TW201937401A - Optical fingerprint sensing module - Google Patents
Optical fingerprint sensing module Download PDFInfo
- Publication number
- TW201937401A TW201937401A TW107118871A TW107118871A TW201937401A TW 201937401 A TW201937401 A TW 201937401A TW 107118871 A TW107118871 A TW 107118871A TW 107118871 A TW107118871 A TW 107118871A TW 201937401 A TW201937401 A TW 201937401A
- Authority
- TW
- Taiwan
- Prior art keywords
- photoresist layer
- optical fingerprint
- module according
- layer
- sensor module
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/10—Image acquisition
- G06V10/12—Details of acquisition arrangements; Constructional details thereof
- G06V10/14—Optical characteristics of the device performing the acquisition or on the illumination arrangements
- G06V10/147—Details of sensors, e.g. sensor lenses
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/13—Sensors therefor
- G06V40/1324—Sensors therefor by using geometrical optics, e.g. using prisms
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Multimedia (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Vascular Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Optics & Photonics (AREA)
- Human Computer Interaction (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Image Input (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
Description
本發明是有關一種光學式之指紋感應技術,特別是一種具有光通道的光學指紋感應模組。The invention relates to an optical fingerprint sensing technology, in particular to an optical fingerprint sensing module with a light channel.
所謂指紋辨識,顧名思義就是利用人體手指上獨有指紋資訊進行辨識。常見的指紋辨識裝置可由兩種元素組成。其一為指紋感測器(Fingerprint Sensor),主要目的是採集一枚完整的指紋圖像。另一個元素則為指紋辨識演算法(Fingerprint Algorithm)。當前端的指紋感測器採集指紋圖像後,後續則是交由演算法進行指紋圖像處理與指紋特徵點抽取,生成指紋模板後將原始指紋圖像丟棄,最後再進行指紋比對。依照感測方式的不同,指紋辨識裝置可分爲光學式(Optical)與電容式(Capacity)。電容式指紋辨識裝置,其原理係將高密度的電容感測器或是壓力感測器等微型化感測器整合於一晶片之中,待手指按壓晶片表面時,內部微型電容感測器會根據指紋的波峰與波谷聚集而產生的不同電荷量(或是溫差),進而形成指紋圖像。電容式感測器的優點為薄型化與小型化,可被大量運用在手持裝置上,不過其缺點為成本高及耐用性備受考驗。光學式指紋辨識裝置包括光源、影像擷取(感測)元件及透光元件。光源用以發出光束,以照射按壓在透光元件上的手指,以指紋的波峰與波谷對於光線全反射的吸收與破壞,進而得到一枚指紋圖像,再經由電荷耦合元件(CCD)將影像擷取與輸出。由於光學式指紋感測器的採集方式是非接觸晶片本身,也就是指紋按壓處是由壓克力或是玻璃等光學元件所構成,故光學式最大的優勢就是價格低廉且耐用。然而,在上述的取像過程中,被指紋反射的光束易散亂地傳遞至影像擷取元件,而造成取像品質不佳,影響辨識結果。The so-called fingerprint identification, as the name implies, uses the unique fingerprint information on the human finger for identification. A common fingerprint recognition device can be composed of two elements. One is the Fingerprint Sensor, whose main purpose is to collect a complete fingerprint image. Another element is the Fingerprint Algorithm. After the front-end fingerprint sensor collects the fingerprint image, it is followed by an algorithm for fingerprint image processing and fingerprint feature point extraction. After generating a fingerprint template, the original fingerprint image is discarded, and finally fingerprint comparison is performed. According to different sensing methods, fingerprint recognition devices can be divided into optical (Optical) and capacitive (Capacity). Capacitive fingerprint recognition device, its principle is to integrate high-density capacitive sensors or pressure sensors such as miniaturized sensors into a chip. When a finger presses on the surface of the chip, the internal miniature capacitive sensor will Fingerprint images are formed based on the different charge amounts (or temperature differences) generated by the peak and trough accumulation of the fingerprint. Capacitive sensors have the advantages of thinness and miniaturization and can be widely used in handheld devices, but their disadvantages are high cost and durability. The optical fingerprint recognition device includes a light source, an image capturing (sensing) element and a light transmitting element. The light source is used to emit a light beam to irradiate a finger pressed on the light-transmitting element, and the peaks and troughs of the fingerprint absorb and destroy the total reflection of the light, thereby obtaining a fingerprint image, and then the image is charged by a charge coupled element (CCD). Capture and output. Because the optical fingerprint sensor's collection method is the non-contact chip itself, that is, the fingerprint pressing part is composed of optical elements such as acrylic or glass, so the biggest advantage of the optical type is that it is cheap and durable. However, in the above-mentioned image capturing process, the light beam reflected by the fingerprint is easily scattered to the image capturing element, resulting in poor image capturing quality and affecting the identification result.
有鑑於此,如何改善光電式指紋辨識裝置的取像品質便是目前極需努力的目標。In view of this, how to improve the image capturing quality of the photoelectric fingerprint identification device is a goal that needs to be worked hard at present.
本發明提供一種光學指紋感應模組,此指紋感應模組利用微透鏡結構匯聚光線並藉由不透光光阻層有效過濾角度光,以增加感應圖像的品質。The present invention provides an optical fingerprint sensing module. The fingerprint sensing module uses a micro-lens structure to collect light and effectively filter angular light through an opaque photoresist layer to increase the quality of a sensing image.
本發明一實施例之光學指紋感應模組包含一基板、一半導體層及一光通道結構層。基板包含複數個光感應模組間隔設置。半導體層設置於基板上。光通道結構層設置於半導體層上,以形成複數個光通道,其中光通道結構層包含:一第一複合光阻層及複數個微透鏡結構。第一複合光阻層設置於半導體層上,且第一複合光阻層包含一第一光阻層。任一微透鏡結構設置於任一第一複合光阻層上方、及第一複合光阻層內的至少其中一處,其中微透鏡結構形成上述光通道。An optical fingerprint sensing module according to an embodiment of the present invention includes a substrate, a semiconductor layer, and an optical channel structure layer. The substrate includes a plurality of light sensing modules arranged at intervals. The semiconductor layer is disposed on the substrate. The optical channel structure layer is disposed on the semiconductor layer to form a plurality of optical channels. The optical channel structure layer includes a first composite photoresist layer and a plurality of microlens structures. The first composite photoresist layer is disposed on the semiconductor layer, and the first composite photoresist layer includes a first photoresist layer. Any micro-lens structure is disposed above any one of the first composite photoresist layers and at least one of the first composite photoresist layers, wherein the micro-lens structure forms the light channel.
以下藉由具體實施例配合所附的圖式詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。In the following, detailed description will be given through specific embodiments in conjunction with the accompanying drawings to make it easier to understand the purpose, technical content, characteristics and effects achieved by the present invention.
以下將詳述本發明之各實施例,並配合圖式作為例示。除了這些詳細說明之外,本發明亦可廣泛地施行於其它的實施例中,任何所述實施例的輕易替代、修改、等效變化都包含在本發明之範圍內,並以申請專利範圍為準。在說明書的描述中,為了使讀者對本發明有較完整的瞭解,提供了許多特定細節;然而,本發明可能在省略部分或全部特定細節的前提下,仍可實施。此外,眾所周知的步驟或元件並未描述於細節中,以避免對本發明形成不必要之限制。圖式中相同或類似之元件將以相同或類似符號來表示。特別注意的是,圖式僅為示意之用,並非代表元件實際之尺寸或數量,有些細節可能未完全繪出,以求圖式之簡潔。Hereinafter, the embodiments of the present invention will be described in detail, and illustrated with drawings. In addition to these detailed descriptions, the present invention can also be widely implemented in other embodiments, and easy replacements, modifications, equivalent changes of any of the embodiments are included in the scope of the present invention, and the scope of the patent application is quasi. In the description of the specification, in order to make the reader have a more complete understanding of the present invention, many specific details are provided; however, the present invention may be implemented without omitting some or all of the specific details. In addition, well-known steps or elements have not been described in detail to avoid unnecessarily limiting the invention. The same or similar elements in the drawings will be represented by the same or similar symbols. It is particularly noted that the drawings are for illustration purposes only and do not represent the actual size or number of components. Some details may not be fully drawn in order to make the drawings concise.
請參照圖1A,圖1A為本發明之一實施例之光學指紋感應模組的剖視示意圖。光學指紋感應模組100包含一基板110、一半導體層120及一光通道結構層130。如圖所示,基板110包含複數個光感應模組111間隔設置,其中基板110包含但不限於矽基板,於此實施例中,任一光感應模組111可只包含一光感應元件1111 。而半導體層120設置於基板110上。請繼續參考圖1A,光通道結構層130設置於半導體層120上,以形成複數個光通道。其中光通道結構層130包含:一第一複合光阻層131及複數個微透鏡結構133。如圖1A所示,第一複合光阻層131設置於半導體層120上。任一微透鏡結構133設置於第一複合光阻層131上方、第一複合光阻層131內的至少其中一處(如圖1A、圖1B、圖1C),其中該複數微透鏡結構形成該複數個光通道。於一實施例中,請參考圖2A,第一複合光阻層131包含一第一光阻層1311及一第一不透光光阻層1312堆疊設置於第一光阻層1311上,其中第一不透光光阻層1312具有複數個第一開口1313。於又一實施例中,第一不透光光阻層1312由一低反射率材料所構成,其反射率小於30%,舉例而言,較佳者,第一不透光光阻層1312為黑光阻層(Black Matrix)或彩色光阻層。於此實施例中,微透鏡結構133的尺寸大於與其對應之第一開口1313的開口大小,可以理解的是,微透鏡結構133的大小亦可恰巧等於第一開口1313之大小。此外,任一微透鏡結構133不限制為圖2A中所示的平凸透鏡結構,亦可為雙凸透鏡結構(如圖2B所示)、平凹透鏡結構(如圖2C所示)或雙凹透鏡結構(如圖2D所示),此外,依據不同形式的透鏡結構,微透鏡結構133可依據設計設置於第一開口1313上方(如圖2A所示)、設置於第一開口1313下方(如圖2E、圖2F及圖2G所示)、或設置於第一開口1313內(如圖2C所示),更者,微透鏡結構133可依據設計設置於第一開口1313下方延伸至開口內(如圖2B、圖2D所示)。如圖2E、圖2F及圖2G所示,於設置在第一開口1313下方的實施例中,其係可利用適當方式在第一光阻層1311上先形成所需形狀的凹槽再將微透鏡結構133設置於其中,其製造方式此即不再贅述。上述結構中,光線由光通道結構層130射入,經由微透鏡結構133、第一開口1313射入基板110的光感應模組111上,其中由於不透光光阻層的反射率低,舉例而言,黑光阻的反射率約只有6%,故可有效吸光或可防止無效光線的繼續反射,而微透鏡結構133幫助光線聚焦於光感應模組111上,因此,本發明之指紋感應模組除有效匯聚光線之外,藉由不透光光阻層的吸光作用有效過濾角度光,可增加感應圖像的品質。以下實施例中,微透鏡結構133皆以平凸透鏡結構為主要實施範例,其餘透鏡的變化態樣即不再贅述。Please refer to FIG. 1A, which is a schematic cross-sectional view of an optical fingerprint sensor module according to an embodiment of the present invention. The optical fingerprint sensing module 100 includes a substrate 110, a semiconductor layer 120, and an optical channel structure layer 130. As shown in the figure, the substrate 110 includes a plurality of light-sensing modules 111 spaced apart. The substrate 110 includes, but is not limited to, a silicon substrate. In this embodiment, any one of the light-sensing modules 111 may include only one light-sensing element 1111. The semiconductor layer 120 is disposed on the substrate 110. Please continue to refer to FIG. 1A, an optical channel structure layer 130 is disposed on the semiconductor layer 120 to form a plurality of optical channels. The optical channel structure layer 130 includes a first composite photoresist layer 131 and a plurality of microlens structures 133. As shown in FIG. 1A, the first composite photoresist layer 131 is disposed on the semiconductor layer 120. Any one of the micro lens structures 133 is disposed above the first composite photoresist layer 131 and at least one of the first composite photoresist layers 131 (as shown in FIGS. 1A, 1B, and 1C), wherein the plurality of microlens structures form the A plurality of optical channels. In an embodiment, please refer to FIG. 2A. The first composite photoresist layer 131 includes a first photoresist layer 1311 and a first opaque photoresist layer 1312 stacked on the first photoresist layer 1311. An opaque photoresist layer 1312 has a plurality of first openings 1313. In yet another embodiment, the first opaque photoresist layer 1312 is made of a low-reflectivity material, and its reflectance is less than 30%. For example, preferably, the first opaque photoresist layer 1312 is Black photoresist layer (Black Matrix) or color photoresist layer. In this embodiment, the size of the micro-lens structure 133 is larger than the size of the opening of the first opening 1313 corresponding thereto. It can be understood that the size of the micro-lens structure 133 may also happen to be equal to the size of the first opening 1313. In addition, any micro-lens structure 133 is not limited to the plano-convex lens structure shown in FIG. 2A, but may also be a bi-convex lens structure (as shown in FIG. 2B), a plano-concave lens structure (as shown in FIG. 2C), or a bi-concave lens structure ( (As shown in FIG. 2D). In addition, according to different lens structures, the micro-lens structure 133 may be provided above the first opening 1313 (as shown in FIG. 2A) and below the first opening 1313 (as shown in FIG. 2E, 2F and 2G), or disposed in the first opening 1313 (as shown in FIG. 2C). Furthermore, the micro-lens structure 133 may be arranged below the first opening 1313 and extended into the opening according to the design (as shown in FIG. 2B). (Shown in Figure 2D). As shown in FIG. 2E, FIG. 2F, and FIG. 2G, in the embodiment provided below the first opening 1313, it is possible to form a desired shape groove on the first photoresist layer 1311 by using an appropriate method, and then The lens structure 133 is disposed therein, and its manufacturing method is not repeated here. In the above structure, light is incident from the light channel structure layer 130 and enters the light sensing module 111 of the substrate 110 through the micro lens structure 133 and the first opening 1313. Among them, the reflectivity of the opaque photoresist layer is low, for example In other words, the reflectivity of the black photoresist is only about 6%, so it can effectively absorb light or prevent the continued reflection of invalid light, and the micro-lens structure 133 helps the light to focus on the light-sensing module 111. Therefore, the fingerprint sensing mode of the present invention In addition to effectively converging light, the angular light is effectively filtered by the light absorption effect of the opaque photoresist layer, which can increase the quality of the induced image. In the following embodiments, the micro-lens structure 133 uses a plano-convex lens structure as the main implementation example, and the changes of the remaining lenses will not be described again.
於一實施例中,請參考圖3、圖4,圖3、圖4為本發明不同一實施例之光學指紋感應模組的剖視示意圖。請先參考圖3,於本實施例中,半導體層120更包含至少一金屬層121,且金屬層121具有複數個第二開口1211,第二開口1211的位置與光感應模組111之位置對應。也就是說,本發明依實施例之光學指紋感應模組中由上而下,第一開口1313、第二開口1211與光感應模組111之位置係相互對應的。而於一實施例中,半導體層120舉例而言包含但不限於1P5M(One-Poly-Five-Metal)結構,其中半導體層120的金屬層結構可再次對於無效光線進行反射。於又一實施例中,任一個第二開口1211的開口大小係小於與其對應之第一開口1313的開口大小;或者,任一個第二開口的開口大小係小於與其對應之該第四開口1323的開口大小。於再一實施例中,半導體層120中的金屬層121為複數層,且第二開口1211的位置於軸向位置上至少有部分重疊。也就是說,上下金屬層的第二開口1211的位置可如圖3所示,所有的開口位置完全重疊,亦或者,可如圖4實施例所示,所有的開口位置不完全重疊。如此作法,係由於製程技術的限制,開口的大小也許會有最小限制,藉由讓上下金屬層開口位置不完全對齊,可控制光進入光感應模組111的位置。In an embodiment, please refer to FIGS. 3 and 4. FIGS. 3 and 4 are schematic cross-sectional views of an optical fingerprint sensor module according to different embodiments of the present invention. Please refer to FIG. 3 first. In this embodiment, the semiconductor layer 120 further includes at least one metal layer 121, and the metal layer 121 has a plurality of second openings 1211. The positions of the second openings 1211 correspond to the positions of the light sensing module 111. . That is, in the optical fingerprint sensor module according to the embodiment of the present invention, the positions of the first opening 1313, the second opening 1211, and the light sensing module 111 correspond to each other from top to bottom. In one embodiment, the semiconductor layer 120 includes, but is not limited to, a 1-Poly-Five-Metal (P5M) structure. The metal layer structure of the semiconductor layer 120 can reflect invalid light again. In still another embodiment, the opening size of any one of the second openings 1211 is smaller than the opening size of the first opening 1313 corresponding to it; or the opening size of any one of the second openings is smaller than the opening size of the fourth opening 1323 corresponding thereto. Opening size. In yet another embodiment, the metal layer 121 in the semiconductor layer 120 is a plurality of layers, and the position of the second opening 1211 at least partially overlaps in the axial position. That is, the positions of the second openings 1211 of the upper and lower metal layers may be as shown in FIG. 3, and all the opening positions are completely overlapped, or, as shown in the embodiment of FIG. 4, all the opening positions are not completely overlapped. In this way, the size of the opening may be the smallest due to the limitation of the process technology. The position of the light entering the light-sensing module 111 can be controlled by the incomplete alignment of the opening positions of the upper and lower metal layers.
於又一實施例中,如圖5所示,圖5為本發明又一實施例之光學指紋感應模組的剖視示意圖。於本實施例中,更包含至少一第三不透光光阻層1314設置於第一光阻層1311中,其中每一第三不透光光阻層1314具有一第三開口1315,且第三開口1315的位置與第一開口1313的位置的位置與光感應模組111的位置係相互對應。於一實施例中,第三不透光光阻層1314為複數層,且第三開口1315的位置於軸向位置上至少有部分重疊(如圖6所示),原因如上述,此即不再贅述。於一實施例中,第三不透光光阻層1314可為黑光阻或彩色光阻,較佳者,第三不透光光阻層為黑光阻以有效吸收無效光線。In another embodiment, as shown in FIG. 5, FIG. 5 is a schematic cross-sectional view of an optical fingerprint sensor module according to another embodiment of the present invention. In this embodiment, at least one third opaque photoresist layer 1314 is further disposed in the first photoresist layer 1311, wherein each third opaque photoresist layer 1314 has a third opening 1315, and the first The position of the three openings 1315 and the position of the first opening 1313 correspond to the position of the light sensing module 111. In an embodiment, the third opaque photoresist layer 1314 is a plurality of layers, and the position of the third opening 1315 at least partially overlaps in the axial position (as shown in FIG. 6). The reason is as described above. More details. In an embodiment, the third opaque photoresist layer 1314 may be a black photoresist or a color photoresist. Preferably, the third opaque photoresist layer is a black photoresist to effectively absorb ineffective light.
請參考圖7,於一實施例中,光通道結構層130包含一第二複合光阻層132,且第二複合光阻層132堆疊設置於第一複合光阻層131上,且第二複合光阻層132包含一第二光阻層1321及一第二不透光光阻層1322堆疊設置於第二光阻層1321上,其中第二不透光光阻層1322具有複數個第四開口1323。於圖6的實施例中,第一複合光阻層131及第二複合光阻層132之結構可相同或不同。於又一實施例中,第二不透光光阻層1322亦可由一低反射率材料所構成,其反射率小於10%,其包含但不限於黑光阻層或彩色光阻層。於一實施例中,複數通孔134由第四開口1323往下貫穿第二光阻層1321,並露出至少部份複數微透鏡結構133,其中第四開口1323、通孔134、微透鏡結構133及第一開口1313形成上述光通道。於一實施例中,更包含一低折射率材質至少填充於通孔134內以形成一低折射率層135,也就是說,低折射率材質可填充至第四開口1323,更者,低折射率材質可填充至與第二不透光光阻層1322齊平。於又一實施例中,通孔134內亦可不填充任何物質。上述結構中,光線由光通道結構層130射入,經由第四開口1323、通孔134(低折射率層135)、微透鏡結構133、第一開口1313射入基板110的光感應模組111上。Please refer to FIG. 7. In an embodiment, the optical channel structure layer 130 includes a second composite photoresist layer 132, and the second composite photoresist layer 132 is stacked on the first composite photoresist layer 131, and the second composite The photoresist layer 132 includes a second photoresist layer 1321 and a second opaque photoresist layer 1322 stacked on the second photoresist layer 1321. The second opaque photoresist layer 1322 has a plurality of fourth openings. 1323. In the embodiment of FIG. 6, the structures of the first composite photoresist layer 131 and the second composite photoresist layer 132 may be the same or different. In yet another embodiment, the second opaque photoresist layer 1322 may also be made of a low-reflectivity material with a reflectance of less than 10%, which includes but is not limited to a black photoresist layer or a color photoresist layer. In an embodiment, the plurality of through holes 134 penetrate the second photoresist layer 1321 from the fourth opening 1323 and expose at least part of the plurality of micro lens structures 133. The fourth opening 1323, the through holes 134, and the micro lens structure 133 are exposed. And the first opening 1313 forms the light channel. In an embodiment, a low-refractive-index material is further filled at least in the through-hole 134 to form a low-refractive-index layer 135, that is, a low-refractive-index material can be filled into the fourth opening 1323, and further, a low-refractive index The material can be filled to be flush with the second opaque photoresist layer 1322. In another embodiment, the through hole 134 may not be filled with any substance. In the above structure, light is incident through the optical channel structure layer 130, and enters the light sensing module 111 of the substrate 110 through the fourth opening 1323, the through hole 134 (low refractive index layer 135), the micro lens structure 133, and the first opening 1313. on.
承上述,此處進一步解釋微透鏡結構133與不透光光阻層之作用。舉例而言,如微透鏡結構133本身的焦距為f,而微透鏡結構133至光感應模組111的像距為v,微透鏡結構133至成像物的物距為u,依透鏡成像公式:,則可控制f及v,將距離u的指紋成像清楚,而其它距離的影像就會較模糊。如微透鏡結構133的焦距f固定,則指紋距離u的成像是否清楚,由景深決定,因此,本發明之結構可藉由控制第四開口1323的開口大小決定景深。也就是說,第二複合光阻層132的第二不透光光阻層1322除過濾角度光之外,其開口更決定景深大小,也就是成像是否清楚的主要關鍵之一。Following the above, the role of the microlens structure 133 and the opaque photoresist layer is further explained here. For example, if the focal length of the microlens structure 133 itself is f, the image distance of the microlens structure 133 to the light sensing module 111 is v, and the object distance of the microlens structure 133 to the imaging object is u, according to the lens imaging formula: , You can control f and v to image fingerprints at distance u clearly, but the images at other distances will be more blurred. If the focal length f of the microlens structure 133 is fixed, whether the imaging of the fingerprint distance u is clear or not is determined by the depth of field. Therefore, the structure of the present invention can determine the depth of field by controlling the opening size of the fourth opening 1323. That is, in addition to filtering the angle light, the opening of the second opaque photoresist layer 1322 of the second composite photoresist layer 132 determines the depth of field, which is one of the main keys for whether the imaging is clear.
於再一實施例中,請參考圖8、圖9,圖8、圖9為本發明又一實施例之光學指紋感應模組的剖視示意圖。如圖所示,更包含至少一第四不透光光阻層1324設置於第二光阻層132中,其中每一第四不透光光阻層1324具有一第五開口1325,且第五開口1325的位置與第一開口1313的位置、第四開口1323的位置與光感應模組111的位置係相互對應,於一實施例中,第四不透光光阻層1324為複數層,且第五開口1325的位置於軸向位置上至少有部分重疊(圖7繪示完全重疊;圖8繪示部分重疊)。In still another embodiment, please refer to FIGS. 8 and 9. FIGS. 8 and 9 are schematic cross-sectional views of an optical fingerprint sensor module according to another embodiment of the present invention. As shown in the figure, at least one fourth opaque photoresist layer 1324 is further disposed in the second photoresist layer 132, wherein each fourth opaque photoresist layer 1324 has a fifth opening 1325, and the fifth The position of the opening 1325 corresponds to the position of the first opening 1313, the position of the fourth opening 1323, and the position of the light sensor module 111. In one embodiment, the fourth opaque photoresist layer 1324 is a plurality of layers, and The position of the fifth opening 1325 at least partially overlaps in the axial position (FIG. 7 illustrates a complete overlap; FIG. 8 illustrates a partial overlap).
於再一實施例中,請參考圖10,圖10為本發明再一實施例之光學指紋感應模組的剖視示意圖。如圖所示,光感應模組111亦可包含複數個光感應元件1111,其中光感應元件1111包含但不限於陣列設置於基板110上。多個陣列設置的光感應元件1111可用以收集不同角度的光,亦可增加感應圖像的品質。In yet another embodiment, please refer to FIG. 10, which is a schematic cross-sectional view of an optical fingerprint sensor module according to another embodiment of the present invention. As shown in the figure, the light-sensing module 111 may also include a plurality of light-sensing elements 1111. The light-sensing element 1111 includes, but is not limited to, an array disposed on the substrate 110. The light-sensing elements 1111 arranged in multiple arrays can be used to collect light at different angles, and the quality of the sensing image can be increased.
需說明的是,前述實施例是將光學指紋感應模組100應用於光學指紋辨識系統中,應而未顯示光學指紋辨識系統的完整結構。光學指紋辨識系統之其它功能元件,例如光源結構、玻璃蓋體結構,因已為本發明所屬技術領域之通常知識者所熟知,且非為本發明之主要技術特徵,故在此不再贅述。It should be noted that, in the foregoing embodiment, the optical fingerprint sensing module 100 is applied to an optical fingerprint recognition system, and the complete structure of the optical fingerprint recognition system is not shown. Other functional elements of the optical fingerprint recognition system, such as a light source structure and a glass cover structure, are well known to those of ordinary skill in the technical field to which the present invention pertains, and are not the main technical features of the present invention, so they will not be repeated here.
綜合上述,本發明之指紋感應模組,利用微透鏡結構有效匯聚光線於光感應模組上,此外,並藉由不透光光阻層有效過濾角度光、進而減少無效反射。更者,依據不同指紋辨識系統的厚度設計,可彈性設計不透光光阻層的開口大小,控制景深,以改善成像的品質。更者,光感應模組可以依據需求,設計成包含一個光感應元件或多個光感應元件,用以有效收集不同角度的光線。再者,為避免製程技術之限制,本發明中所提及之不透光光阻層、金屬層,皆可依據需求設計為上下開口位置完全重疊或部分重疊,以符合所需光通道。To sum up, the fingerprint sensor module of the present invention uses a micro-lens structure to effectively focus light on the light sensor module. In addition, it effectively filters angular light through an opaque photoresist layer, thereby reducing invalid reflection. Furthermore, according to the thickness design of different fingerprint recognition systems, the opening size of the opaque photoresist layer can be flexibly designed to control the depth of field to improve the quality of imaging. Furthermore, the light-sensing module can be designed to include a light-sensing element or a plurality of light-sensing elements according to requirements to effectively collect light at different angles. Furthermore, in order to avoid the limitation of the process technology, the opaque photoresist layer and the metal layer mentioned in the present invention can be designed to completely overlap or partially overlap the upper and lower opening positions according to requirements, so as to meet the required light channel.
以上所述之實施例僅是為說明本發明之技術思想及特點,其目的在使熟習此項技藝之人士能夠瞭解本發明之內容並據以實施,當不能以之限定本發明之專利範圍,即大凡依本發明所揭示之精神所作之均等變化或修飾,仍應涵蓋在本發明之專利範圍內。The above-mentioned embodiments are only for explaining the technical ideas and characteristics of the present invention. The purpose is to enable those skilled in the art to understand the contents of the present invention and implement them accordingly. When the scope of the patent of the present invention cannot be limited, That is, any equivalent changes or modifications made in accordance with the spirit disclosed in the present invention should still be covered by the patent scope of the present invention.
100‧‧‧光學指紋感應模組100‧‧‧optical fingerprint sensor module
110‧‧‧基板110‧‧‧ substrate
111‧‧‧光感應模組111‧‧‧light sensor module
1111‧‧‧光感應元件1111‧‧‧Light sensor
120‧‧‧半導體層120‧‧‧Semiconductor layer
121‧‧‧金屬層121‧‧‧ metal layer
1211‧‧‧第二開口1211‧‧‧Second opening
130‧‧‧光通道結構層130‧‧‧Optical channel structure layer
131‧‧‧第一複合光阻層131‧‧‧The first composite photoresist layer
1311‧‧‧第一光阻層1311‧‧‧First photoresist layer
1312‧‧‧第一不透光光阻層1312‧‧‧First opaque photoresist layer
1313‧‧‧第一開口1313‧‧‧First opening
1314‧‧‧第三不透光光阻層1314‧‧‧Third opaque photoresist layer
1315‧‧‧第三開口1315‧‧‧ Third opening
132‧‧‧第二複合光阻層132‧‧‧Second composite photoresist layer
1321‧‧‧第二光阻層1321‧‧‧Second photoresist layer
1322‧‧‧第二不透光光阻層1322‧‧‧Second opaque photoresist layer
1323‧‧‧第四開口1323‧‧‧fourth opening
1324‧‧‧第四不透光光阻層1324‧‧‧ Fourth opaque photoresist layer
1325‧‧‧第五開口1325‧‧‧Fifth opening
133‧‧‧微透鏡結構133‧‧‧Micro lens structure
134‧‧‧通孔134‧‧‧through hole
135‧‧‧低折射率層135‧‧‧Low refractive index layer
圖1A為一剖視示意圖,顯示本發明一實施例之光學指紋感應模組的結構。 圖1B為一剖視示意圖,顯示本發明一實施例之光學指紋感應模組的結構。 圖1C為一剖視示意圖,顯示本發明一實施例之光學指紋感應模組的結構。 圖2A為一剖視示意圖,顯示本發明一實施例之光學指紋感應模組的結構。 圖2B為一剖視示意圖,顯示本發明一實施例之光學指紋感應模組的結構。 圖2C為一剖視示意圖,顯示本發明一實施例之光學指紋感應模組的結構。 圖2D為一剖視示意圖,顯示本發明一實施例之光學指紋感應模組的結構。 圖2E為一剖視示意圖,顯示本發明一實施例之光學指紋感應模組的結構。 圖2F為一剖視示意圖,顯示本發明一實施例之光學指紋感應模組的結構。 圖2G為一剖視示意圖,顯示本發明一實施例之光學指紋感應模組的結構。 圖3為一剖視示意圖,顯示本發明又一實施例之光學指紋感應模組的結構。 圖4為一剖視示意圖,顯示本發明再一實施例之光學指紋感應模組的結構。 圖5為一剖視示意圖,顯示本發明一實施例之光學指紋感應模組的剖視示意圖。 圖6為一剖視示意圖,顯示本發明一實施例之光學指紋感應模組的剖視示意圖。 圖7為一剖視示意圖,顯示本發明一實施例之光學指紋感應模組的剖視示意圖。 圖8為一剖視示意圖,顯示本發明一實施例之光學指紋感應模組的剖視示意圖。 圖9為一剖視示意圖,顯示本發明一實施例之光學指紋感應模組的剖視示意圖。 圖10為一剖視示意圖,顯示本發明一實施例之光學指紋感應模組的剖視示意圖。FIG. 1A is a schematic cross-sectional view showing a structure of an optical fingerprint sensor module according to an embodiment of the present invention. FIG. 1B is a schematic cross-sectional view showing a structure of an optical fingerprint sensor module according to an embodiment of the present invention. FIG. 1C is a schematic cross-sectional view showing a structure of an optical fingerprint sensor module according to an embodiment of the present invention. FIG. 2A is a schematic cross-sectional view showing a structure of an optical fingerprint sensor module according to an embodiment of the present invention. FIG. 2B is a schematic cross-sectional view showing the structure of an optical fingerprint sensor module according to an embodiment of the present invention. FIG. 2C is a schematic cross-sectional view showing a structure of an optical fingerprint sensor module according to an embodiment of the present invention. FIG. 2D is a schematic cross-sectional view showing the structure of an optical fingerprint sensor module according to an embodiment of the present invention. FIG. 2E is a schematic cross-sectional view showing the structure of an optical fingerprint sensor module according to an embodiment of the present invention. 2F is a schematic cross-sectional view showing the structure of an optical fingerprint sensor module according to an embodiment of the present invention. 2G is a schematic cross-sectional view showing the structure of an optical fingerprint sensor module according to an embodiment of the present invention. FIG. 3 is a schematic cross-sectional view showing a structure of an optical fingerprint sensor module according to another embodiment of the present invention. FIG. 4 is a schematic cross-sectional view showing a structure of an optical fingerprint sensor module according to still another embodiment of the present invention. 5 is a schematic cross-sectional view showing a cross-sectional view of an optical fingerprint sensor module according to an embodiment of the present invention. 6 is a schematic cross-sectional view showing a cross-sectional view of an optical fingerprint sensor module according to an embodiment of the present invention. FIG. 7 is a schematic cross-sectional view showing a schematic cross-sectional view of an optical fingerprint sensor module according to an embodiment of the present invention. FIG. 8 is a schematic cross-sectional view showing a schematic cross-sectional view of an optical fingerprint sensor module according to an embodiment of the present invention. FIG. 9 is a schematic cross-sectional view showing a schematic cross-sectional view of an optical fingerprint sensor module according to an embodiment of the present invention. FIG. 10 is a schematic cross-sectional view showing a schematic cross-sectional view of an optical fingerprint sensor module according to an embodiment of the present invention.
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910476357.XA CN110555367B (en) | 2018-02-21 | 2019-06-03 | Optical fingerprint sensing module |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107105833 | 2018-02-21 | ||
CN107105833 | 2018-02-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201937401A true TW201937401A (en) | 2019-09-16 |
Family
ID=68618588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107118871A TW201937401A (en) | 2018-02-21 | 2018-06-01 | Optical fingerprint sensing module |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110555367B (en) |
TW (1) | TW201937401A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113792571A (en) * | 2020-08-17 | 2021-12-14 | 友达光电股份有限公司 | Fingerprint sensing module |
TWI752802B (en) * | 2020-08-17 | 2022-01-11 | 友達光電股份有限公司 | Fingerprint sensing module and fingerprint identification apparatus |
TWI840960B (en) * | 2022-03-07 | 2024-05-01 | 群創光電股份有限公司 | Electronic device and method of manufacturing the same |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111062367A (en) * | 2019-12-31 | 2020-04-24 | 武汉华星光电半导体显示技术有限公司 | Fingerprint identification device |
CN113780035B (en) * | 2020-06-09 | 2024-09-13 | 京东方科技集团股份有限公司 | Display panel and display device |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016112279A (en) * | 2014-12-17 | 2016-06-23 | セイコーエプソン株式会社 | Image acquisition device, biological information acquisition device, and electronic apparatus |
JP2016115862A (en) * | 2014-12-17 | 2016-06-23 | セイコーエプソン株式会社 | Image acquisition device, biological information acquisition device, electronic apparatus |
TWI554953B (en) * | 2015-10-30 | 2016-10-21 | 培新科技股份有限公司 | Fingerprint image capturing device and fingerprint image capturing module thereof |
CN105870142B (en) * | 2016-04-29 | 2020-08-04 | 格科微电子(上海)有限公司 | Method for forming optical fingerprint identification device |
CN106971173B (en) * | 2017-04-13 | 2021-01-26 | 京东方科技集团股份有限公司 | Touch substrate and display panel |
JP2018189725A (en) * | 2017-04-28 | 2018-11-29 | Jsr株式会社 | Optical filter and image capturing device using the same |
TWI639022B (en) * | 2017-05-18 | 2018-10-21 | 吳志彥 | Optical element fabrication method and optical sensing device |
CN107358216B (en) * | 2017-07-20 | 2020-12-01 | 京东方科技集团股份有限公司 | Fingerprint acquisition module, display device and fingerprint identification method |
CN109445161B (en) * | 2018-12-27 | 2021-07-09 | 厦门天马微电子有限公司 | Display panel and display device |
CN208848221U (en) * | 2019-04-10 | 2019-05-10 | 深圳市汇顶科技股份有限公司 | Optical fingerprint identification device and electronic equipment |
-
2018
- 2018-06-01 TW TW107118871A patent/TW201937401A/en unknown
-
2019
- 2019-06-03 CN CN201910476357.XA patent/CN110555367B/en active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113792571A (en) * | 2020-08-17 | 2021-12-14 | 友达光电股份有限公司 | Fingerprint sensing module |
TWI752802B (en) * | 2020-08-17 | 2022-01-11 | 友達光電股份有限公司 | Fingerprint sensing module and fingerprint identification apparatus |
TWI840960B (en) * | 2022-03-07 | 2024-05-01 | 群創光電股份有限公司 | Electronic device and method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
CN110555367A (en) | 2019-12-10 |
CN110555367B (en) | 2022-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110555367B (en) | Optical fingerprint sensing module | |
CN210038821U (en) | Optical fingerprint identification device and electronic equipment | |
CN104992158B (en) | Method for improving optical fingerprint identification performance | |
KR102610600B1 (en) | Fingerprint recognition method, fingerprint recognition device and electronic device | |
US8411375B2 (en) | Method and apparatus providing gradient index of refraction lens for image sensors | |
CN111435213A (en) | Imaging module and biometric device using the same | |
US9525005B2 (en) | Image sensor device, CIS structure, and method for forming the same | |
KR101688307B1 (en) | Back side illumination image sensor with non-planar optical interface | |
TWI652626B (en) | Biometric device | |
WO2021042806A1 (en) | Fingerprint sensing module and electronic apparatus | |
KR100640972B1 (en) | CMOS Image sensor and Method for fabricating of the same | |
CN211236934U (en) | Optical module, fingerprint recognition device under screen and terminal | |
US9543352B2 (en) | CMOS image sensor with embedded micro-lenses | |
KR20220073835A (en) | Method and electronic device for authenticating image acquisition optical structures and biometric features | |
WO2021036326A1 (en) | Fingerprint sensing module and electronic device | |
CN115136034A (en) | Structure of angle filter on CMOS sensor | |
CN113128319A (en) | Optical module, fingerprint recognition device under screen and terminal | |
KR102142859B1 (en) | Closest image photographing apparatus with microcamera array | |
CN112149544A (en) | Fingerprint imaging assembly, fingerprint imaging module and electronic equipment | |
CN213365537U (en) | Optical image acquisition unit, optical image acquisition device and electronic equipment | |
CN211480030U (en) | Thin optical fingerprint identification device | |
CN209746566U (en) | Image sensor and fingerprint identification module suitable for optical fingerprint identification under screen | |
TWI717868B (en) | Image module and biometric device using the same | |
JP6195369B2 (en) | Solid-state imaging device, camera, and manufacturing method of solid-state imaging device | |
CN102569327A (en) | Image sensor with built-in Fresnel lenses and manufacturing method for image sensor |