201235797 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種照明系統、一種微影裝置及一種器件 製造方法。 【先前技術】 微影裝置為將所要圖案施加至基板之目標部分上之機 器。微影裝置可用於(例如)積體電路(ic)之製造中。在該 情況下’圖案化器件(其或者被稱作光罩或比例光罩)可用 以產生對應於1C之個別層之電路圖案,且可將此圖案成像 至具有輕射敏感材料(抗钕劑)層之基板(例如,石夕晶圓)上 之目標部分(例如,包含晶粒之部分、一個晶粒或若干晶 粒)上。一般而S,單一基板將含有經順次地曝光之鄰近 目標部分之網路。已知微影裝置包括:所謂步進器,其中 藉由-次性將整個圖案曝光至目標部分上來輕照每一目標 部分;及所謂掃描器,其中藉由在給定方向(「掃描」方 向)上經由光束而㈣圖案同時平行或反平行於此方向而 同步地掃描基板來輻照每—目標部分。 已知的是將特定角分佈應用於/射於光罩或比例光罩上 之輪射,以便改良圖案自圖案化器件投影至基板上 度。將角分佈應用於微影裝置 容易地將角分佈之形式視覺 =中之‘射。可最 面中之空間分佈。普通照明模 先目里平 _ ^ 弋包括環形、偶極及四揣 需要(例如)提供一種能夠以弈Α 極。 成照明模式之照明系統。 揭不之方式形 161222.doc 201235797 【發明内容】 根據本發明之一第—態樣’ ^ ^ ^ , 风贤種照明糸統,該照明 系統包含經組態以弓丨導輻射朝 ^ ± ^ Π 九瞳平面之一可控制鐘 面陣列,及經組態以弓丨導Μ Α ‘射子光束朝向該可控制鏡面陣 =鏡陣列’其中該透鏡陣列之一第一透鏡及該可控 2鏡面陣列之—可控制鏡面形成具有—第-光學功率之一 第一光學通道,且該透鏡陣列 第一透鏡及該可控制鏡 車列之-可控制鏡面形成具有一第二光學功率之二 光學通道,使得藉由該第—光學通道形成之-輻射子光: 在該光瞳平面處具有一第一户进 ^第秩截面面積及形狀,且藉由該 第二光學通道形成之—轄射子光束在該光曈平面處具有一 第二不同橫截面面積及/或形狀。 該第一光學通道可為具有該第—光學功率之-光學通道 群組之-光學通道,且㈣二光學通道可為具有該第二光 车功率之一光學通道群組之一光學通道。 -第三光學通道群組可藉由—第三透鏡及可控面群 組形成’該第三光學通道群組具備一第三光學功率,使得 藉由該第三光學通道群組形成之韓射子光束在該光瞳平面 處具有一第三不同橫截面面積及/或形狀。 具有相同光學功率之至少一透鏡或可控制鏡面群組可經 提供成彼此鄰近。該透鏡或可控制鏡面群組可經提供為一 透鏡或可控制鏡面列。 该照明系統可進一步包含一額外透鏡陣列,該額外透鏡 陣列係沿著該照明系統之一光軸而與該透鏡陣列分離。^ 161222.doc 201235797 額外透鏡陣列之該透鏡陣列可沿著該照明系統之一光軸而 可移動。該透鏡陣列或該額外透鏡陣列之一子集可沪著, 照明系統之一光軸而可移動。 該透鏡陣列或該額外透鏡陣列之該等透鏡中至少一些可 為圓柱形透鏡。 & 在一第一方向上提供光學功率之至少一些圓柱形透鏡可 提供於該透鏡陣列中,且在一第二實質上垂直方向上提供 光學功率之至少-些關聯圓柱形透鏡可提供於該額外透鏡 陣列中^ 該可控制鏡面陣列可包含不同大小之鏡面。較大鏡面可 接收-個以上輻射子光束。較大鏡面可提供於該鏡面陣列 之一外部部分中。 該可控制鏡面陣列可為複數個可控制鏡面陣列中之一 者。第一可控制鏡面陣列可經組態以在一第二可控制鏡 面陣列之鏡面之間切換輻射子光束。 該等可控制鏡面陣列中至少—者可包含-光學功率不同 於至少另-可控制鏡面陣列之鏡面之光學功率的鏡面。 該透鏡陣列可在實質上橫向於該照明系統之—光軸之一 方向上可移動。 該透鏡陣列可包括在實f上平行於該照明系統之一光轴 之一方向上彼此相對地位移的透鏡。 孔隙陣列可位於該透鏡陣列前方。該孔隙陣列之該等 孔隙之大小可為可調整的。 根據本發明之一第二態樣,提供一種微影裝置,該微影 161222.doc • 6 - 201235797 裝置包含一如前述技術方案中任一項之照明系統,該照 曰月系統經組態以提供_轄射光束;一支樓結構,其用於支 樓一圖案化器件,該圖案化器件用來在該辕射光束之橫截 面中向該輕射光束賦予一圖案;一基板台,其用於固持一 基板,及投衫系統,其用於將該經圖案化輕射光束投影 至該基板之一目標部分上。 根據本發明之-第三態樣,提供—種形成—照明模式之 方法,該方法包含使用一透鏡陣列以將一輻射光束分離成 ,射於-可控制鏡面陣列之鏡面上之輕射子光束,及使用 該可控制鏡面陣列以引莫兮铉7 ,丄 51導5亥專輻射子光束朝向一光瞳平 面,其中一第一透鏡及一可控制鏡面形成具有一第一光學 :率之帛&于通道’且-第二透鏡及-可控制鏡面形 成=-第二光學功率之一第二光學通道,使得藉由該第 予通道形成之—輻射子光束在該㈣平面處具有一第 一橫截面面積及形狀,且藉由㈣二光學通道形成之一輻 射子光束在該光瞳平面處具有一 或形狀。 "-不…截面面積及/ 一該照明系統可進一步包含一額外透鏡陣列,且該方法進 :步包含藉由改變在該透鏡陣列與該額外透鏡陣列之間的 / 刀離度來調整該等輻射子光束之該等横截面面積。3 根據本發明之一第四態樣,提供_ 據本發明之該第三態樣之該方法予以製;件’該器件係根 根據本發明之一第五態樣,提供一種 系統包含用於糊射朝向一光瞳平’該照明 ^兩個可控制 J6J222.doc 201235797 鏡面陣列,及經組態以引導輻射子光束朝向該至少兩個可 控制鏡面陣列之至少兩個關聯透鏡陣列,其中該第_陣列 之該等透鏡及該等可控制鏡面形成具有—第一光學功率之 光學通道,且該第二陣列之該等透鏡及該等可控制鏡面形 成具有-第二光學功率之光學通道,使得藉由該第—透鏡 及可控制鏡面陣列形成之輻射子光束在該照明系統之該光 瞳平面處具有一第一橫截面面積及形狀,且藉由該第二透 鏡及可控制鏡面陣_成之輻射子光束在該照㈣統之該 光目$平面處具有一第二不同橫截面面積及/或形狀。 【實施方式】 現在將參看it附示意性圖式而僅藉由實例來描述本發明 之實施例,在該等圊式中,對應元件符號指示對應部件。 儘管在本文中可特定地參考微影裝置在ic製造中之使 用,但應理解,本文所描述之微影裝置可具有其他應用, 諸如,製造整合光學系統、用於磁疇記憶體之導引及偵測 圖案、液晶顯示器(LCD)、薄膜磁頭’等等,熟習此項技 術者應瞭解’在此等替代應用之内容背景中,可認為本文 對術語「晶圓」或「晶粒」之任何使用分別與更通用之術 °°基板」或「目標部分」同義。可在曝光之前或之後在 (例如)塗佈顯影系統(通常將抗蝕劑層施加至基板且顯影經 曝光抗姓劑之工具)或度量衡或檢測工具中處理本文所提 及之基板。適用時,可將本文之揭示内容應用於此等及其 他基板處理工具。另外,可將基板處理一次以上,(例如) 以便創製多層1C,使得本文所使用之術語「基板」亦可指 16l222.doc 201235797 代已經含有多個經處理層之基板。 在内容背景允許時,本文所使用之術語「輻射」及「光 束」涵蓋所有類型之電磁輻射,包括紫外線(uv)輻射(例 如’具有365奈米、248奈米、193奈米、157奈米或126奈 米之波長)及極紫外線(EUV)輻射(例如,具有在5奈米至2〇 奈米之範圍内之波長),以及粒子束(諸如,離子束或電子 束)。 層 .本文所使用之術語「圖案化器件」應被廣泛地解釋為指 代可用以在輻射光束之橫截面中向輻射光束賦予圖案以便 在基板之目標部分中創製圖案的器件。應注意,被賦予至 ㈣光束之圖案可能不會確㈣對應於基板之目標部分中 ⑨所要圖案。通吊、被賦予至輻射光束之圖案將對應於目 枯邛分中所創製之器件(諸如,積體電路)中之特定功能 圖案化益件可為透射的或反射的。圖案化器件之實例包 括光罩、可程式化鏡面陣列,及可程式化咖面板。'光罩 在微影中為吾人所熟知, 。花洧戈一兀、父變相移及衰 減才移之光罩類型,以及各種混合光罩類型。可 面^列之-實例使用小鏡面之㈣配置,該等小鏡面中: 束;:::: 也傾斜,以便在不同方向上反射入射轄射光 方式,反射光束得以圖案化。 支撐結構固持圖案化器件。 支撐、、°構以取決於圖案化器 仵之夂向、微影裝置之設計及苴 件是否被固持於真空環境中 i : 圖案化益 兄中)的方式來固持圖案化器件。 161222.doc 201235797 支樓結構可使用機械夾持、真空或其他夾持技術,例如, 在真空條件下之靜電夾持。支撐結構可為框架或台,例 如,其可根據需要而為固定的或可移動的,且其可確保圖 案化器件(例如)相對於投影系統處於所要位置。可認為本 文對術δ吾「比例光罩」或「光罩」之任何使用皆與更通用 之術語「圖案化器件」同義。 本文所使用之術語「投影系統」應被廣泛地解釋為涵蓋 適於(例如)所使用之曝光輻射或適於諸如浸沒液體之使用 或真空之使用之其他因素的各種類型之投影系統,.包括折 射光學系統、反射光學系統及反射折射光學系統。可認為 本文對術語「投影透鏡」之任何使用皆與更通用之術語 「投影系統」同義。 照明系統可涵蓋用於引導、塑形或控制輻射光束的各種 類型之光學組件,包括折射、反射及反射折射光學組件, 且此等組件在下文亦可被集體地或單一地稱作「透鏡」。 微影裝置可為具有兩個(雙載物台)或兩個以上基板台(及/ 或兩個或兩個以上支撐結構)之類型。在此等「多載物 °」機器中,可並行地使用額外台,或可在一或多個台上 進行預備步驟,同時將―或多個其他台用於曝光。 一微影裝置亦可為如下類型:其中基板被浸沒於具有相對 问折射率之液體(例如,水)中,以便填充在投影系統之最 7L件與基板之間的空間。浸沒技術在此項技術中被熟知 用於增加投影系統之數值孔徑。 圖1示意性地描繪根據本發明之特定實施例的微影裝 161222.doc 201235797 置。該裝置包含: -照明系統IL,其用以調節輻射光束PB(例如,DUV輻 射或EUV輻射); -支撑結構MT,其用以支撐圖案化器件(例如,光 罩)MA ’且連接至用以相對於物品Pl準確地定位該圖案化 器件之第一定位器件PM ; _基板台(例如’晶圓台)WT,其用於固持基板(例如, 抗钮劑塗佈晶圓)w,且連接至用於相對於物品PL準確地 定位該基板之第二定位器件pw ;及 -投影系統(例如,折射投影透鏡)PL,其經組態以將藉 由圖案化器件MA賦予至輻射光束PB之圖案成像至基板w 之目標部分C(例如,包含一或多個晶粒)上。 如此處所描繪,裝置為透射類型(例如,使用透射光 罩)。或者,裝置可為反射類型(例如,使用上文所提及之 類型之反射光罩或可程式化鏡面陣列)。 照明系統IL自輻射源SO接收輻射光束。舉例而言,當輻 射源為準分子雷射時,輻射源與微影裝置可為分離實體。 在此等狀況下,不認為輻射源形成微影裝置之部件,且輻 射光束係憑藉包含(例如)合適引導鏡面及/或光束擴展器之 光束遞送系統BD而自輻射源S〇傳遞至照明系訊。在其 他狀況下’舉例而言’當輻射源為水銀燈時,輻射源可: 裝置之整體部件。輻射源S0及照明系統_同光束遞送系 統BD(在需要時)可被稱作輻射系統。 照明系統IL可調節輻射光束,例 〜如,使用均質機來移除 I61222.doc 201235797 光束中之非均質性。照明系統亦可_射光束形成為所要 照明模式,例如,以改良圖案自圖案化器件默投影至基 板上之準確fp文進—步描述㈣射光束形成為所要照 明模式。 輻射光束PB入射於圖案化器件(例如,光罩)MA上圖 案化器件MA被固持於支樓結構财上。在已橫穿圖案化器 件MA的情況下,光束PB傳遞通過透鏡pL,透鏡pL將該光 束聚焦至基板w之目標部分c上。憑藉第二定位器件pw及 位置感泪,jHIF(例如’干涉量測器件),可準確地移動基板 台WT,例如,以便使不同目標部分c定位於光束pB之路 徑中。相似地,卜定位器件PM及另一位置感測器(其未 在圖1中被明確地描繪)可用以(例如)在自光罩庫之機械擷 取之後或在掃描期間相對於光束!>8之路徑準確地定位圖案 化器件MA。一般而言,將憑藉形成定位器件pM及?霤之 部件的長衝程模組(粗略定位)及短衝程模組(精細定位)來 實現物件台MT及WT之移動。然而,在步進器(相對於掃描 器)之狀況下,支撐結構“丁可僅連接至短衝程致動器,或 可為固定的。可使用圖案化器件對準標記Ml、M2及基板 對準標記PI、P2來對準圖案化器件MA及基板w。 所描繪裝置可用於以下較佳模式中: 1·在步進模式中,在將被賦予至光束PB之整個圖案—次 性投影至目標部分c上時,使支撐結構河了及基板台wt保 持基本上靜止(亦即,單次靜態曝光)。接著,使基板台wT 在X及/或Y方向上移位,使得可曝光不同目標部分c。在 161222.doc 12 201235797 步進模式中’曝光場之最大大小限制單次靜態曝光中所成 像之目標部分c之大小。 2.在掃描模式中,在將被賦予至光束PB之圖案投影至目 t部分C上時’同步地掃描支撐結構mt及基板台WT(亦 即’單次動態曝光)。藉由投影系統PL之放大率(縮小率)及 影像反轉特性來判定基板台WT相對於支撐結構MT之速度 及方向。在掃描模式中,曝光場之最大大小限制單次動態 曝光中之目標部分之寬度(在非掃描方向上),而掃描運動 之長度判定目標部分之高度(在掃描方向上)。 3·在另一模式中,在將被賦予至光束pB之圖案投影至目 標部分C上時,使支撐結構MT保持基本上靜止,從而固持 叮程式化圖案化器件,且移動或掃描基板台WT。在此模 式中,通常使用脈衝式輻射源,且在基板台WT之每一移 動之後或在掃描期間之順次輻射脈衝之間根據需要而更新 可程式化圖案化器件。此操作模式可易於應用於利用可程 式化圖案化器件(諸如’上文所提及之類型之可程式化鏡 面陣列)之無光罩微影。 亦可使用對上文所描述之使用模式之組合及/或變化或 完全不同之使用模式。 月系統IL可包括二維鏡面陣列,二維鏡面陣列與輻射 光束才目X且可用以將輻射子光束引導至照明系統之光 目·《平面中之所要部位且藉此將輻射形成為所要照明模式。 可以此方式而使用之鏡面陣列(及關聯裝置)在先前技術中 為吾人所知’且(例如)在us 6737662及仍助9268(其 161222.doc -13- 201235797 兩者在此以引用之方式併入本文中)中予以描述。 因為使用二維鏡面陣列以形成照明模式在先前技術中為 吾人所熟知,所以其在此處不予以詳細地描述。然而,圖 2示意性地說明二維鏡面陣列之操作,以便促進對本發明 之理解。在圖2中,以橫截面展示二維鏡面陣列ι〇連同關 聯透鏡陣列12(亦以橫截面予以展示)。儘管鏡面將反射入 射輻射,但為了易於說明起見,將鏡面陣列10之鏡面展示 為透射的而非反射的。輻射光束pB入射於透鏡p車列Η上。 透鏡陣列〗2將輻射光束分離成六個子光束’其中每一子光 束入射於鏡面陣列10之一不同鏡面上。鏡面引導子光束朝 向照明系統之光瞳平面PP。鏡面陣列1〇之上部三個鏡面向 上引導輻射子光束,且下部三個鏡面向下引導輻射子光 束。結果,光睛平面ρρ中之上部區被照明,且該光瞳平面 中之下部區亦被照明°光瞳平面ΡΡ之中心區未被輻射子光 束照明。豸面之定向可受到控制裝置CT(圖i所示)控制。 展丁自上方所檢視之光瞳平面ρρβ圖2所示之鏡面陣 列10之鏡面將輻射子光束引導至光瞳平面ΡΡ中之兩個特定 區。在圖3中可看出’此情形可引起在光瞳平面ΡΡ中形成 兩個t射區14a' 14b ’該兩個輻射區形成偶極模式14。舉 田將包含一系列線之影像自光罩MA投影至基板 時,偶極模式14可為理想的。 圖2以橫截面所示之鏡面陣列1〇可在X方向上及在y方向 2有相同數目個鏡面’且因此可具有總共36個鏡面。在 此相對小數目個鏡面的情況下,也許沒有可能形成具 161222.doc 201235797 有圖3所示之有光滑邊续 “遺緣形式之偶極模式。因此 上,可使用具有顯著較 貫矛力 τ目+ 数目個鏡面之陣列(例如,陣列 可具有1〇0個以上鏡面,且可具有咖個以上鏡面)。 需要(包含(例如)環形模式 式及四極模式之習知照明模式)更奇異的照明模式。舉例 而言,可能需要使用包括為矩形形狀之隅角及/或包括小 矩形輪射區域及/或包括自經照明區至暗區之快 照明模式。圓4中展示奇異照明模式之示意性實例。奇: 照明模式18包含兩個矩形…、18b及四個正方形18。至 ⑻。也許沒有可能使用習知透鏡陣列及鏡面陣列來形成 諸如圖4示意性地所示之奇異照明模式的奇異照明模式, 此係因為藉由透鏡陣列及鏡面陣列形成之子光束之橫截面 可能^足夠小’及/或該等子光束在照明系統之光瞳平面 處可能不具有必要形狀以形成構成奇異照明模式之形狀。 圖5示意性地表示可用以克服以上問題的本發明之一實 施例。在圖5中’以橫載面示意性地表示可提供於照明系 先中之透鏡陣列2〇及一維鏡面陣列22。透鏡陣列2〇之透鏡 20a至20f並非全部具有相同光學功率(圖2所示之透鏡陣列 即疋全部具有相同光學功率之狀況),而是具有不同光學 功率相似地,鏡面陣列22之鏡面22a至22f並非平面的(圖 2所示之透鏡陣列即是平面之狀況)’而是具有不同光學功 率。每一透鏡20a至20f及關聯鏡面22a至22f可一起被認為 形成一光學通道’該光學通道修改傳遞通過該光學頻道之 韓射子光束24a至24f之大小(及可能地,形狀)。 161222.doc -15- 201235797 藉由透鏡20a至2〇f及鏡面22a至22f形成之光學通道具有 不同光學功率。圖5中示意性地表示不同光學功率之效 應其中藉由不同光學通道形成之輕射子光束Ma至24f在 光瞳平面PP處具有不同橫截面大小。輕射子光束24a至24f 之橫截面大小係藉由透鏡2〇a至2〇f之光學功率及鏡面22a 至22f之光學功率結合當輻射光束PB入射於透鏡陣列20上 時輕射光束PB之大小及發散度(光展量)予以判定。賴射光 束PB之光展量可對可達成之輻射子光束橫截面大小施加最 小限度。 相比於藉由具有弱光學功率之光學通道20c、22c形成之 輪射子光束24c ’藉由具有強光學功率之光學通道2〇b、 形成之輻射子光束24b在光瞳平面pp中具有較小橫截 面具有較小橫截面之輻射子光束可(例如)用以形成圖4所 不之奇異照明模式18之經照明區至ISf之隅角(或隅角之 部分)。 藉由具有弱光學功率之光學通道2〇c、22c形成之輻射子 光束24c相比於其他輻射子光束在光瞳平面中具有較大 橫截面’且可(例蝴以形成奇異照明模式18之經照明區 ISa至18f之内部之部分(輻射子光束2化可比具有較小橫截 面之子光束更有效率地填充該經照明區之内部卜可能需 要避免在經照明區之邊緣處使用藉由具有弱光學功率之光 + 20c 22c形成之輻射子光束24c,此係因為其可能 不提供足夠明顯邊緣。 般而5,具有較小橫截面面積之輻射子光束將提供較 161222.doc 201235797 好解析度。具有較小橫截面面積之輻射子光束可有用於經 照明區之邊緣及隅角處。具有較大横截面面積之轄射子光 束可有用於經照明區之内部令,此係因為:除了更有效率 地填充内部以外,該等輻射子光束亦將縮減產生在使用具 有較小橫截面面積之輻射子光束時可看到之強度漣波的風 險了使用鏡面为配凟算法(mirr〇r aH〇cati〇n叫〇出以 判定哪些輻射子光束用以形成照明模式之不同部分(如下 文進一步所解釋)。 以上内容僅僅為在光瞳平面pp中具有不同橫截面面積之 輻射子光束可用以形成照明模式之方式之實例,且該等輻 射子光束可用以以其他方式形成照明模式。 儘s圖5中展不僅六個透鏡2〇3至2〇f及六個關聯鏡面 至22f,但透鏡陣列及關聯鏡面陣列可(例如)包含1〇〇個以 上透鏡及關聯鏡面,且可(例如)包含1〇〇〇個以上透鏡及關 聯鏡面。形成具有複數個不同光學功率之光學通道之透鏡 及鏡面可提供於該等陣列中。可分配具有不同橫截面之所 得輻射子光束以形成相比於將使用所有透鏡及鏡面具有相 同光學功率之陣列而形成之照明模式改良的照明模式(例 如,奇異照明模式)^在此内容背景中,術語「改良」可 被解釋為意謂允許微影裝置將圖案更準確地投影至基板上 (相比於以其他方式進行之狀況)。相比於使用所有光學通 道具有相同光學功率之陣列而形成之等效照明模式,改良 照明模式可(例如)具有較明顯隅角,及/或可具有較小特 徵’及/或可具有較明顯邊緣。改良照明模式可(例如)提供 161222.doc -17- 201235797 與藉由源-光罩最佳化演算法產生之所要 式之較好匹配。 「理想」 照明模 控制裝置CT可使用鏡面分g # 兄®j刀配,臾异法以判定哪些鏡面待 用以將輕射子光束引導至昭明 守主*、,、明模式之不同部分。鏡面分配 演异法可在衫鏡面陣列22之哪些鏡面應該用以將輻射子 先束引導至照明模式之*同部分時考量㈣子光束24a至 24f之橫截面面積。可在照明系、統之校準期間量測輻射子 光束24a至24f之橫截面面積4外/或者可基於光學通道 20a至20f ' 22a至22f之光學功率來計算輻射子光束24&至 24f之橫截面面積。光學通道心㈣卜仏至以之光學功 率可儲存於控制裝置CT中之記憶體中。若透鏡陣列2〇修改 轄射子光束24a至24f之形狀(如下文所論述),則鏡面分配 j法亦可考量該等輕射子光束之形狀。可藉由鏡面分配 演算法考量之其他屬性包括鏡面陣列22之鏡面22&至22f之 ^射率及該等鏡面之空間部位。可藉由鏡面分配演算法考 量之此等及其他屬性之詳細描述包括於us 2〇〇8/〇239268(以 引用之方式併入本文中)中。鏡面陣列22之鏡面之反射率 可(例如)藉由引導輻射子光束朝向該鏡面陣列且偵測自該 鏡面陣列所反射之輻射之強度的監視裝置(圖中未繪示)予 以量測。 在一實施例中,透鏡陣列之鄰近透鏡群組可具備相同光 學功率。圖6中示意性地展示此情形之實例,圖6示意性地 展示自上方所檢視之透鏡陣列30。在圖6中,最先兩個透 鏡列30a具備第一光學功率,接下來兩個透鏡列3〇b具備第 161222.doc • 18 · 201235797 二光學功率,接下來兩個透鏡列30c具備第三光學功率, 且最後兩個透鏡列3〇d具備第四光學功率。以此方式將具 有相同光學功率之透鏡分組在—起會提供可簡化透鏡降列 3〇之製造(相比於製造具有相同光學功率之透鏡未被分組 在-起之透鏡陣列)之優點。另外優點為:將具有相同光 學功率之透鏡分組在一起可簡化藉由控制裝置ct(圖Μ 示)使用之鏡面分配演算法。可藉由提供具有相同光學功 率之鏡面之相似分組來獲得鏡面分配演算法之進一步簡 化。 儘管圖6所示之透鏡列30&至3〇£1在乂方向上延伸但該等 透鏡列可在任何方向(例如’ y方向)上延伸。 儘管圖6中展示64個透鏡,但此情形僅僅為示意性實 例,且實務上可提供顯著更多的透鏡。舉例而言,透鏡陣 列可包含100個或100個以上透鏡,或可包含1〇〇〇個或1〇〇〇 個以上透鏡。儘管透鏡陣列30之透鏡具有四個不同光學功 率,但該透鏡陣列之透鏡可具有不同數目個光學功率。舉 例而言,透鏡陣列30之透鏡可具有兩個不同光學功率、三 個不同光學功率、五個不同光學功率,或五個以上不同光 學功率。 透鏡陣列30包括框架32。框架32可向透鏡陣列3〇提供某 結構剛性,且亦允許該透鏡陣列緊固於微影裝置之照明系 統IL内。 儘管在圖6中以列形式將具有特定光學功率之透鏡至 30d分組在一起,但此情形僅僅為一實例且可使用具有 161222.doc 19- 201235797 光學功率之透鏡之任何合適分組。舉例而言,透鏡可以正 方形形式予以分組,或可以矩形形式或以其他形狀予以分 組。可提供具有特定光學功率之—個以上透鏡群組。 圖7中示意性地說明本發明之—替代實施例。在該替代 實施例令,第-透鏡陣列40及第二透鏡陣列心提供於鏡面 2列44前方(亦即,使得輻射光束在入射於該鏡面陣列之 前傳遞通過此兩個透鏡陣列)。如在先前諸圖中,以橫截 面展示透鏡陣列40、42及鏡面陣列44,且透鏡陣列4〇、42 及鏡面陣列44表示二維陣列。鏡面陣列料之鏡面亦具備不 同光學功率(藉由展示具有不同曲率之鏡面示意性地表 示第一透鏡陣列40及第二透鏡陣列42之透鏡之光學功 率以及鏡面44之光學功率判定在照明系統江之光瞳平面 (圖7中未繪示)中該等透鏡及該等鏡面所產生之輻射子光束 之橫截面面積。 第二透鏡陣列42可在z方向上(亦即,沿著照明系統比之 光軸)移動,如藉由雙箭頭所表示。第二透鏡陣列42可使 用可受到控制裝置CT(圖1所示)控制之致動器(圖中未繪示) 而移動在z方向上將第二透鏡陣列4 2移動至不同位置將 會‘改施加至輻射子光束之光學功率,且因此將會修改光 瞳平面中輻射子光束之橫截面面積。因此,在冗方向上第 一透鏡陣列42之移動提供用以形成照明模式之輻射子光束 之橫截面面積的控制程度。 第一透鏡陣列40及第二透鏡陣列42可包括在乙方向上該 第二透鏡陣列之移動具有較小效應所針對之透鏡對(亦 16l222.doc •20- 201235797 即,集體地作用於相同輻射子光束之透鏡),及在z方向上 該第二透鏡陣列之移動具有較大效應所針對之透鏡對。舉 例而言,兩個弱聚焦透鏡可形成在Z方向上第二透鏡陣列 之移動具有相對小效應所針對之透鏡對。兩個強聚焦透鏡 可形成在Z方向上第二透鏡之移動具有相對強效應所針對 之透鏡對。以此方式8&置透鏡對可允許更多地控制轄射子 光束之橫截面大小(相比於以其他方式進行之狀況)。 在一實施例中,除了第二透鏡陣列42係^方向上可移 動以外或代替第二透鏡陣列42係在z方向上可移動,第— 透鏡陣列40亦可在z方向上可移動(例如,使用可受到控制 裝置CT控制之致動器)。 在一貫施例中,代替在Z方 π切芷個边鏡陣列,砀 陣列之子集可為獨立地可移動的。舉例而言,參看⑽, 具有特定光學功率之每-透料㈣社於每—其他群組 而移動。透鏡陣列之其他子集可為可為獨立地可移動的。 再次參看圖7’透鏡陣列4〇、42中任一者或其兩者之_ 些或全部透鏡可為陳形透鏡。圓柱形透鏡可用以修改輻 射子光束之形狀,使得輕射子光束為(例如)矩形形式(或實 Γ矩形)’或具有某其他所要形狀。在-實施例I在 Γ:向(:列如’y方向)上提供聚焦之圓柱形透鏡可提供於 =,4。中’且在第二方向(例如,x方向)上提供聚 ^之圓㈣透鏡可提供於第:透鏡陣㈣中。此等透 m合效㈣_所要形_㈣束。可藉由 在Z方向上移動第二透鏡陣列42(或第_ I6I222.doc •21· 201235797 整形狀之縱橫比。在一實施例中,第一透鏡陣列40或第- 透鏡陣列42可具備在第—方向上提供聚焦之-些圓柱形ί 鏡,及在第二方向上提供聚焦之一些圓柱形透鏡。在一實 施例中,圓柱形透鏡之一或多個子集可在ζ方向上為獨立 地可移動的。 在-實施例中,兩個以上透鏡陣列可提供於鏡面 之 前0 如上文所提及,鏡面陣列22、44之鏡面可具備光學沒 率。舉例而言,鏡面可具有凹形形狀(或可具有凸形形 狀)。可(例如)經由在鏡面之製造期間施加適當塗層且隨後 將熱施加至鏡面而達成凹形形狀(經由在塗層被加熱時彦 生於塗層中之應力而引起曲率)。在一實施例中,鏡面陣 列之不同鏡面可具備不同光學功率。可(例如)以類似於圖( 所不之方式的方式或以某其他方式將具有不同光學功率之 鏡面(例如)分組在一起。 可結合透鏡具有不同光學功率之透鏡陣列而提供鏡面具 有不同光學功率之鏡面陣列,或可結合透鏡具有相同光學 功率之透鏡陣列而提供鏡面具有不同光學功率之鏡面陣 列。可結合鏡面具有相同光學功率(或不具有光學功率)之 鏡面陣列而提供透鏡具有不同光學功率之透鏡㈣。 在鏡面陣列之鏡面具有光學功率之實施例中’照明系統 之先瞳平面中輻射子光束之橫截面大小將取決於透鏡陣列 ^透鏡之光學功率、鏡面陣列之鏡面之光學功率,及入射 輪射光束之大小及發散度(光展量)。可認為一透鏡(或若干 161222.doc •22· 201235797 可遇為該光學通道 學功率結合該鏡面 之光 之光 透鏡)及一鏡面形成一光學通道。 學功率為該透鏡(或該等透鏡)之光 學功率^ 在-實施例中,—個以上鏡面陣列及關聯透鏡陣列可提 供於微影裝置之昭明李统中办丨 罝m死中’例如’以便提供足夠大表面 面積以容納整個入射輻射光束。在此狀況下,每一鏡面陣 列之鏡面之光學功率可不同。此情形相比於向單_鏡面陣 列之不同鏡面提供不同光學功率可更易於自製造觀點而達 成’此係因為光學功率可起因於鏡面陣列被處理之方式, 且可能難以將不同程序應用於同-鏡面陣列之不同部 透鏡陣列中之透鏡之數目可(例如)為1〇〇個或ι〇〇個以 上、500個或500個以上,或1〇〇〇個或1〇〇〇個以上。可提供 對應數目個鏡面。 a 除了促進奇異照明模式之產生以外,本發明之實施例亦 可允許更準確地形成習知照明模式(例如,在㈣明區與 暗區之間具有較明顯過渡)。 在一實施例巾,兩Μ學通道可具有$同光學功率,但 仍可提供在光瞳平面中具有相㈣黃€自面積之輕射子光 束。此係因為輻射子光束之形狀可以使得其兩者皆具有相 同橫截面面積之方式而不同。 在一實施例中,透鏡陣列之透鏡及/或鏡面陣列之鏡面 可具備複數個光學功率,該等光學功率經選擇成允許使用 該等鏡面來形成多種不同照明模式。此情形將允許以靈活 方式使用微影裝置,從而(例如)允許微影裝置將多種不同 161222.doc -23- 201235797 影像準確地投影至基板上。 在一實施例中,透鏡陣列之透鏡及/或鏡面陣列之鏡面 可具備複數個光學功率,該等光學功率經最佳化成允許使 用該等鏡面來形成特定照明模式。此情形可為(例如)在微 影裝置待用以將同一圖案投影至基板上歷時延長時段時之 狀况(可巾巾為該狀況)。才目比於在透鏡陣列之透鏡及鏡面 車歹J之鏡面之光學功率經配置成允許形成多種不同照明模 式時的狀況,針對特定照明模式來最佳化該等透鏡及/或 該等鏡面之光學功率可允許更準確地形成該照明模式。透 鏡陣歹J可被固持於一框架中,該框架經組態以允許在需要 使用微影裝置以將不同圖案投影至基板上歷時延長時段的 情況下移除且用不同透鏡陣列來替換該透鏡陣列。 實例中,鏡面陣列之鏡面可具有不同大小。在一 貫施例中,可圍繞鏡面陣列之外部部分之部分或全部而提 供較大鏡面。圖8展干措 而提好心 陣列5〇之實例,其中以此組態 而徒供鏡面52、54。齡」、於工广 部分中,且’ 兄4提供於鏡面陣列50之内部 提供於耗面陣狀外部部分中。 較大鏡面52可接收—個以上輻射子光 刀中 十六個較小鏡面及十六個 ’ @圖8展不二 目個鏡面。較大帛但可提供任何合適數 权大鏡面之—個以 實施例中,較大衣了缞、,堯較小鏡面。在一 τ較大鏡面可提供於鏡面陣 將較大鏡面提供於鏡面陣列之外 5夕個側上。 的串擾(相比於在較大$@ 。邛分中可縮減鏡面之間 之串擾^ 、 有較小鏡面時可能發生 161222.doc •24· 201235797 在實施例中,—或多個透鏡陣列之透鏡可具有不同大 小。該等透鏡可以上文關於鏡面陣列所描述之組態中之一 者而配置,或可以不同組態而配置。 在一實施例中,第一鏡面陣列之鏡面可具有第一大小, 且第二鏡面陣列之鏡面可具有第二大小。在-實施例中, 第-透鏡陣列之透鏡可具有第一大小,且第二透鏡陣列之 透鏡可具有第二大小。 在一實施例中,透鏡陣列可在實質上橫向於輻射光束之 方向上可移動’使得透鏡陣列之透鏡與輻射光束之不同部 分相交。圖9展示包含第一透鏡陣列6〇、第二透鏡陣列 62、第二透鏡陣列64及鏡面陣列66的本發明之一實施例。 第一透鏡陣列60係在橫向於微影裝置之光軸〇A之方向上 可移動。在圖9中,移動係在y方向上,但移動可在另一合 適方向(例如,X方向)上。第一透鏡6〇a及第三透鏡6〇c具有 相對弱光學功率,而第二透鏡6〇b及第四透鏡6〇d具有相對 強光學功率》由於光學功率之差異,第一輻射子光束“a 及第三輻射子光束68c在鏡面陣列66處具有小橫載面而 第二輻射子光束68b在鏡面陣列66處具有較大橫截面。輻 射不傳遞通過第四透鏡6〇d。 第一透鏡陣列60可在y方向上移動達對應於鄰近透鏡之 中心之間的距離的距離d。第一透鏡陣列60可藉由致動器 (圖中未繪示)移動。圖1〇中展示將透鏡陣列移動達距離d之 效應。在圖10中,第一輻射子光束68a現在係藉由第一透 鏡陣列之第二透鏡60b而非第一透鏡6〇a形成。結果,相比 I61222.doc -25- 201235797 於先則之狀況,輻射子光束68a在鏡面陣列66處具有較大 橫截面。相似地’第二輻射子光束68b現在係藉由第一透 鏡陣列60之第三透鏡6〇c形成,且結果,相比於先前之狀 況,在鏡面陣列66處具有較小橫截面。第三輻射子光束 68c現在係藉由第四透鏡6〇d形成。結果,相比於先前之狀 況,第二輻射子光束68c在鏡面陣列66處具有較小橫截 面。 自圖9與圖1〇之比較可看出,橫向於光軸〇A的第—透鏡 陣列60之移動允許修改鏡面陣列%處輻射子光束之橫截 面。可結合鏡面陣列66之鏡面之光學功率而配置透鏡陣列 60、62、64之透鏡(若該等鏡面具備光學功率),使得橫向 於輻射光束而移動第一透鏡陣列會允許在光瞳平面處之輻 射子光束橫截面之不同組合之間的切換。 在一實她例中,也許有可能將第一透鏡陣列6〇移動達不 同於d之距離。舉例而言,透鏡陣列可移動達距離2d、3d 或某其他距離。 在貫施命丨中’代替第一透鏡陣列60或除了第一透鏡陣 列60以外,第二透鏡陣列以及/或第三透鏡陣列64亦可橫 向於光軸OA而可移動。在一實施例中豸面“可橫向於 光軸OA而可移動。 儘官圖9及圖1〇所示之實施例具有小數目個透鏡及鏡 面’但可提供任何合適數目個透鏡及鏡面。儘管圖9及圖 1 0中展不—個透鏡陣列6()、&、Μ,但可使用任何合適數 目個透鏡陣列。 161222.doc -26· 201235797 在一實施例中,透鏡陣列之列可具有具備相同光學功率 之透鏡(例如,如圖6所不)。透鏡陣列之移動可使得具有給 2光學功率之透鏡移動成與輕射光束不相交,且具有不同 光學功率之透鏡移動成與輕射光束相交。參看(例如如, 透鏡3Ga可移動成與輻射光束不相交,且透鏡遍可移動成 與輻射光束相交(或反之亦然)。 在—實施例中,自該(該等)透鏡陣列接收輻射子光束之 :¾面陣列可為接收该等輕射子光束之複數個鏡面陣列中之 :者。舉例而言’輻射子光束可入射於第-鏡面陣列中之 叙面上’接著入射於第二鏡面陣列中之鏡面上。在此狀況 下’可使用第一鏡面陣列中之鏡面以藉由改變該鏡面之定 向而引導幸田射子光束朝向第二鏡面陣列中之不同鏡面。此 情形可(例如)允許將轎射子光束引導至將第_光學功㈣ 加至輻射子光束的第二鏡面陣列中之鏡面,或允許將輕射 子光束引導至將第二不同光學功率施加至輻射子光束(或 不具有光學功率)之鏡面。因此,以此方式使用兩個或兩 個以上鏡面陣列可允許調整光瞳平面中輻射子光束之橫截 面。 圖η中不意性地表示使用兩個鏡面陣列之實例實施例。 圆η展示透鏡陣列7〇、第—鏡面陣列72及第二鏡面陣列 74。為了易於說明起見’透鏡陣列7〇包括僅兩個透鏡。應 瞭解 '任何合適數目個透鏡可包括於透鏡陣列卜相似 地’儘管第-鏡面陣列72及第二鏡面陣⑽各自包含僅兩 個鏡面仁„亥等鏡面陣列可具有任何合適數目個鏡面。 161222.doc -27· 201235797 在圖η中’第-輻射子光束76a人射於第—鏡面陣列之 第一鏡面72a上。笛_ 第一鏡面72a引導第一輻射子光束76a朝 76b入:鏡面陣列之第—鏡面74&。相似地,第二輻射光束 射於第一鏡面陣列之第二鏡㈣上,第二鏡面72b 引導㈣子光束朝向第二鏡面陣列之第二鏡面7仆。 圖12展示與圖11相同之裝置,但其中第-鏡面陣列72之 鏡面72a、72b之定向p沖嫩 吐 疋Π已改戈。第一鏡面陣列之第一 ^之面^㈣使得其現在引導第—輻射子光束^朝向第 之之第—鏡面州。第—鏡面陣列之第二鏡面72b 之新疋向係使得其現在引導第二輕射子光束 鏡面陣列之第一鏡面74a。 〇第一 ^不同鏡面之間切㈣射子光束會允許㈣輻射子光束 之&截面大小,此ι将闲成尤门拉 心 此係因為不同鏡面可具有不同光學功率。 列而言,第二鏡面陣列74之第一鏡面74a相比於第-鏡 面74b更強地聚焦。因此, 弟一鏡 74arft,t^ 5丨導輻射子光束朝向第一鏡面 而非第二鏡面74b可縮減光瞳平面中輻射子光束之橫截 可以相似方式執行料光束之橫截面面積及 形狀之其他修改。 入 在—實施例中,每一輻射早伞未, 巾 先束可入射於第二鏡面陣列 中之一不同鏡面上。當第—鏡面陣 ; 時,此情形可以使得每一輻射子 ^ 疋。改變 列少 千先束仍入射於第二鏡面陣 不同鏡面上之方式而進行。此情形為圖u及圖以斤 不之簡化實施例中示意性地所示之情形。 在—實施例中,可將韓射子光束i分配至第二鏡面陣列 16I222.doc -28· 201235797 中之鏡面對,第-鏡面陣列在該等鏡面對之間切換該等輕 射子光束(例如,如圖u及圖12所示)。在_替代實施例 中,可以相似方式將三個輻射子光束分配至第二鏡面陣列 中之三個鏡面,該等輻射子光束係在該三個鏡面之間予以 切換。相同途徑可應用於第二鏡面陣列中之四個或四個以 上鏡面。 在-實施例中’第-鏡面陣列之鏡面之定向可使得在一 些情況下,-個以上韓射子光束同時地入射於第二鏡面陣 列中之一鏡面上。 在-實施财,可使透鏡陣财之—者巾之透鏡沿著光 軸而彼此位移。此情形可允許使用具有光學功率之較小變 化之透鏡(或使用具有相同光學功率之透鏡)來達成輻射子 光士之橫截:大小之所要修改。圖13中說明可達成此情形 方式之貫例。在圖13中’展示三個透鏡陣列8〇、、 84,且亦展示一鏡面陣列%。每一透鏡陣列之透鏡皆具有 相同光學功率。然而’第二透鏡陣列82之透鏡在z方向上 ,、有不同位置。第二透鏡陣列之第一透鏡“a經定位成最 菲近第彡鏡陣列80,且結果’第一輕射子光束88a在鏡 面陣列86處具有小橫截面面積。第二透鏡陣列之第三透鏡 82b經定位成較遠離第一透鏡陣列8〇,且結果,第三輻射 子光束88c在鏡面陣列86處具有較大橫截面面積。第二透 鏡陣列之第二透鏡82c經定位成仍較遠離第一透鏡陣列 8〇且果,第二輻射子光束88b在鏡面陣列86處具有仍 較大橫截面面積。 161222.doc •29· 201235797 在一實施例中’與透鏡陣列之透鏡相關聯之孔隙可用以 縮減傳遞通過該透鏡之輻射光束之橫截面面積。孔隙可與 透鏡陣列之複數個透鏡相關聯《孔隙之大小可為可調整 的。圖14中說明孔隙可與透鏡相關聯之一方式之實例。在 圖14中,展示包含三個透鏡9〇a至90c之透鏡陣列90連同鏡 面陣列92。孔隙陣列96位於透鏡陣列90前方。該孔隙陣列 界定複數個孔隙96a至96c,該複數個孔隙中每一者係與透 鏡陣列90之一透鏡90a至90c相關聯。孔隙96a至96c判定入 射於透鏡陣列90之每一透鏡9〇a至90c上之輻射光束之直 徑。因此’孔隙96a至96c影響行進至鏡面陣列92之輻射子 光束94a至94c之直控(如圖14示意性地所表示)^孔隙之大 小可為可調整的。 在以上描述中使用笛卡兒(Cartesian)座標以促進對本發 明之實施例之描述。笛卡兒座標不意欲暗示本發明之特徵 必須具有特定定向。 雖然上文已描述本發明之特定實施例,但應瞭解,可以 與所描述之方式不同的其他方式來實踐本發明。該描述不 意欲限制本發明。 【圖式簡單說明】 圖1描繪根據本發明之—實施例的微影裝置; 圖2描緣自先前技術所知的微影裝置之照明系統之部 件; 圖3及圖4描繪可使用本發明之實施例而形成之照明模 式; 161222.doc • 30 - 201235797 圖5描繪根據本發明之一實施例的微影裝置之照明系統 之部件; 圖6描繪形成本發明之一實施例之部件的透鏡陣列;及 圖7描繪根據本發明之一實施例的微影裝置之照明系統 之部件; 圖8描繪可形成本發明之一實施例之部件的鏡面陣列; 圖9描繪呈第一組態的根據本發明之一實施例的微影裝 置之照明系統之部件; 圖10描繪呈第二組態的圖9之裝置; 圖11描繪呈第—組態的根據本發明之-實施例的微影带 置之照明系統之部件; v 圖12描繪呈第二組態的圖11之裝置; 之照明 系統 圖13描繪根據本發明之一實施例的微影裝置 之部件;及 y、 圖14描繪根據本發明之一 之部件。 實施例的微 影裝置之照明系統 【主要元件符號說明】 10 二維鏡面陣列 12 透鏡陣列 14 偶極模式 14a 輻射區 14b 輻射區 18 奇異照明模式 18a 矩形/經照明區 161222.doc 201235797 18b 矩形/經照明區 18c 正方形/經照明區 18d 正方形/經照明區 18e 正方形/經照明區 18f 正方形/經照明區 20 透鏡陣列 20a 透鏡 20b 透鏡 20c 透鏡 20d 透鏡 20e 透鏡 20f 透鏡 22 二維鏡面陣列 22a 鏡面 22b 鏡面 22c 鏡面 22d 鏡面 22e 鏡面 22f 鏡面 24a 輻射子光束 24b 輻射子光束 24c 輻射子光束 24d 輻射子光束 24e 輻射子光束 161222.doc -32- 201235797 24f 輻射子光束 30 透鏡陣列 30a 透鏡/透鏡列 30b 透鏡/透鏡列 30c 透鏡/透鏡列 30d 透鏡/透鏡列 32 框架 40 第一透鏡陣列 42 第二透鏡陣列 44 鏡面陣列/鏡面 50 鏡面陣列 52 鏡面 54 鏡面 60 第一透鏡陣列 60a 第一透鏡 60b 第二透鏡 60c 第三透鏡 60d 第四透鏡 62 第二透鏡陣列 64 第三透鏡陣列 66 鏡面陣列 68a 第一輻射子光束 68b 第二輻射子光束 68c 第三韓射子光束 161222.doc -33- 201235797 70 透鏡陣列 72 第一 鏡面陣列 72a 第一 鏡面 72b 第二 鏡面 74 第二 鏡面陣列 74a 第一 鏡面 74b 第二 鏡面 76a 第一 輻射子光束 76b 第二輻射光束/第 80 第一 透鏡陣列 82 第二 透鏡陣列 82a 第一 透鏡 82b 第三 透鏡 82c 第二 透鏡 84 透鏡陣列 86 鏡面陣列 88a 第一 輻射子光束 88b 第二 輻射子光束 88c 第三 輻射子光束 90 透鏡陣列 90a 透鏡 90b 透鏡 90c 透鏡 92 鏡面陣列 輻射子光束 161222.doc -34- 201235797 94a 輻射子光束 94b 輻射子光束 94c 幸S射子光束 96 孔隙陣列 96a 孔隙 96b 孔隙 96c 孔隙 BD 光束遞送系統 C 目標部分 CT 控制裝置 d 距離 IF 位置感測器 IL 照明系統 Ml 圖案化器件對準標記 M2 圖案化器件對準標記 MA 圖案化器件 MT 支撐結構/物件台 OA 光軸 PI 基板對準標記 P2 基板對準標記 PB 輻射光束 PL 物品/投影系統/透鏡 PM 第一定位器件 PP 光瞳平面 161222.doc -35- 201235797 PW 第二定位器件 so 輻射源 w 基板 WT 基板台/物件台 161222.doc -36-201235797 VI. Description of the Invention: [Technical Field] The present invention relates to an illumination system, a lithography apparatus, and a device manufacturing method. [Prior Art] The lithography apparatus is a machine that applies a desired pattern to a target portion of a substrate. The lithography apparatus can be used, for example, in the manufacture of integrated circuits (ic). In this case a 'patterned device (which may be referred to as a reticle or a proportional reticle) may be used to create a circuit pattern corresponding to the individual layers of 1C, and this pattern may be imaged to have a light-sensitive material (anti-caries agent) a target portion (for example, a portion including a crystal grain, a crystal grain or a plurality of crystal grains) on a substrate (for example, a stone wafer) of a layer. Typically, S, a single substrate will contain a network of adjacent target portions that are sequentially exposed. Known lithography apparatus includes: a so-called stepper in which each target portion is lightly illuminated by exposing the entire pattern onto the target portion by a second time; and a so-called scanner, wherein in a given direction ("scanning" direction) The substrate is irradiated synchronously by the light beam while the (four) pattern is simultaneously parallel or anti-parallel in this direction to irradiate each of the target portions. It is known to apply a specific angular distribution to/on a shot of a reticle or a proportional illuminator in order to improve the pattern projected onto the substrate from the patterned device. Applying the angular distribution to the lithography device easily visualizes the form of the angular distribution. It can be distributed in the most space. General lighting mode First in the head _ ^ 弋 including ring, dipole and four 揣 need to (for example) provide a kind of ability to play the pole. Lighting system in lighting mode. Uncovering the way of shape 161222. Doc 201235797 [Description of the Invention] According to one aspect of the present invention, '^^^, the wind sage illumination system, the illumination system includes one of the nine 瞳 planes configured to guide the radiation toward the ^^^ Π Controlling the clock face array, and being configured to guide the Μ 射 'shooting beam toward the controllable mirror array=mirror array', wherein the first lens of the lens array and the controllable 2 mirror array can control the mirror surface Forming a first optical channel having a first-optical power, and the lens array first lens and the controllable mirror train-controllable mirror surface form a second optical channel having a second optical power, such that - optical channel formed - radiated sub-light: having a first cross-sectional area and shape at the pupil plane, and formed by the second optical channel - the sub-beam is in the pupil plane There is a second, different cross-sectional area and/or shape. The first optical channel can be an optical channel having the optical channel group of the first optical power, and the (four) two optical channel can be one optical channel having one of the optical channel groups of the second optical power. The third optical channel group can be formed by the third lens and the controllable surface group. The third optical channel group has a third optical power, so that the Korean optical lens formed by the third optical channel group The sub-beams have a third different cross-sectional area and/or shape at the pupil plane. At least one lens or group of controllable mirrors having the same optical power may be provided adjacent to each other. The lens or group of controllable mirrors can be provided as a lens or as a controllable mirror array. The illumination system can further include an additional lens array that is separated from the lens array along an optical axis of the illumination system. ^ 161222. Doc 201235797 The lens array of the additional lens array can be moved along one of the optical axes of the illumination system. The lens array or a subset of the additional lens arrays can be moved by one of the illumination systems. At least some of the lenses of the lens array or the additional lens array may be cylindrical lenses. & at least some cylindrical lenses providing optical power in a first direction may be provided in the lens array and providing at least a second substantially perpendicular direction of optical power - some associated cylindrical lenses may be provided In an additional lens array, the controllable mirror array can include mirrors of different sizes. Larger mirrors can receive more than one radiation sub-beam. A larger mirror can be provided in an outer portion of the mirror array. The controllable mirror array can be one of a plurality of controllable mirror arrays. The first controllable mirror array can be configured to switch the radiation sub-beams between the mirrors of a second controllable mirror array. At least one of the controllable mirror arrays may comprise a mirror having an optical power different from at least another optical power of the mirror surface of the mirror array. The array of lenses can be movable in a direction substantially transverse to one of the optical axes of the illumination system. The lens array can include a lens that is displaced relative to each other in a direction parallel to one of the optical axes of the illumination system in real f. An array of apertures can be located in front of the array of lenses. The size of the apertures of the array of apertures can be adjustable. According to a second aspect of the present invention, a lithography apparatus is provided, the lithography 161222. Doc • 6 - 201235797 The apparatus comprises a lighting system according to any one of the preceding claims, wherein the system is configured to provide a ray of a ray; a building structure for a building, a patterned device, The patterned device is configured to impart a pattern to the light beam in a cross section of the beam; a substrate stage for holding a substrate, and a shirting system for patterning the light beam The beam is projected onto a target portion of the substrate. In accordance with a third aspect of the present invention, a method of forming a illumination mode is provided, the method comprising using a lens array to separate a radiation beam into a light beam that is incident on a mirror surface of the controllable mirror array And using the controllable mirror array to direct the radiant sub-beams toward the pupil plane, wherein a first lens and a controllable mirror surface have a first optical: rate & in the channel 'and - the second lens and - controllable mirror formation = one of the second optical power of the second optical channel, such that the radiation sub-beam formed by the first channel has a number at the (four) plane A cross-sectional area and shape, and one of the radiation sub-beams formed by the (four) two optical channels has a shape or shape at the pupil plane. "- No... cross-sectional area and/or the illumination system may further comprise an additional lens array, and the method further comprises adjusting the / knife distance between the lens array and the additional lens array The cross-sectional areas of the radiation sub-beams. According to a fourth aspect of the present invention, there is provided a method according to the third aspect of the present invention, wherein the device is provided in accordance with a fifth aspect of the present invention, a system comprising Paste towards a light 瞳 flat 'The lighting ^ two can control J6J222. Doc 201235797 a mirror array, and configured to direct a radiation sub-beam toward at least two associated lens arrays of the at least two controllable mirror arrays, wherein the lenses of the first array and the controllable mirrors have a - An optical channel of optical power, and the lenses of the second array and the controllable mirrors form an optical channel having a second optical power such that the radiation sub-beam formed by the first lens and the controllable mirror array Having a first cross-sectional area and shape at the pupil plane of the illumination system, and the radiation sub-beam formed by the second lens and the controllable mirror array is at the light plane of the light (4) There is a second, different cross-sectional area and/or shape. [Embodiment] Embodiments of the present invention will now be described by way of example only with reference to the accompanying drawings, in which Although reference may be made specifically to the use of lithographic apparatus in ic fabrication herein, it should be understood that the lithographic apparatus described herein may have other applications, such as manufacturing integrated optical systems, for magnetic domain memory guidance. And detection patterns, liquid crystal displays (LCDs), thin film heads, etc., those skilled in the art should understand that 'in the context of the content of such alternative applications, the term "wafer" or "grain" may be considered herein. Any use is synonymous with a more general purpose "°" substrate or "target portion". The substrate referred to herein can be treated before or after exposure, for example, in a coating development system (typically applying a resist layer to the substrate and developing a tool that exposes the anti-surname agent) or a metrology or inspection tool. Where applicable, the disclosure herein may be applied to these and other substrate processing tools. In addition, the substrate can be processed more than once, for example, in order to create the multilayer 1C, so that the term "substrate" as used herein may also refer to 16l222. The doc 201235797 generation already contains substrates for multiple treated layers. As used herein, the terms "radiation" and "beam" are used to cover all types of electromagnetic radiation, including ultraviolet (uv) radiation (eg 'with 365 nm, 248 nm, 193 nm, 157 nm). Or a wavelength of 126 nm) and extreme ultraviolet (EUV) radiation (for example, having a wavelength in the range of 5 nm to 2 nm), and a particle beam (such as an ion beam or an electron beam). Floor . The term "patterned device" as used herein shall be interpreted broadly to refer to a device that can be used to impart a pattern to a radiation beam in a cross section of a radiation beam to create a pattern in a target portion of the substrate. It should be noted that the pattern imparted to the (four) beam may not be (4) corresponding to the desired pattern in the target portion of the substrate. The pattern that is hanged and imparted to the radiation beam will correspond to a particular function in the device (such as an integrated circuit) created in the target, and the patterned benefit may be transmissive or reflective. Examples of patterned devices include reticle, programmable mirror array, and programmable coffee panel. 'The reticle is well known to us in lithography. The type of reticle that is used for flowering, the shifting of the father, and the reduction of the fading, as well as the various types of reticle. Can be surfaced - the example uses a small mirror (4) configuration, in the small mirror: beam;:::: is also tilted to reflect the incident light in different directions, the reflected beam is patterned. The support structure holds the patterned device. The support, the structure depends on the orientation of the patterning device, the design of the lithography device, and whether the device is held in a vacuum environment i: patterning the way to hold the patterned device. 161222. Doc 201235797 The building structure can be mechanically clamped, vacuum or other clamping techniques such as electrostatic clamping under vacuum conditions. The support structure can be a frame or table, for example, which can be fixed or movable as desired, and which ensures that the patterned device is, for example, in a desired position relative to the projection system. Any use of the "proportional mask" or "reticle" in this paper is synonymous with the more general term "patterned device". The term "projection system" as used herein is to be interpreted broadly to encompass various types of projection systems suitable for, for example, exposure radiation used or other factors such as the use of immersion liquids or the use of vacuum. These include refractive optics, reflective optics, and catadioptric optics. Any use of the term "projection lens" herein is considered synonymous with the more general term "projection system". The illumination system can encompass various types of optical components for guiding, shaping, or controlling the radiation beam, including refractive, reflective, and catadioptric optical components, and such components can also be collectively or collectively referred to as "lenses" hereinafter. . The lithography device can be of the type having two (dual stage) or more than two substrate stages (and/or two or more support structures). In such "multi-loadage" machines, additional stations may be used in parallel, or preparatory steps may be performed on one or more stations while "or multiple other stations" are used for exposure. A lithography device can also be of the type wherein the substrate is immersed in a liquid (e.g., water) having a relative refractive index to fill the space between the most 7L member of the projection system and the substrate. Immersion techniques are well known in the art for increasing the numerical aperture of a projection system. Figure 1 schematically depicts a lithography 161222 in accordance with a particular embodiment of the present invention. Doc 201235797 set. The device comprises: - an illumination system IL for adjusting a radiation beam PB (eg DUV radiation or EUV radiation); a support structure MT for supporting a patterned device (eg reticle) MA' and connected to Positioning the first positioning device PM of the patterned device with respect to the article P1; a substrate table (eg, a 'wafer table) WT for holding a substrate (eg, a resist-coated wafer) w, and Connected to a second positioning device pw for accurately positioning the substrate relative to the article PL; and a projection system (eg, a refractive projection lens) PL configured to impart a radiation beam PB by the patterned device MA The pattern is imaged onto a target portion C of the substrate w (eg, comprising one or more dies). As depicted herein, the device is of the transmissive type (e.g., using a transmissive reticle). Alternatively, the device can be of the reflective type (e.g., using a reflective reticle or a programmable mirror array of the type mentioned above). The illumination system IL receives the radiation beam from the radiation source SO. For example, when the source of radiation is a quasi-molecular laser, the source of radiation and the lithography device can be separate entities. Under such conditions, the source of radiation is not considered to form part of the lithography apparatus, and the radiation beam is transmitted from the source S to the illumination system by means of a beam delivery system BD comprising, for example, a suitable guiding mirror and/or beam expander. News. In other instances, for example, when the source of radiation is a mercury lamp, the source of radiation can be: an integral part of the device. The radiation source S0 and the illumination system _ the same beam delivery system BD (when needed) may be referred to as a radiation system. The illumination system IL can adjust the radiation beam, for example, using a homogenizer to remove I61222. Doc 201235797 Heterogeneity in the beam. The illumination system can also be formed into a desired illumination mode, e.g., an accurate projection of the self-patterning device onto the substrate in a modified pattern. The fourth embodiment of the beam is formed into a desired illumination mode. The radiation beam PB is incident on the patterned device (e.g., photomask) MA. The patterning device MA is held on the structure of the building. In the case where the patterned device MA has been traversed, the light beam PB is transmitted through the lens pL, and the lens pL focuses the light beam onto the target portion c of the substrate w. With the second positioning means pw and positional tears, jHIF (e.g., 'interference measuring means), the substrate table WT can be accurately moved, for example, to position the different target portions c in the path of the light beam pB. Similarly, the locating device PM and another position sensor (which is not explicitly depicted in Figure 1) can be used, for example, after mechanical scooping from the reticle library or during the scan relative to the beam! The path of 8 accurately positions the patterned device MA. In general, will rely on the formation of positioning devices pM and? The long-stroke module (rough positioning) and the short-stroke module (fine positioning) of the sliding parts are used to realize the movement of the object table MT and WT. However, in the case of a stepper (with respect to the scanner), the support structure "can be connected only to the short-stroke actuator, or can be fixed. The patterned device alignment marks M1, M2 and the substrate pair can be used. The alignment marks PI, P2 are used to align the patterned device MA and the substrate w. The device depicted can be used in the following preferred modes: 1. In the step mode, the entire pattern to be imparted to the beam PB is sub-projected to When the target portion c is on, the support structure is continued and the substrate table wt is kept substantially stationary (that is, a single static exposure). Then, the substrate table wT is displaced in the X and/or Y direction so that the exposure can be different. Target part c. at 161222. Doc 12 201235797 The maximum size of the 'exposure field' in step mode limits the size of the target portion c of the image produced in a single static exposure. 2. In the scanning mode, the support structure mt and the substrate stage WT (i.e., 'single-shot dynamic exposure) are synchronously scanned while the pattern to be applied to the light beam PB is projected onto the target portion C. The speed and direction of the substrate stage WT with respect to the support structure MT are determined by the magnification (reduction ratio) of the projection system PL and the image inversion characteristic. In the scan mode, the maximum size of the exposure field limits the width of the target portion in a single dynamic exposure (in the non-scanning direction), and the length of the scanning motion determines the height of the target portion (in the scanning direction). 3. In another mode, when the pattern to be imparted to the beam pB is projected onto the target portion C, the support structure MT is held substantially stationary, thereby holding the patterned device, and moving or scanning the substrate table WT . In this mode, a pulsed radiation source is typically used, and the programmable patterning device is updated as needed between each movement of the substrate table WT or between successive pulses of radiation during the scan. This mode of operation can be readily applied to maskless lithography utilizing a programmable patterning device such as the 'programmable mirror array of the type mentioned above. Combinations of the modes of use described above and/or variations or completely different modes of use may also be used. The monthly system IL may comprise a two-dimensional mirror array, a two-dimensional mirror array and a radiation beam X and may be used to direct the radiation sub-beams to the illumination system's light source "the desired location in the plane and thereby form the radiation into the desired illumination mode. Mirror arrays (and associated devices) that can be used in this manner are known in the prior art and (for example) in us 6737662 and still help 9268 (its 161222. Doc-13-201235797 is hereby incorporated herein by reference. Since the use of a two-dimensional mirror array to form an illumination pattern is well known in the prior art, it will not be described in detail herein. However, Figure 2 schematically illustrates the operation of a two-dimensional mirror array to facilitate an understanding of the present invention. In Fig. 2, a two-dimensional mirror array ι is shown in cross section along with an associated lens array 12 (also shown in cross section). Although the mirror will reflect the incident radiation, the mirror surface of the mirror array 10 is shown as transmissive rather than reflective for ease of illustration. The radiation beam pB is incident on the lens p train. The lens array 2 separates the radiation beam into six sub-beams, wherein each of the sub-beams is incident on a different mirror surface of the mirror array 10. The mirror guides the sub-beams towards the pupil plane PP of the illumination system. The upper three mirrors of the mirror array 1 引导 face the radiation sub-beams, and the lower three mirrors face the lower radiant sub-beams. As a result, the upper region of the pupil plane ρρ is illuminated, and the lower region of the pupil plane is also illuminated. The central region of the pupil plane is not illuminated by the radiation sub-beam. The orientation of the face can be controlled by the control unit CT (shown in Figure i). The mirror plane of the mirror array ρρβ shown in Fig. 2 from the top shows the radiation sub-beams to two specific regions in the pupil plane. As can be seen in Figure 3, this situation can result in the formation of two t-regions 14a' 14b ' in the pupil plane ’. The two radiant regions form a dipole pattern 14. Dipole mode 14 may be desirable when the field contains a series of images of the line projected from the reticle MA onto the substrate. The mirror array 1 shown in cross section in Fig. 2 can have the same number of mirrors ' in the X direction and in the y direction 2 and thus can have a total of 36 mirrors. In the case of a relatively small number of mirrors, it may not be possible to form 161222. Doc 201235797 has a smooth edge-continued "dipole mode" shown in Figure 3. Therefore, an array with a significantly more consistent spear force τ mesh + number of mirrors can be used (for example, the array can have 1 〇 0 The above mirrors, and can have more than one mirror surface.) Need more (including, for example, the circular pattern and the four-pole mode of the conventional lighting mode) more exotic lighting modes. For example, it may be necessary to use a corner including a rectangular shape And/or include a small rectangular firing area and/or a fast illumination mode including from the illuminated area to the dark area. A schematic example of a singular illumination mode is shown in circle 4. Odd: Illumination mode 18 includes two rectangles..., 18b and Four squares 18. to (8). It may not be possible to use conventional lens arrays and mirror arrays to form a singular illumination pattern such as the singular illumination pattern schematically shown in Figure 4, which is formed by a lens array and a mirror array. The cross-section of the beam may be sufficiently small 'and/or the sub-beams may not have the necessary shape at the pupil plane of the illumination system to form a singular illumination mode Figure 5 is a schematic representation of an embodiment of the invention that can be used to overcome the above problems. In Figure 5, the lens array 2〇 and the one-dimensional mirror that can be provided in the illumination system are schematically represented by the cross-sectional plane. Array 22. The lenses 20a to 20f of the lens array 2 are not all of the same optical power (the lens array shown in FIG. 2, that is, the state in which all of the lenses have the same optical power), but have different optical powers similarly, and the mirror array 22 The mirrors 22a to 22f are not planar (the lens array shown in Fig. 2 is a flat condition) but have different optical powers. Each of the lenses 20a to 20f and the associated mirrors 22a to 22f may be considered together to form an optical channel' The optical channel modifies the size (and possibly shape) of the Korean beam beams 24a through 24f that pass through the optical channel. Doc -15- 201235797 The optical channels formed by the lenses 20a to 2〇f and the mirrors 22a to 22f have different optical powers. The effect of different optical powers is schematically represented in Fig. 5 in which the light sub-beams Ma to 24f formed by the different optical channels have different cross-sectional sizes at the pupil plane PP. The cross-sectional sizes of the light projecting beams 24a to 24f are combined by the optical power of the lenses 2a to 2〇f and the optical power of the mirrors 22a to 22f in combination with the light beam PB when the radiation beam PB is incident on the lens array 20. The size and divergence (light spread) are judged. The light spread of the beam BB can impose a minimum on the cross-sectional size of the achievable radiation sub-beam. The irradiated sub-beam 24c' formed by the optical passages 20c, 22c having weak optical power is formed in the pupil plane pp by the optical passage 2bb having a strong optical power. A radiation sub-beam having a small cross-section with a smaller cross-section may, for example, be used to form an angle of illumination (or a portion of the corner) of the illuminated region of the singular illumination mode 18 of Figure 4 to ISf. The radiation sub-beam 24c formed by the optical channels 2〇c, 22c having weak optical power has a larger cross section in the pupil plane than the other radiation sub-beams and can be formed to form a singular illumination mode 18 The portion of the interior of the illumination zone ISa to 18f (the radiation sub-beam 2 can fill the interior of the illuminated zone more efficiently than the sub-beam having a smaller cross-section may need to avoid having to use at the edge of the illuminated zone by having The weak optical power light + 20c 22c forms the radiation sub-beam 24c because it may not provide a sufficiently sharp edge. Typically, a radiation sub-beam with a smaller cross-sectional area will provide a more than 161,222. Doc 201235797 Good resolution. Radiation sub-beams having a smaller cross-sectional area may be used at the edges and corners of the illuminated region. A sub-beam with a larger cross-sectional area may have an internal order for the illuminated area because, in addition to filling the interior more efficiently, the radiating sub-beams will also be reduced to produce a smaller cross-section in use. The area of the radiated sub-beam can be seen as the risk of intensity chopping. The mirror is used as a matching algorithm (mirr〇r aH〇cati〇n called out to determine which radiation sub-beams are used to form different parts of the illumination mode (see below) Further explained herein. The above is merely an example of the manner in which the radiation sub-beams having different cross-sectional areas in the pupil plane pp can be used to form an illumination mode, and the radiation sub-beams can be used to otherwise form an illumination mode. Illustrated in Figure 5, not only six lenses 2〇3 to 2〇f and six associated mirrors to 22f, but the lens array and associated mirror array can, for example, contain more than one lens and associated mirrors, and can For example) comprising more than one lens and associated mirrors. Lenses and mirrors forming optical channels having a plurality of different optical powers can be provided in the arrays. Assigning the resulting radiation sub-beams having different cross-sections to form an illumination mode improved illumination mode (eg, a singular illumination mode) that is formed using an array of all lenses and mirrors having the same optical power. ^ In this context, The term "improvement" can be interpreted to mean allowing the lithography device to project the pattern onto the substrate more accurately (as compared to otherwise performed) compared to using an array of all optical channels having the same optical power. The equivalent illumination mode, the improved illumination mode may, for example, have a more pronounced corner, and/or may have smaller features' and/or may have more pronounced edges. The improved illumination mode may, for example, provide 161222. Doc -17- 201235797 A better match with the desired pattern produced by the source-mask optimization algorithm. The "ideal" lighting mode control unit CT can be mirrored to determine which mirrors are to be used to direct the light beam to the different parts of the Ming, *, and Ming modes. The mirror assignment algorithm can take into account the cross-sectional areas of the (four) sub-beams 24a to 24f in which mirrors of the mirror array 22 should be used to direct the beam of radiation to the same portion of the illumination mode. The cross-sectional area 4 of the radiation sub-beams 24a to 24f may be measured during calibration of the illumination system, or the radiation sub-beams 24 & 24f may be calculated based on the optical power of the optical channels 20a to 20f ' 22a to 22f Sectional area. The optical channel core (4) can be stored in the memory in the control device CT. If the lens array 2 〇 modifies the shape of the sub-beams 24a to 24f (as discussed below), the specular distribution j method can also take into account the shape of the sub-beams. Other attributes that can be considered by the mirror assignment algorithm include the mirrors 22& of the mirror array 22 and the spatial extent of the mirrors. A detailed description of such and other attributes that may be considered by the specular assignment algorithm is included in U.S. Patent Application Serial No. 239, the entire disclosure of which is incorporated herein by reference. The specular reflectance of the mirror array 22 can be measured, for example, by a monitoring device (not shown) that directs the radiation sub-beams toward the mirror array and detects the intensity of the radiation reflected from the mirror array. In an embodiment, adjacent lens groups of the lens array may be provided with the same optical power. An example of this situation is schematically illustrated in Figure 6, which schematically shows the lens array 30 as viewed from above. In Fig. 6, the first two lens columns 30a have the first optical power, and the next two lens columns 3b have the 161222. Doc • 18 · 201235797 Two optical powers, the next two lens columns 30c have a third optical power, and the last two lens columns 3〇d have a fourth optical power. Grouping lenses having the same optical power in this manner provides the advantage of simplifying the manufacture of lens downsampling (compared to the manufacture of lens arrays in which lenses having the same optical power are not grouped). A further advantage is that grouping the lenses with the same optical power simplifies the mirror assignment algorithm used by the control device ct (shown). Further simplification of the specular allocation algorithm can be obtained by providing similar groups of mirrors having the same optical power. Although the lens columns 30 & to 3 1 shown in Fig. 6 extend in the x direction, the lens columns may extend in any direction (e.g., the 'y direction). Although 64 lenses are shown in Figure 6, this is merely an illustrative example and practically provides significantly more lenses. For example, the lens array may comprise 100 or more lenses, or may comprise 1 or more lenses. Although the lens of lens array 30 has four different optical powers, the lenses of the lens array can have a different number of optical powers. For example, the lens of lens array 30 can have two different optical powers, three different optical powers, five different optical powers, or five or more different optical powers. Lens array 30 includes a frame 32. The frame 32 provides some structural rigidity to the lens array 3's and also allows the lens array to be secured within the illumination system IL of the lithography apparatus. Although the lenses having a specific optical power are grouped together in 30a in Figure 6, this case is only an example and may be used with 161222. Doc 19- 201235797 Any suitable grouping of lenses for optical power. For example, the lenses may be grouped in a square form or may be grouped in a rectangular form or in other shapes. More than one lens group with a particular optical power can be provided. An alternative embodiment of the invention is schematically illustrated in FIG. In this alternative embodiment, the first lens array 40 and the second lens array core are provided in front of the mirror 2 columns 44 (i.e., such that the radiation beam passes through the two lens arrays before being incident on the mirror array). As in the previous figures, lens arrays 40, 42 and mirror array 44 are shown in cross section, and lens arrays 4, 42 and mirror array 44 represent a two dimensional array. The mirror surface of the mirror array material also has different optical powers (the optical power of the lens of the first lens array 40 and the second lens array 42 is schematically represented by mirrors having different curvatures and the optical power of the mirror surface 44 is determined in the illumination system. The cross-sectional area of the lens and the radiation sub-beams produced by the mirrors in a plane (not shown in Figure 7). The second lens array 42 can be in the z-direction (i.e., along the illumination system) Shaft) movement, as indicated by double arrows. The second lens array 42 can be moved in the z direction using an actuator (not shown) that can be controlled by the control device CT (shown in Figure 1). Moving the two lens arrays 4 to different positions will 'change the optical power applied to the radiation sub-beams, and thus will modify the cross-sectional area of the radiation sub-beams in the pupil plane. Thus, the first lens array 42 in the redundant direction The movement provides a degree of control of the cross-sectional area of the radiation sub-beams used to form the illumination mode. The first lens array 40 and the second lens array 42 may include the second lens array in the B direction. The mobile has a lens for the small effect (also 16l222. Doc • 20- 201235797 ie, a lens that collectively acts on the same radiation sub-beam), and a lens pair for which the movement of the second lens array in the z-direction has a larger effect. For example, two weakly focused lenses may form a pair of lenses for which the movement of the second lens array in the Z direction has a relatively small effect. The two strong focus lenses can form a pair of lenses for which the movement of the second lens in the Z direction has a relatively strong effect. In this manner, the 8& lens pair allows for greater control over the cross-sectional size of the ray beam (as compared to otherwise performed). In an embodiment, the first lens array 40 may be movable in the z direction in addition to or in lieu of the second lens array 42 being movable in the z direction (for example, An actuator that can be controlled by the control device CT) is used. In a consistent embodiment, instead of cutting a side mirror array on the Z side π, the subset of the 砀 array can be independently movable. For example, referring to (10), each of the transmissive materials (4) having a specific optical power moves in every other group. Other subsets of the lens array can be independently movable. Referring again to Figures 7', either or both of the lens arrays 4, 42 or both may be lenticular lenses. A cylindrical lens can be used to modify the shape of the radiation sub-beam such that the light sub-beam is, for example, in the form of a rectangle (or a solid rectangle) or has some other desired shape. A cylindrical lens that provides focus on the Γ:direction (: column as in the 'y direction) can be provided at =, 4. A circle (four) lens that provides a poly" in the second direction (e.g., the x direction) may be provided in the first: lens array (four). These transparent effects (4) _ desired shape _ (four) bundle. The second lens array 42 can be moved in the Z direction (or the first _I6I222. Doc •21· 201235797 The aspect ratio of the entire shape. In one embodiment, the first lens array 40 or the first lens array 42 may be provided with a plurality of cylindrical lenses that provide focus in the first direction, and some cylindrical lenses that provide focus in the second direction. In one embodiment, one or more subsets of the cylindrical lenses are independently movable in the x-direction. In an embodiment, more than two lens arrays may be provided before the mirror. As mentioned above, the mirror faces of the mirror arrays 22, 44 may be optically inactive. For example, the mirror surface can have a concave shape (or can have a convex shape). The concave shape can be achieved, for example, by applying a suitable coating during the manufacture of the mirror and then applying heat to the mirror (via the stress caused by the stress in the coating when the coating is heated). In one embodiment, the different mirrors of the mirror array can have different optical powers. The mirrors having different optical powers can be grouped together, for example, in a manner similar to that of the figures (or in some other way. The mirrors having different optical powers can be combined to provide mirrors with different optics) A mirror array of power, or a mirror array with mirrors of the same optical power combined with a lens to provide a specular array of mirrors with different optical powers. A mirror array with the same optical power (or no optical power) can be combined to provide a lens with different optics The lens of power (4). In the embodiment where the mirror surface of the mirror array has optical power, the cross-sectional size of the radiation sub-beam in the 瞳 plane of the illumination system will depend on the optical power of the lens array lens, the optical power of the mirror surface of the mirror array. And the size and divergence (light spread) of the incident beam, can be considered a lens (or several 161222. Doc •22· 201235797 can be used as the optical channel to combine the light of the mirror light and a mirror to form an optical channel. The learning power is the optical power of the lens (or the lenses). In the embodiment, more than one mirror array and associated lens array can be provided in the lithography apparatus of the lithography apparatus, for example, to provide A large enough surface area to accommodate the entire incident radiation beam. In this case, the optical power of the mirror surface of each mirror array can be different. This situation can be achieved more easily from a manufacturing perspective than to providing different optical powers to different mirrors of a single-mirror array. This is because optical power can be caused by the way the mirror array is processed, and it can be difficult to apply different programs to the same The number of lenses in the different lens arrays of the mirror array may, for example, be one or more than 10,000, 500 or more, or one or more than one. A corresponding number of mirrors are available. In addition to facilitating the generation of singular illumination modes, embodiments of the present invention may also allow for more accurate formation of conventional illumination modes (e.g., with a more pronounced transition between (4) bright and dark regions). In one embodiment, the two drop channels may have the same optical power, but still provide a light shot beam having a phase (four) yellow self-area in the pupil plane. This is because the shape of the radiation sub-beams can be such that they both have the same cross-sectional area. In one embodiment, the mirror of the lens array and/or the mirror array may have a plurality of optical powers that are selected to allow the use of the mirrors to form a plurality of different illumination modes. This situation will allow the use of lithography devices in a flexible manner, thereby (for example) allowing the lithography device to be varied 161222. Doc -23- 201235797 The image is accurately projected onto the substrate. In one embodiment, the mirrors of the lens array and/or the mirror array may have a plurality of optical powers that are optimized to allow the use of the mirrors to form a particular illumination mode. This situation can be, for example, the condition that the lithography apparatus is to be used to project the same pattern onto the substrate for an extended period of time (the towel is the condition). Optimizing the lenses and/or the mirrors for a particular illumination mode, as compared to the case where the optical power of the lens of the lens array and the mirror surface of the mirror rim J is configured to allow for the formation of a plurality of different illumination modes. Optical power can allow for more accurate formation of this illumination mode. The lens array J can be held in a frame that is configured to allow removal and replacement of the lens with different lens arrays when lithographic means are required to project different patterns onto the substrate for extended periods of time Array. In an example, the mirrors of the mirror array can have different sizes. In one embodiment, a larger mirror may be provided around part or all of the outer portion of the mirror array. Figure 8 shows an example of an array of arrays, in which the mirrors 52, 54 are provided for this configuration. The age is in the section of the work, and the 'brothers 4 are provided inside the mirror array 50 to be provided in the outer portion of the array. The larger mirror 52 can receive sixteen smaller mirrors and sixteen mirrors in more than one of the radiation sub-knives. Larger ones can provide any suitable number of large mirrors - in the embodiment, larger 衣, 尧 smaller mirrors. A larger mirror at τ can be provided on the mirror array. A larger mirror is provided on the side of the mirror array. Crosstalk (compared to the larger crosstalk between mirrors in larger $@.), which may occur when there is a smaller mirror. 161222. Doc • 24· 201235797 In an embodiment, the lenses of the plurality or lens arrays may have different sizes. The lenses may be configured as one of the configurations described above with respect to the mirror array, or may be configured in different configurations. In an embodiment, the mirror surface of the first mirror array may have a first size, and the mirror surface of the second mirror array may have a second size. In an embodiment, the lens of the first lens array may have a first size and the lens of the second lens array may have a second size. In one embodiment, the lens array is movable in a direction substantially transverse to the radiation beam such that the lens of the lens array intersects a different portion of the radiation beam. 9 shows an embodiment of the invention including a first lens array 6A, a second lens array 62, a second lens array 64, and a mirror array 66. The first lens array 60 is movable in a direction transverse to the optical axis 〇A of the lithography apparatus. In Fig. 9, the movement is in the y direction, but the movement may be in another suitable direction (e.g., the X direction). The first lens 6a and the third lens 6〇c have relatively weak optical power, and the second lens 6〇b and the fourth lens 6〇d have relatively strong optical power. The first radiation sub-beam is due to the difference in optical power. The "a and third radiation sub-beams 68c have a small cross-sectional plane at the mirror array 66 and the second radiation sub-beam 68b has a larger cross-section at the mirror array 66. Radiation is not transmitted through the fourth lens 6"d. The lens array 60 is movable in the y direction to a distance d corresponding to the distance between the centers of adjacent lenses. The first lens array 60 can be moved by an actuator (not shown). The lens array is moved for the effect of the distance d. In Fig. 10, the first radiation sub-beam 68a is now formed by the second lens 60b of the first lens array instead of the first lens 6a. As a result, compared to I61222. Doc -25- 201235797 In the first case, the radiation sub-beam 68a has a larger cross section at the mirror array 66. Similarly, the second radiation sub-beam 68b is now formed by the third lens 6〇c of the first lens array 60, and as a result, has a smaller cross-section at the mirror array 66 than in the previous state. The third radiation sub-beam 68c is now formed by the fourth lens 6〇d. As a result, the second radiation sub-beam 68c has a smaller cross-section at the mirror array 66 than in the previous state. As can be seen from a comparison of Figure 9 and Figure 1, the movement of the first lens array 60 transverse to the optical axis 〇A allows modification of the cross-section of the radiation sub-beam at the mirror array %. The lenses of the lens arrays 60, 62, 64 can be configured in conjunction with the optical power of the mirror surface of the mirror array 66 (if the mirrors are optically powered) such that moving the first lens array transverse to the radiation beam allows for at the pupil plane Switching between different combinations of cross sections of the radiation sub-beams. In a real case, it may be possible to move the first lens array 6〇 to a distance different from d. For example, the lens array can be moved up to a distance of 2d, 3d or some other distance. The second lens array and/or the third lens array 64 may also be movable transverse to the optical axis OA in place of or in addition to the first lens array 60. In one embodiment, the facets are "movable transverse to the optical axis OA. The embodiment shown in Figures 9 and 1 has a small number of lenses and mirrors" but any suitable number of lenses and mirrors may be provided. Although a lens array 6(), &, Μ is shown in Figures 9 and 10, any suitable number of lens arrays can be used. Doc -26· 201235797 In an embodiment, the columns of lens arrays may have lenses having the same optical power (e.g., as shown in Figure 6). The movement of the lens array allows the lens having the optical power to be moved to not intersect the light beam, and the lens having the different optical powers to move into intersecting the light beam. See (for example, lens 3Ga can be moved to not intersect the radiation beam, and the lens can be moved to intersect the radiation beam (or vice versa). In an embodiment, the radiation is received from the lens array The beam: 3⁄4 plane array can be one of a plurality of mirror arrays that receive the light beam. For example, the 'radiation beam can be incident on the surface of the first mirror array' and then incident on the second The mirror surface in the mirror array. In this case, the mirror surface in the first mirror array can be used to direct the Koda beam to the different mirrors in the second mirror array by changing the orientation of the mirror. Allowing the beam of the beam to be directed to the mirror in the second mirror array that adds the first optical work (four) to the radiation sub-beam or to direct the light beam to the second different optical power to the radiation sub-beam ( Or a mirror with no optical power. Therefore, using two or more mirror arrays in this way allows adjustment of the cross-section of the radiating sub-beams in the pupil plane. An example embodiment using two mirror arrays is shown. The circle η shows a lens array 7 第, a first mirror array 72 and a second mirror array 74. For ease of explanation, the 'lens array 7 〇 includes only two lenses. It should be understood' Any suitable number of lenses may be included in the lens array similarly 'although the first mirror array 72 and the second mirror array (10) each comprise only two mirrors, the mirror array may have any suitable number of mirrors. Doc -27· 201235797 In the figure η, the 'first-radiation sub-beam 76a is incident on the first mirror surface 72a of the first mirror array. The flute_first mirror 72a directs the first radiating sub-beam 76a toward 76b: the first mirror surface 74& of the mirror array. Similarly, the second radiation beam impinges on the second mirror (four) of the first mirror array, and the second mirror surface 72b directs the (four) sub-beams toward the second mirror surface 7 of the second mirror array. Fig. 12 shows the same arrangement as Fig. 11, but in which the orientations of the mirror faces 72a, 72b of the first mirror array 72 have been reversed. The first face of the first mirror array ^(4) causes it to now direct the first-radiation sub-beam ^ towards the first - mirror state. The new orientation of the second mirror 72b of the first-mirror array is such that it now directs the first mirror 74a of the second array of light sub-beams. 〇 The first ^ different mirrors cut between (4) the beam of the beam will allow (4) the size of the sub-beam of the sub-beam, this ι will become the Eugene heart This system because different mirrors can have different optical power. For the column, the first mirror surface 74a of the second mirror array 74 is more strongly focused than the first mirror surface 74b. Therefore, the mirror-array 74arft, t^5-guided radiation sub-beams are directed toward the first mirror surface instead of the second mirror surface 74b. The cross-sectional area and shape of the beam can be performed in a similar manner to reduce the cross-section of the radiation sub-beams in the pupil plane. Other modifications. In the embodiment, each of the radiation pre-emptive umbrellas may be incident on a different mirror surface of the second mirror array. When the first-mirror array is used, this situation can make each radiation sub- 疋. Change the number of columns and the first beam is still incident on the different mirror surfaces of the second mirror array. This situation is illustrated by the diagrams schematically illustrated in Figures u and Figures. In an embodiment, the Korean beam i can be assigned to the second mirror array 16I222. Doc -28· 201235797 The mirror face, the first-mirror array switches the light-emitting beams between the mirror faces (for example, as shown in Figures u and 12). In an alternative embodiment, three radiation sub-beams can be distributed to three mirrors in a second mirror array in a similar manner, the radiation sub-beams being switched between the three mirrors. The same approach can be applied to four or more of the second mirror arrays. The orientation of the mirror surface of the 'mirror array in the embodiment may be such that, in some cases, more than one of the Hanon beam beams are simultaneously incident on one of the mirror faces of the second mirror array. In the implementation of the money, the lens of the lens can be displaced from each other along the optical axis. This situation may allow the use of a lens with a smaller variation in optical power (or the use of a lens having the same optical power) to achieve the cross-section of the radiation sub-light: the size to be modified. A general example of the manner in which this can be achieved is illustrated in FIG. Three lens arrays 8A, 84 are shown in Figure 13 and a mirror array % is also shown. The lenses of each lens array have the same optical power. However, the lenses of the second lens array 82 have different positions in the z direction. The first lens "a of the second lens array is positioned to be the most close to the kerometer array 80, and as a result, the first first shot beam 88a has a small cross-sectional area at the mirror array 86. The third lens array is the third The lens 82b is positioned further away from the first lens array 8 and, as a result, the third radiation sub-beam 88c has a larger cross-sectional area at the mirror array 86. The second lens 82c of the second lens array is positioned still farther away The first lens array 8 is, and the second radiation sub-beam 88b has a still larger cross-sectional area at the mirror array 86. 161222. Doc • 29· 201235797 In one embodiment, the aperture associated with the lens of the lens array can be used to reduce the cross-sectional area of the radiation beam transmitted through the lens. The apertures can be associated with a plurality of lenses of the lens array. The size of the apertures can be adjustable. An example of one way in which apertures can be associated with a lens is illustrated in FIG. In Fig. 14, a lens array 90 comprising three lenses 9a through 90c is shown along with a mirror array 92. The aperture array 96 is located in front of the lens array 90. The array of apertures defines a plurality of apertures 96a-96c, each of which is associated with one of the lenses 90a-90c of the lens array 90. The apertures 96a to 96c determine the diameter of the radiation beam incident on each of the lenses 9a to 90c of the lens array 90. Thus, apertures 96a through 96c affect the direct control of the radiating sub-beams 94a through 94c that travel to mirror array 92 (as schematically illustrated in Figure 14). The size of the apertures can be adjustable. The Cartesian coordinates are used in the above description to facilitate the description of the embodiments of the present invention. The Cartesian coordinates are not intended to imply that the features of the present invention must have a particular orientation. Although the specific embodiments of the invention have been described above, it is understood that the invention may be practiced otherwise than as described. This description is not intended to limit the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 depicts a lithography apparatus in accordance with an embodiment of the present invention; FIG. 2 depicts components of an illumination system of a lithography apparatus known from the prior art; FIGS. 3 and 4 depict the use of the present invention. Illumination mode formed by the embodiment; 161222. Doc 30 - 201235797 Figure 5 depicts components of an illumination system of a lithography apparatus in accordance with an embodiment of the present invention; Figure 6 depicts a lens array forming a component of one embodiment of the present invention; and Figure 7 depicts one of the present invention Components of an illumination system of a lithography apparatus of an embodiment; FIG. 8 depicts a mirror array that can form components of an embodiment of the present invention; FIG. 9 depicts a lithography apparatus in accordance with an embodiment of the present invention in a first configuration Figure 10 depicts the device of Figure 9 in a second configuration; Figure 11 depicts components of a lithographically disposed illumination system in accordance with an embodiment of the present invention in a first configuration; Apparatus of Figure 11 in a second configuration; illumination system Figure 13 depicts components of a lithography apparatus in accordance with one embodiment of the present invention; and y, Figure 14 depicts components in accordance with one of the present invention. Illumination system of the lithography apparatus of the embodiment [Description of main component symbols] 10 Two-dimensional mirror array 12 Lens array 14 Dipole mode 14a Radiation area 14b Radiation area 18 Singular illumination mode 18a Rectangular/illuminated area 161222. Doc 201235797 18b Rectangular/illuminated area 18c Square/illuminated area 18d Square/illuminated area 18e Square/illuminated area 18f Square/illuminated area 20 Lens array 20a Lens 20b Lens 20c Lens 20d Lens 20e Lens 20f Lens 22 Two-dimensional Mirror array 22a Mirror 22b Mirror 22c Mirror 22d Mirror 22e Mirror 22f Mirror 24a Radiation sub-beam 24b Radiation sub-beam 24c Radiation sub-beam 24d Radiation sub-beam 24e Radiation sub-beam 161222. Doc -32- 201235797 24f Radiation sub-beam 30 Lens array 30a Lens / lens column 30b Lens / lens column 30c Lens / lens column 30d Lens / lens column 32 Frame 40 First lens array 42 Second lens array 44 Mirror array / mirror 50 Mirror array 52 mirror 54 mirror 60 first lens array 60a first lens 60b second lens 60c third lens 60d fourth lens 62 second lens array 64 third lens array 66 mirror array 68a first radiation sub-beam 68b second radiation Sub-beam 68c third Korean beam 161222. Doc -33- 201235797 70 lens array 72 first mirror array 72a first mirror surface 72b second mirror surface 74 second mirror array 74a first mirror surface 74b second mirror surface 76a first radiation sub-beam 76b second radiation beam / 80th first Lens array 82 second lens array 82a first lens 82b third lens 82c second lens 84 lens array 86 mirror array 88a first radiation sub-beam 88b second radiation sub-beam 88c third radiation sub-beam 90 lens array 90a lens 90b lens 90c lens 92 mirror array radiation sub-beam 161222. Doc -34- 201235797 94a Radiation sub-beam 94b Radiation sub-beam 94c Fortunate S-subject beam 96 Pore array 96a Pore 96b Pore 96c Pore BD Beam delivery system C Target part CT control device d Distance IF position sensor IL Illumination system Ml pattern Device Alignment Marker M2 Patterning Device Alignment Marker MA Patterning Device MT Support Structure / Object Stage OA Optical Axis PI Substrate Alignment Marker P2 Substrate Alignment Marker PB Radiation Beam PL Article / Projection System / Lens PM First Positioning Device PP diaphragm plane 161222. Doc -35- 201235797 PW second positioning device so radiation source w substrate WT substrate table / object table 161222. Doc -36-