furnace for vacuum annealing, background pressure is 1×10 -4 Pa, the annealing temperature and time are shown in table Shown in 3; natural cooling to room temperature. The obtained alloy is crushed and sieved to obtain 70-200 mesh metal powder, and the powder is put into a hydrogen storage tank, and the hydrogen storage tank is heated to 50-300°C under a vacuum of 0.1 Pa for 1-10 hours to activate the alloy powder (The specific temperature and time of activation are shown in Table 3) to obtain hydrogen storage alloy 57-67 and C20-C24 .

將1kg儲氫合金置於儲氫罐中,將20℃的含有機物氫氣(甲烷含量為0.1體積%)作為模型化合物,在壓力2MPa通入儲氫罐中,使得氫氣與儲氫合金進行反應形成含氫合金,待儲氫合金儲氫量達到理論容量的75%,停止通入含有機物氫氣,並用純度95%的氫氣進行吹掃20min,然後對儲氫罐進行加熱,保持儲氫合金在10MPa下進行持續放氫,氫氣純度採用氣相層析進行分析。氫氣純度列於表3中。循環上述吸氫和放氫10次後,測定累計儲氫量和儲氫量衰減率,列於表3中,所述衰減率=(第一次吸放氫儲氫量-第十次吸放氫儲氫量)/第一次吸放氫儲氫量×100%。累計儲氫量是指十次吸氫量的總和。Put 1kg of hydrogen storage alloy in a hydrogen storage tank, use 20℃ organic hydrogen (methane content of 0.1% by volume) as a model compound, and pass it into the hydrogen storage tank at a pressure of 2MPa to make the hydrogen react with the hydrogen storage alloy to form For hydrogen-containing alloys, when the hydrogen storage capacity of the hydrogen storage alloy reaches 75% of the theoretical capacity, stop the introduction of organic hydrogen gas, and purify with 95% hydrogen for 20 minutes, and then heat the hydrogen storage tank to keep the hydrogen storage alloy at 10MPa Continue to release hydrogen under the following conditions, and the purity of the hydrogen gas is analyzed by gas chromatography. The hydrogen purity is listed in Table 3. After cycling the above hydrogen absorption and desorption 10 times, determine the cumulative hydrogen storage and hydrogen storage attenuation rate, which are listed in Table 3. The attenuation rate = (the first hydrogen storage and desorption-the tenth hydrogen storage and release Hydrogen storage capacity)/Hydrogen storage capacity for the first absorption and release × 100%. Cumulative hydrogen storage refers to the sum of ten hydrogen absorptions.

本發明提供的儲氫合金具有良好的抗有機物污染性能,在氫氣中含有有機物的情況下具有較好的吸氫效率,並且具有較高的儲氫量,可以獲得高壓高純度氫氣。AB5 型儲氫合金實例 68:The hydrogen storage alloy provided by the present invention has good resistance to organic pollution, has better hydrogen absorption efficiency when the hydrogen contains organic matters, and has a higher hydrogen storage capacity, so that high-pressure and high-purity hydrogen can be obtained. Example of AB 5 type hydrogen storage alloy 68:

MmNi3.55 Co0.75 Mn0.4 Al0.3 ,其中Mm=La0.61 Ce0.16 Pr0.04 Nd0.19 MmNi 3.55 Co 0.75 Mn 0.4 Al 0.3 , where Mm=La 0.61 Ce 0.16 Pr 0.04 Nd 0.19

按照合金成分稱取金屬共計約100 g,置於電弧熔煉爐的水冷坩堝中,在氬氣氣氛下熔煉得到合金,製備條件:高純Ar氣氛(純度99.999%),壓力0.9-1.0 atm,電流80-200 A,電壓40 V,熔煉時間10-60分鐘,在Ar氣氛下自然冷卻至室溫。轉移到高真空退火爐中進行真空退火,背景壓力1x10-4 Pa,退火溫度800-950℃,退火時間24-168 h,自然冷卻至室溫。將合金粉碎過篩,得到70-200目的金屬粉末,將粉末裝入儲氫罐中,將儲氫罐在0.1Pa真空下加熱至200-400℃保溫1-4小時對合金粉末進行活化。Weigh a total of about 100 g of the metal according to the alloy composition, place it in the water-cooled crucible of the arc melting furnace, and smelt the alloy in an argon atmosphere. The preparation conditions: high-purity Ar atmosphere (purity 99.999%), pressure 0.9-1.0 atm, current 80-200 A, voltage 40 V, smelting time 10-60 minutes, natural cooling to room temperature under Ar atmosphere. Transfer to a high vacuum annealing furnace for vacuum annealing, background pressure 1x10 -4 Pa, annealing temperature 800-950℃, annealing time 24-168 h, and natural cooling to room temperature. The alloy is crushed and sieved to obtain 70-200 mesh metal powder, and the powder is put into a hydrogen storage tank, and the hydrogen storage tank is heated to 200-400°C under a vacuum of 0.1 Pa for 1-4 hours to activate the alloy powder.

通過下述測試方法,說明實施例1的催化劑和AB5 型儲氫合金實例68的有機液體儲氫原料脫氫反應,分離經純化和增壓的效果。The following test methods are used to illustrate the effect of the dehydrogenation reaction of the catalyst of Example 1 and the organic liquid hydrogen storage material of Example 68 of the AB 5 type hydrogen storage alloy, separation, purification and pressurization.

原料油為甲基環己烷,甲基環己烷脫氫反應在固定床微反上進行評價,評價條件為:反應溫度350℃,壓力1MPa,補充氫氣流速150mL/minH2 (標準狀況),甲基環己烷進料2mL/min,催化劑裝填量20克,具體參數和結果如下所示。The raw material oil is methylcyclohexane, and the dehydrogenation reaction of methylcyclohexane is evaluated on a fixed bed microreactor. The evaluation conditions are: reaction temperature 350℃, pressure 1MPa, supplementary hydrogen flow rate 150mL/minH 2 (standard condition), The methylcyclohexane was fed at 2 mL/min, and the catalyst loading was 20 grams. The specific parameters and results are shown below.

脫氫反應產物經過冷卻以後在放置於20℃鹽水中的分離罐中分離,控制冷卻的溫度為20℃,收集液體產物,氣體產物引入儲氫合金儲罐進行氫氣的吸收。儲氫合金吸附量達到設定值以後,用純度為99%的氫氣在吸氫溫度下吹掃儲氫合金儲罐30分鐘,然後加熱儲氫合金釋放氫氣。After cooling, the dehydrogenation reaction product is separated in a separation tank placed in 20°C brine, the cooling temperature is controlled to 20°C, the liquid product is collected, and the gas product is introduced into the hydrogen storage alloy storage tank for hydrogen absorption. After the adsorption capacity of the hydrogen storage alloy reaches the set value, the hydrogen storage alloy storage tank is purged with hydrogen with a purity of 99% at the hydrogen absorption temperature for 30 minutes, and then the hydrogen storage alloy is heated to release the hydrogen.

其中,轉化率=反應的甲基環己烷/總的甲基環己烷進料Among them, the conversion rate=reacted methylcyclohexane/total methylcyclohexane feed

反應產物用層析進行分析,用第10分鐘產物組成資料計算轉化率。The reaction product was analyzed by chromatography, and the conversion rate was calculated using the product composition data at the 10th minute.

脫氫反應溫度:350℃Dehydrogenation reaction temperature: 350℃

脫氫反應壓力:1MPaDehydrogenation reaction pressure: 1MPa

有機液體脫氫轉化率:98.50%Organic liquid dehydrogenation conversion rate: 98.50%

吸氫溫度:20℃Hydrogen absorption temperature: 20℃

吸氫氫分壓:0.2MPaHydrogen absorption hydrogen partial pressure: 0.2MPa

放氫溫度:200℃Hydrogen release temperature: 200℃

放氫氫分壓:35MPaHydrogen partial pressure: 35MPa

氫氣純度:99.99%Hydrogen purity: 99.99%

儲氫量(200ml):14.1g。 表1 載體的製備條件,載體組成以及載體性質 載體 實施例 載體 命名 改性載體組成, 重量% 流化時間/小時 水解時間/小時 比表 面積/cm2 /g 孔體積mL/g η θ Ti 2P3/2 軌道電子結合能458.8eV處偏移,eV Ti 2P1/2 軌道電子結合能464.5eV處偏移,eV Al2 O3 TiO2 ZrO2 1 1 97.02 2.98 1 4 174 0.48 0 33.2 0.63 0.82 2 2 94.23 5.77 2 8 170 0.48 0 16.6 0.63 0.82 3 3 92.11 7.89 3 10 168 0.46 0 12.0 0.63 0.82 4 4 90.03 9.97 4 16 165 0.45 0 9.3 0.62 0.81 5 5 88.22 11.78 5 18 164 0.45 0 7.8 0.62 0.81 6 6 86.47 13.53 6 20 162 0.43 0 6.8 0.62 0.81 7 7 84.8 15.2 7 25 161 0.43 0 6.0 0.61 0.80 8 8 83.3 16.7 8 30 160 0.42 0 5.4 0.61 0.80 9 9 95.79 2.86 1.35 1 8 172 0.47 0 34.3 0.63 0.82 10 10 89.27 7.25 3.48 3 16 167 0.45 0 12.8 0.62 0.82 11 11 83.18 11.59 5.23 5 30 160 0.42 0 7.8 0.61 0.81 對照例1 C1 100       176 0.48         對照例2 C2 97.08 2.92     172 0.43 0.4 1.6 0 0 對照例3 C3 90.12 9.88     163 0.42 0.5 1.5 0 0 對照例4 C4 86.55 13.45     150 0.4 0.5 2.4 0.41 0.52 對照例5 C5 86.58 13.42     150 0.4 0.5 2.6 0.41 0.53 對照例6 C6 95.75 2.88 1.37     169 0.43 0.4 1.4 0 0 對照例7 C7 83.24 11.51 5.25     151 0.39 0.5 1.1 0 0 註:載體組成為XRF測量的數值歸一後的結果。 表2 實施例 載體 氯鉑酸 硝酸鎳 其它金屬 甲基環己烷 轉化率 選擇性 收率 氫氣生成 速率[a] mL\h 微反測試 條件[b] 命名 重量 (wt%) 重量 (wt%) 重量 (wt%) 名稱 重量 (wt%) 1 1 99.2 0.8 76.90% 98.40% 0.76 48.06 350,150,2 2 1 99.4 0.6 70.20% 98.60% 0.69 43.98 350,150,2 3 1 99.4 0.6 74.10% 98.70% 0.73 46.4 350,150,2 4 1 96.5 0.5 1 硝酸銅 2 73.20% 97.90% 0.72 56.94 350,150,2.5 5 1 98.5 0.5 1 72.10% 97.30% 0.70 55.95 350,150,2.5 6 1 98.5 0.5 1 73.20% 97.40% 0.71 56.72 350,150,2.5 7 1 99.5 0.5 62.80% 98.40% 0.62 49.03 350,150,2.5 8 1 90 10 76.90% 99.00% 0.76 96.53 350,300,4 9 1 98 2 72.80% 98.80% 0.72 91.27 350,300,4 10 1 88 10 氯化錫 2 95.60% 91.80% 0.88 28.49 400,150,1.0 11 1 88 10 氯化錫 2 96.00% 92.10% 0.88 28.72 400,150,1.0 12 1 90 10 93.50% 90.50% 0.85 27.57 400,150,1.0 13 2 98.9 氯化鈀 0.6 70.80% 95.60% 0.68 43.44 350,150,2 氯銥酸 0.5 14 2 99.2 0.6 三氯化錸 0.2 76.10% 98.50% 0.75 47.62 350,150,2 15 2 91.7 0.3 8 68.40% 93.60% 0.64 51.5 350,150,2.5 16 2 75 10 硝酸鐵 9 95.80% 82.40% 0.79 26.65 400,150,1.0 磷酸銨 6 17 3 99.2 0.6 氯化鈀 0.2 76.50% 98.60% 0.75 47.88 350,150,2 18 3 99.2 0.6 氯化鈀 0.2 76.50% 98.60% 0.75 47.88 350,150,2 19 3 84.9 0.1 15 63.50% 90.40% 0.57 46.64 350,150,2.5 20 3 89 8 氯化錫 1 95.40% 91.20% 0.87 28.27 400,150,1.0 硝酸鋅 2 21 4 98.9 0.6 氯銥酸 0.5 77.00% 95.80% 0.74 47.25 350,150,2 22 4 87 9 硝酸鐵 4 95.20% 87.80% 0.84 27.59 400,150,1.0 23 5 96.4 0.6 氯化錫 3 76.20% 97.20% 0.74 47.28 350,150,2 24 5 96.5 0.5 氯化錫 3 68.20% 97.20% 0.66 52.81 350,150,2.5 25 5 85 10 硝酸銀 5 95.00% 90.20% 0.86 27.92 400,150,1.0 26 6 94.4 0.6 5 硝酸鎳 76.50% 96.30% 0.74 47.1 350,150,2 27 6 99.2 0.8 76.60% 98.20% 0.75 47.81 350,150,2 28 6 88.7 0.3 8 氯化錫 3 70.80% 94.20% 0.67 53.58 350,150,2.5 29 6 87 8 硝酸鋅 3 95.90% 92.10% 0.88 28.6 400,150,1.0 硝酸銅 2 30 7 86 8 硝酸鋅 3 95.80% 89.80% 0.86 28.17 400,150,1.0 硝酸鐵 3 31 9 94.4 0.6 硝酸錳 5 76.60% 95.10% 0.73 46.81 350,150,2 32 9 99.2 0.8 76.50% 98.10% 0.75 47.71 350,150,2 33 9 94.5 0.5 硝酸錳 5 62.60% 93.70% 0.59 46.99 350,150,2.5 34 9 88 10 硝酸鋅 2 95.10% 90.50% 0.86 28.07 400,150,1.0 35 10 93.4 0.6 硝酸銅 6 76.70% 96.50% 0.74 47.33 350,150,2 36 10 99.2 0.8 76.70% 98.50% 0.76 47.96 350,150,2 37 10 93.5 0.5 硝酸銅 6 64.80% 96.50% 0.63 49.9 350,150,2.5 38 10 92 6 硝酸銅 2 94.50% 90.60% 0.86 27.95 400,150,1.0 39 11 79.9 0.1 15 硝酸錳 5 66.90% 92.30% 0.62 49.79 350,150,2.5 對照例1 C1 99.2 0.6 三氯化錸 0.2 66.00% 98.00% 0.65 41.32 350,150,2 對照例2 C1 99.5 0.5 58.50% 98.10% 0.57 45.51 350,150,2.5 對照例3 C1 88 10 氯化錫 2 80.10% 91.10% 0.73 23.72 400,150,1.0 對照例4 C2 99.2 0.8 67.00% 97.80% 0.66 41.7 350,150,2 對照例5 C2 96.5 0.5 1 硝酸銅 2 61.80% 96.70% 0.60 47.63 350,150,2.5 對照例6 C2 98.5 0.5 1 59.50% 97.60% 0.58 46.17 350,150,2.5 對照例7 C2 88 10 氯化錫 2 83.20% 91.70% 0.76 24.79 400,150,1.0 對照例8 C3 98.9 0.6 氯銥酸 0.5 62.60% 95.00% 0.59 38.23 350,150,2 對照例9 C3 87 9 硝酸鐵 4 86.20% 87.20% 0.75 24.8 400,150,1.0 對照例10 C4 94.4 0.6 5 硝酸鎳 64.50% 91.80% 0.59 38.51 350,150,2 對照例11 C4 99.2 0.8 64.50% 96.80% 0.62 39.86 350,150,2 對照例12 C5 99.2 0.8 65.80% 97.30% 0.64 40.81 350,150,2 對照例13 C5 88.7 0.3 8 氯化錫 3 54.80% 90.20% 0.49 40.14 350,150,2.5 對照例14 C5 87 8 硝酸鋅 3 90.80% 91.90% 0.83 27.04 400,150,1.0 硝酸銅 2 對照例15 C6 94.4 0.6 硝酸錳 5 60.30% 93.80% 0.57 36.55 350,150,2 對照例16 C6 94.5 0.5 硝酸錳 5 57.30% 93.80% 0.54 43.25 350,150,2.5 對照例17 C6 88 10 硝酸鋅 2 75.60% 91.80% 0.69 22.52 400,150,1.0 註[a]:以上表格中氫氣生成速率中不包括進料中補充的氫氣。 註[b]:微反測試條件:溫度℃,補充氫氣流速(mL/minH2 ),甲基環己烷進料量(mL/min) 表3 儲氫合金實例 熔煉溫度, ℃ 熔煉時間, h 熔煉壓力, bar 退火溫度, ℃ 退火時間, h 活化溫度, ℃ 活化時間, h 儲氫合金運算式 累計儲氫量, g 氫氣純度, % 衰減率, % 1 1800 1 800 24 (Ti0.8 Y0.2 )0.95 (Mn0.95 Ni0.05 )0.05 581.28 ≥99.95 1.27 2 1850 0.8 920 60 (Ti0.4 V0.4 Y0.2 )0.9 (Fe0.05 Mn0.9 Ni0.05 )0.1 582.29 ≥99.95 0.92 3 1950 0.7 850 90 (Ti0.7 Nb0.1 Y0.2 )0.9 (Mn0.7 Ni0.3 )0.1 582.46 ≥99.95 0.87 4 2040 0.5 900 115 (Ti0.4 Zr0.4 Y0.2 )0.93 (Fe0.2 Mn0.7 Ni0.1 )0.07 582.63 ≥99.95 0.81 5 2100 0.3 840 134 (Ti0.4 V0.35 Zr0.2 Y0.05 )0.95 (Fe0.6 Mn0.2 Co0.1 Ni0.1 )0.05 581.54 ≥99.95 1.18 6 2200 0.2 950 168 (Ti0.88 Y0.1 Ca0.02 )0.95 (Fe0.3 Mn0.6 Ni0.1 )0.05 583.31 ≥99.95 0.58 7 1800 1 800 24 (Ti0.8 V0.2 )0.95 (Fe1 )0.05 580.61 ≥99.95 1.5 8 1850 0.8 920 60 (Ti0.4 V0.4 Y0.2 )0.9 (Fe0.05 Mn0.95 )0.1 581.45 ≥99.95 1.21 9 1950 0.7 850 90 (Ti0.7 Nb0.1 Y0.2 )0.9 (Mn1 )0.1 581.77 ≥99.95 1.1 10 2040 0.5 900 115 (Ti0.4 Zr0.4 Y0.2 )0.93 (Fe0.2 Mn0.7 Co0.1 )0.07 581.87 ≥99.95 1.07 11 2100 0.3 840 134 (Ti0.4 V0.4 Zr0.2 )0.95 (Fe0.6 Mn0.2 Co0.1 Ni0.1 )0.05 580.94 ≥99.95 1.39 12 2200 0.2 950 168 (Ti0.88 Y0.1 Ca0.02 )0.95 (Fe0.3 Mn0.6 Co0.1 )0.05 582.8 ≥99.95 0.75 13 1950 0.7 850 90 (Ti0.7Nb0.1Y0.2)0.8(Mn0.7Ni0.3)0.2 579.02 ≥99.95 2.04 C1 1800 1 800 24 (Ti0.8 V0.2 )0.95 (Mn0.55 Ni0.45 )0.05 564.28 99.68 7 C2 1850 0.8 920 60 (Nb0.4 V0.4 Y0.2 )0.9 (Fe0.05 Mn0.9 Ni0.05 )0.1 557.85 99.74 9.14 C3 2040 0.5 900 115 (V0.4 Zr0.4 Y0.2 )0.93 (Fe0.2 Mn0.7 Co0.1 )0.07 566.88 99.79 6.13 C4 2100 0.3 840 134 (Ti0.4 V0.4 Zr0.2 )0.95 (Fe0.05 Mn0.2 Co0.3 Ni0.45 )0.05 568.27 99.86 5.67 14 2200 1 950 24 Mg0.01 Ti0.93 Zr0.15 Y0.01 VMn0.9 Ni0.1 134.27 ≥99.97 1.07 15 1870 0.9 930 65 Ti0.85 Zr0.18 Y0.05 La0.02 V0.23 Cr0.05 Mn1.5 Fe0.09 Ni0.1 Cu0.1 134.65 ≥99.97 0.52 16 2000 0.7 900 90 Mg0.1 Ti0.7 Zr0.2 Y0.05 V0.1 Mn1.6 Ni0.2 Cu0.2 134.59 ≥99.97 0.6 17 2050 0.6 880 120 Ca0.01 Ti0.85 Zr0.05 Y0.05 V1.2 Mn0.6 Ni0.1 Cu0.2 134.3 ≥99.97 1.03 18 2130 0.4 85 142 Mg0.1 Ti0.8 Zr0.15 Y0.05 V0.1 Cr1.4 Mn0.2 Co0.1 Ni0.1 Cu0.2 134.67 ≥99.97 0.49 19 2200 0.2 800 168 Ti0.8 Zr0.25 Y0.05 V1.79 Mn0.1 Fe0.01 Ni0.1 Cu0.1 134.61 ≥99.97 0.58 20 2200 1 950 24 Ti0.64 Zr0.45 Y0.01 VMn0.9 Ni0.1 134.24 ≥99.97 1.12 21 1870 0.9 930 65 Ti0.55 Zr0.48 Y0.05 La0.02 V0.33 Cr0.05 Mn1.5 Fe0.09 Ni0.1 134.57 ≥99.97 0.64 22 2000 0.7 900 90 Ti0.6 Zr0.4 Y0.05 V0.1 Mn1.8 Ni0.2 134.44 ≥99.97 0.83 23 2050 0.6 880 120 Ca0.01 Ti0.9 Zr0.05 Y0.05 V1.2 Mn0.6 Ni0.3 134.15 ≥99.97 1.25 24 2130 0.4 85 142 TiZr0.05 Y0.05 V0.1 Cr1.4 Mn0.2 Co0.1 Ni0.3 134.47 ≥99.97 0.78 25 2200 0.2 800 168 Ti0.5 Zr0.55 Y0.05 V1.79 Mn0.1 Fe0.01 Ni0.2 134.43 ≥99.97 0.84 26 2200 1 950 24 Mg0.01 Ti0.63 Zr0.45 Y0.01 VMn0.9 Ni0.1 133.97 ≥99.97 1.52 C5 2200 1 950 24 Ti0.65 Zr0.45 VMn0.9 Ni0.1 130.77 99.72 6.21 C6 1870 0.9 930 65 Ti1.03 Y0.05 La0.02 V0.23 Cr0.05 Mn1.5 Fe0.09 Ni0.1 Cu0.1 131.83 99.85 4.67 C7 2000 0.7 900 90 Mg0.5 Zr0.5 Y0.05 V0.1 Mn1.6 Ni0.2 Cu0.2 131.3 99.79 5.44 C8 2050 0.6 880 120 Ca0.01 Ti0.85 Zr0.05 Y0.05 V1.2 Mn0.7 Cu0.2 130.94 99.74 5.96 C9 2130 0.4 85 142 Mg0.1 Ti0.8 Zr0.15 Y0.05 V0.3 Cr1.4 Co0.1 Ni0.1 Cu0.2 132.71 99.89 3.38 C10 2200 0.2 800 168 Ti0.8 Zr0.25 Y0.05 Mn1.89 Fe0.01 Ni0.1 Cu0.1 132.12 99.86 4.25 27 1850 0.8 800 98 TiY0.01 V0.1 Fe0.7 Mn0.1 Ni0.1 139.22 ≥99.97 0.4 28 1950 1 750 180 TiY0.02 V0.2 Fe0.7 Mn0.1 139.17 ≥99.97 0.47 29 1830 0.5 980 80 Ti0.97 Y0.03 V0.05 Cr0.03 Fe0.5 Mn0.4 139.31 ≥99.97 0.27 30 2200 1.5 840 240 Ti0.9 Y0.04 V0.05 Fe0.9 Mn0.1 139.4 ≥99.97 0.04 31 2040 2 780 120 Ti0.91 Zr0.05 Y0.04 V0.1 Cr0.2 Fe0.6 Mn0.1 139.44 ≥99.97 0.09 32 1850 1.5 980 80 Ti0.95 Y0.05 V0.05 Fe0.7 Mn0.21 Cu0.05 139.01 ≥99.97 0.7 33 1950 2 750 180 Ti1.02 Y0.03 V0.05 Fe0.8 Mn0.1 Ni0.1 139.24 ≥99.97 0.38 34 1850 0.8 800 98 TiY0.01 V0.1 Fe0.7 Ni0.2 139.06 ≥99.97 0.63 35 1950 1 750 180 TiY0.02 V0.2 Fe0.8 138.99 ≥99.97 0.73 36 1830 0.5 980 80 Ti0.97 Y0.03 V0.05 Cr0.03 Fe0.9 139.2 ≥99.97 0.43 37 2200 1.5 840 240 Ti0.9 Y0.04 V0.15 Fe0.9 139.44 ≥99.97 0.09 38 2040 2 780 120 Ti0.91 Zr0.05 Y0.04 V0.1 Cr0.2 Fe0.7 139.36 ≥99.97 0.21 39 1850 1.5 980 80 Ti0.95 Y0.05 V0.26 Fe0.7 Cu0.05 138.75 ≥99.97 1.07 40 1950 2 750 180 Ti1.02 Y0.03 V0.05 Fe0.9 Ni0.1 139 ≥99.97 0.72 C11 1850 0.8 800 98 TiV0.1 Fe0.7 Mn0.1 Ni0.1 135.31 99.63 5.96 C12 1950 1 750 180 TiY0.02 Fe0.9 Mn0.1 134.88 99.54 6.55 C13 1830 0.5 980 80 TiV0.05 Cr0.03 Fe0.5 Mn0.4 135.55 99.75 5.61 C14 2200 1.5 840 240 Ti0.9 Y0.04 Fe0.95 Mn0.1 136.95 99.89 3.63 41 1850 0.8 0.6 650 48 Mg1.8 Y0.1 Cr0.05 Ni1 267.34 ≥99.99 1.96 42 1950 1 0.9 650 48 Mg1.5 Ti0.5 Y0.05 Cr0.1 Ni1 268.43 ≥99.99 1.16 43 1830 0.5 0.8 650 48 Mg2 Y0.1 Cr0.05 Ni0.6 Cu0.4 268.79 ≥99.99 0.9 44 2200 1.5 1 650 48 Mg1.92 Y0.08 Cr0.2 Ni0.75 Fe0.05 269.03 ≥99.99 0.72 45 2040 2 0.7 650 48 Mg1.9 Y0.1 Cr0.1 Fe0.1 Ni0.7 Cu0.1 269.24 ≥99.99 0.57 46 1850 1.5 0.9 650 48 Mg1.9 Y0.1 Cr0.1 Ni0.8 Co0.2 269.42 ≥99.99 0.43 47 1950 2 0.7 650 48 Mg1.8 Y0.1 La0.1 Cr0.05 Ni0.9 Co0.1 269.45 ≥99.99 0.4 48 2040 0.8 1 650 48 Mg1.7 Ti0.2 Y0.1 Cr0.05 Ni0.7 Co0.3 268.91 ≥99.99 0.81 49 1850 0.8 0.6 650 48 Mg1.8 Y0.1 Ni1 266.62 ≥99.99 2.49 50 1950 1 0.9 650 48 Mg1.5 Ti0.5 Y0.05 Ni1.1 267.82 ≥99.99 1.61 51 1830 0.5 0.8 650 48 Mg2 Y0.1 Ni0.6 Cu0.4 268.18 ≥99.99 1.34 52 2200 1.5 1 650 48 Mg1.92 Y0.08 Ni0.95 Fe0.05 268.49 ≥99.99 1.12 53 2040 2 0.7 650 48 Mg1.9 Y0.1 Fe0.1 Ni0.8 Cu0.1 268.73 ≥99.99 0.94 54 1850 1.5 0.9 650 48 Mg1.9 Y0.1 Ni0.8 Co0.2 268.93 ≥99.99 0.79 55 1950 2 0.7 650 48 Mg1.8 Y0.1 La0.1 Ni0.9 Co0.1 269.02 ≥99.99 0.73 56 2040 0.8 1 650 48 Mg1.7 Ti0.2 Y0.1 Ni0.7 Co0.32 268.63 ≥99.99 1.01 C15 1850 0.8 0.6 650 48 Mg1.9 Ni1 258.4 99.43 8.48 C16 1950 1 0.9 650 48 Mg1.5 Ti0.5 Ni1.1 259.9 99.55 7.39 C17 1830 0.5 0.8 650 48 Mg2.1 Ni0.6 Cu0.4 260.67 99.63 6.84 C18 2200 1.5 1 650 48 Mg2 Ni0.95 Fe0.05 262.71 99.68 5.36 C19 2040 2 0.7 650 48 Mg2 Fe0.1 Ni0.8 Cu0.1 263.89 99.76 4.5 57 1850 0.8 0.6 800 98 80 7 La0.5 Ce0.32 Nd0.15 Pr0.02 Y0.01 Ni4.4 Fe0.55 Al0.05 104.75 ≥99.97 0.48 58 1950 1 0.9 750 180 100 6 La0.8 Ce0.15 Y0.05 Ni4 Mn0.5 Al0.5 104.9 ≥99.97 0.2 59 1830 0.5 0.8 980 80 95 5 La0.45 Ce0.4 Nd0.1 Pr0.03 Y0.02 Ni4 Co0.8 Al0.2 104.86 ≥99.97 0.27 60 2200 1.5 1 840 240 240 8 La0.75 Ce0.15 Nd0.05 Pr0.02 Y0.03 Ni4.7 Al0.1 Fe0.2 104.98 ≥99.97 0.04 61 2040 2 0.7 780 120 180 4 La0.8 Ce0.15 Nd0.03 Y0.02 Ni4.5 Co0.3 Mn0.1 Al0.1 104.95 ≥99.97 0.09 62 1850 0.8 0.6 800 98 80 7 La0.5 Ce0.32 Nd0.15 Pr0.02 Y0.01 Ni4.4 Fe0.6 104.63 ≥99.97 0.7 63 1950 1 0.9 750 180 100 6 La0.8 Ce0.15 Y0.05 Ni4.5 Mn0.5 104.8 ≥99.97 0.38 64 1830 0.5 0.8 980 80 95 5 La0.45 Ce0.4 Nd0.1 Pr0.03 Y0.02 Ni4.2 Co0.8 104.76 ≥99.97 0.45 65 2200 1.5 1 840 240 240 8 La0.75 Ce0.15 Nd0.05 Pr0.02 Y0.03 Ni4.8 Fe0.2 104.95 ≥99.97 0.09 66 2040 2 0.7 780 120 180 4 La0.8 Ce0.15 Nd0.03 Y0.02 Ni4.5 Co0.4 Mn0.1 104.86 ≥99.97 0.27 67 1850 0.8 0.6 800 98 80 7 La0.97 Y0.03 Ni4 Co1 104.39 ≥99.97 1.16 C20 1850 0.8 0.6 800 98 80 7 La0.5 Ce0.32 Nd0.15 Pr0.03 Ni4.4 Fe0.6 101.39 99.76 6.8 C21 1950 1 0.9 750 180 100 6 La0.8 Ce0.2 Ni4.5 Mn0.5 102.07 99.83 5.53 C22 1830 0.5 0.8 980 80 95 5 La0.45 Ce0.4 Nd0.1 Pr0.05 Ni4.2 Co0.8 101.89 99.56 5.87 C23 2200 1.5 1 840 240 240 8 La0.75 Ce0.15 Nd0.05 Pr0.05 Ni4.8 Fe0.2 102.62 99.85 4.5 C24 2040 2 0.7 780 120 180 4 La0.8 Ce0.15 Nd0.05 Ni4.5 Co0.4 Mn0.1 102.12 99.89 5.44 Hydrogen storage capacity (200ml): 14.1g. Table 1 Carrier preparation conditions, carrier composition and carrier properties Carrier Examples Carrier naming Modified carrier composition, weight% Fluidization time/hour Hydrolysis time/hour Specific surface area/cm 2 /g Pore volume mL/g η θ Ti 2P 3/2 orbital electron binding energy offset at 458.8eV, eV Ti 2P 1/2 orbital electron binding energy offset at 464.5eV, eV Al 2 O 3 TiO 2 ZrO 2 1 1 97.02 2.98 1 4 174 0.48 0 33.2 0.63 0.82 2 2 94.23 5.77 2 8 170 0.48 0 16.6 0.63 0.82 3 3 92.11 7.89 3 10 168 0.46 0 12.0 0.63 0.82 4 4 90.03 9.97 4 16 165 0.45 0 9.3 0.62 0.81 5 5 88.22 11.78 5 18 164 0.45 0 7.8 0.62 0.81 6 6 86.47 13.53 6 20 162 0.43 0 6.8 0.62 0.81 7 7 84.8 15.2 7 25 161 0.43 0 6.0 0.61 0.80 8 8 83.3 16.7 8 30 160 0.42 0 5.4 0.61 0.80 9 9 95.79 2.86 1.35 1 8 172 0.47 0 34.3 0.63 0.82 10 10 89.27 7.25 3.48 3 16 167 0.45 0 12.8 0.62 0.82 11 11 83.18 11.59 5.23 5 30 160 0.42 0 7.8 0.61 0.81 Comparative example 1 C1 100 176 0.48 Comparative example 2 C2 97.08 2.92 172 0.43 0.4 1.6 0 0 Comparative example 3 C3 90.12 9.88 163 0.42 0.5 1.5 0 0 Comparative Example 4 C4 86.55 13.45 150 0.4 0.5 2.4 0.41 0.52 Comparative Example 5 C5 86.58 13.42 150 0.4 0.5 2.6 0.41 0.53 Comparative Example 6 C6 95.75 2.88 1.37 169 0.43 0.4 1.4 0 0 Comparative Example 7 C7 83.24 11.51 5.25 151 0.39 0.5 1.1 0 0 Note: The carrier composition is the normalized result of the XRF measurement value. Table 2 Example Carrier Chloroplatinic acid Nickel Nitrate Other metals Methylcyclohexane conversion rate Selectivity Yield Hydrogen generation rate [a] mL\h Micro-reverse test conditions [b] name Weight (wt%) Weight (wt%) Weight (wt%) name Weight (wt%) 1 1 99.2 0.8 76.90% 98.40% 0.76 48.06 350, 150, 2 2 1 99.4 0.6 70.20% 98.60% 0.69 43.98 350, 150, 2 3 1 99.4 0.6 74.10% 98.70% 0.73 46.4 350, 150, 2 4 1 96.5 0.5 1 Copper nitrate 2 73.20% 97.90% 0.72 56.94 350, 150, 2.5 5 1 98.5 0.5 1 72.10% 97.30% 0.70 55.95 350, 150, 2.5 6 1 98.5 0.5 1 73.20% 97.40% 0.71 56.72 350, 150, 2.5 7 1 99.5 0.5 62.80% 98.40% 0.62 49.03 350, 150, 2.5 8 1 90 10 76.90% 99.00% 0.76 96.53 350, 300, 4 9 1 98 2 72.80% 98.80% 0.72 91.27 350, 300, 4 10 1 88 10 Tin chloride 2 95.60% 91.80% 0.88 28.49 400, 150, 1.0 11 1 88 10 Tin chloride 2 96.00% 92.10% 0.88 28.72 400, 150, 1.0 12 1 90 10 93.50% 90.50% 0.85 27.57 400, 150, 1.0 13 2 98.9 Palladium chloride 0.6 70.80% 95.60% 0.68 43.44 350, 150, 2 Chloroiridic acid 0.5 14 2 99.2 0.6 Rhenium trichloride 0.2 76.10% 98.50% 0.75 47.62 350, 150, 2 15 2 91.7 0.3 8 68.40% 93.60% 0.64 51.5 350, 150, 2.5 16 2 75 10 Ferric nitrate 9 95.80% 82.40% 0.79 26.65 400, 150, 1.0 Ammonium Phosphate 6 17 3 99.2 0.6 Palladium chloride 0.2 76.50% 98.60% 0.75 47.88 350, 150, 2 18 3 99.2 0.6 Palladium chloride 0.2 76.50% 98.60% 0.75 47.88 350, 150, 2 19 3 84.9 0.1 15 63.50% 90.40% 0.57 46.64 350, 150, 2.5 20 3 89 8 Tin chloride 1 95.40% 91.20% 0.87 28.27 400, 150, 1.0 Zinc nitrate 2 twenty one 4 98.9 0.6 Chloroiridic acid 0.5 77.00% 95.80% 0.74 47.25 350, 150, 2 twenty two 4 87 9 Ferric nitrate 4 95.20% 87.80% 0.84 27.59 400, 150, 1.0 twenty three 5 96.4 0.6 Tin chloride 3 76.20% 97.20% 0.74 47.28 350, 150, 2 twenty four 5 96.5 0.5 Tin chloride 3 68.20% 97.20% 0.66 52.81 350, 150, 2.5 25 5 85 10 Silver nitrate 5 95.00% 90.20% 0.86 27.92 400, 150, 1.0 26 6 94.4 0.6 5 Nickel Nitrate 76.50% 96.30% 0.74 47.1 350, 150, 2 27 6 99.2 0.8 76.60% 98.20% 0.75 47.81 350, 150, 2 28 6 88.7 0.3 8 Tin chloride 3 70.80% 94.20% 0.67 53.58 350, 150, 2.5 29 6 87 8 Zinc nitrate 3 95.90% 92.10% 0.88 28.6 400, 150, 1.0 Copper nitrate 2 30 7 86 8 Zinc nitrate 3 95.80% 89.80% 0.86 28.17 400, 150, 1.0 Ferric nitrate 3 31 9 94.4 0.6 Manganese Nitrate 5 76.60% 95.10% 0.73 46.81 350, 150, 2 32 9 99.2 0.8 76.50% 98.10% 0.75 47.71 350, 150, 2 33 9 94.5 0.5 Manganese Nitrate 5 62.60% 93.70% 0.59 46.99 350, 150, 2.5 34 9 88 10 Zinc nitrate 2 95.10% 90.50% 0.86 28.07 400, 150, 1.0 35 10 93.4 0.6 Copper nitrate 6 76.70% 96.50% 0.74 47.33 350, 150, 2 36 10 99.2 0.8 76.70% 98.50% 0.76 47.96 350, 150, 2 37 10 93.5 0.5 Copper nitrate 6 64.80% 96.50% 0.63 49.9 350, 150, 2.5 38 10 92 6 Copper nitrate 2 94.50% 90.60% 0.86 27.95 400, 150, 1.0 39 11 79.9 0.1 15 Manganese Nitrate 5 66.90% 92.30% 0.62 49.79 350, 150, 2.5 Comparative example 1 C1 99.2 0.6 Rhenium trichloride 0.2 66.00% 98.00% 0.65 41.32 350, 150, 2 Comparative example 2 C1 99.5 0.5 58.50% 98.10% 0.57 45.51 350, 150, 2.5 Comparative example 3 C1 88 10 Tin chloride 2 80.10% 91.10% 0.73 23.72 400, 150, 1.0 Comparative Example 4 C2 99.2 0.8 67.00% 97.80% 0.66 41.7 350, 150, 2 Comparative Example 5 C2 96.5 0.5 1 Copper nitrate 2 61.80% 96.70% 0.60 47.63 350, 150, 2.5 Comparative Example 6 C2 98.5 0.5 1 59.50% 97.60% 0.58 46.17 350, 150, 2.5 Comparative Example 7 C2 88 10 Tin chloride 2 83.20% 91.70% 0.76 24.79 400, 150, 1.0 Comparative Example 8 C3 98.9 0.6 Chloroiridic acid 0.5 62.60% 95.00% 0.59 38.23 350, 150, 2 Comparative Example 9 C3 87 9 Ferric nitrate 4 86.20% 87.20% 0.75 24.8 400, 150, 1.0 Comparative Example 10 C4 94.4 0.6 5 Nickel Nitrate 64.50% 91.80% 0.59 38.51 350, 150, 2 Comparative Example 11 C4 99.2 0.8 64.50% 96.80% 0.62 39.86 350, 150, 2 Comparative Example 12 C5 99.2 0.8 65.80% 97.30% 0.64 40.81 350, 150, 2 Comparative Example 13 C5 88.7 0.3 8 Tin chloride 3 54.80% 90.20% 0.49 40.14 350, 150, 2.5 Comparative Example 14 C5 87 8 Zinc nitrate 3 90.80% 91.90% 0.83 27.04 400, 150, 1.0 Copper nitrate 2 Comparative Example 15 C6 94.4 0.6 Manganese Nitrate 5 60.30% 93.80% 0.57 36.55 350, 150, 2 Comparative Example 16 C6 94.5 0.5 Manganese Nitrate 5 57.30% 93.80% 0.54 43.25 350, 150, 2.5 Comparative Example 17 C6 88 10 Zinc nitrate 2 75.60% 91.80% 0.69 22.52 400, 150, 1.0 Note [a]: The hydrogen generation rate in the above table does not include the supplementary hydrogen in the feed. Note [b]: Micro reaction test conditions: temperature ℃, supplementary hydrogen flow rate (mL/minH 2 ), methylcyclohexane feed rate (mL/min) Table 3 Examples of hydrogen storage alloys Melting temperature, ℃ Melting time, h Melting pressure, bar Annealing temperature, ℃ Annealing time, h Activation temperature, ℃ Activation time, h Hydrogen storage alloy calculation formula Cumulative hydrogen storage, g Hydrogen purity,% Attenuation rate,% 1 1800 1 800 twenty four (Ti 0.8 Y 0.2 ) 0.95 (Mn 0.95 Ni 0.05 ) 0.05 581.28 ≥99.95 1.27 2 1850 0.8 920 60 (Ti 0.4 V 0.4 Y 0.2 ) 0.9 (Fe 0.05 Mn 0.9 Ni 0.05 ) 0.1 582.29 ≥99.95 0.92 3 1950 0.7 850 90 (Ti 0.7 Nb 0.1 Y 0.2 ) 0.9 (Mn 0.7 Ni 0.3 ) 0.1 582.46 ≥99.95 0.87 4 2040 0.5 900 115 (Ti 0.4 Zr 0.4 Y 0.2 ) 0.93 (Fe 0.2 Mn 0.7 Ni 0.1 ) 0.07 582.63 ≥99.95 0.81 5 2100 0.3 840 134 (Ti 0.4 V 0.35 Zr 0.2 Y 0.05 ) 0.95 (Fe 0.6 Mn 0.2 Co 0.1 Ni 0.1 ) 0.05 581.54 ≥99.95 1.18 6 2200 0.2 950 168 (Ti 0.88 Y 0.1 Ca 0.02 ) 0.95 (Fe 0.3 Mn 0.6 Ni 0.1 ) 0.05 583.31 ≥99.95 0.58 7 1800 1 800 twenty four (Ti 0.8 V 0.2 ) 0.95 (Fe 1 ) 0.05 580.61 ≥99.95 1.5 8 1850 0.8 920 60 (Ti 0.4 V 0.4 Y 0.2 ) 0.9 (Fe 0.05 Mn 0.95 ) 0.1 581.45 ≥99.95 1.21 9 1950 0.7 850 90 (Ti 0.7 Nb 0.1 Y 0.2 ) 0.9 (Mn 1 ) 0.1 581.77 ≥99.95 1.1 10 2040 0.5 900 115 (Ti 0.4 Zr 0.4 Y 0.2 ) 0.93 (Fe 0.2 Mn 0.7 Co 0.1 ) 0.07 581.87 ≥99.95 1.07 11 2100 0.3 840 134 (Ti 0.4 V 0.4 Zr 0.2 ) 0.95 (Fe 0.6 Mn 0.2 Co 0.1 Ni 0.1 ) 0.05 580.94 ≥99.95 1.39 12 2200 0.2 950 168 (Ti 0.88 Y 0.1 Ca 0.02 ) 0.95 (Fe 0.3 Mn 0.6 Co 0.1 ) 0.05 582.8 ≥99.95 0.75 13 1950 0.7 850 90 (Ti0.7Nb0.1Y0.2)0.8(Mn0.7Ni0.3)0.2 579.02 ≥99.95 2.04 C1 1800 1 800 twenty four (Ti 0.8 V 0.2 ) 0.95 (Mn 0.55 Ni 0.45 ) 0.05 564.28 99.68 7 C2 1850 0.8 920 60 (Nb 0.4 V 0.4 Y 0.2 ) 0.9 (Fe 0.05 Mn 0.9 Ni 0.05 ) 0.1 557.85 99.74 9.14 C3 2040 0.5 900 115 (V 0.4 Zr 0.4 Y 0.2 ) 0.93 (Fe 0.2 Mn 0.7 Co 0.1 ) 0.07 566.88 99.79 6.13 C4 2100 0.3 840 134 (Ti 0.4 V 0.4 Zr 0.2 ) 0.95 (Fe 0.05 Mn 0.2 Co 0.3 Ni 0.45 ) 0.05 568.27 99.86 5.67 14 2200 1 950 twenty four Mg 0.01 Ti 0.93 Zr 0.15 Y 0.01 VMn 0.9 Ni 0.1 134.27 ≥99.97 1.07 15 1870 0.9 930 65 Ti 0.85 Zr 0.18 Y 0.05 La 0.02 V 0.23 Cr 0.05 Mn 1.5 Fe 0.09 Ni 0.1 Cu 0.1 134.65 ≥99.97 0.52 16 2000 0.7 900 90 Mg 0.1 Ti 0.7 Zr 0.2 Y 0.05 V 0.1 Mn 1.6 Ni 0.2 Cu 0.2 134.59 ≥99.97 0.6 17 2050 0.6 880 120 Ca 0.01 Ti 0.85 Zr 0.05 Y 0.05 V 1.2 Mn 0.6 Ni 0.1 Cu 0.2 134.3 ≥99.97 1.03 18 2130 0.4 85 142 Mg 0.1 Ti 0.8 Zr 0.15 Y 0.05 V 0.1 Cr 1.4 Mn 0.2 Co 0.1 Ni 0.1 Cu 0.2 134.67 ≥99.97 0.49 19 2200 0.2 800 168 Ti 0.8 Zr 0.25 Y 0.05 V 1.79 Mn 0.1 Fe 0.01 Ni 0.1 Cu 0.1 134.61 ≥99.97 0.58 20 2200 1 950 twenty four Ti 0.64 Zr 0.45 Y 0.01 VMn 0.9 Ni 0.1 134.24 ≥99.97 1.12 twenty one 1870 0.9 930 65 Ti 0.55 Zr 0.48 Y 0.05 La 0.02 V 0.33 Cr 0.05 Mn 1.5 Fe 0.09 Ni 0.1 134.57 ≥99.97 0.64 twenty two 2000 0.7 900 90 Ti 0.6 Zr 0.4 Y 0.05 V 0.1 Mn 1.8 Ni 0.2 134.44 ≥99.97 0.83 twenty three 2050 0.6 880 120 Ca 0.01 Ti 0.9 Zr 0.05 Y 0.05 V 1.2 Mn 0.6 Ni 0.3 134.15 ≥99.97 1.25 twenty four 2130 0.4 85 142 TiZr 0.05 Y 0.05 V 0.1 Cr 1.4 Mn 0.2 Co 0.1 Ni 0.3 134.47 ≥99.97 0.78 25 2200 0.2 800 168 Ti 0.5 Zr 0.55 Y 0.05 V 1.79 Mn 0.1 Fe 0.01 Ni 0.2 134.43 ≥99.97 0.84 26 2200 1 950 twenty four Mg 0.01 Ti 0.63 Zr 0.45 Y 0.01 VMn 0.9 Ni 0.1 133.97 ≥99.97 1.52 C5 2200 1 950 twenty four Ti 0.65 Zr 0.45 VMn 0.9 Ni 0.1 130.77 99.72 6.21 C6 1870 0.9 930 65 Ti 1.03 Y 0.05 La 0.02 V 0.23 Cr 0.05 Mn 1.5 Fe 0.09 Ni 0.1 Cu 0.1 131.83 99.85 4.67 C7 2000 0.7 900 90 Mg 0.5 Zr 0.5 Y 0.05 V 0.1 Mn 1.6 Ni 0.2 Cu 0.2 131.3 99.79 5.44 C8 2050 0.6 880 120 Ca 0.01 Ti 0.85 Zr 0.05 Y 0.05 V 1.2 Mn 0.7 Cu 0.2 130.94 99.74 5.96 C9 2130 0.4 85 142 Mg 0.1 Ti 0.8 Zr 0.15 Y 0.05 V 0.3 Cr 1.4 Co 0.1 Ni 0.1 Cu 0.2 132.71 99.89 3.38 C10 2200 0.2 800 168 Ti 0.8 Zr 0.25 Y 0.05 Mn 1.89 Fe 0.01 Ni 0.1 Cu 0.1 132.12 99.86 4.25 27 1850 0.8 800 98 TiY 0.01 V 0.1 Fe 0.7 Mn 0.1 Ni 0.1 139.22 ≥99.97 0.4 28 1950 1 750 180 TiY 0.02 V 0.2 Fe 0.7 Mn 0.1 139.17 ≥99.97 0.47 29 1830 0.5 980 80 Ti 0.97 Y 0.03 V 0.05 Cr 0.03 Fe 0.5 Mn 0.4 139.31 ≥99.97 0.27 30 2200 1.5 840 240 Ti 0.9 Y 0.04 V 0.05 Fe 0.9 Mn 0.1 139.4 ≥99.97 0.04 31 2040 2 780 120 Ti 0.91 Zr 0.05 Y 0.04 V 0.1 Cr 0.2 Fe 0.6 Mn 0.1 139.44 ≥99.97 0.09 32 1850 1.5 980 80 Ti 0.95 Y 0.05 V 0.05 Fe 0.7 Mn 0.21 Cu 0.05 139.01 ≥99.97 0.7 33 1950 2 750 180 Ti 1.02 Y 0.03 V 0.05 Fe 0.8 Mn 0.1 Ni 0.1 139.24 ≥99.97 0.38 34 1850 0.8 800 98 TiY 0.01 V 0.1 Fe 0.7 Ni 0.2 139.06 ≥99.97 0.63 35 1950 1 750 180 TiY 0.02 V 0.2 Fe 0.8 138.99 ≥99.97 0.73 36 1830 0.5 980 80 Ti 0.97 Y 0.03 V 0.05 Cr 0.03 Fe 0.9 139.2 ≥99.97 0.43 37 2200 1.5 840 240 Ti 0.9 Y 0.04 V 0.15 Fe 0.9 139.44 ≥99.97 0.09 38 2040 2 780 120 Ti 0.91 Zr 0.05 Y 0.04 V 0.1 Cr 0.2 Fe 0.7 139.36 ≥99.97 0.21 39 1850 1.5 980 80 Ti 0.95 Y 0.05 V 0.26 Fe 0.7 Cu 0.05 138.75 ≥99.97 1.07 40 1950 2 750 180 Ti 1.02 Y 0.03 V 0.05 Fe 0.9 Ni 0.1 139 ≥99.97 0.72 C11 1850 0.8 800 98 TiV 0.1 Fe 0.7 Mn 0.1 Ni 0.1 135.31 99.63 5.96 C12 1950 1 750 180 TiY 0.02 Fe 0.9 Mn 0.1 134.88 99.54 6.55 C13 1830 0.5 980 80 TiV 0.05 Cr 0.03 Fe 0.5 Mn 0.4 135.55 99.75 5.61 C14 2200 1.5 840 240 Ti 0.9 Y 0.04 Fe 0.95 Mn 0.1 136.95 99.89 3.63 41 1850 0.8 0.6 650 48 Mg 1.8 Y 0.1 Cr 0.05 Ni 1 267.34 ≥99.99 1.96 42 1950 1 0.9 650 48 Mg 1.5 Ti 0.5 Y 0.05 Cr 0.1 Ni 1 268.43 ≥99.99 1.16 43 1830 0.5 0.8 650 48 Mg 2 Y 0.1 Cr 0.05 Ni 0.6 Cu 0.4 268.79 ≥99.99 0.9 44 2200 1.5 1 650 48 Mg 1.92 Y 0.08 Cr 0.2 Ni 0.75 Fe 0.05 269.03 ≥99.99 0.72 45 2040 2 0.7 650 48 Mg 1.9 Y 0.1 Cr 0.1 Fe 0.1 Ni 0.7 Cu 0.1 269.24 ≥99.99 0.57 46 1850 1.5 0.9 650 48 Mg 1.9 Y 0.1 Cr 0.1 Ni 0.8 Co 0.2 269.42 ≥99.99 0.43 47 1950 2 0.7 650 48 Mg 1.8 Y 0.1 La 0.1 Cr 0.05 Ni 0.9 Co 0.1 269.45 ≥99.99 0.4 48 2040 0.8 1 650 48 Mg 1.7 Ti 0.2 Y 0.1 Cr 0.05 Ni 0.7 Co 0.3 268.91 ≥99.99 0.81 49 1850 0.8 0.6 650 48 Mg 1.8 Y 0.1 Ni 1 266.62 ≥99.99 2.49 50 1950 1 0.9 650 48 Mg 1.5 Ti 0.5 Y 0.05 Ni 1.1 267.82 ≥99.99 1.61 51 1830 0.5 0.8 650 48 Mg 2 Y 0.1 Ni 0.6 Cu 0.4 268.18 ≥99.99 1.34 52 2200 1.5 1 650 48 Mg 1.92 Y 0.08 Ni 0.95 Fe 0.05 268.49 ≥99.99 1.12 53 2040 2 0.7 650 48 Mg 1.9 Y 0.1 Fe 0.1 Ni 0.8 Cu 0.1 268.73 ≥99.99 0.94 54 1850 1.5 0.9 650 48 Mg 1.9 Y 0.1 Ni 0.8 Co 0.2 268.93 ≥99.99 0.79 55 1950 2 0.7 650 48 Mg 1.8 Y 0.1 La 0.1 Ni 0.9 Co 0.1 269.02 ≥99.99 0.73 56 2040 0.8 1 650 48 Mg 1.7 Ti 0.2 Y 0.1 Ni 0.7 Co 0.32 268.63 ≥99.99 1.01 C15 1850 0.8 0.6 650 48 Mg 1.9 Ni 1 258.4 99.43 8.48 C16 1950 1 0.9 650 48 Mg 1.5 Ti 0.5 Ni 1.1 259.9 99.55 7.39 C17 1830 0.5 0.8 650 48 Mg 2.1 Ni 0.6 Cu 0.4 260.67 99.63 6.84 C18 2200 1.5 1 650 48 Mg 2 Ni 0.95 Fe 0.05 262.71 99.68 5.36 C19 2040 2 0.7 650 48 Mg 2 Fe 0.1 Ni 0.8 Cu 0.1 263.89 99.76 4.5 57 1850 0.8 0.6 800 98 80 7 La 0.5 Ce 0.32 Nd 0.15 Pr 0.02 Y 0.01 Ni 4.4 Fe 0.55 Al 0.05 104.75 ≥99.97 0.48 58 1950 1 0.9 750 180 100 6 La 0.8 Ce 0.15 Y 0.05 Ni 4 Mn 0.5 Al 0.5 104.9 ≥99.97 0.2 59 1830 0.5 0.8 980 80 95 5 La 0.45 Ce 0.4 Nd 0.1 Pr 0.03 Y 0.02 Ni 4 Co 0.8 Al 0.2 104.86 ≥99.97 0.27 60 2200 1.5 1 840 240 240 8 La 0.75 Ce 0.15 Nd 0.05 Pr 0.02 Y 0.03 Ni 4.7 Al 0.1 Fe 0.2 104.98 ≥99.97 0.04 61 2040 2 0.7 780 120 180 4 La 0.8 Ce 0.15 Nd 0.03 Y 0.02 Ni 4.5 Co 0.3 Mn 0.1 Al 0.1 104.95 ≥99.97 0.09 62 1850 0.8 0.6 800 98 80 7 La 0.5 Ce 0.32 Nd 0.15 Pr 0.02 Y 0.01 Ni 4.4 Fe 0.6 104.63 ≥99.97 0.7 63 1950 1 0.9 750 180 100 6 La 0.8 Ce 0.15 Y 0.05 Ni 4.5 Mn 0.5 104.8 ≥99.97 0.38 64 1830 0.5 0.8 980 80 95 5 La 0.45 Ce 0.4 Nd 0.1 Pr 0.03 Y 0.02 Ni 4.2 Co 0.8 104.76 ≥99.97 0.45 65 2200 1.5 1 840 240 240 8 La 0.75 Ce 0.15 Nd 0.05 Pr 0.02 Y 0.03 Ni 4.8 Fe 0.2 104.95 ≥99.97 0.09 66 2040 2 0.7 780 120 180 4 La 0.8 Ce 0.15 Nd 0.03 Y 0.02 Ni 4.5 Co 0.4 Mn 0.1 104.86 ≥99.97 0.27 67 1850 0.8 0.6 800 98 80 7 La 0.97 Y 0.03 Ni 4 Co 1 104.39 ≥99.97 1.16 C20 1850 0.8 0.6 800 98 80 7 La 0.5 Ce 0.32 Nd 0.15 Pr 0.03 Ni 4.4 Fe 0.6 101.39 99.76 6.8 C21 1950 1 0.9 750 180 100 6 La 0.8 Ce 0.2 Ni 4.5 Mn 0.5 102.07 99.83 5.53 C22 1830 0.5 0.8 980 80 95 5 La 0.45 Ce 0.4 Nd 0.1 Pr 0.05 Ni 4.2 Co 0.8 101.89 99.56 5.87 C23 2200 1.5 1 840 240 240 8 La 0.75 Ce 0.15 Nd 0.05 Pr 0.05 Ni 4.8 Fe 0.2 102.62 99.85 4.5 C24 2040 2 0.7 780 120 180 4 La 0.8 Ce 0.15 Nd 0.05 Ni 4.5 Co 0.4 Mn 0.1 102.12 99.89 5.44

1:有機液體儲存罐 2:原料泵 3:熱交換器 4:脫氫反應器 5:熱交換器 6:儲氫罐 7:單向閥 8:能量傳遞體系統 9:吹掃系統 10:儲氫控制系統1: Organic liquid storage tank 2: Raw material pump 3: Heat exchanger 4: dehydrogenation reactor 5: Heat exchanger 6: Hydrogen storage tank 7: Check valve 8: Energy transfer body system 9: Purge system 10: Hydrogen storage control system

圖1為含氧化鋁和鈦氧化物的載體組合物的X射線繞射(XRD)圖譜,其中“1”為本發明提供的載體組合物(氧化鋁負載鈦氧化物)的XRD圖譜;“2”為浸漬法製備的氧化鋁負載Ti氧化物載體組合物的XRD圖譜;“3”為氧化鋁與二氧化鈦機械混合物的XRD圖譜,在XRD曲線中,2θ=25.37°,48.12°,53.97°,55.1°處是TiO2 (銳鈦礦)繞射峰。Figure 1 is the X-ray diffraction (XRD) pattern of the carrier composition containing alumina and titanium oxide, where "1" is the XRD pattern of the carrier composition (alumina supported titanium oxide) provided by the present invention; "2""Is the XRD pattern of the alumina supported Ti oxide carrier composition prepared by the impregnation method; "3" is the XRD pattern of the mechanical mixture of alumina and titania. In the XRD curve, 2θ=25.37°, 48.12°, 53.97°, 55.1 ° is the diffraction peak of TiO 2 (anatase).

圖2為X射線光電子能譜(XPS)圖譜,其中1為純TiO2的XPS圖譜;其它曲線為本發明方法製備的不同TiO2含量的載體組合物(氧化鋁負載鈦氧化物)的XPS圖譜,其中M-2、M-4、M-7和M-8分別為實施例載體2、4、7和8。由圖2可見,本發明提供的載體組合物,Ti 2P3/2 軌道的電子結合能(簡稱結合能)在458.8eV處的峰向高結合能方向位移0.6-0.7eV,Ti 2P1/2 軌道的電子結合能在464.5eV處的峰向高結合能方向位移0.8-0.9eV,說明Ti跟氧化鋁載體間有相互作用。Figure 2 is an X-ray photoelectron spectroscopy (XPS) spectrum, in which 1 is the XPS spectrum of pure TiO2; the other curves are the XPS spectrum of the carrier composition (alumina supported titanium oxide) prepared by the method of the present invention with different TiO2 content, where M-2, M-4, M-7 and M-8 are Example Carriers 2, 4, 7 and 8, respectively. As can be seen from Figure 2, the carrier composition provided by the present invention, the electron binding energy (abbreviated as binding energy) of Ti 2P 3/2 orbital at 458.8eV shifts 0.6-0.7eV to the high binding energy direction, Ti 2P 1/2 The peak of the electron binding energy of the orbital at 464.5eV shifts 0.8-0.9eV to the high binding energy direction, indicating that there is an interaction between Ti and the alumina support.

圖3為本發明提供的一種提供高純高壓氫氣的示意圖,其中:1為有機液體儲存罐,2為原料泵,3為熱交換器,4為脫氫反應器,5為熱交換器,6為儲氫罐,7為單向閥,8為能量傳遞體系統,9為吹掃系統,10為儲氫控制系統。Figure 3 is a schematic diagram of providing high-purity and high-pressure hydrogen provided by the present invention, in which: 1 is an organic liquid storage tank, 2 is a raw material pump, 3 is a heat exchanger, 4 is a dehydrogenation reactor, 5 is a heat exchanger, and 6 It is a hydrogen storage tank, 7 is a one-way valve, 8 is an energy transfer body system, 9 is a purge system, and 10 is a hydrogen storage control system.

1:有機液體儲存罐 1: Organic liquid storage tank

2:原料泵 2: Raw material pump

3:熱交換器 3: Heat exchanger

4:脫氫反應器 4: dehydrogenation reactor

5:熱交換器 5: Heat exchanger

6:儲氫罐 6: Hydrogen storage tank

7:單向閥 7: Check valve

8:能量傳遞體系統 8: Energy transfer body system

9:吹掃系統 9: Purge system

10:儲氫控制系統 10: Hydrogen storage control system

Claims (14)

一種用於有機物脫氫催化劑的載體組合物,該載體組合物包括氧化鋁和改性金屬氧化物,所述的改性金屬氧化物為鈦氧化物和/或鋯氧化物,其中,η<0.3,優選地,η=0;θ≥5,優選地,θ為5-40(例如5.4-34.3); η=載體組合物中晶相改性金屬氧化物的重量百分含量/載體組合物中改性金屬氧化物的化學組成重量百分含量, θ=載體組合物表面上改性金屬氧化物的重量百分含量/載體組合物中改性金屬氧化物的化學組成重量百分含量,鈦氧化物以TiO2 計,鋯氧化物以ZrO2 計。A carrier composition for an organic dehydrogenation catalyst, the carrier composition comprising alumina and a modified metal oxide, the modified metal oxide is titanium oxide and/or zirconium oxide, wherein η<0.3 , Preferably, η=0; θ≥5, preferably, θ is 5-40 (for example, 5.4-34.3); η=weight percentage of the crystal phase modified metal oxide in the carrier composition/in the carrier composition The weight percentage of the chemical composition of the modified metal oxide, θ=the weight percentage of the modified metal oxide on the surface of the carrier composition/the weight percentage of the chemical composition of the modified metal oxide in the carrier composition, titanium oxide The content is calculated as TiO 2 and the zirconium oxide is calculated as ZrO 2. 如請求項1所述的用於有機物脫氫催化劑的載體組合物,其中,相對於TiO2 純物相,所述的載體組合物XPS圖譜中,Ti 2P3/2 軌道電子結合能為458.8eV處的峰向高結合能偏移0.6-0.7eV和/或Ti 2P1/2 軌道電子結合能為464.5eV處的峰向高結合能方向偏移0.8-0.9eV。The carrier composition for an organic dehydrogenation catalyst according to claim 1, wherein, relative to the TiO 2 pure phase, in the XPS map of the carrier composition, the Ti 2P 3/2 orbital electron binding energy is 458.8 eV The peak at the high binding energy is shifted by 0.6-0.7 eV and/or the Ti 2P 1/2 orbital electron binding energy is 464.5 eV, and the peak at the high binding energy is shifted by 0.8-0.9 eV. 如前述請求項中任一項所述的用於有機物脫氫催化劑的載體組合物,其中,所述的載體組合物中氧化鋁質量份數為80-98.5%(例如83-97.5%,85-95%或90-95%),改性金屬氧化物的質量份數為1.5-20%(例如2.5-17%,5-15%,或5-10%); 所述的改性金屬氧化物包括鈦氧化物;所述的載體組合物中,二氧化鈦的質量份數為2-20%(例如2.5-17%,5-15%或5-10%),二氧化鋯的質量份數為0-8%(例如0-6%,0-3%或1-6%);優選地,所述的改性金屬氧化物(例如二氧化鈦)單層分散於氧化鋁基質上; 所述的載體組合物具有γ-氧化鋁,η-氧化鋁,ρ-氧化鋁或χ-氧化鋁中至少一種的物相結構; 所述的載體組合物的比表面積為100-350 m2 /g,所述的載體組合物的孔體積為0.3-1.3 mL/g。The carrier composition for an organic dehydrogenation catalyst according to any one of the preceding claims, wherein the mass fraction of alumina in the carrier composition is 80-98.5% (for example, 83-97.5%, 85- 95% or 90-95%), the mass fraction of the modified metal oxide is 1.5-20% (for example, 2.5-17%, 5-15%, or 5-10%); the modified metal oxide Including titanium oxide; in the carrier composition, the mass fraction of titanium dioxide is 2-20% (for example, 2.5-17%, 5-15% or 5-10%), and the mass fraction of zirconium dioxide is 0 -8% (for example, 0-6%, 0-3% or 1-6%); preferably, the modified metal oxide (for example, titanium dioxide) monolayer is dispersed on the alumina matrix; the carrier combination The material has a phase structure of at least one of γ-alumina, η-alumina, ρ-alumina or χ-alumina; the specific surface area of the carrier composition is 100-350 m 2 /g, The pore volume of the carrier composition is 0.3-1.3 mL/g. 一種如前述請求項中任一項所述的用於有機物脫氫催化劑的載體組合物的製備方法,包括如下步驟: (1)將氧化鋁基質與氣體攜帶的改性金屬氧化物前驅物氣流接觸,得到負載改性金屬氧化物前驅物的氧化鋁基質,所述的改性金屬氧化物前驅物為氧化鈦前驅物和/或氧化鋯前驅物; (2)使負載改性金屬氧化物前驅物的氧化鋁基質水解,焙燒,得到載體組合物; 所述的氧化鈦前驅物選自四氯化鈦,鈦酸(四)乙酯,鈦酸四丁酯,鈦酸(四)異丙酯,醋酸鈦的一種或者多種(優選四氯化鈦);所述的氧化鋯前驅物選自四氯化鋯,乙醇鋯,甲醇鋯,異丙醇鋯,鋯酸四丁酯中的一種或多種(優選四氯化鋯和/或甲醇鋯); 所述的氧化鋁基質選自γ-氧化鋁,η-氧化鋁,ρ-氧化鋁,χ-氧化鋁,水合氧化鋁中的一種或多種; 所述的氧化鋁基質的比表面積為100-350m2 /g;優選地,所述的載體組合物的比表面積與所述的氧化鋁基質的比表面積之比不低於90%; 所述的氧化鋁基質的孔體積為0.3-1.3mL/g; 所述的氣體為無水的非活性氣體(例如氮氣,氦氣,氖氣,氬氣),所述的無水的非活性氣體中的水含量不超過10ppm;優選的,所述的氣體攜帶的改性金屬氧化物前驅物氣流中改性金屬氧化物前驅物的含量為0.1-3g/L(例如,0.2-2g/L),其中改性金屬氧化物前驅物含量以金屬氧化物計。A method for preparing a carrier composition for an organic dehydrogenation catalyst according to any one of the preceding claims, comprising the following steps: (1) Contacting an alumina matrix with a gas-carrying modified metal oxide precursor gas stream To obtain an alumina matrix supporting a modified metal oxide precursor, where the modified metal oxide precursor is a titanium oxide precursor and/or a zirconia precursor; (2) the modified metal oxide precursor is loaded The aluminum oxide matrix of the aluminum oxide is hydrolyzed and calcined to obtain the carrier composition; the titanium oxide precursor is selected from titanium tetrachloride, (tetra) ethyl titanate, tetrabutyl titanate, (tetra) isopropyl titanate, One or more of titanium acetate (preferably titanium tetrachloride); the zirconium oxide precursor is selected from one or more of zirconium tetrachloride, zirconium ethoxide, zirconium methoxide, zirconium isopropoxide, and tetrabutyl zirconate ( Preferably zirconium tetrachloride and/or zirconium methoxide); The alumina matrix is selected from one or more of γ-alumina, η-alumina, ρ-alumina, χ-alumina, and hydrated alumina; The specific surface area of the alumina matrix is 100-350m 2 /g; preferably, the ratio of the specific surface area of the carrier composition to the specific surface area of the alumina matrix is not less than 90%; The pore volume of the aluminum matrix is 0.3-1.3mL/g; the gas is an anhydrous inert gas (such as nitrogen, helium, neon, argon), and the water content in the anhydrous inert gas is not More than 10 ppm; preferably, the content of the modified metal oxide precursor in the modified metal oxide precursor gas stream carried by the gas is 0.1-3 g/L (for example, 0.2-2 g/L), wherein the modified metal The oxide precursor content is calculated as metal oxide. 如請求項4所述的載體組合物的製備方法,其中,步驟(1)中,所述的氣體的溫度為室溫至350℃(例如為室溫(室溫是指15-40℃)至300℃,或15至300℃); 步驟(1)中接觸的壓力為0.05-5atm(例如1-3atm)(錶壓)。The preparation method of the carrier composition according to claim 4, wherein, in step (1), the temperature of the gas is from room temperature to 350°C (for example, room temperature (room temperature refers to 15-40°C) to 300°C, or 15 to 300°C); The contact pressure in step (1) is 0.05-5 atm (for example, 1-3 atm) (gauge pressure). 如前述請求項4-5中任一項所述的載體組合物的製備方法,其中,所述的氣體每分鐘的體積流量與氧化鋁基質體積的比值為3-80:1(例如,5-30:1,10-25:1);其中氣體的體積以標準狀況下的體積計,氧化鋁基質的體積以堆積體積計。The preparation method of the carrier composition according to any one of the aforementioned claims 4-5, wherein the ratio of the volumetric flow rate of the gas per minute to the volume of the alumina matrix is 3-80:1 (for example, 5- 30:1, 10-25:1); the volume of the gas is calculated by the volume under standard conditions, and the volume of the alumina matrix is calculated by the bulk volume. 如前述請求項4-6中任一項所述的載體組合物的製備方法,其中,所述的氧化鋁基質在流化態下與氣體攜帶的改性金屬氧化物前驅物氣流接觸,或是在攪拌下與所述的氣流接觸;流化態例如可以是鼓泡床,湍動床,快速床或輸送床。The preparation method of the carrier composition according to any one of the foregoing claims 4-6, wherein the alumina matrix is in fluidized state in contact with the gas-carrying modified metal oxide precursor gas stream, or Contact with the gas stream under stirring; the fluidized state can be, for example, a bubbling bed, a turbulent bed, a fast bed or a transport bed. 如前述請求項4-7中任一項所述的載體組合物的製備方法,其中,步驟(2)所述的使負載改性金屬氧化物前驅物的氧化鋁基質水解,方法如下:使所述的負載改性金屬氧化物前驅物的氧化鋁基質與含水蒸氣的氣體接觸; 步驟(2)所述的水解,所述的含水蒸氣的氣體與氧化鋁基質接觸的比值(標準狀態下含水蒸氣的氣體與氧化鋁基質堆積體積之比)為3-80:1(例如5-30:1,或10-25:1),所述的含水蒸氣的氣體中水蒸氣占氣體總體積的比例為0.1體積%-100體積%(例如3體積%-100體積%);所述的含水蒸氣的氣體中水蒸汽以外的其它氣體可以是惰性氣體,氮氣或空氣; 步驟(2)所述的水解,水解時間為1小時至50小時,例如2小時至30小時。The preparation method of the carrier composition according to any one of the aforementioned claims 4-7, wherein, in step (2), the alumina matrix supporting the modified metal oxide precursor is hydrolyzed, and the method is as follows: The alumina matrix supporting the modified metal oxide precursor is in contact with a gas containing water vapor; In the hydrolysis of step (2), the contact ratio of the gas containing water vapor to the alumina matrix (the ratio of the gas containing water vapor to the bulk volume of the alumina matrix under standard conditions) is 3-80:1 (for example, 5- 30:1, or 10-25:1), the ratio of water vapor in the gas containing water vapor to the total volume of the gas is 0.1% by volume to 100% by volume (for example, 3% by volume to 100% by volume); The gas containing water vapor other than water vapor can be inert gas, nitrogen or air; In the hydrolysis described in step (2), the hydrolysis time is 1 hour to 50 hours, for example, 2 hours to 30 hours. 如前述請求項4-8中任一項所述的載體組合物的製備方法,其中,對於所述的焙燒來說,焙燒溫度為350℃-700℃,焙燒時間為0.5-12小時(焙燒氣氛可以為不含氧氣或含氧氣的氣氛。一種實施方式情況,所述的含氧氣的氣氛中氧氣的含量可以為3-100%體積,例如為空氣氣氛或者氧氣氣氛)。The preparation method of the carrier composition according to any one of the aforementioned claims 4-8, wherein, for the calcination, the calcination temperature is 350°C-700°C, and the calcination time is 0.5-12 hours (calcination atmosphere It may be an oxygen-free or oxygen-containing atmosphere. In one embodiment, the oxygen content in the oxygen-containing atmosphere may be 3-100% by volume, for example, an air atmosphere or an oxygen atmosphere). 一種用於有機物脫氫製氫氣的催化劑,其特徵在於所述的催化劑含有如前述請求項1-3中任一項所述的用於有機物脫氫催化劑的載體組合物和活性組份。A catalyst for the dehydrogenation of organic matter to produce hydrogen, characterized in that the catalyst contains the carrier composition and active components for the organic matter dehydrogenation catalyst as described in any one of claims 1-3. 如請求項10所述的用於有機物脫氫製氫氣的催化劑,其中活性組份是以下(1),(2)和(3)中的一種: (1)貴金屬組中的至少一種元素,優選地,活性組份是Pt以及任選地貴金屬組中的除Pt以外的至少一種元素; (2)Pt和第一金屬組中的至少一種元素; (3)Ni,第二金屬組中的至少一種元素,和任選的磷; 其中 貴金屬組是由選自Pt,Pd,Ru,Re,Rh,Ir,Os的元素構成的組; 第一金屬組是由選自Sn,V,Mo,Cr,Mn,Fe,Co,Ni,Cu,Ag,Ce,W,Cu,Ca的元素構成的組; 第二金屬組是由選自Zn,Sn,Cu,Fe,Ag,In,Re,Mo,Co,Ca,W的元素構成的組; 所述的催化劑中,載體的含量為70-99.9重量%;活性組份的含量為0.1-30重量%。The catalyst for the dehydrogenation of organic matter to produce hydrogen according to claim 10, wherein the active component is one of the following (1), (2) and (3): (1) At least one element in the noble metal group, preferably, the active component is Pt and optionally at least one element other than Pt in the noble metal group; (2) Pt and at least one element in the first metal group; (3) Ni, at least one element of the second metal group, and optionally phosphorus; among them The noble metal group is a group consisting of elements selected from Pt, Pd, Ru, Re, Rh, Ir, Os; The first metal group is a group consisting of elements selected from Sn, V, Mo, Cr, Mn, Fe, Co, Ni, Cu, Ag, Ce, W, Cu, and Ca; The second metal group is a group consisting of elements selected from Zn, Sn, Cu, Fe, Ag, In, Re, Mo, Co, Ca, W; In the catalyst, the content of the carrier is 70-99.9% by weight; the content of the active component is 0.1-30% by weight. 如前述請求項10-11中任一項所述的用於有機物脫氫製氫氣的催化劑,其中活性組份是(1)貴金屬組中的至少一種元素,所述的催化劑中,載體的含量為90-99.9重量%(例如92-99.4重量%,92-99.5重量%,95-99.4重量%,98-99.2重量%,98.5-99.5重量%);活性組份的含量為0.1-10重量%(例如0.6-8重量%,0.5-8重量%,0.6-5重量%,0.8-2重量%或0.5-1.5重量%); 優選地,活性組份是Pt以及任選地貴金屬組中的除Pt以外的至少一種元素,其中Pt的含量為0.1-10重量%(例如0.1-2重量%,0.6-10重量%或0.6-0.8重量%),貴金屬組中的除Pt以外的至少一種元素的含量為0-9.9重量%(例如0.1-2重量%或0.1-0.8重量%);或者 活性組份是(2)Pt和第一金屬組中的至少一種元素; 所述的催化劑中,載體的含量為;75-99.5重量%(例如75-99.4重量%,79.9-98.5重量%),活性組份的含量為0.5-25重量%(例如0.6-25重量%,1.5-20.1重量%); 在所述的活性組份中,以單質計的Pt的含量為0.01-10重量%(例如,0.2-8重量%,0.4-2重量%,0.3-0.6重量%,0.1-0.7重量%);以氧化物計的第一金屬組中的至少一種元素的含量為0.5-20重量%(例如0.5-15重量%或1-10重量%);優選地,第一金屬組中的至少一種元素為Ni或為Ni和選自第一金屬組中的除Ni以外的至少一種元素的組合,其中Pt(以單質計)與Ni(以NiO計)的質量比為(0.01:16)至(0.5:0.1);或者 活性組份是(3)Ni,第二金屬組中的至少一種元素,和任選的磷; 在所述的催化劑中,載體的含量為70-95重量%(例如,75-93重量%,或75-90重量%),以氧化物計的活性組份的含量為5-30重量%(例如,7-25重量%); 在所述的活性組份中,以NiO計的鎳的含量為0.5-25重量%(例如,5-25重量%,6-20重量%,或6-11重量%);以氧化物計的第二金屬組中的至少一種元素的含量為0-15重量%(例如0-10重量%);以P2 O5 計的磷的含量為0-15重量%。The catalyst for the dehydrogenation of organic matter to produce hydrogen according to any one of the aforementioned claims 10-11, wherein the active component is (1) at least one element in the noble metal group, and the content of the carrier in the catalyst is 90-99.9% by weight (for example, 92-99.4% by weight, 92-99.5% by weight, 95-99.4% by weight, 98-99.2% by weight, 98.5-99.5% by weight); the content of the active component is 0.1-10% by weight ( For example, 0.6-8% by weight, 0.5-8% by weight, 0.6-5% by weight, 0.8-2% by weight, or 0.5-1.5% by weight); preferably, the active component is Pt and optionally Pt in the precious metal group At least one element other than Pt, wherein the content of Pt is 0.1-10% by weight (for example, 0.1-2% by weight, 0.6-10% by weight, or 0.6-0.8% by weight), and the content of at least one element other than Pt in the noble metal group 0-9.9% by weight (for example, 0.1-2% by weight or 0.1-0.8% by weight); or the active component is (2) Pt and at least one element in the first metal group; In the catalyst, the content of the carrier For; 75-99.5% by weight (for example, 75-99.4% by weight, 79.9-98.5% by weight), and the content of the active ingredient is 0.5-25% by weight (for example, 0.6-25% by weight, 1.5-20.1% by weight); In the active component, the content of Pt based on the simple substance is 0.01-10% by weight (for example, 0.2-8% by weight, 0.4-2% by weight, 0.3-0.6% by weight, 0.1-0.7% by weight); The content of at least one element in the first metal group is 0.5-20% by weight (for example, 0.5-15% by weight or 1-10% by weight); preferably, at least one element in the first metal group is Ni or It is a combination of Ni and at least one element other than Ni selected from the first metal group, wherein the mass ratio of Pt (calculated by simple substance) to Ni (calculated by NiO) is (0.01:16) to (0.5:0.1) Or the active component is (3) Ni, at least one element in the second metal group, and optionally phosphorus; In the catalyst, the content of the carrier is 70-95% by weight (for example, 75-93% by weight %, or 75-90% by weight), the content of the active component based on oxide is 5-30% by weight (for example, 7-25% by weight); in the active component, nickel based on NiO The content of is 0.5-25% by weight (for example, 5-25% by weight, 6-20% by weight, or 6-11% by weight); the content of at least one element in the second metal group is 0- 15% by weight (for example, 0-10% by weight); the content of phosphorus in terms of P 2 O 5 is 0-15% by weight. 一種催化劑的製備方法,其包括如下步驟: (1)將氧化鋁基質與氣體攜帶的改性金屬氧化物前驅物氣流接觸,得到負載改性金屬氧化物前驅物的氧化鋁基質,所述的改性金屬氧化物前驅物為氧化鈦前驅物和/或氧化鋯前驅物; (2)使負載改性金屬氧化物前驅物的氧化鋁基質水解,焙燒,得到載體組合物; 其中所述的催化劑的製備方法還包括如下的步驟: (3)用活性組份前驅物溶液浸漬所述的載體組合物,得到浸漬活性組份前驅物的載體; (4)浸漬活性組份前驅物的載體乾燥,焙燒; 優選地,活性組份是以下(1),(2)和(3)中的一種: (1)貴金屬組中的至少一種元素,優選地,活性組份是Pt以及任選地貴金屬組中的除Pt以外的至少一種元素; (2)Pt和第一金屬組中的至少一種元素; (3)Ni,第二金屬組中的至少一種元素,和任選的磷; 其中 貴金屬組是由選自Pt,Pd,Ru,Re,Rh,Ir,Os的元素構成的組; 第一金屬組是由選自Sn,V,Mo,Cr,Mn,Fe,Co,Ni,Cu,Ag,Ce,W,Cu,Ca的元素構成的組; 第二金屬組是由選自Zn,Sn,Cu,Fe,Ag,In,Re,Mo,Co,Ca,W的元素構成的組; 步驟(4)所述的焙燒,焙燒溫度為400-700℃,焙燒時間為0.5-12小時; 活性組份前驅物是活性組份的可溶性鹽(例如,金屬硝酸鹽,乙酸鹽,金屬氯化鹽,金屬碳酸鹽,金屬醋酸錯合物,金屬氫氧化物,金屬草酸鹽錯合物,高價金屬酸,高價金屬酸鹽,金屬藕合物,銨鹽中的一種或多種)。A method for preparing a catalyst includes the following steps: (1) The alumina matrix is contacted with the modified metal oxide precursor carried by the gas in a gas flow to obtain the alumina matrix supporting the modified metal oxide precursor, and the modified metal oxide precursor is a titanium oxide precursor And/or zirconia precursors; (2) Hydrolyzing and calcining the alumina matrix supporting the modified metal oxide precursor to obtain a carrier composition; The preparation method of the catalyst further includes the following steps: (3) Impregnating the carrier composition with the active component precursor solution to obtain the carrier impregnated with the active component precursor; (4) The carrier impregnated with the precursor of the active component is dried and roasted; Preferably, the active ingredient is one of the following (1), (2) and (3): (1) At least one element in the noble metal group, preferably, the active component is Pt and optionally at least one element other than Pt in the noble metal group; (2) Pt and at least one element in the first metal group; (3) Ni, at least one element of the second metal group, and optionally phosphorus; among them The noble metal group is a group consisting of elements selected from Pt, Pd, Ru, Re, Rh, Ir, Os; The first metal group is a group consisting of elements selected from Sn, V, Mo, Cr, Mn, Fe, Co, Ni, Cu, Ag, Ce, W, Cu, and Ca; The second metal group is a group consisting of elements selected from Zn, Sn, Cu, Fe, Ag, In, Re, Mo, Co, Ca, W; For the roasting described in step (4), the roasting temperature is 400-700°C, and the roasting time is 0.5-12 hours; Active ingredient precursors are soluble salts of active ingredients (for example, metal nitrates, acetates, metal chlorides, metal carbonates, metal acetate complexes, metal hydroxides, metal oxalate complexes, One or more of high-valent metal acid, high-valent metal salt, metal lotion, and ammonium salt). 如請求項13所述的催化劑的製備方法,其中, 將浸漬活性組份前驅物的載體於低於-40℃的環境中放置1小時至24小時;然後進行抽真空乾燥,除去載體上吸附的水,然後焙燒,得到催化劑。The method for preparing a catalyst according to claim 13, wherein: The carrier impregnated with the active component precursor is placed in an environment below -40°C for 1 hour to 24 hours; then vacuum drying is performed to remove water adsorbed on the carrier, and then calcined to obtain a catalyst.
TW109115135A 2019-05-06 2020-05-06 Organic hydrogen storage raw material dehydrogenation catalyst, carrier of catalyst, hydrogen storage alloy, and method for providing high-purity hydrogen gas TW202106384A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910370696.X 2019-05-06
CN201910370696 2019-05-06

Publications (1)

Publication Number Publication Date
TW202106384A true TW202106384A (en) 2021-02-16

Family

ID=73051249

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109115135A TW202106384A (en) 2019-05-06 2020-05-06 Organic hydrogen storage raw material dehydrogenation catalyst, carrier of catalyst, hydrogen storage alloy, and method for providing high-purity hydrogen gas

Country Status (9)

Country Link
US (1) US20220258133A1 (en)
EP (1) EP3967396A4 (en)
JP (1) JP7576568B2 (en)
KR (1) KR20220005090A (en)
CN (3) CN111892018B (en)
AU (1) AU2020268228A1 (en)
CA (1) CA3139546A1 (en)
TW (1) TW202106384A (en)
WO (1) WO2020224584A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114522628A (en) * 2020-11-23 2022-05-24 青岛创启新能催化科技有限公司 Liquid organic matter dehydrogenation system capable of being started quickly and dehydrogenation treatment method
CN112717685B (en) * 2020-12-18 2023-03-24 大连凯特利催化工程技术有限公司 Purifying agent for removing trace impurities in high-purity gas and preparation method and application thereof
CN112858539A (en) * 2021-01-07 2021-05-28 云南电网有限责任公司电力科学研究院 Dehydrogenation gas product collecting and processing system and method capable of eliminating background interference
JP7574648B2 (en) * 2021-01-08 2024-10-29 トヨタ自動車株式会社 Hydrogen Refueling System
CN115199946A (en) * 2021-04-14 2022-10-18 北京伯肯节能科技股份有限公司 Integrated organic solute hydrogenation station system
CN113390011B (en) * 2021-04-28 2022-11-01 浙江大学 Pressurization and hydrogen filling method for metal hydrogen embrittlement test in high-pressure hydrogen environment
CN113548643B (en) * 2021-07-16 2024-03-01 陕西氢易能源科技有限公司 Organic liquid hydrogen supply system integrated with high-temperature heat pump
CN113387327A (en) * 2021-07-16 2021-09-14 西安海望能源科技有限公司 Organic liquid hydrogen transportation system adopting static pressurization
CN113620784B (en) * 2021-07-26 2022-09-27 武汉工程大学 Alkane dehydrogenation and lignin-based ether hydrogenation reaction coupling process
CN113745547B (en) * 2021-09-07 2023-08-15 苏州清德氢能源科技有限公司 Direct liquid organic hydrogen carrier fuel cell based on hydrogen storage alloy electrode
US11891300B2 (en) * 2021-11-01 2024-02-06 Chevron U.S.A. Inc. Clean liquid fuels hydrogen carrier processes
CN113913859B (en) * 2021-11-22 2023-11-03 四川启睿克科技有限公司 Electrolytic water catalyst applicable to full pH range and preparation method thereof
CN115532266B (en) * 2022-09-27 2023-11-21 西安交通大学 Ni-Cu/AC catalyst for preparing gas fuel by hydrothermally converting indole and derivative thereof and preparation method thereof
CN115430367A (en) * 2022-09-28 2022-12-06 中化学科学技术研究有限公司 Dehydrogenation system and method
CN115520834A (en) * 2022-10-08 2022-12-27 北京瀚锐氢能科技有限公司 Dehydrogenation hydrogen supply system of liquid organic hydrogen storage material
CN115709063B (en) * 2022-10-28 2023-12-22 国家电投集团广东电力有限公司广州分公司 Hydrogenation catalyst of organic heterocyclic liquid hydrogen storage carrier, preparation method and application thereof
CN115893311A (en) * 2022-11-18 2023-04-04 中国石油化工股份有限公司 Green hydrogen storage coupling catalytic reforming device and process
CN116002613A (en) * 2022-12-12 2023-04-25 国家电投集团广东电力有限公司广州分公司 Hydrogen supply system
CN115849300A (en) * 2022-12-23 2023-03-28 中国天辰工程有限公司 Hydrogen storage and release process and system with toluene as hydrogen storage agent
CN116493030A (en) * 2023-03-07 2023-07-28 山东能源集团有限公司 TiO (titanium dioxide) 2 Base catalyst, preparation method and application thereof

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1149694C (en) * 1899-12-30 2004-05-12 株式会社东芝 Hydrogen storing alloy, method for surface improvement of same, negetive pole of battery and alkali dischargable battery
NL131515C (en) * 1966-03-08
US4048108A (en) * 1975-12-29 1977-09-13 Uop Inc. Oligomerization process and catalyst therefor
CN1024122C (en) * 1992-01-29 1994-04-06 浙江大学 Method of preparing, storing and transporting high-purity hydrogen and its installation
JPH06106061A (en) * 1992-09-29 1994-04-19 Chiyoda Corp Hydrogenation catalyst for deep desulfurization of gas oil
DE69516689T2 (en) * 1994-07-05 2000-12-28 Bp Amoco Corp., Chicago DEHYDRATION CATALYST AND DEHYDRATION METHOD
FR2770520B1 (en) * 1997-10-31 1999-12-10 Inst Francais Du Petrole PROCESS FOR SELECTIVE HYDROGENATION OF UNSATURATED COMPOUNDS
US6417135B1 (en) * 1999-08-27 2002-07-09 Huntsman Petrochemical Corporation Advances in dehydrogenation catalysis
US7037875B2 (en) * 2003-04-04 2006-05-02 Engelhard Corporation Catalyst support
CN1289193C (en) * 2004-06-08 2006-12-13 南京工业大学 Catalyst for reversible hydrogen storage and release of organic liquid hydride and preparation method thereof
CN101209817A (en) * 2006-12-30 2008-07-02 财团法人工业技术研究院 Hydrogen gas generating system and method
CN101251228B (en) * 2008-03-21 2010-06-09 石锋 Solid hydrogen-storing conveying apparatus
CN101327442B (en) * 2008-07-30 2012-02-22 中国科学院山西煤炭化学研究所 Hydrocarbon catalyst containing high content isomeric hydrocarbon prepared from synthesis gas and preparation method and use
CN101559923A (en) * 2009-05-12 2009-10-21 华东理工大学 Catalyst for intermittent preparation of pure hydrogen using decahydronaphthalene as material and method thereof
CN101575679A (en) * 2009-06-22 2009-11-11 北京科技大学 Preparation method of Mg-Ni series hydrogen storage alloy
CN101992085B (en) * 2009-08-31 2013-04-03 中国石油化工股份有限公司 Catalyst for hydrogen selective combustion reaction and preparation method thereof
CN101786020A (en) * 2010-02-05 2010-07-28 江苏工业学院 Phosphotungstic acid modified catalyst, preparation method and application in acrolein preparation thereof
CN101823692B (en) * 2010-04-20 2012-03-14 浙江大学 Reversible hydrogen adsorption and desorption method using piperidine as media and device
JP5369126B2 (en) 2010-04-28 2013-12-18 日本精線株式会社 Wire catalyst molded products for hydrogenation / dehydrogenation reactions
CN101845323B (en) * 2010-05-14 2013-01-30 大连理工大学 Process for producing petrol and diesel oil by plastic oil
CN101961631A (en) * 2010-09-14 2011-02-02 浙江大学 Device and method using aromatic compound to continuously absorb and discharge hydrogen
CN102191416B (en) * 2011-04-26 2012-11-28 燕山大学 Magnesium-based hydrogen storage alloy composite material and preparation method thereof
CN102517487B (en) * 2011-12-13 2013-11-06 浙江大学 Hydrogen-storage alloy producing high-pressure hydrogen
CN102618761B (en) * 2012-04-19 2014-04-16 杨桂玲 Magnesium-based hydrogen storage alloy material and preparation method thereof
US9192919B2 (en) * 2013-03-14 2015-11-24 Uchicago Argonne, Llc Selective alkane activation with single-site atoms on amorphous support
CN103638954B (en) * 2013-11-12 2016-04-13 中国石油大学(华东) A kind of preparation method of non-noble metal dehydrogenation catalyst and application process
JP2016000679A (en) * 2014-06-12 2016-01-07 Jx日鉱日石エネルギー株式会社 Hydrogen production apparatus and hydrogen production method
CN105582977B (en) * 2014-10-22 2018-06-15 中国石油化工股份有限公司 A kind of preparation method of dehydrogenation
WO2016158437A1 (en) 2015-03-27 2016-10-06 Jxエネルギー株式会社 Dehydrogenation catalyst for hydrocarbons, hydrogen production system, and hydrogen production method
CN106151869B (en) * 2015-04-15 2024-03-12 石家庄安瑞科气体机械有限公司 Solid-state high-pressure mixed hydrogen storage device
CN105126894B (en) * 2015-09-08 2017-10-20 陕西师范大学 A kind of GaN catalyst and preparation method thereof and the application in catalysis n butane oxidation dehydrogenation reaction
JP6541073B2 (en) 2016-03-07 2019-07-10 Jxtgエネルギー株式会社 Dehydrogenation catalyst for lower hydrocarbons and method for producing aromatic compound
CN107537476A (en) * 2016-06-29 2018-01-05 中国石油化工股份有限公司 Dehydrogenation, preparation method and its usage
JP2018144016A (en) 2017-03-09 2018-09-20 千代田化工建設株式会社 Dehydrogenation catalyst and method for producing the same, and dehydrogenation treatment method using the same
CN107739936B (en) * 2017-10-10 2018-11-27 安徽工业大学 A kind of high entropy reversible hydrogen storage alloy of Mg base and preparation method thereof
CN109701610A (en) * 2017-10-26 2019-05-03 中国石油化工股份有限公司 Modified dehydrogenation, preparation method and its usage
CN109713341A (en) * 2017-10-26 2019-05-03 云南电网有限责任公司电力科学研究院 A kind of hydrogen-feeding system and fuel cell integrated electricity generation system
CN108654596B (en) * 2018-04-28 2020-05-05 洛阳市科创石化科技开发有限公司 Propane dehydrogenation catalyst and preparation method thereof

Also Published As

Publication number Publication date
EP3967396A4 (en) 2023-04-12
CN111895265A (en) 2020-11-06
EP3967396A1 (en) 2022-03-16
JP2022531799A (en) 2022-07-11
AU2020268228A1 (en) 2021-12-16
US20220258133A1 (en) 2022-08-18
KR20220005090A (en) 2022-01-12
CN111895265B (en) 2022-07-15
CN111895266B (en) 2022-07-15
JP7576568B2 (en) 2024-10-31
CA3139546A1 (en) 2020-11-12
CN111892018A (en) 2020-11-06
WO2020224584A1 (en) 2020-11-12
CN111892018B (en) 2022-10-21
CN111895266A (en) 2020-11-06

Similar Documents

Publication Publication Date Title
WO2020224586A1 (en) Organic hydrogen storage raw material dehydrogenation catalyst, carrier of the catalyst, hydrogen storage alloy, and method for providing high-purity hydrogen
WO2020224584A1 (en) Catalyst for dehydrogenating organic hydrogen storage raw material, carrier for catalyst, hydrogen storage alloy, and method for providing high purity hydrogen
CA2883503A1 (en) Catalyst for producing hydrogen and method for producing hydrogen
JP2019155227A (en) Co2 methanation catalyst and carbon dioxide reduction method using the same
KR20080043161A (en) Supported catalyst for producing hydrogen gas by steam reforming reaction of liquefied natural gas, method for preparing the supported catalyst and method for producing hydrogen gas using the supported catalyst
JP7515392B2 (en) CO2 methanation catalyst and its manufacturing method and method for manufacturing methane
CN111889094B (en) Catalyst for preparing hydrogen by organic hydrogen storage compound dehydrogenation
JP7579275B2 (en) Dehydrogenation catalyst for organic hydrogen storage material and support therefor, hydrogen storage alloy, and method for supplying high-purity hydrogen gas
US9598644B1 (en) Method of CO and/or CO2 hydrogenation to higher hydrocarbons using doped mixed-metal oxides
KR101392996B1 (en) Mesoporous nickel-alumina-zirconia xerogel catalyst and production method of hydrogen by steam reforming of ethanol using said catalyst
KR20230122895A (en) Catalyst for dehydrogenation reaction, manufacturing method thereof, and hydrogen production method using same
CN116768149A (en) Low-temperature dehydrogenation method and hydrogen production system using same
KR20190108077A (en) Method for partial oxidation of carbonate hydrogen
KR20170044891A (en) A mesoporous nickel-copper-alumina-zirconia xerogel catalyst prepared by a single-step sol-gel method, preparation method thereof and production method of hydrogen gas by steam reforming of ethanol using said catalyst