TW201626111A - Illumination optical unit for illuminating an illumination field and projection exposure apparatus comprising such an illumination optical unit - Google Patents

Illumination optical unit for illuminating an illumination field and projection exposure apparatus comprising such an illumination optical unit Download PDF

Info

Publication number
TW201626111A
TW201626111A TW104137851A TW104137851A TW201626111A TW 201626111 A TW201626111 A TW 201626111A TW 104137851 A TW104137851 A TW 104137851A TW 104137851 A TW104137851 A TW 104137851A TW 201626111 A TW201626111 A TW 201626111A
Authority
TW
Taiwan
Prior art keywords
illumination
optical unit
mirror assembly
mirrors
illumination optical
Prior art date
Application number
TW104137851A
Other languages
Chinese (zh)
Other versions
TWI687776B (en
Inventor
馬庫斯 狄君特
史汀 貝林
Original Assignee
卡爾蔡司Smt有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 卡爾蔡司Smt有限公司 filed Critical 卡爾蔡司Smt有限公司
Publication of TW201626111A publication Critical patent/TW201626111A/en
Application granted granted Critical
Publication of TWI687776B publication Critical patent/TWI687776B/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/702Reflective illumination, i.e. reflective optical elements other than folding mirrors, e.g. extreme ultraviolet [EUV] illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70075Homogenization of illumination intensity in the mask plane by using an integrator, e.g. fly's eye lens, facet mirror or glass rod, by using a diffusing optical element or by beam deflection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • G03F7/70116Off-axis setting using a programmable means, e.g. liquid crystal display [LCD], digital micromirror device [DMD] or pupil facets

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Lenses (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

An illumination optical unit serves to illuminate an illumination field in which an object to be imaged is arrangeable. The illumination optical unit comprises at least one facet mirror and one deflection mirror assembly (5b) in the beam path of an illumination light beam (22) upstream of the facet mirror. The deflection mirror assembly (5b) is embodied in such a way that it deflects a centroid ray (Sin, Sout) of the illumination light beam (22) by at least 10 DEG. The deflection mirror assembly (5b) has at least two mirrors (23, 24) for grazing incidence. These each reflect a dedicated partial beam (25, 26) of the overall illumination light beam (22). What emerges is an illumination optical unit which can be adapted to various light source configurations with little outlay.

Description

用以照明一照明場的照明光學單元以及包含此類照明光學單元的投射曝光裝置 Illumination optical unit for illuminating an illumination field and projection exposure apparatus comprising such illumination optical unit 【相關專利參照】[Related patent reference]

本專利申請案主張德國專利申請案DE 10 2014 223 454.9的優先權,其內容係併入本文作為參考。 The priority of the German patent application DE 10 2014 223 454.9 is incorporated herein by reference.

本發明關於用以照明一照明場的照明光學單元,所要成像的一物體為可配置於其中。此外,本發明關於包含此一照明光學單元的照明系統、包含此一照明光學單元以及用以在影像場中成像照明場之一投射光學單元的光學系統、包含此一光學系統的投射曝光裝置、用以產生微結構或奈米結構組件的一方法以及由此方法所產生的一組件。 The invention relates to an illumination optical unit for illuminating an illumination field, an object to be imaged being configurable therein. Furthermore, the present invention relates to an illumination system including such an illumination optical unit, an optical system including the illumination optical unit and an imaging optical unit for imaging an illumination field in an image field, a projection exposure apparatus including the optical system, A method for producing a microstructure or nanostructure component and a component produced by the method.

作為投射曝光裝置之組合件的照明光學單元已揭露於US 2005/0207039 A1、US 2003/0095623 A1、US 2005/0093041 A1、US 2005/0094764 A1、及US 2005/0274897 A1。 An illumination optical unit as an assembly of a projection exposure apparatus is disclosed in US 2005/0207039 A1, US 2003/0095623 A1, US 2005/0093041 A1, US 2005/0094764 A1, and US 2005/0274897 A1.

本發明的一目的為發展一照明光學單元,使得其可適用於各種光源組態且花費低。 It is an object of the present invention to develop an illumination optical unit that is adaptable to a variety of light source configurations and that is inexpensive.

根據本發明,此目的由包含申請專利範圍第1項所提出之特徵的一照明光學單元所達成。 According to the invention, this object is achieved by an illumination optical unit comprising the features set forth in claim 1 of the scope of the patent application.

由於針對質心射線(centroid ray)的其偏折效應,偏折反射鏡組合件能夠適應具有由光源所發射之照明光束的不同質心射線分布的光源。偏折反射鏡組合件可接收具有由光源組態所預定義之質心射線分布的發射照明光束,並將其偏折為具有至少一琢面反射鏡(facet mirror)之後續照明光學單元可處理的反射質心射線分布。藉由偏折反射鏡組合件的質心射線偏折可至少為15°或至少為20°。例如19°、20°或25°的偏折角度也是可能的。藉由偏折反射鏡組合件之用於切線入射(grazing incidence)之反射鏡的反射表面的設計,也有可能根據個別光源組態而改變更多的照明參數,使得這些與後續照明光學單元相匹配。特別地,偏折反射鏡組合件可用以將光源的光展度(étendue)調整為後續照明光學單元可接受的光展度。偏折反射鏡組合件可實施為具有高反射效率。用於切線入射的反射鏡可實施為曲面鏡,特別是凹曲面鏡。用於切線入射之反射鏡的反射表面可實施為非球面表面。用於切線入射之反射鏡的反射表面可實施為自由形式表面,其無法由旋轉對稱表面來描述。偏折反射鏡組合件可配置在收集光源的照明光之一集光器(collector)下游。 Due to its deflecting effect on the centroid ray, the deflecting mirror assembly is capable of accommodating light sources having different centroid ray distributions of the illumination beam emitted by the light source. The deflecting mirror assembly can receive an emitted illumination beam having a centroid ray distribution predefined by the configuration of the light source and deflect it into a subsequent illumination optical unit having at least one facet mirror Reflected centroid ray distribution. The centroid ray deflection by the deflecting mirror assembly can be at least 15° or at least 20°. A deflection angle of, for example, 19°, 20° or 25° is also possible. By designing the reflective surface of the mirror for grazing incidence of the deflecting mirror assembly, it is also possible to change more illumination parameters depending on the individual light source configuration, so that these match the subsequent illumination optical unit . In particular, the deflecting mirror assembly can be used to adjust the light spread of the light source to an acceptable light spread of the subsequent illumination optical unit. The deflecting mirror assembly can be implemented to have high reflection efficiency. Mirrors for tangential incidence can be implemented as curved mirrors, especially concave curved mirrors. The reflective surface of the mirror for tangential incidence can be implemented as an aspherical surface. The reflective surface of the mirror for tangential incidence can be implemented as a freeform surface that cannot be described by a rotationally symmetric surface. The deflecting mirror assembly can be disposed downstream of one of the collectors of the illumination light collecting the light source.

如申請專利範圍第2項所述之配置將致能偏折反射鏡組合件之有利緊密的具體實施例。偏折反射鏡組合件可配置為與中間焦點(intermediate focus)相距小距離。舉例來說,中間焦點與偏折反射鏡組合件之間的距離可小於中間焦點與照明光學單元的下一琢面反射鏡之間光路徑的三分之一或五分之一。 The configuration as described in claim 2 will enable a particularly advantageous embodiment of the deflecting mirror assembly. The deflecting mirror assembly can be configured to be a small distance from the intermediate focus. For example, the distance between the intermediate focus and the deflecting mirror assembly can be less than one-third or one-fifth of the optical path between the intermediate focus and the next facet mirror of the illumination optics unit.

如申請專利範圍第3項所述之具體實施例致能使用具有在中間焦點提供對應最大數值孔徑0.3之光源的偏折反射鏡組合件。偏折反射 鏡組合件可實施用以涵蓋例如0.22之中間焦點的數值孔徑。 The specific embodiment described in claim 3 of the patent application enables the use of a deflecting mirror assembly having a light source providing a corresponding maximum numerical aperture of 0.3 at an intermediate focus. Deflection The mirror assembly can be implemented to cover a numerical aperture of, for example, an intermediate focus of 0.22.

偏折反射鏡組合件變化(例如增加或如申請專利範圍第4項所述之降低)的效應,中間焦點的有效數值孔徑係致能使用例如具有相對小數值孔徑的光源(其在無偏折反射鏡組合件的作用下提供於中間焦點區域中)結合配置在其下游的照明光學單元,與之相較,該照明光學單元可處理相對大之中間焦點的數值孔徑。接著,有可能使用針對具有相對高之中間焦點的數值孔徑的光源類型而設計的照明光學單元,其中藉由使用偏折反射鏡組合件,此照明光學單元也可與提供相對低之中間焦點的數值孔徑的光源一同使用。在偏折反射鏡組合件的反射後可得的增加有效數值孔徑可例如為0.2或0.22。這也適用在相反的情況,即照明系統(其期望有相對小的數值孔徑(如0.16))可因此使用提供相對大數值孔徑(如0.22)的光源來操作。此處為一特定的應用。整體照明光部分光束的發散度在偏折反射鏡組合件的反射後係對應一有效數值孔徑,其相較於中間焦點的一數值孔徑係增加至少10%。基本上,整體照明光部分光束的有效數值孔徑也可以與中間焦點的數值孔徑一樣大。這可藉由將偏折反射鏡組合件的反射鏡實施為平面反射鏡而達成。 The effect of the deflection mirror assembly variation (e.g., increased or decreased as described in claim 4), the effective numerical aperture of the intermediate focus enables the use of, for example, a light source having a relatively small numerical aperture (which is unbiased) The mirror assembly is provided in the intermediate focus region in combination with an illumination optical unit disposed downstream thereof, in contrast to which the illumination optical unit can process the numerical aperture of the relatively large intermediate focus. Next, it is possible to use an illumination optical unit designed for a type of light source having a numerical aperture of relatively high intermediate focus, wherein the illumination optical unit can also provide a relatively low intermediate focus by using a deflecting mirror assembly. A numerical aperture source is used together. The increased effective numerical aperture available after reflection of the deflecting mirror assembly can be, for example, 0.2 or 0.22. This also applies to the opposite case where the illumination system (which is expected to have a relatively small numerical aperture (e.g., 0.16)) can therefore operate using a light source that provides a relatively large numerical aperture (e.g., 0.22). Here is a specific application. The divergence of the partial illumination light beam corresponds to an effective numerical aperture after reflection of the deflecting mirror assembly, which is increased by at least 10% compared to a numerical aperture of the intermediate focus. Basically, the effective numerical aperture of the partial illumination light beam can also be as large as the numerical aperture of the intermediate focus. This can be achieved by implementing the mirror of the deflecting mirror assembly as a planar mirror.

如申請專利範圍第5項所述之多於兩個之用於切線入射的反射鏡係致能由這些反射鏡所反射之子光束之參數的特定調整。特別地,由部分光束之遠場所組成之遠場幾何的特定調整是可能的。偏折反射鏡組合件可具有三個反射鏡、四個反射鏡、五個反射鏡、六個反射鏡、八個反射鏡、十個反射鏡、或更多的反射鏡。 More than two mirrors for tangential incidence, as described in claim 5, enable specific adjustment of the parameters of the sub-beams reflected by these mirrors. In particular, a specific adjustment of the far field geometry consisting of the far field of the partial beam is possible. The deflecting mirror assembly can have three mirrors, four mirrors, five mirrors, six mirrors, eight mirrors, ten mirrors, or more.

如申請專利範圍第6項所述之具體實施例致能用於切線入射之反射鏡的相對簡單設計。以此方式使用相對大數量的反射鏡來映射(mirroring)遠場強度分布(far field intensity distribution)所可能達成的是,偏折反射鏡組合件下游的遠場比使用較少數量的反射鏡來映射遠場強度分布的情況更加類似於原始、非映射的遠場。在原始遠場強度分布係最佳化使 得需要至少一琢面反射鏡之琢面的相對小切換角度,此優勢甚至可在偏折反射鏡組合件的反射後維持。 The specific embodiment described in claim 6 of the patent application enables a relatively simple design of a tangentially incident mirror. In this way it is possible to use a relatively large number of mirrors to mirror the far field intensity distribution, the far field downstream of the deflecting mirror assembly is less than using a smaller number of mirrors. The case of mapping the far field intensity distribution is more similar to the original, unmapped far field. Optimized in the original far field intensity distribution A relatively small switching angle of at least one of the facets of the facet mirror is required, which can be maintained even after reflection of the deflecting mirror assembly.

如申請專利範圍第7項所述之雙曲面反射鏡(hyperboloid mirror)(即一反射鏡,其反射表面實施為雙曲面的一區段)將導致偏折反射鏡組合件在反射部分光束的光束參數上具有對應效應。此一雙曲面具體實施例適合用於增加及降低有效數值孔徑。 A hyperboloid mirror as described in claim 7 (i.e., a mirror whose reflective surface is implemented as a section of a hyperboloid) will result in a beam of the deflecting mirror assembly in the reflected portion of the beam. There is a corresponding effect on the parameters. This hyperboloid embodiment is suitable for increasing and decreasing the effective numerical aperture.

如申請專利範圍第8項所述之用於切線入射之反射鏡的間隔配置將增加偏折反射鏡組合件的鄰近反射鏡分別可得的安裝空間。 The spaced configuration of the mirror for tangential incidence as described in claim 8 will increase the mounting space available for the adjacent mirrors of the deflecting mirror assembly.

如申請專利範圍第9項及第10項所述之照明系統、如申請專利範圍第11項所述之光學系統、如申請專利範圍第12項所述之投射曝光裝置、如申請專利範圍第13項所述之生產方法及如申請專利範圍第14項所述之微結構或奈米結構組件的優點係對應在前文中參照根據本發明之照明光學單元已進行解釋的優點。EUV光源可用作照明光源。特別地,所生產的組件為半導體晶片,例如記憶體晶片。 The illumination system of claim 9 and claim 10, wherein the optical system of claim 11 is the projection exposure apparatus of claim 12, as claimed in claim 13 The production method described in the item and the advantages of the microstructure or nanostructure assembly as described in claim 14 correspond to the advantages already explained in the foregoing with reference to the illumination optical unit according to the invention. An EUV source can be used as an illumination source. In particular, the components produced are semiconductor wafers, such as memory chips.

1‧‧‧投射曝光裝置 1‧‧‧Projection exposure device

2‧‧‧光源 2‧‧‧Light source

3‧‧‧照明光 3‧‧‧Lights

4‧‧‧傳輸光學單元 4‧‧‧Transmission optical unit

5‧‧‧集光器 5‧‧‧ concentrator

5a‧‧‧中間焦點 5a‧‧‧Intermediate focus

5b‧‧‧偏折反射鏡組合件 5b‧‧‧ deflecting mirror assembly

6‧‧‧傳輸琢面反射鏡 6‧‧‧Transmission kneading mirror

6a‧‧‧邊緣輪廓 6a‧‧‧Edge contour

7‧‧‧照明預設琢面反射鏡 7‧‧‧Lighting preset facet mirror

8‧‧‧照明光學單元 8‧‧‧Lighting optical unit

9‧‧‧光罩 9‧‧‧Photomask

10‧‧‧物體平面 10‧‧‧ object plane

11‧‧‧投射光學單元 11‧‧‧Projection optical unit

12‧‧‧物場 12‧‧‧物场

12a‧‧‧光罩固持器 12a‧‧‧Photomask Holder

12b‧‧‧物體位移驅動器 12b‧‧‧Object displacement drive

13‧‧‧物場側數值孔徑 13‧‧‧object side numerical aperture

14‧‧‧影像場側數值孔徑 14‧‧‧Image field side numerical aperture

15‧‧‧光學組件 15‧‧‧Optical components

16‧‧‧光學組件 16‧‧‧Optical components

17‧‧‧影像場 17‧‧‧Image field

18‧‧‧影像平面 18‧‧‧ image plane

19‧‧‧晶圓 19‧‧‧ Wafer

20‧‧‧固持器 20‧‧‧Retainer

21‧‧‧晶圓位移驅動器 21‧‧‧ Wafer Displacement Driver

22‧‧‧照明光束 22‧‧‧ illumination beam

23‧‧‧GI反射鏡 23‧‧‧GI mirror

24‧‧‧GI反射鏡 24‧‧‧GI mirror

25‧‧‧部分光束 25‧‧‧Partial beam

26‧‧‧部分光束 26‧‧‧Partial beam

27‧‧‧外邊緣射線 27‧‧‧Outer edge ray

28‧‧‧遠場 28‧‧‧ Far field

29‧‧‧反射鏡平面 29‧‧‧Mirror plane

30‧‧‧反射鏡平面 30‧‧‧Mirror plane

31‧‧‧外邊緣輪廓 31‧‧‧Outer edge contour

32‧‧‧半環形 32‧‧‧Half ring

33‧‧‧半環形 33‧‧‧ half ring

34‧‧‧偏折反射鏡組合件 34‧‧‧ deflecting mirror assembly

35‧‧‧安裝空間 35‧‧‧Installation space

36‧‧‧安裝空間 36‧‧‧Installation space

37‧‧‧偏折反射鏡組合件 37‧‧‧ deflecting mirror assembly

38‧‧‧偏折反射鏡組合件 38‧‧‧ deflecting mirror assembly

39‧‧‧GI反射鏡 39‧‧‧GI mirror

40‧‧‧GI反射鏡 40‧‧‧GI mirror

41‧‧‧GI反射鏡 41‧‧‧GI mirror

42‧‧‧GI反射鏡 42‧‧‧GI mirror

43‧‧‧部分光束 43‧‧‧Partial beam

44‧‧‧部分光束 44‧‧‧Partial beam

45‧‧‧部分光束 45‧‧‧Partial beam

46‧‧‧部分光束 46‧‧‧Partial beam

47‧‧‧遠場 47‧‧‧ Far field

48‧‧‧反射鏡平面 48‧‧‧Mirror plane

49‧‧‧反射鏡平面 49‧‧‧Mirror plane

50‧‧‧反射鏡平面 50‧‧‧Mirror plane

51‧‧‧反射鏡平面 51‧‧‧Mirror plane

52‧‧‧部分環形部分 52‧‧‧ part of the ring

53‧‧‧部分環形部分 53‧‧‧ part of the ring

54‧‧‧部分環形部分 54‧‧‧Partial ring section

55‧‧‧部分環形部分 55‧‧‧ part of the ring

56‧‧‧箭頭 56‧‧‧ arrow

α‧‧‧偏折角度 ‧‧‧‧ deflection angle

Sin‧‧‧質心射線 S in ‧‧‧centroid ray

Sout‧‧‧質心射線 S out ‧‧‧centroid ray

Z‧‧‧環中心 Z‧‧‧ Ring Center

本發明的範例性具體實施例將於下文中基於圖式作更詳細的解釋。其中:圖1顯示用於EUV微影之投射曝光裝置的非常簡化的縱剖面圖,其包含光源、照明光學單元及投射光學單元;圖2顯示圖1中區域II的局部放大圖,其具有在中間焦點下游之照明光束的光束路徑中之照明光學單元的偏折反射鏡組合件;圖3顯示偏折反射鏡組合件的另一具體實施例,其標記了各個照明-光學組件的空間需求;圖4顯示類似於圖3之偏折反射鏡組合件之偏折反射鏡的另一配置範例,其可用以取代圖2及圖3的偏折反射鏡組合件; 圖5顯示類似於圖2之具有四個偏折反射鏡之偏折反射鏡組合件的另一具體實施例;圖6示意地顯示在圖2之偏折反射鏡組合件下游的光學路徑中之光源的遠場;以及圖7示意地顯示在圖5之偏折反射鏡組合件下游的光學路徑中之光源的遠場。 Exemplary embodiments of the present invention will be explained in more detail below based on the drawings. 1 shows a very simplified longitudinal section of a projection exposure apparatus for EUV lithography, comprising a light source, an illumination optical unit and a projection optical unit; FIG. 2 shows a partial enlarged view of the area II of FIG. a deflecting mirror assembly of the illumination optics unit in the beam path of the illumination beam downstream of the intermediate focus; FIG. 3 shows another embodiment of the deflecting mirror assembly that marks the spatial requirements of the various illumination-optical components; 4 shows another configuration example of a deflecting mirror similar to the deflecting mirror assembly of FIG. 3, which may be used in place of the deflecting mirror assembly of FIGS. 2 and 3; Figure 5 shows another embodiment of a deflecting mirror assembly having four deflecting mirrors similar to Figure 2; Figure 6 is shown schematically in the optical path downstream of the deflecting mirror assembly of Figure 2. The far field of the light source; and Figure 7 shows schematically the far field of the light source in the optical path downstream of the deflecting mirror assembly of Figure 5.

在圖1中以縱剖面(meridional section)簡略顯示之用於微影的投射曝光裝置1包含光源2,以提供照明光3。光源2為EUV光源,其產生波長範圍介於5奈米及30奈米的光。在此處,光源可為LPP(雷射激發電漿)光源、DPP(氣體放電激發電漿)光源或基於同步加速器輻射的光源,如自由電子雷射(FEL)。 The projection exposure apparatus 1 for lithography, which is schematically shown in FIG. 1 in a meridional section, includes a light source 2 to provide illumination light 3. Light source 2 is an EUV source that produces light having a wavelength in the range of 5 nm and 30 nm. Here, the light source may be an LPP (Laser Excitation Plasma) source, a DPP (Gas Discharge Excited Plasma) source, or a source based on synchrotron radiation, such as a free electron laser (FEL).

傳輸光學單元4用以導引始於光源2的照明光3。該傳輸光學單元包含集光器5(其在圖1中僅針對其反射效果顯示)及傳輸琢面反射鏡6(其亦稱作第一琢面反射鏡)。集光器5可為Wolter型集光器。集光器5也可實施為橢圓反射鏡。照明光3的中間焦點5a(參考圖2)配置在集光器5與傳輸琢面反射鏡6之間。舉例來說,在中間焦點5a的區域中,照明光3的數值孔徑為NA=0.16或0.22。在中間焦點5a的NA至多為0.3且也可例如具有在0.17範圍、在0.18範圍或在0.19範圍中的一數值。 The transmission optical unit 4 is used to guide the illumination light 3 starting from the light source 2. The transmission optical unit comprises a concentrator 5 (which is shown only for its reflection effect in Figure 1) and a transmission facet mirror 6 (which is also referred to as a first facet mirror). The concentrator 5 can be a Wolter type concentrator. The concentrator 5 can also be implemented as an elliptical mirror. The intermediate focus 5a (refer to FIG. 2) of the illumination light 3 is disposed between the concentrator 5 and the transmission facet mirror 6. For example, in the region of the intermediate focus 5a, the numerical aperture of the illumination light 3 is NA = 0.16 or 0.22. The NA at the intermediate focus 5a is at most 0.3 and may also have a value in the range of 0.17, 0.18 or 0.19, for example.

偏折反射鏡組合件5b(其將與下文中作更詳細解釋)係直接設置於照明光3之光束路徑中之中間焦點5a的下游。 The deflecting mirror assembly 5b (which will be explained in more detail below) is disposed directly downstream of the intermediate focus 5a in the beam path of the illumination light 3.

照明預設琢面反射鏡7配置在傳輸琢面反射鏡6下游,因此也在傳輸光學單元4下游。光學組件5至7為投射曝光裝置1之照明光學單元8的構件。在照明光學單元8的一具體實施例中,照明預設琢面反射鏡7可配置在照明光學單元8的光瞳平面(pupil plane)中或其區域中,而在照明光學單 元8的另一具體實施例中,照明預設琢面反射鏡7亦可配置為與照明光學單元8之光瞳平面相距一距離。 The illumination preset facet mirror 7 is arranged downstream of the transport facet mirror 6 and therefore also downstream of the transport optical unit 4. The optical components 5 to 7 are members of the illumination optical unit 8 of the projection exposure apparatus 1. In a specific embodiment of the illumination optics unit 8, the illumination preset facet mirror 7 can be arranged in the pupil plane of the illumination optics unit 8 or in its region, while in the illumination optics In another embodiment of the element 8, the illumination preset facet mirror 7 can also be configured to be at a distance from the pupil plane of the illumination optics unit 8.

光罩9配置於投射曝光裝置1之下游投射光學單元11的物體平面10中,其設置於照明光3的光束路徑中之照明預設琢面反射鏡7的下游。在圖1中以虛線邊界線非常簡化地表示之投射光學單元11在各個情況下為一投射透鏡。 The mask 9 is disposed in the object plane 10 of the projection optical unit 11 downstream of the projection exposure apparatus 1, and is disposed downstream of the illumination preset pupil mirror 7 in the beam path of the illumination light 3. The projection optical unit 11 is shown in a very simplified manner in FIG. 1 by a dashed boundary line, which in each case is a projection lens.

為了簡化位置關係的描述,以下將使用笛卡爾xyz-座標系統。在圖1中,x-方向係垂直於圖式平面延伸且向圖中延伸。在圖1中,y-方向係向右方延伸。在圖1中,z-方向係向下延伸。圖式中所使用的座標系統分別具有相互平行延伸的x軸。這些座標系統的z軸範圍在個別考慮的圖式中係隨著照明光3的個別主方向。 To simplify the description of the positional relationship, a Cartesian xyz-coordinate system will be used below. In Figure 1, the x-direction extends perpendicular to the plane of the drawing and extends in the figure. In Figure 1, the y-direction extends to the right. In Figure 1, the z-direction extends downward. The coordinate systems used in the figures each have an x-axis extending parallel to each other. The z-axis range of these coordinate systems follows the individual main directions of the illumination light 3 in the individual considered pattern.

照明光學單元8用以以界定的方式(defined manner)照明物體平面10中光罩9上的物場12。實際照明的照明場可大於物場12或可與物場12重合。物場12具有弧形或部分圓形形狀,且受限於兩個互相平行的弧形物與兩個直邊邊緣,兩個邊緣以長度y0在y方向中延伸且在x方向中彼此間隔x0。長寬比x0/y0為13比1。在替代性且亦可行的物場12的例子中,其邊緣外形為矩形而非弧形。 The illumination optics unit 8 serves to illuminate the object field 12 on the reticle 9 in the object plane 10 in a defined manner. The actual illuminated illumination field may be larger than the object field 12 or may coincide with the object field 12. The object field 12 has an arcuate or partially circular shape and is constrained by two mutually parallel arcs and two straight edge edges, the two edges extending in the y direction with a length y 0 and spaced apart from each other in the x direction x 0 . The aspect ratio x 0 /y 0 is 13 to 1. In the alternative and also possible object field 12 example, the edge profile is rectangular rather than curved.

光罩9由光罩固持器12a所支撐,其係接回至物體位移驅動器12b。藉由物體位移驅動器12b,光罩固持器12a可連同光罩9沿y方向以受控的方式位移。 The reticle 9 is supported by the reticle holder 12a, which is coupled back to the object displacement driver 12b. By the object displacement driver 12b, the reticle holder 12a can be displaced in a controlled manner along the y-direction along with the reticle 9.

在圖1中僅局部及簡略地顯示投射光學單元11。顯示了投射光學單元11的物場側數值孔徑13與影像場側數值孔徑14。用以在這些光學組件15、16之間導引照明光3之投射光學單元11的其他光學組件(未繪示於圖1中)係位在投射光學單元11中所示光學組件15、16之間,其可實施為例如反射EUV照明光3的反射鏡。 The projection optical unit 11 is only partially and briefly shown in FIG. The object side numerical aperture 13 and the image field side numerical aperture 14 of the projection optical unit 11 are shown. Other optical components (not shown in FIG. 1) for guiding the projection optical unit 11 of the illumination light 3 between the optical components 15, 16 are tethered to the optical components 15, 16 shown in the projection optical unit 11. In the meantime, it can be implemented as a mirror that reflects EUV illumination light 3, for example.

投射光學單元11將物場12成像於晶圓19(其與光罩9一樣由 固持器20承載且與晶圓位移驅動器21具有功能性連接)上之影像平面18的影像場17中。光罩固持器12a及晶圓固持器20可藉由位移驅動器12b、21在x方向及y方向移動。 The projection optical unit 11 images the object field 12 on the wafer 19 (which is the same as the photomask 9 The image field 17 of the image plane 18 is carried by the holder 20 and is functionally coupled to the wafer displacement driver 21. The mask holder 12a and the wafer holder 20 are movable in the x direction and the y direction by the displacement drivers 12b, 21.

傳輸琢面反射鏡6具有複數個傳輸琢面(transmission facet),其未繪示於圖式中。傳輸琢面反射鏡6可實施為MEMS反射鏡。傳輸琢面在投射操作期間分組成複數個傳輸琢面群組,其未做任何更詳細的描述。 The transmission facet mirror 6 has a plurality of transmission facets, which are not shown in the drawings. The transmission facet mirror 6 can be implemented as a MEMS mirror. The transport planes are grouped into a plurality of transport pupil groups during the projection operation, which are not described in any more detail.

整體而言,傳輸琢面反射鏡6具有被照明光3撞擊的一區域且可具有小於1的x/y外觀比。此外觀比的數值y/x可至少為1.1、甚至更大。 In general, the transmission facet mirror 6 has a region that is struck by the illumination light 3 and may have an x/y aspect ratio of less than one. Furthermore, the value y/x of the aspect ratio can be at least 1.1 or even larger.

在具有配置於光瞳平面之照明預設琢面反射鏡7的照明光學單元的一具體實施例中,傳輸琢面群組的x/y外觀比至少具有與物場12之x/y外觀比相同的尺寸。在所繪示的具體實施中,傳輸琢面群組的x/y外觀比大於物場12的x/y外觀比。傳輸琢面群組具有類似於物場12之邊緣形式的局部圓形彎曲群組邊緣形式。有關傳輸琢面反射鏡6之設計的進一步細節可參考WO 2010/099 807 A。 In a specific embodiment of the illumination optics unit having the illumination preset facet mirror 7 disposed in the pupil plane, the x/y appearance ratio of the transmission face group has at least an x/y appearance ratio to the object field 12. The same size. In the illustrated implementation, the x/y appearance ratio of the transmission face group is greater than the x/y appearance ratio of the object field 12. The transmission face group has a form of a local circular curved group edge similar to the edge form of the object field 12. Further details regarding the design of the transmission facet mirror 6 can be found in WO 2010/099 807 A.

傳輸琢面群組的每一者係導引部分的照明光3以供物場12的部分或完全照明。 Each of the transmission face groups directs the illumination light 3 of the portion to partially or completely illuminate the object field 12.

傳輸琢面為可在至少兩個傾斜位置切換的微反射鏡(micromirror)。傳輸琢面可實施為可繞著兩個相互垂直之旋轉軸傾斜的微反射鏡。傳輸琢面可排列使得照明預設琢面反射鏡7係以預定的邊緣形式以及傳輸琢面與照明預設琢面反射鏡7之照明預設琢面之間的預設關聯性來照明,其同樣未示於圖中。關於照明預設琢面反射鏡7與投射光學單元11之具體實施例的相關細節可參考WO 2010/099807 A。照明預設琢面為可在至少兩個傾斜位置切換的微反射鏡。照明預設琢面可實施為可持續且獨立地繞著兩個相互垂直的傾斜軸傾斜的微反射鏡,亦即該照明預設琢面可置於多個不同的傾斜位置,特別是當照明預設琢面反射鏡7配置在與照明光學單元 之光瞳平面相距一距離時。 The transmission pupil is a micromirror that can be switched at at least two tilted positions. The transmission face can be implemented as a micro-mirror that can be tilted about two mutually perpendicular axes of rotation. The transmission facets are arranged such that the illumination preset facet mirror 7 is illuminated with a predetermined edge form and a preset correlation between the transmission face and the illumination preset face of the illumination preset facet mirror 7 Also not shown in the figure. For details regarding specific embodiments of the illumination preset facet mirror 7 and the projection optics unit 11, reference is made to WO 2010/099807 A. The illumination preset facets are micromirrors that can be switched at at least two tilted positions. The illumination preset face can be implemented as a micromirror that can be tilted continuously and independently around two mutually perpendicular tilt axes, ie the illumination preset face can be placed in a plurality of different tilt positions, in particular when illuminated The preset facet mirror 7 is disposed in the illumination optical unit When the planes of the pupils are at a distance apart.

圖2詳細地顯示在偏折反射鏡組合件5b之區域中照明光3的光束路徑,其在此光束路徑中直接配置在中間焦點5a的下游。偏折反射鏡組合件5b配置於光束22之光束路徑中之傳輸琢面反射鏡6的上游。偏折反射鏡組合件5b係實施使得其偏折照明光束22的質心射線至少10°。入射至偏折反射鏡組合件5b之照明光束22的質心射線在圖2中標示為Sin。由偏折反射鏡組合件5b所反射(亦即從偏折反射鏡組合件5b離開)之照明光束22的質心射線在圖2中標示為Sout。圖2亦繪示偏折角度α,其為當在偏折反射鏡組合件5b反射時質心射線S所偏折的角度。在圖2的具體實施例中,偏折角度α約為25°。至少為10°的其他偏折角度α也是有可能的,例如至少為15°、至少為20°的偏折角度α、或大於25°(例如等於30°或35°)的偏折角度α。 Figure 2 shows in detail the beam path of the illumination light 3 in the region of the deflecting mirror assembly 5b, which is arranged directly downstream of the intermediate focus 5a in this beam path. The deflecting mirror assembly 5b is disposed upstream of the transmitting facet mirror 6 in the beam path of the beam 22. The deflecting mirror assembly 5b is embodied such that it deflects the centroid rays of the illumination beam 22 by at least 10°. Centroid rays of the illumination beam incident on the deflecting member 5b of the reflector assembly 22 be marked as S in FIG. 2 in. The centroid rays of the illumination beam 22 reflected by the deflecting mirror assembly 5b (i.e., exiting from the deflecting mirror assembly 5b) are designated Sout in FIG. Figure 2 also shows the deflection angle a, which is the angle at which the centroid ray S is deflected when reflected by the deflecting mirror assembly 5b. In the particular embodiment of Figure 2, the deflection angle a is about 25°. Other deflection angles α of at least 10° are also possible, for example a deflection angle α of at least 15°, at least 20°, or a deflection angle α of more than 25° (for example equal to 30° or 35°).

圖2的偏折反射鏡組合件5b具有兩個反射鏡23、24用於切線入射,其在下文中亦標示為GI(切線入射)反射鏡。用於切線入射的反射鏡為對照明光3的入射角大於45°且可大於60°、65°或70°且可例如位在70°及85°之間區域或在70°及88°或89°之間區域的反射鏡。GI反射鏡23、24係實施為雙曲面鏡,即其具有對應旋轉雙曲面之區段的反射表面。GI反射鏡23、24具有對照明光3有高度反射性的塗層。 The deflecting mirror assembly 5b of Figure 2 has two mirrors 23, 24 for tangential incidence, which is also referred to hereinafter as a GI (tangential incidence) mirror. The mirror for tangential incidence is such that the angle of incidence to illumination light 3 is greater than 45° and may be greater than 60°, 65° or 70° and may, for example, be in the region between 70° and 85° or at 70° and 88° or 89 Between the areas of the mirror. The GI mirrors 23, 24 are embodied as hyperbolic mirrors, i.e. they have a reflective surface corresponding to the section of the rotating hyperboloid. The GI mirrors 23, 24 have a coating that is highly reflective to the illumination light 3.

兩個GI反射鏡23、24的每一者反射整體照明光束22的專屬部分光束25、26。兩個部分光束25、26在光束路徑中於偏折反射鏡組合件5b的下游彼此直接相連,即其彼此的距離實際上可忽略。 Each of the two GI mirrors 23, 24 reflects a dedicated partial beam 25, 26 of the overall illumination beam 22. The two partial beams 25, 26 are directly connected to each other downstream of the deflecting mirror assembly 5b in the beam path, i.e. their distance from each other is practically negligible.

在偏折反射鏡組合件5b反射後之整體照明光束22的發散度係對應有效數值孔徑NAeff,其相較於在中間焦點5a的數值孔徑可增加至少10%或減少至少10%、或可與其相同。此有效數值孔徑NAeff來自開始的質心射線Sout與在偏折反射鏡組合件5b反射後之整體照明光束22的外邊緣射線27之間的角度。因此,反射照明光束22之邊緣射線相對質心射線Sout的角度將構成對NAeff的量測。在圖2的具體實施例中,有效數值孔徑NAeff具有0.16的 數值。 The divergence of the overall illumination beam 22 after reflection by the deflecting mirror assembly 5b corresponds to an effective numerical aperture NA eff which may be increased by at least 10% or by at least 10% compared to the numerical aperture at the intermediate focus 5a, or may be It is the same. This effective numerical aperture NA eff is derived from the angle between the starting centroid ray S out and the outer edge ray 27 of the overall illumination beam 22 after reflection by the deflecting mirror assembly 5b. Thus, the angle of the edge ray of the reflected illumination beam 22 relative to the centroid ray Sout will constitute a measure of NA eff . In the particular embodiment of Figure 2, the effective numerical aperture NA eff has a value of 0.16.

因此,偏折反射鏡組合件5b不僅造成質心射線偏折(如前文所解釋),也產生中間焦點之有效數值孔徑的增加或減少。在偏折反射鏡組合件5b之後,有可能使用照明光學單元8的下游光學組件,其係針對中間焦點具有對應此有效數值孔徑之一數值孔徑的一光源而備製。 Thus, the deflecting mirror assembly 5b not only causes centroid ray deflection (as explained above) but also increases or decreases the effective numerical aperture of the intermediate focus. After deflecting the mirror assembly 5b, it is possible to use the downstream optical component of the illumination optics unit 8, which is prepared for a light source having an intermediate focal point having a numerical aperture corresponding to one of the effective numerical apertures.

照明光束22的個別射線分別在偏折反射鏡組合件5b的GI反射鏡23、24反射正好一次。個別射線的每一者在GI反射鏡23、24的其中單一個反射。因此,照明光束22中的同一個個別射線不會連續撞擊GI反射鏡23、24。 The individual rays of the illumination beam 22 are reflected exactly once by the GI mirrors 23, 24 of the deflecting mirror assembly 5b, respectively. Each of the individual rays is reflected by a single one of the GI mirrors 23, 24. Therefore, the same individual rays in the illumination beam 22 do not continuously strike the GI mirrors 23, 24.

圖6顯示光源2的遠場(far field)28,其以xy平面視圖紀錄於傳輸琢面反射鏡6的區域中。圖6也繪示傳輸琢面反射鏡6的邊緣輪廓6a。兩個GI反射鏡23、24每一者將造成一開始所出現之遠場強度分布(即遠場強度分布而無GI反射鏡23、24的偏折效應)分別對平行於xz-平面之一反射鏡平面的映射。這兩個反射鏡平面在圖6中標示為29及30。近似環形之無GI反射鏡23、24之偏折效應的遠場分布(該遠場分布的外邊緣輪廓31在圖6中由虛線所標示)係成為由兩個半環形32、33(其環中心Z係彼此遠離)所建構的遠場強度分布。 Figure 6 shows the far field 28 of the light source 2, which is recorded in the area of the transmission facet mirror 6 in the xy plane view. Figure 6 also shows the edge profile 6a of the transmission facet mirror 6. Each of the two GI mirrors 23, 24 will cause a far field intensity distribution (i.e., a far field intensity distribution without the deflection effect of the GI mirrors 23, 24) occurring at the beginning to be parallel to one of the xz-planes, respectively. The mapping of the mirror plane. The two mirror planes are labeled 29 and 30 in Figure 6. The far-field distribution of the deflection effect of the approximately annular non-GI mirrors 23, 24 (the outer edge contour 31 of the far-field distribution is indicated by the dashed line in Fig. 6) is composed of two semi-rings 32, 33 (its ring The center Z is far from each other) constructed far field intensity distribution.

下文將使用圖3至5及圖7來解釋偏折反射鏡組合件的其他具體實施例,其可用於照明光學單元8而非圖1及圖2所示的偏折反射鏡組合件5b。對應在前文中參照圖1、圖2及圖6已進行解釋之組件的組件具有相同的元件符號且不再詳細討論。 Other embodiments of the deflecting mirror assembly, which can be used to illuminate the optical unit 8 instead of the deflecting mirror assembly 5b shown in Figures 1 and 2, will be explained below using Figures 3 through 5 and Figure 7. Components corresponding to components that have been explained above with reference to Figures 1, 2, and 6 have the same component symbols and will not be discussed in detail.

除了具有約為20°之偏折角度α的略小偏折效應,圖3所示的偏折反射鏡組合件34原則上與圖1及圖2所示的偏折反射鏡組合件5b具有相同的設計。 The deflecting mirror assembly 34 shown in Fig. 3 is in principle identical to the deflecting mirror assembly 5b shown in Figs. 1 and 2, except for a slightly smaller deflection effect having a deflection angle α of about 20°. the design of.

圖3示意地繪示用於在中間焦點區域中之光源側組件的安裝空間35以及用於圖3中左方GI反射鏡23的安裝空間36。此安裝空間36位於 GI反射鏡23、24之間,因此相對受到限制。 Fig. 3 schematically shows an installation space 35 for the light source side assembly in the intermediate focus area and an installation space 36 for the left GI mirror 23 of Fig. 3. This installation space 36 is located Between the GI mirrors 23, 24, it is relatively limited.

有關其光學效應,亦即首先關於質心射線偏折以及接著關於中間焦點NA放大或縮小至有效數值孔徑NAeff,圖4所示的另一偏折反射鏡組合件37對應圖3所示的偏折反射鏡組合件34。與偏折反射鏡組合件34相反,圖4中右方的GI反射鏡24將偏離其他照明光部分光束25之分配給其的照明光部分光束26在y方向中與主要組件偏折一距離A。部分光束25、26的兩個開口錐將間隔此距離。因此,在圖4中左手邊的GI反射鏡23可得的安裝空間36將增加。因此,由GI反射鏡23、24所反射的部分光束25、26在反射鏡23、24的區域中彼此隔開。 Regarding its optical effect, that is, first with respect to the centroid ray deflection and then zooming in or out to the effective numerical aperture NA eff with respect to the intermediate focus NA, another deflecting mirror assembly 37 shown in FIG. 4 corresponds to that shown in FIG. The mirror assembly 34 is deflected. In contrast to the deflecting mirror assembly 34, the GI mirror 24 on the right in FIG. 4 deflects away from the main component by a distance A from the illumination component partial beam 26 assigned to the other illumination light partial beam 25 in the y direction. . The two open cones of the partial beams 25, 26 will be spaced apart by this distance. Therefore, the installation space 36 available for the GI mirror 23 on the left-hand side in FIG. 4 will increase. Therefore, the partial light beams 25, 26 reflected by the GI mirrors 23, 24 are spaced apart from each other in the region of the mirrors 23, 24.

圖5顯示偏折反射鏡組合件38的另一具體實施例。此偏折反射鏡組合件38一共具有四個GI反射鏡39、40、41、42,其效應基本上對應圖2至圖4之具體實施例中兩個GI反射鏡23、24的效應。GI反射鏡39至42的每一者反射整體入射照明光束22的專屬部分光束43、44、45、46。這些部分光束43至46的每一者在GI反射鏡39至42的其中單一個偏折。在此處,整體照明光束22的每一個別射線係經歷單一次反射。 FIG. 5 shows another embodiment of a deflecting mirror assembly 38. This deflecting mirror assembly 38 has a total of four GI mirrors 39, 40, 41, 42 whose effect substantially corresponds to the effects of the two GI mirrors 23, 24 of the particular embodiment of Figures 2 through 4. Each of the GI mirrors 39-42 reflects the exclusive partial beam 43, 44, 45, 46 of the overall incident illumination beam 22. Each of these partial light beams 43 to 46 is deflected by a single one of the GI mirrors 39 to 42. Here, each individual ray system of the overall illumination beam 22 undergoes a single reflection.

在偏折反射鏡組合件38中,偏折角度α約為19°。 In the deflecting mirror assembly 38, the deflection angle α is about 19°.

圖7顯示由偏折反射鏡組合件38偏折後照明光3在傳輸琢面反射鏡6之位置的遠場47。由於GI反射鏡39至42在平行於xz-平面的四個反射鏡平面48、49、50及51的映射效應,遠場(其再次於開始時約呈環形)現在由四個對應的映射或折疊的部分環形部分52、53、54及55所建構。這些部分的環形部分52至55係再次配置於傳輸琢面反射鏡6的邊緣輪廓6a內。相較於圖6的遠場28,遠場47的遠場強度分布與集光器5下游之光源2的最初近似環形遠場具有較大的相似度。 Figure 7 shows the far field 47 of the position at which the illumination light 3 is deflected by the deflecting mirror assembly 38 after transporting the facet mirror 6. Due to the mapping effect of the GI mirrors 39 to 42 on the four mirror planes 48, 49, 50 and 51 parallel to the xz-plane, the far field (which is again approximately circular at the beginning) is now composed of four corresponding maps or The folded partial annular portions 52, 53, 54 and 55 are constructed. The annular portions 52 to 55 of these portions are again disposed within the edge contour 6a of the transmission facet mirror 6. Compared to the far field 28 of FIG. 6, the far field intensity distribution of the far field 47 has a greater similarity to the originally approximate annular far field of the light source 2 downstream of the concentrator 5.

在圖6及圖7中,箭頭56(其分別從遠場分布28或47的中心發出)標記此遠場分布28或47的一點,其在由照明光3所撞擊之傳輸琢面反射鏡6的邊緣輪廓6a上與此中心具有最大距離。由於遠場47比遠場28具有與遠場 的環形初始強度分布更大的相似度,因此在比較遠場28及47時,箭頭56的長度較短。關於傳輸琢面反射鏡6上所需的琢面切換角度,由四個GI反射鏡39至42所產生的遠場47可相應地比遠場28更為有利。 In Figures 6 and 7, arrows 56 (which are respectively emitted from the center of the far field distribution 28 or 47) mark a point of the far field distribution 28 or 47 which is transmitted by the illumination light 3 to the facet mirror 6 The edge contour 6a has the largest distance from this center. Since far field 47 has far field than far field 28 The annular initial intensity distribution has a greater degree of similarity, so the length of the arrow 56 is shorter when comparing the far fields 28 and 47. With regard to the kneading plane switching angle required on the transmission facet mirror 6, the far field 47 produced by the four GI mirrors 39 to 42 can be correspondingly more advantageous than the far field 28.

3‧‧‧照明光 3‧‧‧Lights

5a‧‧‧中間焦點 5a‧‧‧Intermediate focus

5b‧‧‧偏折反射鏡組合件 5b‧‧‧ deflecting mirror assembly

22‧‧‧照明光束 22‧‧‧ illumination beam

23‧‧‧GI反射鏡 23‧‧‧GI mirror

24‧‧‧GI反射鏡 24‧‧‧GI mirror

25‧‧‧部分光束 25‧‧‧Partial beam

26‧‧‧部分光束 26‧‧‧Partial beam

27‧‧‧外邊緣射線 27‧‧‧Outer edge ray

α‧‧‧偏折角度 ‧‧‧‧ deflection angle

Sin‧‧‧質心射線 S in ‧‧‧centroid ray

Sout‧‧‧質心射線 S out ‧‧‧centroid ray

Claims (14)

一種用以照明一照明場的照明光學單元,要被成像之一物體為可配置於其中,-包含至少一琢面反射鏡,-包含一偏折反射鏡組合件於該琢面反射鏡上游之一照明光束的光束路徑中,-其中該偏折反射鏡組合件係實施使得其偏折該照明光束的一質心射線至少10°,-其中該偏折反射鏡組合件具有至少兩個反射鏡用於切線入射,其每一者反射該整體照明光束的一專屬部分光束。 An illumination optical unit for illuminating an illumination field, wherein an object to be imaged is configurable, including at least one facet mirror, including a deflecting mirror assembly upstream of the facet mirror In a beam path of an illumination beam, wherein the deflection mirror assembly is embodied such that it deflects a centroid beam of the illumination beam by at least 10°, wherein the deflection mirror assembly has at least two mirrors For tangential incidence, each of which reflects a dedicated partial beam of the overall illumination beam. 如申請專利範圍第1項所述之照明光學單元,其特徵在於該偏折反射鏡組合件係配置於該照明光束之光束路徑中的一中間焦點下游。 The illumination optical unit of claim 1, wherein the deflecting mirror assembly is disposed downstream of an intermediate focus in a beam path of the illumination beam. 如申請專利範圍第1或2項所述之照明光學單元,其特徵在於該偏折反射鏡組合件係實施為涵蓋至多0.3之該中間焦點的一數值孔徑。 The illumination optical unit of claim 1 or 2, wherein the deflecting mirror assembly is embodied as a numerical aperture covering the intermediate focus of at most 0.3. 如申請專利範圍第1至3項之其中任一項所述之照明光學單元,其特徵在於該整體照明光束的發散度在該偏折反射鏡組合件的反射後係對應一有效數值孔徑,該有效數值孔徑相較於該中間焦點的一數值孔徑係降低至少10%。 An illumination optical unit according to any one of claims 1 to 3, wherein the divergence of the overall illumination beam corresponds to an effective numerical aperture after reflection of the deflection mirror assembly. The effective numerical aperture is reduced by at least 10% compared to a numerical aperture of the intermediate focus. 如申請專利範圍第1至4項之其中任一項所述之照明光學單元,其特徵在於該偏折反射鏡組合件具有多於兩個反射鏡用於切線入射。 The illumination optical unit of any one of clauses 1 to 4, wherein the deflecting mirror assembly has more than two mirrors for tangential incidence. 如申請專利範圍第1至5項之其中任一項所述之照明光學單元,其特徵在於用於切線入射之該等反射鏡的其中至少一者係實施為使得其造成一遠場強度分布的映射。 An illumination optical unit according to any one of claims 1 to 5, wherein at least one of the mirrors for tangential incidence is embodied such that it causes a far field intensity distribution. Mapping. 如申請專利範圍第1至6項之其中任一項所述之照明光學單元,其特徵在於用於切線入射之該等反射鏡的其中至少一者係實施為一雙曲面反射鏡。 An illumination optical unit according to any one of claims 1 to 6, wherein at least one of the mirrors for tangential incidence is embodied as a hyperbolic mirror. 如申請專利範圍第1至7項之其中任一項所述之照明光學單元,其特徵在於由用於切線入射之該等反射鏡所反射的該等部分光束在該等反射鏡的區域中係彼此間隔一距離。 An illumination optical unit according to any one of claims 1 to 7, wherein the partial light beams reflected by the mirrors for tangential incidence are in the region of the mirrors. They are separated by a distance. 一種照明系統,包含如申請專利範圍第1至8項之其中任一項所述之照明光學單元且包含一集光器作為在一照明光源之光束路徑中的第一光學元件以將照明光導引至該中間焦點。 An illumination system comprising the illumination optical unit of any one of claims 1 to 8 and comprising a concentrator as a first optical component in a beam path of an illumination source to illuminate the illumination lightguide Lead to the middle focus. 如申請專利範圍第9項所述之照明系統,其特徵在於一照明光源。 The illumination system of claim 9 is characterized by an illumination source. 一種光學系統,包含如申請專利範圍第1至8項之其中任一項所述之照明光學單元且包含一投射光學單元用以將至少部分該照明場成像至一影像場。 An optical system comprising the illumination optical unit of any one of claims 1 to 8 and comprising a projection optical unit for imaging at least a portion of the illumination field to an image field. 一種投射曝光裝置,包含如申請專利範圍第11項所述之光學系統且包含一照明光源。 A projection exposure apparatus comprising the optical system of claim 11 and comprising an illumination source. 一種用以產生一微結構組件的方法,包含以下方法步驟: -提供一光罩,-提供一晶圓,其具有對照明光敏感的一塗層,-在如申請專利範圍第12項所述之投射曝光裝置的協助下將該光罩的至少一部份投射至該晶圓上,-顯影在該晶圓上被該照明光所曝光之該光敏感層。 A method for generating a microstructured component, comprising the following method steps: Providing a reticle, providing a wafer having a coating that is sensitive to illumination light, - projecting at least a portion of the reticle with the aid of a projection exposure apparatus as described in claim 12 To the wafer, the photo-sensitive layer exposed on the wafer by the illumination light is developed. 一種組件,由如申請專利範圍第13項所述之方法所產生。 An assembly produced by the method of claim 13 of the patent application.
TW104137851A 2014-11-18 2015-11-17 Illumination optical unit for illuminating an illumination field and projection exposure apparatus comprising such an illumination optical unit TWI687776B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014223454.9A DE102014223454A1 (en) 2014-11-18 2014-11-18 Illumination optics for illuminating a lighting field and projection exposure apparatus with such an illumination optics
DE102014223454.9 2014-11-18

Publications (2)

Publication Number Publication Date
TW201626111A true TW201626111A (en) 2016-07-16
TWI687776B TWI687776B (en) 2020-03-11

Family

ID=54542240

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104137851A TWI687776B (en) 2014-11-18 2015-11-17 Illumination optical unit for illuminating an illumination field and projection exposure apparatus comprising such an illumination optical unit

Country Status (3)

Country Link
DE (1) DE102014223454A1 (en)
TW (1) TWI687776B (en)
WO (1) WO2016078964A1 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3521506B2 (en) * 1994-11-24 2004-04-19 株式会社ニコン Illumination device and exposure device
DE10138284A1 (en) 2001-08-10 2003-02-27 Zeiss Carl Lighting system with nested collectors for use in EUV microlithography
US20050207039A1 (en) 2002-02-01 2005-09-22 Carl Zeiss Smt Ag Optical element for forming an arc-shaped illumination field
DE10208854A1 (en) 2002-03-01 2003-09-04 Zeiss Carl Semiconductor Mfg Illumination system with nested collector for annular illumination of an exit pupil
US7084412B2 (en) 2002-03-28 2006-08-01 Carl Zeiss Smt Ag Collector unit with a reflective element for illumination systems with a wavelength of smaller than 193 nm
AU2003277893A1 (en) 2002-09-30 2004-04-23 Asml Netherlands B.V. Illumination system for a wavelength = 193 nm, comprising sensors for determining the illumination
WO2004068564A1 (en) * 2002-12-26 2004-08-12 Nikon Corporation Illumination optical system, illuminating device, projection exposure apparatus and exposure method
JP5525550B2 (en) 2009-03-06 2014-06-18 カール・ツァイス・エスエムティー・ゲーエムベーハー Illumination optical system and optical system for microlithography
CN104246617B (en) * 2012-03-09 2018-09-25 卡尔蔡司Smt有限责任公司 The illumination optics unit of EUV projection lithography and optical system comprising the illumination optics unit
DE102012209132A1 (en) * 2012-05-31 2013-12-05 Carl Zeiss Smt Gmbh Illumination optics for projection lithography

Also Published As

Publication number Publication date
DE102014223454A1 (en) 2016-05-19
WO2016078964A1 (en) 2016-05-26
TWI687776B (en) 2020-03-11

Similar Documents

Publication Publication Date Title
TWI714524B (en) Illumination optical unit for projection lithography, pupil facet mirror, optical system, illumination system, projection exposure apparatus, method for producing a microstructured component, and microstructured component
JP6221159B2 (en) collector
KR101470769B1 (en) Illumination system of a microlithographic projection exposure apparatus
TWI610140B (en) Illumination optical unit for a projection exposure apparatus
TWI391704B (en) Imaging optical system and projection exposure installation for microlithography with an imaging optical system of this type
TWI694311B (en) Optical subsystem for projection lithography and illumination optical unit for projection lithography
JP6221160B2 (en) Mirror placement
KR102344280B1 (en) Illumination system
US9933704B2 (en) Microlithography illumination optical system and microlithography projection exposure apparatus including same
TW202232245A (en) Projection exposure apparatus comprising a heating device and a polarizer
KR20230074272A (en) Digital micromirror device for illumination optics in projection exposure systems
US8724080B2 (en) Optical raster element, optical integrator and illumination system of a microlithographic projection exposure apparatus
US9810890B2 (en) Collector
JP2015052797A (en) Imaging optics and projection exposure device for microlithography with imaging optics of this type
CN111656245B (en) Illumination optical unit for projection lithography
KR102344279B1 (en) Illumination optical unit for euv microlithography
US10018917B2 (en) Illumination optical unit for EUV projection lithography
KR20180005169A (en) A facet mirror for EUV projection lithography and an illumination optical unit
TWI687776B (en) Illumination optical unit for illuminating an illumination field and projection exposure apparatus comprising such an illumination optical unit
TW201723667A (en) Illumination optical unit for projection lithography
TW202343152A (en) Method for measuring an illumination angle distribution on an object field and illumination optics unit having an illumination channel allocation intended therefor