TW201211539A - LOC device for pathogen detection and genetic analysis with chemical lysis, incubation and tandem nucleic acid amplification - Google Patents
LOC device for pathogen detection and genetic analysis with chemical lysis, incubation and tandem nucleic acid amplification Download PDFInfo
- Publication number
- TW201211539A TW201211539A TW100119231A TW100119231A TW201211539A TW 201211539 A TW201211539 A TW 201211539A TW 100119231 A TW100119231 A TW 100119231A TW 100119231 A TW100119231 A TW 100119231A TW 201211539 A TW201211539 A TW 201211539A
- Authority
- TW
- Taiwan
- Prior art keywords
- nucleic acid
- segment
- pcr
- loc device
- amplification
- Prior art date
Links
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
201211539 六、發明說明: 【發明所屬之技術領域】 本發明關於使用微系統技術(MST)之診斷裝置。特 別是’本發明有關用於分子診斷的微流體和生化處理及分 析0 【先前技術】201211539 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a diagnostic apparatus using microsystem technology (MST). In particular, the present invention relates to microfluidic and biochemical treatment and analysis for molecular diagnostics. [Prior Art]
分子診斷儼然興起成爲一種熱門領域,其爲早期(可 能於症狀顯露之前)疾病偵測帶來希望。分子診斷檢驗係 用於偵測: • 遺傳性疾病 • 獲得性障礙 • 傳染性疾病 • 與健康狀況相關的基因易感性 分子診斷具有高精確度及快速的處理時間,且具有減 少發生無效之健康照護服務、增進病患結果、增進疾病管 理及實現病患照護個人化的可能性。分子診斷的許多技術 係基於偵測與鑑定自生物樣本(例如血液或唾液)中萃取 且擴增而得的特定核酸,包含去氧核糖核酸(DNA )與核 糖核酸(RN A )兩者。核酸鹼基的互補天性允許合成DN A (寡聚核苷酸)的短序列與特定核酸序列結合(雜合)而 可用於核酸檢驗中。若發生雜合反應,則表示樣本中存在 互補序列。這使得例如預測個人未來將罹患之疾病、測定 -5- 201211539 傳染性病原的本質與致病性或測定個人對藥物的反應這類 事情將有可能達成。 以核酸爲基礎的分子診斷檢驗 以核酸爲基礎的檢驗具有四個不同步驟: 1. 樣本製備 2. 核酸萃取 3. 核酸擴增(隨意選用) 4. 偵測 許多樣本種類可用於進行基因分析,例如血液、尿液 、唾液與組織樣本。診斷檢驗決定所需的樣本種類,並非 所有樣本都具有病程代表性。此等樣本具有各種成分,但 通常這些成分中僅有一種成分才是關注對象。例如在血液 中,高濃度的紅血球可能抑制對病原微生物的偵測。因此 ,於核酸檢驗的初期經常需要純化及/或濃縮步驟。 血液是最常尋求的樣本種類之一。血液具有三種主要 成分:白血球、紅血球及血小板。血小板幫助凝血且在體 外可保持活性。爲抑制凝結作用,於進行純化與濃縮之前 ,先使樣本與試劑(例如,乙二胺四乙酸(EDTA ))混 合。通常自樣本中去除紅血球以濃縮標靶細胞。在人類中 ,紅血球數量約佔細胞材料的99 %,但由於紅血球不具 細胞核,因此紅血球未攜帶DNA。再者,紅血球含有多 種成分,例如血紅素,而血紅素可能干擾下游的核酸擴增 -6 - 201211539 處理(將說明於下)。藉著於溶胞溶液中有差別地溶解紅 血球可達成紅血球之去除,且完整地保留其餘細胞材料, 隨後可利用離心從樣本中分離出該其餘細胞材料。如此可 提供標靶細胞之濃縮,以從標靶細胞萃取核酸。Molecular diagnostics have emerged as a hot area, bringing hope to disease detection in the early stages (before symptoms may be revealed). Molecular diagnostic tests are used to detect: • hereditary diseases • acquired disorders • infectious diseases • genetic susceptibility molecular diagnostics associated with health status with high precision and fast processing time, and reduced ineffective health care Services, improving patient outcomes, improving disease management and the possibility of personalizing patient care. Many techniques for molecular diagnostics are based on the detection and identification of specific nucleic acids extracted and amplified from biological samples (e. g., blood or saliva), including both deoxyribonucleic acid (DNA) and ribonucleic acid (RN A ). The complementary nature of the nucleobase allows the synthesis of a short sequence of DN A (oligonucleotide) to bind (hybrid) to a particular nucleic acid sequence and can be used in nucleic acid assays. If a heterozygous reaction occurs, it means that there is a complementary sequence in the sample. This makes it possible, for example, to predict the disease that an individual will suffer in the future, to determine the nature and pathogenicity of the infectious agent, or to determine the individual's response to the drug. Nucleic Acid-Based Molecular Diagnostic Tests Nucleic acid-based assays have four distinct steps: 1. Sample preparation 2. Nucleic acid extraction 3. Nucleic acid amplification (optional) 4. Detection of many sample types can be used for genetic analysis, For example, blood, urine, saliva, and tissue samples. The diagnostic test determines the type of sample required, and not all samples are representative of the disease course. These samples have various components, but usually only one of these components is the subject of interest. For example, in the blood, high concentrations of red blood cells may inhibit the detection of pathogenic microorganisms. Therefore, purification and/or concentration steps are often required early in the nucleic acid assay. Blood is one of the most commonly sought sample types. Blood has three main components: white blood cells, red blood cells, and platelets. Platelets help to clotting and remain active in vitro. To inhibit coagulation, the sample is mixed with a reagent (e.g., ethylenediaminetetraacetic acid (EDTA)) prior to purification and concentration. Red blood cells are typically removed from the sample to concentrate the target cells. In humans, the number of red blood cells accounts for about 99% of the cellular material, but since the red blood cells do not have a nucleus, the red blood cells do not carry DNA. Furthermore, red blood cells contain a variety of components, such as heme, and hemoglobin may interfere with downstream nucleic acid amplification -6 - 201211539 treatment (described below). Red blood cell removal can be achieved by differentially dissolving the red blood cells in the lysis solution, and the remaining cellular material is completely retained, and the remaining cellular material can then be separated from the sample by centrifugation. This provides concentration of the target cells to extract nucleic acids from the target cells.
用於萃取核酸的萃取法係取決於樣本及欲執行之診斷 性分析檢驗法。例如,萃取病毒RNA之方法將與萃取基 因體DNA之方法有相當大的差異。然而,自標靶細胞中 萃取核酸通常涉及溶胞步驟,且於溶胞步驟之後接著進行 核酸純化。溶胞步驟打破細胞與核膜以釋出遺傳物質。通 常使用溶胞性清潔劑(例如,十二烷基硫酸鈉)達成此步 驟,溶胞性清潔劑亦使存在於細胞中的大量蛋白質變性( denature) 0 接著以酒精沈澱步驟(通常使用冰冷的乙醇或異丙醇 ) 純化核酸,或藉由固相純化步驟純化核酸,通常於高 濃度離液鹽(chaotropic salt )存在下於管柱內的氧化砂 基質(silica matrix )、樹脂或順磁珠上進行固相純化步 驟,之後進行清洗,且隨後以低離子強度緩衝液進行沖提 (elution)。於沈澱核酸之前進行的選用步驟係添加可分 解蛋白質之蛋白酶以進一步純化該樣本。 其他溶胞方法包含藉由超音波振動的機械性溶胞法及 把樣本加熱至94°C以打破細胞膜的熱溶胞法》 存在於經萃取之材料中的標靶DNA或RNA可能含量 極小,特別是若標靶物是病原微生物的DNA或RNA時更 是如此。核酸擴增法提供選擇性地使低濃度之特定標靶核 201211539 酸擴增(即,複製)至可偵測之濃度的能力。 最常用的核酸擴增技術係聚合酶鏈鎖反應(PCR )。 PCR法在此領域中係廣爲人知,且於E. Van Pelt-Verkuil 等人著作且由Springer出版社於2008出版的《PCR擴增 之原理與技術體系(Principles and Technical Aspects of PCR Amplification)》一書中提供此類反應之全面描述。 PCR是一項從複雜DNA背景中擴增標靶DNA序列的 強大技術。若欲(藉由PCR )擴增RNA,必需先使用被 稱爲反轉錄酶的酶使RNA轉錄成cDNA (互補DNA)。 隨後,藉由PCR擴增所產生的cDNA。 PCR是一種指數性方法且只要用於維持反應進行的條 件可接受即可持續進行PCR。反應之成分如下: 1. 引子對〜具有約10~30個核苷酸的短單鏈DNA, 該短單鏈DNA與位於標靶序列兩側的區域互補。 2. DNA聚合酶〜一種用於合成DNA的熱穩定性酶。 3_去氧核糖核苷三磷酸(dNTPs )〜提供倂入新合 成之DNA鏈中的核苷酸。 4.緩衝液〜提供進行DNA合成之最佳化學環境。 PCR —般包含把此等反應物放入含有經萃取之核酸的 小試管中(約1〇~15微升)。把該小試管置於溫度循環器 中;溫度循環器係一種使該反應於一系列不同溫度下持續 不同時間的儀器。每個溫度循環的標準程序涉及變性階段 (denaturation phase)、黏合階段(annealing phase)及 201211539The extraction method used to extract nucleic acids depends on the sample and the diagnostic assay to be performed. For example, the method of extracting viral RNA will be quite different from the method of extracting DNA from the gene. However, the extraction of nucleic acids from a target cell typically involves a lysis step followed by a nucleic acid purification following the lysis step. The lysis step breaks the cell and the nuclear membrane to release the genetic material. This step is usually accomplished using a lytic detergent (eg, sodium lauryl sulfate), which also denatures a large amount of protein present in the cell. 0 followed by an alcohol precipitation step (usually using ice-cold ethanol or Isopropanol) Purification of nucleic acids, or purification of nucleic acids by a solid phase purification step, usually in the presence of a high concentration of chaotropic salt on a silica matrix, resin or paramagnetic beads in a column The solid phase purification step, followed by washing, and subsequent elution with a low ionic strength buffer. The optional step performed prior to precipitation of the nucleic acid is the addition of a protein-degrading protease to further purify the sample. Other lysis methods include mechanical lysis by ultrasonic vibration and thermal lysis of the cell membrane by heating the sample to 94 ° C. The target DNA or RNA present in the extracted material may be extremely small. This is especially true if the target is the DNA or RNA of the pathogenic microorganism. Nucleic acid amplification provides the ability to selectively amplify (i.e., replicate) a low concentration of a particular target core 201211539 acid to a detectable concentration. The most commonly used nucleic acid amplification technique is the polymerase chain reaction (PCR). The PCR method is well known in the art and is based on the "Principles and Technical Aspects of PCR Amplification" by E. Van Pelt-Verkuil et al. and published by Springer Press in 2008. A comprehensive description of such reactions is provided in the book. PCR is a powerful technique for amplifying target DNA sequences from complex DNA backgrounds. If RNA is to be amplified (by PCR), it is necessary to first transcribe RNA into cDNA (complementary DNA) using an enzyme called reverse transcriptase. Subsequently, the generated cDNA was amplified by PCR. PCR is an exponential method and PCR can be carried out as long as the conditions for maintaining the reaction are acceptable. The components of the reaction are as follows: 1. Primer pair ~ Short single-stranded DNA of about 10 to 30 nucleotides complementary to the region flanking the target sequence. 2. DNA polymerase ~ a thermostable enzyme for the synthesis of DNA. 3_deoxyribonucleoside triphosphates (dNTPs) ~ provide nucleotides that are incorporated into the newly synthesized DNA strand. 4. Buffer ~ provides the best chemical environment for DNA synthesis. PCR generally involves placing such reactants in a small tube containing the extracted nucleic acid (about 1 〇 to 15 μl). The tube is placed in a temperature circulator; the temperature circulator is an instrument that allows the reaction to be carried out at a range of different temperatures for different periods of time. The standard procedure for each temperature cycle involves the denaturation phase, the annealing phase, and 201211539
延長階段(extension phase)。延長階段有時稱爲引子延 長階段。除了此種三步驟式程序之外,亦可採用兩步驟式 溫度程序,於兩步驟式溫度程序中係使黏合階段與延長階 段合倂。變性階段一般涉及使反應溫度升高至90〜95°C以 使該等DNA鏈變性;於黏合階段中,使溫度降至約 5 0〜6 0°C以使引子黏合;及隨後於延長階段中,使溫度升 高至60〜72°C的DN A聚合酶最佳活性溫度以進行引子延長 反應。此過程重複循環約2 0〜40次,最終結果係創造出數 百萬個介於該等引子間之標靶序列的複製物。 標準PCR程序具有諸多變化型,例如已硏發出用於 分子診斷之多重PCR、連接子-引子PCR ( linker-primer PCR)、直接PCR、串接PCR、即時PCR及反轉錄酶PCR ,等等。 多重PCR係於單個PCR反應混合物中使用多組引子 以製造出對不同DNA序列具有專一性之不同大小的擴增 子(amplicon )。藉著一次鎖定多個基因,可由單次檢驗 回合得到額外資訊,否則可能需要進行數次實驗方能得到 額外資訊。然而多重PCR之最佳化較爲困難且要求選擇 具有相似黏合溫度的引子,並且擴增子具有相似的長度及 鹼基組成以確保每個擴增子的擴增效率相等。 連接子-引子PCR亦稱爲接合轉接子PCR(ligation adaptor PCR),其係一種能實質上對複雜DNA混合物中 之所有DNA序列進行核酸擴增而無需使用標靶物專一性 引子的方法。該方法首先涉及使用適當的限制核酸內切酶 -9 - 201211539 (酵素)剪切該標靶DNA群。隨後利用接合酶(ligase enzyme)使具有適當懸臂末端之雙鏈寡聚核苷酸連接子( 亦稱轉接子)與標靶DN A斷片的末端接合。接著利用對 該等連接子序列具有專一性的寡聚核苷酸引子執行核酸擴 增。如此,可擴增該DNA來源中被該等連接子寡聚核苷 酸夾擊的所有斷片。Extension phase. The extension phase is sometimes referred to as the primer extension phase. In addition to this three-step procedure, a two-step temperature program can be used to combine the bonding phase with the extended phase in a two-step temperature program. The denaturation stage generally involves raising the reaction temperature to 90 to 95 ° C to denature the DNA strands; in the bonding stage, lowering the temperature to about 50 to 60 ° C to bond the primers; and subsequently in the elongation phase In the middle, the temperature is raised to an optimum activity temperature of DN A polymerase at 60 to 72 ° C for the primer extension reaction. This process is repeated for about 20 to 40 cycles, and the end result is the creation of millions of copies of the target sequence between the primers. Standard PCR procedures are available in a variety of variations, such as multiplex PCR for molecular diagnostics, linker-primer PCR, direct PCR, tandem PCR, real-time PCR, and reverse transcriptase PCR. Multiplex PCR uses multiple sets of primers in a single PCR reaction mixture to create different sizes of amplicons that are specific for different DNA sequences. By locking multiple genes at once, additional information can be obtained from a single test round, otherwise additional experiments may be required to obtain additional information. However, optimization of multiplex PCR is difficult and requires the selection of primers with similar binding temperatures, and the amplicons have similar lengths and base compositions to ensure equal amplification efficiency for each amplicon. Linker-initiator PCR, also known as ligation adaptor PCR, is a method that allows nucleic acid amplification of virtually all DNA sequences in a complex DNA mixture without the use of a target specificity primer. The method first involves the cleavage of the target DNA population using an appropriate restriction endonuclease-9 - 201211539 (enzyme). The double-stranded oligonucleotide linker (also known as a adaptor) with the appropriate cantilever ends is then ligated to the ends of the target DN A fragment using a ligase enzyme. Nucleic acid amplification is then performed using oligonucleotide primers that are specific for the linker sequences. Thus, all fragments of the DNA source that are pinched by the linker oligonucleosides can be amplified.
直接PCR描述一種於無需任何核酸萃取或做最小限 度之核酸萃取下直接於樣本上執行PCR之系統。長久以 來一直認爲存在於未經純化之生物樣本中的許多成分(例 如,血液中的血紅成分)會抑制PCR反應。傳統上,PCR 要求於製備反應混合物之前需先進行標靶核酸之大規模純 化。然而,藉由適當地改變化學試劑與樣本濃度,可能以 最小限度的DNA純化執行PCR或直接執行PCR。調整用 於直接PCR的PCR化學試劑包含提高緩衝強度、使用具 有高活性及持續性的聚合酶及可與潛在之聚合酶抑制劑螯 合的添加劑。 串接PCR係利用兩個不同回合之核酸擴增反應以提 高擴增正確擴增子的或然率。其中一種形式的串接PCR 係巢式PCR(nested PCR),在巢式PCR中,使用兩對 PCR引子以於兩個不同回合之核酸擴增反應中擴增單一個 基因座。第一對引子與位於該標靶核酸序列之外側區域處 的核酸序列雜合。用於第二回合之核酸擴增反應中的第二 對引子(巢式引子)係結合於該第一 PCR產物之內且產 生含有該標靶核酸序列的第二PCR產物,該第二PCR產 -10- 201211539 物將比第一 PCR產物要短。此方法背後的原理邏輯在於 若於第一回合之核酸擴增期間出錯而擴增出錯誤的基因座 ,在利用第二對引子進行第二次擴增時亦擴增出錯誤基因 座的可能性極低,從而確保專一性。Direct PCR describes a system for performing PCR directly on a sample without any nucleic acid extraction or minimal nucleic acid extraction. It has long been believed that many components present in unpurified biological samples (e.g., blood red components in blood) inhibit the PCR reaction. Traditionally, PCR requires extensive purification of the target nucleic acid prior to preparation of the reaction mixture. However, by appropriately changing the chemical reagent and the sample concentration, it is possible to perform PCR with minimal DNA purification or directly perform PCR. Modification of PCR chemistries for direct PCR involves increasing buffer strength, using a polymerase with high activity and persistence, and additives that can be chelated with potential polymerase inhibitors. Tandem PCR utilizes two different rounds of nucleic acid amplification reactions to increase the probability of amplifying the correct amplicon. One form of tandem PCR is Nested PCR, in which two pairs of PCR primers are used to amplify a single locus in two different rounds of nucleic acid amplification reactions. The first pair of primers is hybridized to a nucleic acid sequence located at a region outside the target nucleic acid sequence. A second pair of primers (nested primers) for use in the second round of nucleic acid amplification reaction binds within the first PCR product and produces a second PCR product comprising the target nucleic acid sequence, the second PCR product -10- 201211539 The substance will be shorter than the first PCR product. The rationale behind this method is that if the wrong locus is amplified during the first round of nucleic acid amplification, the possibility of an incorrect locus is amplified when the second amplification is performed with the second primer. Extremely low to ensure specificity.
即時PCR(或定量PCR)係用於即時測量一種PCR 產物的量。藉著於反應中使用含螢光發光基團或螢光染劑 之探針且配合使用一組標準,可定量樣本中之核酸的起始 量。此方法對於處理選項可能隨樣本中之病原含量而有所 不同的分子診斷特別有用。 反轉錄酶PCR(RT-PCR)係用於從RNA擴增出DNA 。反轉錄酶係一種可把RNA反轉錄成互補DNA ( cDNA) 的酶,且隨後藉由PCR擴增該互補DNA。RT-PCR廣泛用 於基因表現之硏究,藉以測定基因的表現或鑑定包含轉錄 起始位置及終止位置在內的RNA轉錄產物之序列。反轉 錄酶PCR亦用於擴增RNA病毒,例如人類免疫不全病毒 或C型肝炎病毒。 恆溫擴增係另一種形式的核酸擴增法,此種擴增法不 依賴擴增反應期間的標靶DNA之熱變性作用,因此不需 要精密複雜的機器。因此恆溫核酸擴增法可於原本所在位 置上進行或輕易地於實驗室環境以外的地方操作。目前已 揭示多種恆溫核酸擴增法,包含鏈置換擴增法、轉錄介導 擴增法、核酸序列依賴性擴增法、重組酶聚合酶擴增法、 滾環式擴增法、分枝型擴增法、解旋酶依賴性恆溫DNA 擴增法及環形核酸介導擴增法。 -11 - 201211539 恆溫核酸擴增法無需仰賴持續加熱使模板D N A變性 以產生單鏈分子作爲模板用於進行進一步擴增,取代而之 的是改用替代方法,例如利用特定的限制核酸內切酶進行 酶催化剪切而於DNA分子上形成缺口或於恆溫下使用酶 解開該DNA之雙鏈。Instant PCR (or quantitative PCR) is used to measure the amount of a PCR product in real time. The starting amount of nucleic acid in the sample can be quantified by using a probe containing a fluorescent luminescent group or a fluorescent dye in the reaction in conjunction with a set of standards. This method is particularly useful for molecular diagnostics where processing options may vary with the pathogen content of the sample. Reverse transcriptase PCR (RT-PCR) is used to amplify DNA from RNA. A reverse transcriptase is an enzyme that reverse transcribes RNA into a complementary DNA (cDNA) and then amplifies the complementary DNA by PCR. RT-PCR is widely used in the study of gene expression to determine the expression of a gene or to identify sequences of RNA transcripts including the start and end positions of transcription. Reverse transcription enzyme PCR is also used to amplify RNA viruses such as human immunodeficiency virus or hepatitis C virus. The isothermal amplification system is another form of nucleic acid amplification method which does not depend on the thermal denaturation of the target DNA during the amplification reaction, and thus does not require a sophisticated machine. Therefore, the thermostatic nucleic acid amplification method can be performed at the original location or easily operated outside the laboratory environment. A variety of thermostatic nucleic acid amplification methods have been disclosed, including strand displacement amplification, transcription-mediated amplification, nucleic acid sequence-dependent amplification, recombinase polymerase amplification, rolling circle amplification, and branched Amplification, helicase-dependent isothermal DNA amplification, and circular nucleic acid-mediated amplification. -11 - 201211539 Constant temperature nucleic acid amplification method does not rely on continuous heating to denature template DNA to produce a single-stranded molecule as a template for further amplification, instead of using alternative methods, such as the use of specific restriction endonucleases Enzyme-catalyzed cleavage to form a gap in the DNA molecule or to digest the double strand of the DNA using an enzyme at a constant temperature.
鏈置換擴增法(SDA )係仰賴某些限制酶具有於半修 飾DNA之未經修飾鏈上形成缺口的能力及5'-3'核酸內切 酶缺乏性聚合酶具有能延長和置換下游DNA鏈的能力。 隨後藉著結合同義反應與反義反應(在此等反應中源自同 義反應的鏈置換作用係做爲反義反應之模板)而達成指數 核酸擴增。並非以傳統方式切斷DNA而是使用在DNA雙 鏈之其中一鏈上產生缺口的切口酶(例如N. Alwl、N. BstNBl及Ml yl)對於此種反應而言係有用的。已藉由使 用熱穩定性限制酶(jval )與熱穩定性外聚合酶(聚 合酶)之組合改善鏈置換擴增法。此種組合經證明可使反 應之擴增效率自1〇8倍擴增提高至101()倍擴增,因此可能 得以利用此技術來擴增特殊的單複製分子。 轉錄介導擴增法(TMA )和核酸序列依賴性擴增法( NASBA)使用RNA聚合酶以複製RNA序列,而非複製對 應的基因體DNA。該技術使用兩種引子及兩種或三種酶 ’分別爲RNA聚合酶、反轉錄酶及(若反轉錄酶不具有 RNA水解酶活性時)選用性的RNA水解酶H ( RNase Η ) 。其中一種引子含有供RNA聚合酶使用的啓動子序列。 於核酸擴增之第一步驟中’此引子於經界定之位置處與標 -12- 201211539The strand displacement amplification method (SDA) relies on the ability of certain restriction enzymes to form gaps in the unmodified strand of semi-modified DNA and the 5'-3' endonuclease-deficient polymerase has the ability to prolong and replace downstream DNA. The ability of the chain. Exponential nucleic acid amplification is then achieved by combining a synonymous reaction with an antisense reaction (a strand displacement system derived from a synonymous reaction in such reactions as a template for an antisense reaction). Instead of cutting DNA in a conventional manner, nicking enzymes (e.g., N. Alwl, N. BstNBl, and Mlyl) which use a gap in one of the DNA double strands are useful for such reactions. The strand displacement amplification method has been improved by using a combination of a thermostable restriction enzyme (jval) and a thermostable outer polymerase (polymerase). This combination has been shown to increase the amplification efficiency of the reaction from 1 to 8 fold amplification to 101 (fold) amplification, and thus it may be possible to utilize this technique to amplify a particular single replication molecule. Transcription-mediated amplification (TMA) and nucleic acid sequence-dependent amplification (NASBA) use RNA polymerase to replicate RNA sequences rather than replicating corresponding genomic DNA. This technique uses two primers and two or three enzymes, respectively, RNA polymerase, reverse transcriptase and (if reverse transcriptase does not have RNA hydrolytic enzyme activity) selective RNA hydrolase H (RNase Η). One of the primers contains a promoter sequence for use by RNA polymerase. In the first step of nucleic acid amplification, the primer is at the defined position and the target -12-201211539
靶核糖體RNA (rRNA)雜合。反轉錄酶藉著從該啓動子 引子之3'端開始延長而創造出該標靶rRNA的〇ΝΑ複製 物。藉由反轉錄酶的RNA水解酶活性(若該反轉錄酶具 有RNA水解酶活性)或添加之RNase Η降解所產生之 RNA:DNA雙鏈複合物中的RNA。接著,第二種引子與該 DNA複製物結合。藉由反轉錄酶從此引子之末端合成出 新的DNA鏈而創造出雙鏈DNA分子。RNA聚合酶辨識 DN A模板中的啓動子序列且開始進行轉錄。每個新合成 的RNA擴增子再進入上述程序中且作爲模板以用於進行 新一回合的複製反應。 於重組酶聚合酶擴增法(RPA)中,係藉著使相反序 列之寡聚核苷酸引子與模板DNA結合且利用DNA聚合酶 延長該引子而達成特定DNA斷片之恆溫擴增。無需使用 熱使雙鏈DNA(dsDNA)模板變性。取代的是,rpa採 用重組酶-引子複合物藉以掃描雙鏈DNA且幫助進行同源 位置處的鏈交換作用。藉由單鏈DNA結合蛋白與該經置 換之模板鏈交互作用而穩定所產生的結構,從而避免因支 鏈遷移作用而逐出引子。重組酶之拆解作用(disassembly )使該寡聚核苷酸的3'端可與鏈置換DNA聚合酶接觸( 該鏈置換DNA聚合酶係例如枯草桿菌聚合酶I ( )之 大斷片)且隨後進行引子延長反應。藉由重複循環此程序 而達成指數性核酸擴增。 解旋酶依賴性恆溫DNA擴增法(HDA )係摹仿體內 系統使用DNA解旋酶以生成用於引子雜合反應的單鏈模 -13- 201211539Target ribosomal RNA (rRNA) is heterozygous. The reverse transcriptase creates a purine replica of the target rRNA by extending from the 3' end of the promoter primer. The RNA in the DNA double-stranded complex produced by the reverse transcriptase RNA hydrolase activity (if the reverse transcriptase has RNA hydrolase activity) or the added RNase Η degradation. Next, a second primer binds to the DNA replica. A double-stranded DNA molecule is created by synthesizing a new DNA strand from the end of this primer by reverse transcriptase. RNA polymerase recognizes the promoter sequence in the DN A template and begins transcription. Each newly synthesized RNA amplicon is re-entered into the above procedure and used as a template for a new round of replication reactions. In recombinant enzyme polymerase amplification (RPA), constant temperature amplification of a particular DNA fragment is achieved by binding the opposite sequence of the oligonucleotide primer to the template DNA and extending the primer with a DNA polymerase. Denaturation of double-stranded DNA (dsDNA) templates without the use of heat. Instead, RPA uses a recombinase-introduction complex to scan double-stranded DNA and aid in strand exchange at homologous positions. The resulting structure is stabilized by interaction of the single-stranded DNA binding protein with the replaced template strand, thereby avoiding the priming of the primer due to branch migration. The disassembly of the recombinase allows the 3' end of the oligonucleotide to be contacted with a strand displacement DNA polymerase (the strand replaces a DNA polymerase such as a large fragment of Bacillus subtilis polymerase I ( )) and subsequently The primer is used to extend the reaction. Exponential nucleic acid amplification is achieved by repeating this procedure. The helicase-dependent thermostated DNA amplification (HDA) system uses a DNA helicase to generate a single-stranded model for primer hybridization -13 - 201211539
板且隨後利用DN A聚合酶進行引子延長反應。於HD A反 應的第一步驟中,解旋酶沿著標靶DNA行進且打斷連接 兩條DNA鏈的氫鍵,且隨後該兩條DNA鏈與該單鏈結合 蛋白結合。利用解旋酶暴露出該單鏈標靶區域允許引子與 該單鏈標靶區域黏合。隨後DNA聚合酶使用自由的去氧 核糖核苷三磷酸(dNTPs )延長每個引子之3'端以生成兩 個DNA複製物。該兩條複製的雙鏈DNA各自進入下一個 HDA循環,而導致該標靶序列之指數性核酸擴增。The plate was then subjected to primer extension reaction using DN A polymerase. In the first step of the HD A reaction, the helicase travels along the target DNA and breaks the hydrogen bond connecting the two DNA strands, and then the two DNA strands bind to the single-stranded binding protein. Exposing the single-stranded target region with a helicase allows the primer to bind to the single-stranded target region. The DNA polymerase then uses the free deoxyribonucleoside triphosphates (dNTPs) to extend the 3' end of each primer to generate two DNA replicas. The two replicated double stranded DNAs each enter the next HDA cycle, resulting in exponential nucleic acid amplification of the target sequence.
其他依賴DN A的恆溫技術包含滾環擴增法(RC A ) ,在滾環擴增法中,DNA聚合酶持續地繞著圓形DNA模 板延長引子,而生成由多個重複的該圓形模板複製物所組 成之長DNA產物。直至反應結束,該聚合酶產生數千個 圓形模板之複製物,且該等複製物之鏈長係與該原始標靶 DNA有關。此方法允許用於進行標靶物之空間解析及訊 息之快速核酸擴增。此方法可於1小時內生成高達1 0 1 2 個模板複製物。分枝型擴增法係R C A法的一種變化型, 該分枝型擴增法利用一種封閉式環形探針(C-探針)或扣 鎖探針(padlock probe)及一種具有高持續性之DNA聚 合酶以於恆溫條件下指數地擴增該C-探針。 環形核酸介導恆溫擴增法(LAMP)提供高度選擇性 且採用一種DNA聚合酶及一組四種經特殊設計之引子, 該組引子辨識該標靶D N A上總共六種不同的序列。以含 有該標靶DNA之同義鏈和反義鏈之序列的內側引子開始 進行LAMP。藉由外側引子引導進行的後續鏈置換〇ΝΑ -14- 201211539Other constant temperature techniques relying on DN A include the rolling circle amplification method (RC A ), in which the DNA polymerase continuously extends the primer around a circular DNA template to generate a circular shape from multiple repeats. A long DNA product consisting of a template replica. Until the end of the reaction, the polymerase produces replicas of thousands of circular templates, and the length of the copies is related to the original target DNA. This method allows rapid nucleic acid amplification for spatial resolution of the target and for the information. This method can generate up to 1 0 1 2 template replicas in 1 hour. A branching amplification method is a variant of the RCA method that utilizes a closed circular probe (C-probe) or a padlock probe and a high persistence The DNA polymerase exponentially amplifies the C-probe under constant temperature conditions. The circular nucleic acid-mediated isothermal amplification method (LAMP) provides high selectivity and employs a DNA polymerase and a set of four specially designed primers that recognize a total of six different sequences on the target D N A . LAMP is initiated starting with the inner primer containing the sequence of the syntactic and antisense strands of the target DNA. Subsequent chain replacement by lateral primer guidance 〇ΝΑ -14- 201211539
合成反應釋出單鏈DNA。此單鏈DNA作爲模板以藉由第 二內側引子和第二外側引子引導進行DNA合成反應,該 第二內側引子及第二外側引子係與該標靶物之另一末端雜 合而產生幹-環狀DNA結構(stem-loop DNA structure) 。於後續LAMP循環中,使內側引子與該產物上的環部雜 合且開始進行置換性DN A合成反應,而獲得該原始幹-環 狀DN A及一條具有雙倍主幹長度的新幹-環狀DNA。該循 環反應以一小時內累積1 〇9個標靶物複製物的速度持續進 行。最終產物係具有數個反向重複之標靶序列,且該最終 產物藉著同一條鏈內的反向重複之標靶序列間交互黏合而 形成具有多重環部之花椰菜狀結構的幹-環狀DN A。 完成核酸擴增反應之後,必需分析該等擴增產物以判 斷是否生成預期的擴增子(標靶核酸之擴增量)。分析產 物之方法的範圍可從藉由凝膠電泳法簡單判斷擴增子之大 小到使用DN A雜合法鑑定該擴增子之核苷酸組成。 凝膠電泳法係用於確認核酸擴增處理是否生成預期擴 增子的最簡單方法之一。凝膠電泳法係藉由在凝膠基質( gel matrix)上施加電場以分離DNA斷片。帶負電之DNA 斷片以不同速率(該速率主要取決於DNA斷片的大小) 移動通過該基質。待電泳完成之後,可對凝膠中的該等斷 片進行染色以看見該等斷片。通常使用溴化乙啶進行染色 ,溴化乙啶於紫外光下可釋放螢光。 可使DNA尺寸標記與擴增子並排於凝膠上進行電泳 ,且藉由與含有已知大小之DNA斷片的DNA尺寸標記( -15- 201211539 階梯狀DNA條帶)做比較可判斷該等斷片之大小。由於 該等寡聚核苷酸引子結合至位於標靶DNA兩翼的特定位 置處,因此可預測該擴增產物之大小,且在凝膠上可偵測 到該擴增產物呈現已知尺寸之條帶。爲確認該擴增子之一 致性或若有數種擴增子生成時,通常對該擴增子進行 DNA探針雜合反應》The synthesis reaction releases single-stranded DNA. The single-stranded DNA is used as a template to guide DNA synthesis reaction by the second inner primer and the second outer primer, and the second inner primer and the second outer primer are hybridized with the other end of the target to generate dry- Stem-loop DNA structure. In the subsequent LAMP cycle, the inner primer is hybridized to the loop on the product and a displacement DN A synthesis reaction is initiated to obtain the original dry-cyclic DN A and a new stem-loop having a double backbone length. DNA. This cycle was continued at a rate that accumulated 1 〇 9 target replicas in one hour. The final product has a number of inverted repeat target sequences, and the final product is cross-linked by reverse-repetitive target sequences in the same chain to form a dry-loop of broccoli-like structures with multiple loops. DN A. After completion of the nucleic acid amplification reaction, it is necessary to analyze the amplification products to determine whether or not the expected amplicon (amplification amount of the target nucleic acid) is generated. The method of analyzing the product can range from simply judging the size of the amplicon by gel electrophoresis to identifying the nucleotide composition of the amplicon using the DN A hybrid method. Gel electrophoresis is one of the simplest methods for confirming whether a nucleic acid amplification process produces an expected enhancer. Gel electrophoresis separates DNA fragments by applying an electric field on a gel matrix. Negatively charged DNA fragments move through the matrix at different rates, which are primarily dependent on the size of the DNA fragments. After the electrophoresis is completed, the fragments in the gel can be stained to see the fragments. It is usually dyed with ethidium bromide, which emits fluorescence under ultraviolet light. The DNA size marker and the amplicon can be electrophoresed side by side on the gel, and the fragments can be judged by comparison with DNA size markers (-15-201211539 stepped DNA bands) containing DNA fragments of known size. The size. Since the oligonucleotide primers bind to a specific position on both wings of the target DNA, the size of the amplification product can be predicted, and the amplification product can be detected on the gel to a strip of known size. band. In order to confirm the identity of the amplicon or the generation of several amplicon, the DNA probe heterozygous reaction is usually performed on the amplicon.
DNA雜合反應係指藉由互補鹼基配對作用而形成雙 鏈 DNA。用於特定擴增產物之陽性鑑定(positive identification)的DNA雜合反應需使用長度約20個核苷 酸的DNA探針。若該探針具有與該擴增子(標靶)DNA 序列互補的序列,在溫度、pH値與離子濃度適宜的條件 下將發生雜合反應。若發生雜合反應,則表示該原始樣本 中存在有所關注的基因或DNA序列。DNA hybridization refers to the formation of double-stranded DNA by complementary base pairing. DNA hybridization reactions for positive identification of specific amplification products require the use of DNA probes of about 20 nucleotides in length. If the probe has a sequence complementary to the amplicon (target) DNA sequence, a hybrid reaction will occur under conditions of suitable temperature, pH and ion concentration. If a heterozygous reaction occurs, it indicates that there is a gene or DNA sequence of interest in the original sample.
光學偵測法係用於偵測雜合反應的最普遍方法。擴增 子或探針之任一者係經標示(labeled)以透過螢光發光法 或電致化學發光法(electrochemiluminescence,ECL)而 發光。此等方法的差異在於產生激發態之發光基團的手段 不同’但兩種方法皆能對核苷鏈進行共價標示。於電致化 學發光法(ECL )中,係藉由電流刺激以使發光分子或發 光錯合物發光。於螢光發光法中,係利用可引起發光的激 發光進行照射。 係使用偵測單元和用於提供激發光(該激發光之波長 可被螢光分子吸收)之照明光源來偵測螢光。該偵測單元 包含用於偵測發射信號的光感測器(例如,光電倍增管或 -16-Optical detection is the most common method for detecting heterozygous reactions. Any of the amplicons or probes are labeled to emit light by means of fluorescence luminescence or electrochemiluminescence (ECL). The difference in these methods is that the means for generating the excited state of the luminescent group are different 'but both methods can covalently label the nucleoside chain. In electrochemiluminescence (ECL), current is stimulated to cause luminescent molecules or luminescent complexes to illuminate. In the luminescence method, irradiation is performed by laser light which causes luminescence. The detection unit and the illumination source for providing excitation light (the wavelength of which is absorbed by the fluorescent molecules) are used to detect fluorescence. The detection unit includes a photo sensor for detecting a transmitted signal (for example, a photomultiplier tube or -16-
201211539 電荷耦合裝置(CCD)陣列)及用於避] 感測器輸出信號中的機構(例如,波長: 該等螢光分子回應該激發光而釋放出 stokes shifted)光線,且藉由該偵測單: 斯托克斯位移係釋放光與所吸收的激發: 或波長差異。 使用對所採用之ECL物種之發光波 器偵測ECL發光作用。例如,過渡金屬 transition metal-ligand complexes )釋放 線,因此可採用習知的光二極體和電荷耦 作爲光感測器。ECL的優點在於,若排除 時,ECL光線可能是出現於偵測系統內的 增進靈敏度。 微陣列允許同時進行數十萬個DNA 列係具有於單次檢驗中篩檢數千種遺傳努 染性病原之潛力的強力工具。一個微陣列 固定於基板上的不同DNA探針所組成。 反應期間或之後使用螢光分子或發光: DN A (擴增子)’且隨後於探針陣列上施 標靶DNA (擴增子)。於溫度受控制且 育該微陣列持續數小時或數天,此期間探 發生雜合反應。經培育(incubation)之 列的緩衝液清洗該微陣列以去除未結合閉 後,使用空氣氣流(通常是氮氣)乾燥_ 激發光被納入光 擇性濾波器)。 听托克斯位移( 收集此釋放光。 之間的頻率差異 長靈敏的光感測 i -配體錯合物( 出可見波長之光 合裝置(CCD) 周遭環境之光線 唯一光線,從而 雜.合實驗。微陣 病或偵測諸多感 係由諸多呈點狀 首先於核酸擴增 }子標示該標靶 用該等經標示之 潮濕的環境下培 針與擴增子之間 後,必需以一系 DNA鏈。清洗 微陣列。雜合反 -17- 201211539 應與清洗的嚴苛度非常重要。不夠嚴 專一性結合。過份嚴苛可能導致無法 靈敏度。可藉由偵測源自已與互補探 示擴增子所發出的光線來識別雜合反 係使用微陣列掃瞄器偵測源自微 列掃瞄器通常係一種受電腦控制之倒 顯微鏡(inverted scanning fluoresce: microscpe,該顯微鏡一般使用雷射: 使用光感測器(例如,光電倍增管写 號。該等螢光分子釋放出如上述之斯 由該偵測單元收集該斯托克斯位移光 所釋放之螢光必需加以收集、與 分離且傳送給該偵測器。於微陣列掃 軛焦配置以藉由於成像平面處設置共 失焦的資訊。此方式允許僅會測得光 自目標物之聚焦平面上方與下方的光 ,從而提高信號雜訊比(signal to 偵測器把測得的螢光光子轉換成電能 換成數位信號。此數位信號轉譯成代 光強度的數字。該陣列的每個特徵係 此類像素所組成。掃描的最終結果係 該微陣列上每種探針的確切序列與位 時鑑定與分析該等經雜合之標靶序列 於下列網址可獲得有關螢光探針 苛可能導致高度的非 適當結合,從而降低 針形成雜合體之經標 應。 陣列的螢光,該微陣 立掃描式共軛焦螢光 ace confocal 敷發螢光染劑),且 ζ CCD )偵測發光信 托克斯位移光,且藉 〇 未被吸收的激發波長 瞄器中,通常使用共 軛焦針孔的方式消除 線中的聚焦部分。源 線無法進入該偵測器 oise ratio)。利用該 ,且隨後把該電能轉 表源自指定像素之螢 由一個或一個以上的 該陣列表面的影像。 置係已知,因而可同 〇 之更多資訊: -18- 201211539 https://www.premierbiosoft.com/tech_notes/FRET_probe. html;及 https://www.invitrogen.com/site/us/en/home/References/Mo lecular-Probes-The-Handbook/Technical-Notes-and-Product-Highlights/Fluorescence-Resonance-Energy-Transfer-FRET.html。201211539 Charge Coupled Device (CCD) arrays and mechanisms used to avoid signals in the sensor output signal (eg, wavelengths: the fluorescent molecules should illuminate the light to release stokes shifted), and by this detection Single: The Stokes displacement system emits light and the absorbed excitation: or wavelength difference. ECL luminescence is detected using a luminescent wave of the ECL species employed. For example, transition metal transition metal-ligand complexes release lines, so conventional photodiodes and charge couplers can be used as photosensors. The advantage of ECL is that, if excluded, ECL light may be an increase in sensitivity that occurs within the detection system. Microarrays allow hundreds of thousands of DNA sequences to be simultaneously powerful tools with the potential to screen thousands of genetically harmful pathogens in a single test. A microarray consists of different DNA probes immobilized on a substrate. Fluorescent molecules or luminescence are used during or after the reaction: DN A (amplicon)' and subsequent target DNA (amplicons) are applied to the probe array. The temperature is controlled and the microarray is maintained for hours or days, during which time a heterozygous reaction occurs. The microarray is washed with a buffer of incubation to remove unbound and closed, using an air stream (usually nitrogen) to dry _ excitation light is incorporated into the optical filter. Listen to the Tox displacement (collecting this release of light. The difference in frequency between the long-sensing light-sensing i-ligand complexes (the visible wavelength of the photosynthetic device (CCD) is the only light in the ambient light, thus the hybrid Experiments. Micro-array disease or detection of many sensations is carried out by a number of spots, first of all, after nucleic acid amplification, indicating that the target is between the needle and the amplicon in the labeled wet environment. DNA strands. Cleaning microarrays. Hybridization -17- 201211539 should be very important with the severity of cleaning. Strict and specific combination. Excessive rigor may lead to insensitivity. Can be detected by complementary Detecting the light emitted by the amplicon to identify the hybrid anti-system. Using the microarray scanner to detect the origin of the micro-column scanner is usually a computer-controlled inverted microscope (inverted scanning fluoresce: microscpe, which is generally used Laser: Use a light sensor (for example, a photomultiplier tube to write a number. The fluorescent molecules release the fluorescence released by the detection unit to collect the Stokes displacement light as described above must be collected Separating and transmitting to the detector. The micro-array sweep yoke configuration is configured to provide common out-of-focus information at the imaging plane. This mode allows only light to be measured above and below the focus plane of the target, Thereby increasing the signal to noise ratio (signal to detector converts the measured fluorescent photons into electrical energy into digital signals. This digital signal is translated into a number of generational light intensities. Each feature of the array is composed of such pixels. The final result of the scan is the exact sequence and position of each probe on the microarray. The identification and analysis of the heterozygous target sequences can be obtained at the following URL. The fluorescent probes may lead to a high degree of inappropriate binding. , thereby reducing the conformation of the needle forming hybrid. The array of fluorescent light, the microarray vertical scanning conjugate focal fluorescing ace confocal coated fluorescent dye), and ζ CCD ) detecting the illuminating trust s displacement light, and In the unexcited excitation wavelength applicator, the conjugated pinhole is usually used to eliminate the focus portion of the line. The source line cannot enter the detector impedance ratio. The power transfer table is derived from the image of the specified pixel by one or more images of the array surface. The system is known, so it can be more information: -18- 201211539 https://www.premierbiosoft.com /tech_notes/FRET_probe. html; and https://www.invitrogen.com/site/us/en/home/References/Mo lecular-Probes-The-Handbook/Technical-Notes-and-Product-Highlights/Fluorescence-Resonance -Energy-Transfer-FRET.html.
重點照護之分子診斷 盡管分子診斷檢驗提供諸多優點,然而此種檢驗在臨 床檢驗上的發展低於預期且餘留於檢驗醫學上的少量實務 應用。導致此種情況的原因主要在於相較於依賴未涉及核 酸之方法的檢驗而言,核酸檢驗較複雜且相關費用較高》 分子診斷檢驗在臨床處置上的普遍適應性與儀器設備的發 展(顯著降低成本、從開始(樣本處理)到結束(生成結 果)提供快速且自動化之分析化驗及可於無人爲主要干預 下運作)息息相關。 重點照護技術用於診所、醫院臨床或甚至消費者在家 使用可帶來諸多優點,包括: • 快速獲得結果而能利於做即時處理且增進照護品 質。 ' • 能藉由檢驗極少的樣本而獲得檢驗値。 • 減少臨床工作量。 • 藉由減少行政工作以減少檢驗工作量且增進辦公 效率。 -19 - 201211539 透過縮短住院時間、總結初診之門診病患的諮詢 及減少樣本之處理、儲存和運送而改善每位病患 的費用。 幫助做出諸如感染控制及抗生素使用之臨床管理 決策。 以晶片上實驗室(LOC)爲基礎之分子診斷Molecular Diagnostics for Key Care Although molecular diagnostic tests offer many advantages, such tests have a lower-than-expected development in clinical testing and a small number of practical applications remaining in laboratory medicine. The reason for this is mainly due to the complexity of the nucleic acid test and the high cost associated with the test relying on methods that do not involve nucleic acids. The universal adaptability of molecular diagnostic tests in clinical management and the development of instruments and equipment (significant Cost reduction, from the beginning (sample processing) to the end (generating results) provides fast and automated analytical assays and can be operated without human intervention. Key care technologies for clinics, hospital clinics, or even consumers at home can bring many benefits, including: • Fast results to facilitate immediate processing and improved care quality. ' • Tests can be obtained by testing very few samples. • Reduce clinical effort. • Reduce inspection effort and increase office efficiency by reducing administrative work. -19 - 201211539 Improve the cost of each patient by shortening the length of hospital stay, summarizing the consultations of newly diagnosed outpatients and reducing the handling, storage and delivery of samples. Helps make clinical management decisions such as infection control and antibiotic use. Molecular diagnostics based on on-wafer laboratory (LOC)
以微流體技術爲基礎之分子診斷系統提供一種可自動 化且加速分子診斷分析檢驗的工具。此系統具有較快偵測 時間之主要原因在於可於微流體裝置內進行極小體積、自 動化且經常性費用低廉之內建式串接裝置的診斷方法步驟 。毫微升和微升規模的體積亦減少試劑消耗與費用。晶片 上實驗室(LOC )裝置係微流體裝置之常見形式。LOC裝 置具有位於單一載體基板(通常是矽)上用於流體處理之 MST層內的多個MST結構。使用半導體工業之超大型積 體電路(VSLI)微影技術製造該LOC裝置可使每個LOC 裝置保持極低的單位成本。然而,爲了控制使流體流經該 LOC裝置、添加試劑、控制反應條件及進行諸如此類作業 需要龐大的外部管線系統和電子設備。使I:OC裝置有效 地連接至此等外部裝置會限制LOC裝置在檢驗環境中於 分子診斷方面的用途》外部設備的費用與該等設備運作之 複雜度阻礙了 LOC分子診斷學作爲用於重點照護環境的 實用選項。 鑒於上述理由,需要一種可用於重點照護之以晶片上 -20- 201211539 實驗室(LOC)裝置爲基礎的分子診斷 【發明內容】 現將於下述諸多段落中描述本發明 GCF020.1本發明之此體系提供— 病原偵測和基因分析的晶片上實驗室 LOC裝置包含: 用於接收該樣本之入口; 複數個試劑貯存槽; 溶胞區段,該溶胞區段係用於溶解 白血球以釋出病原和白血球內的遺傳物 與該等含有用於溶解該溶胞區段中之病 試劑的試劑貯存槽之一者流體連通; 培育區段,該培育區段位於該溶胞 育區段係與該等含有用於與該遺傳物質 多種酶的試劑貯存槽之一者流體連通; 核酸擴增區段,該核酸擴增區段位 以用於從遺傳物質中擴增核酸序列:其 其中溶胞區段、培育區段及核酸擴 於載體基板上。 GCF020.2較佳地,該第一核酸擴 鎖反應(PCR)區段。 GCF020.3較佳地,該LOC裝置 系統。 之各種體系。 種用於生物樣本之 (LOC )裝置,該Molecular diagnostic systems based on microfluidics provide a tool to automate and accelerate molecular diagnostic analysis. The primary reason for the faster detection time of this system is the diagnostic method steps of a built-in tandem device that can be extremely small, automated, and often inexpensive in a microfluidic device. The volume of nanoliters and microliters also reduces reagent consumption and cost. The on-wafer laboratory (LOC) device is a common form of microfluidic device. The LOC device has a plurality of MST structures located within a MST layer for fluid processing on a single carrier substrate (typically germanium). Fabrication of the LOC device using the ultra-large integrated circuit (VSLI) lithography technology of the semiconductor industry allows each LOC device to maintain an extremely low unit cost. However, large external piping systems and electronics are required to control the flow of fluid through the LOC unit, to add reagents, to control reaction conditions, and to perform such operations. Efficiently connecting I:OC devices to such external devices limits the use of LOC devices for molecular diagnostics in the test environment. The cost of external devices and the complexity of their operation hinders LOC molecular diagnostics as a focus for care. Practical options for the environment. In view of the above reasons, there is a need for a molecular diagnostic based on the on-wafer-20-201211539 laboratory (LOC) device that can be used for priority care. [Inventive content] The present invention will now be described in the following paragraphs: GCF020.1 This system provides - on-wafer laboratory LOC devices for pathogen detection and genetic analysis comprising: an inlet for receiving the sample; a plurality of reagent storage tanks; a lysis section for dissolving white blood cells for release The pathogen and the genetic material in the white blood cell are in fluid communication with one of the reagent storage tanks containing the agent for dissolving the disease in the lysate section; the incubation section is located in the lysate section Compatible with one of the reagent storage tanks containing reagents for the plurality of enzymes of the genetic material; a nucleic acid amplification section for amplifying the nucleic acid sequence from the genetic material: wherein the lysis is performed The segments, the incubation segments, and the nucleic acids are expanded on the carrier substrate. Preferably, the first nucleic acid amplification reaction (PCR) segment is GCF020.2. GCF020.3 preferably, the LOC device system. Various systems. a biological sample (LOC) device,
該樣本中之病原和 質,該溶胞區段係 原和白血球之溶胞 區段下游,且該培 進行酶催化反應之 及 於該培育區段下游 中 增區段係全部承載 增區段係聚合酶鏈 亦包含雜合區段, -21 - 201211539 該雜合區段位於該PCR區段下游,且該雜合區段具有探 針陣列及光感測器,該探針陣列係用於與樣本中之標靶核 酸序列雜合,且該光感測器係用於偵測該陣列中之任何探 針的雜合反應。 G C F 0 2 0.4較佳地,該光感測器與該探針陣列相距不 到1 6 0 0微米。The pathogen and substance in the sample, the lysate segment is downstream of the lysate segment of the original and white blood cells, and the culture is subjected to an enzymatic catalytic reaction and the downstream of the culturing segment is all loaded with an increased segment system. The polymerase chain also comprises a hybrid segment, -21 - 201211539, the hybrid segment is located downstream of the PCR segment, and the hybrid segment has a probe array and a photosensor, the probe array being used for The target nucleic acid sequence in the sample is heterozygous and the photosensor is used to detect the heterozygous reaction of any of the probes in the array. G C F 0 2 0.4 Preferably, the photosensor is less than 1600 microns from the array of probes.
GCF020.5較佳地,該培育區段具有加熱器,該加熱 器係用於加熱該遺傳物質和該等酶以達到預定之酶催化反 應溫度。 GCF020.6 較佳地,該等試劑貯存槽中之一者含有轉 接子引子,該等轉接子引子係用於與該培育區段內之核酸 序列接合。 GCF020.7較佳地,該核酸擴增區段係恆溫核酸擴增 區段。GCF020.5 Preferably, the incubation section has a heater for heating the genetic material and the enzymes to achieve a predetermined enzyme catalytic reaction temperature. GCF020.6 Preferably, one of the reagent reservoirs contains a adapter primer for binding to the nucleic acid sequence within the incubation segment. GCF020.7 Preferably, the nucleic acid amplification segment is a thermostatic nucleic acid amplification segment.
GCF02 0.8較佳地,該等試劑貯存槽各自具有用於使 試劑留在試劑貯存槽內的表面張力閥,該表面張力閥具有 彎液面錨,該彎液面錨係用於定住(pinning )試劑之彎 液面直到該試劑之彎液面與該樣本流體接觸而去除該彎液 面以允許試劑從試劑貯存槽流出。 GCF020.9較佳地,該LOC裝置亦具有從入口到雜 合區段的流動路徑,其中該流動路徑係經建構以藉由毛細 作用把樣本從入口引至該雜合區段。 GCF020.1 0較佳地,該LOC裝置亦具有互補金屬氧 化物半導體(CMOS )電路、溫度感測器及微系統技術( -22- 201211539 MST)層,該MST層包含該PCR區段,其中該CMOS電 路係設置於該載體基板和該MST層之間,該CMOS電路 係經建構以使用該溫度感測器之輸出達成該PCR區段的 反饋控制。GCF02 0.8 Preferably, the reagent storage tanks each have a surface tension valve for leaving the reagent in the reagent storage tank, the surface tension valve having a meniscus anchor, the meniscus anchor system being used for pinning The meniscus of the reagent is removed until the meniscus of the reagent contacts the sample fluid to remove the meniscus to allow reagent to flow out of the reagent reservoir. GCF 020.9 Preferably, the LOC device also has a flow path from the inlet to the hybrid section, wherein the flow path is configured to direct the sample from the inlet to the hybrid section by capillary action. GCF020.1 0 Preferably, the LOC device also has a complementary metal oxide semiconductor (CMOS) circuit, a temperature sensor and a microsystem technology (-22-201211539 MST) layer, the MST layer comprising the PCR segment, wherein The CMOS circuit is disposed between the carrier substrate and the MST layer, the CMOS circuit being configured to achieve feedback control of the PCR segment using the output of the temperature sensor.
GCF020.il較佳地,該PCR區段具有PCR微通道, 該PCR微通道係用於使樣本進行熱循環以擴增核酸序列 ,該PCR微通道界定部份的樣本流動路徑,且該PCR微 通道具有低於1 00000平方微米的流動橫斷截面積。 GCF020.12較佳地,該LOC裝置亦具有至少一個長 形加熱器元件以用於加熱該PCR微通道內的核酸序列, 該長形加熱器元件係與該PCR微通道成平行地延伸。 GCF020.1 3 較佳地,該PCR微通道之至少一個區段 形成長形PCR腔室。 GCF020.1 4較佳地,該PCR區段具有複數個長形 PCR腔室,且每個長形PCR腔室係由該PCR微通道之個 別區段所形成,該PCR微通道具有由一系列寬曲流道所 形成之蜿蜒構形,且每個寬曲流道係一個用於形成該等長 形PCR腔室之一者的通道區段。 GCF020.1 5較佳地,該PCR區段具有主動閥,該主 動閥係於擴增該等標靶核酸序列期間使該樣本留在該PCR 區段內,使得該CMOS電路經配置以於擴增後開啓該主動 閥以允許毛細驅動流動得以繼續。 GCF020.1 6較佳地,該LOC裝置亦具有雜合腔室陣 列,該雜合腔室陣列含有該等探針,使得每個腔室內的該 -23- 201211539 等探針係經配置以與該等標靶核酸序列之一者雜合。 GCF020.1 7較佳地,該光感測器係配準該等雜合腔 室設置而成的光二極體陣列。 GCF020.1 8較佳地,該CMOS電路具有數位記憶體 及數據界面,該數位記憶體係用於儲存源自該光感測器之 輸出的雜合數據,且該數據界面係用於把該雜合數據傳輸 給外部裝置。GCF020.il preferably, the PCR segment has a PCR microchannel for thermal cycling of a sample to amplify a nucleic acid sequence, the PCR microchannel defining a portion of the sample flow path, and the PCR micro The channel has a cross-sectional cross-sectional area of less than 100,000 square microns. Preferably, the LOC device also has at least one elongate heater element for heating the nucleic acid sequence within the PCR microchannel, the elongate heater element extending parallel to the PCR microchannel. GCF020.1 3 Preferably, at least one segment of the PCR microchannel forms an elongated PCR chamber. Preferably, the PCR segment has a plurality of elongate PCR chambers, and each elongate PCR chamber is formed by an individual segment of the PCR microchannel having a series of A wide curved channel formed by a meandering configuration, and each wide curved channel is a channel section for forming one of the elongate PCR chambers. GCF020.1 5 preferably, the PCR section has an active valve that leaves the sample within the PCR section during amplification of the target nucleic acid sequences such that the CMOS circuit is configured to expand The active valve is opened after the increase to allow the capillary drive flow to continue. GCF020.1 6 preferably, the LOC device also has an array of hybrid chambers containing the probes such that the probes such as -23-201211539 in each chamber are configured to One of the target nucleic acid sequences is heterozygous. GCF020.1 7 Preferably, the photo sensor is associated with an array of photodiodes arranged in the hybrid chambers. GCF020.1 8 preferably, the CMOS circuit has a digital memory and a data interface, the digital memory system is configured to store the hybrid data originating from the output of the photo sensor, and the data interface is used to The combined data is transmitted to an external device.
GCF020.1 9較佳地,該PCR區段具有主動閥,該主 動閥係於熱循環期間使液體留在該PCR區段內且回應源 自該CMOS電路之啓動信號而允許液體流向該等雜合腔室GCF020.1 9 preferably, the PCR section has an active valve that retains liquid within the PCR section during thermal cycling and allows liquid to flow to the impurities in response to an activation signal originating from the CMOS circuit Combined chamber
GCF011.20較佳地,該主動閥係沸騰啓動式閥,該 沸騰啓動式閥具有彎液面錨及加熱器,該彎液面錨經建構 成用於定住該阻止液體之毛細驅動流動的彎液面,且該加 熱器係用於使該液體沸騰以使該彎液面脫離該彎液面錨, 使得毛細驅動流動得以繼續。 該使用簡易、可量產且費用不高之用於病原偵測和基 因體分析的LOC裝置係通過該LOC裝置之樣本放置槽接 收生物樣本,且利用儲存於該LOC裝置之試劑貯存槽內 的試劑於該LOC裝置之化學溶胞腔室中溶解白血球以釋 出白血球的遺傳物質、於該LOC裝置之培育區段中對樣 本之遺傳物質進行預處理、擴增標靶基因序列,及藉著與 寡聚核苷酸探針進行雜合且藉由該LOC裝置之整合式成 像陣列(integral imaging array)感測該等探針之雜合反 -24- 201211539 應以分析樣本之核酸序列。 該溶胞方法係自樣本中的細胞萃取出分析和診斷之標 靶物且提供該等標靶物連續性的處理與分析。整合於該裝 置中的溶胞子單元可提供簡約的分析檢驗程序、低的系統 元件數量及簡約的系統製造程序,從而獲得不昂貴的分析 檢驗系統。GCF011.20 Preferably, the active valve is a boiling start valve having a meniscus anchor and a heater, and the meniscus anchor is constructed to define a bend for preventing the capillary driving flow of the liquid The liquid level, and the heater is used to boil the liquid to disengage the meniscus from the meniscus anchor, so that the capillary drive flow continues. The LOC device for pathogen detection and genomic analysis, which is simple to use, mass-produced, and inexpensive, receives a biological sample through a sample placement tank of the LOC device, and utilizes a reagent storage tank stored in the LOC device. The reagent dissolves white blood cells in the chemical lysis chamber of the LOC device to release the genetic material of the white blood cells, pretreats the genetic material of the sample in the incubation section of the LOC device, and amplifies the target gene sequence, and Hybridization with an oligonucleotide probe and sensing the hybridization of the probes by an integral imaging array of the LOC device should be performed to analyze the nucleic acid sequence of the sample. The lysis method extracts analytical and diagnostic targets from cells in the sample and provides processing and analysis of the continuity of the targets. The lysate unit integrated in the unit provides a simple analytical inspection program, low system component count, and minimal system manufacturing procedures for an inexpensive analytical inspection system.
於培育區段中,遺傳物質接受各種預處理,例如核酸 限制剪切及轉接子引子之接合反應,藉以爲後續分析階段 提供最適宜或必要之條件、提高分析結果的訊息含量且提 高該分析檢驗系統之靈敏度、信號雜訊比和可靠度。 標靶基因序列之擴增反應可提高該分析檢驗系統之靈 敏度與信號雜訊比。 探針雜合區段係藉由提供雜合反應達成該等標靶物之 分析。整合式探針雜合區段提供一種使用簡易、可量產、 不昂貴且具有低系統元件數量的整合式解決方案。 該整合式成像感測器免除了對昂貴之外部成像系統的 需求且提供具有低系統元件數量、可量產且不昂貴的整合 式解決方案,此整合式解決方案係一種小巧、質輕且極方 便攜帶之系統。該整合式成像感測器因受益於大的光線收 集角度而提高讀取靈敏度且免除在光學收集系統中使用諸 多光學元件之需求。 整合於該LOC裝置中且把持該分析檢驗之所有試劑 需求的該等試劑貯存槽可提供低的系統元件數量和簡約的 製造程序,從而獲得不昂貴的分析檢驗系統。 -25- 201211539 GCF02 1.1本發明之此體系提供一種用於生物樣本之 病原偵測和基因分析的晶片上實驗室(L0C )裝置’該 LOC裝置包含: 用於接收該樣本之入口; 載體基板; 複數個試劑貯存槽;In the incubation section, the genetic material undergoes various pretreatments, such as nucleic acid-limited shearing and conjugation of the primers, to provide optimal or necessary conditions for subsequent analysis stages, to increase the message content of the analysis results, and to enhance the analysis. Verify system sensitivity, signal-to-noise ratio, and reliability. The amplification reaction of the target gene sequence can increase the sensitivity and signal to noise ratio of the analytical test system. The probe hybrid segment achieves analysis of the targets by providing a hybrid reaction. The integrated probe hybrid section provides an integrated solution that is easy to use, mass-produced, inexpensive, and has a low number of system components. The integrated imaging sensor eliminates the need for expensive external imaging systems and offers an integrated solution with low system component count, mass production and low cost. This integrated solution is compact, lightweight and extremely compact. Easy to carry system. The integrated imaging sensor increases read sensitivity and eliminates the need to use multiple optical components in an optical collection system by benefiting from large light collection angles. The reagent reservoirs integrated into the LOC device and holding all of the reagent requirements for the assay can provide a low number of system components and a simple manufacturing procedure to obtain an inexpensive analytical inspection system. -25- 201211539 GCF02 1.1 This system of the present invention provides a wafer-on-a-lab (L0C) device for pathogen detection and genetic analysis of biological samples. The LOC device comprises: an inlet for receiving the sample; a carrier substrate; a plurality of reagent storage tanks;
溶胞區段,該溶胞區段係用於溶解該樣本中之病原和 白血球以釋出病原和白血球內的遺傳物質,該溶胞區段係 與該等含有用於溶解該溶胞區段中之病原和白血球之溶胞 試劑的試劑貯存槽之一者流體連通; 培育區段,該培育區段位於該溶胞區段下游’且該培 育區段係與該等含有用於與該遺傳物質進行酶催化反應之 多種酶的試劑貯存槽之一者流體連通;a lysis segment for dissolving pathogens and white blood cells in the sample to release genetic material in the pathogen and white blood cells, the lysing segment and the containing for dissolving the lysing segment The pathogen is in fluid communication with one of the reagent storage tanks of the leukocyte lysing reagent; the incubation section is located downstream of the lysis section and the cultivating section is associated with the inheritance One of the reagent storage tanks of the plurality of enzymes in which the substance is subjected to an enzymatically catalyzed reaction is in fluid communication;
第一核酸擴增區段,該第一核酸擴增區段位於該培育 區段下游以用於擴增源自該培育區段之第一部分樣本流體 中之遺傳物質內的核酸序列:及 第二核酸擴增區段,該第二核酸擴增區段係位於該培 育區段下游以用於擴增源自該培育區段之第二部分樣本流 體中之遺傳物質內的核酸序列;其中, 該溶胞區段、該培育區段、該第一核酸擴增區段和該 第二核酸擴增區段皆承載於該載體基板上。 GCF02 1.2較佳地,該第一核酸擴增區段係第一聚合 酶鏈鎖反應(PCR)區段,且該第二核酸擴增區段係第二 聚合酶鏈鎖反應(PCR)區段。 -26-a first nucleic acid amplification section downstream of the incubation section for amplifying a nucleic acid sequence within the genetic material of the first portion of the sample fluid derived from the incubation section: and a second a nucleic acid amplification segment, the second nucleic acid amplification segment being located downstream of the incubation segment for amplifying a nucleic acid sequence within the genetic material of the second portion of the sample fluid derived from the incubation segment; The lysis segment, the incubation segment, the first nucleic acid amplification segment, and the second nucleic acid amplification segment are all carried on the carrier substrate. GCF02 1.2 Preferably, the first nucleic acid amplification segment is a first polymerase chain reaction (PCR) segment, and the second nucleic acid amplification segment is a second polymerase chain reaction (PCR) segment . -26-
201211539 GCF021.3較佳地,該第一PCR區段具有第一組 對且該第一組引子對係用於黏合第一組互補核酸序列 該第二PCR區段具有第二組引子對且該第二組引子 用於黏合第二組互補核酸序列,該第一組互補核酸序 該第二組互補核酸序列不同。 GCF021.4較佳地,該第一PCR區段和該第二 區段係經建構而可用不同擴增參數進行操作,該等擴 數係下列參數之至少一者: 反轉錄酶種類; 聚合酶種類; 去氧核糖核苷三磷酸濃度; 緩衝溶液; 熱循環時間; 熱循環重複次數;及 於PCR之一特定階段期間內的溫度。 GCF021.5 較佳地,該LOC裝置亦包含第一雜 段、第二雜合區段和光感測器,該第一雜合區段位於 一 PCR區段下游且該第一雜合區段具有用於與第一 核酸序列雜合的第一探針陣列,及該第二雜合區段位 二PCR區段下游且該第二雜合區段具有用於與第二 核酸序列雜合的第二探針陣列,及該光感測器係用於 該第一陣列或第二陣列中之任何探針的雜合反應。 GCF02 1.6較佳地,該光感測器與該第一探針陣 該第二探針陣列相距不到1 600微米。 引子 ,及 對係 列與 PCR 增參 合區 該第 標靶 於第 標靶 偵測 列或 -27- 201211539 GCF02 1.7較佳地,該培育區段具有加熱器,該 器係加熱該遺傳物質和該等酶以達到預定之酶催化反 度。 GCF02 1 .8較佳地,該等試劑貯存槽中之一者含 接子引子’該等轉接子引子係用於與該培育區段內之 序列接合。 GCF021.9較佳地,該第一核酸擴增區段係第一 核酸擴增區段,且該第二核酸擴增區段係第二恆溫核 增區段。 GCF02 1.10較佳地,該等試劑貯存槽各自具有 使試劑留在試劑貯存槽內的表面張力閥,該表面張力 有彎液面錨,該彎液面錨係用於定住試劑之彎液面直 試劑之彎液面與該樣本流體接觸而去除該彎液面以允 劑從試劑貯存槽流出。 GCF021.il較佳地,該LOC裝置亦具有互補金 化物半導體(CMOS )電路、溫度感測器及微系統技 MST)層,該MST層包含該第一PCR區段和該第二 區段,其中該CMOS電路係設置於該載體基板和該 層之間,該C Μ Ο S電路係經配置以使用該溫度感測器 出達成該第一 PCR區段和該第二PCR區段之反饋控串 GCF021.12較佳地’該PCR區段具有用於使該 進行熱循環的PCR微通道’該PCR微通道界定具有 100000平方微米之流動橫斷截面積的流動路徑。 GCF021.13較佳地’該PCR微通道具有至少― 加熱 應溫 有轉 核酸 恆溫 酸擴201211539 GCF021.3 preferably, the first PCR segment has a first set of pairs and the first set of primer pairs is used to bind a first set of complementary nucleic acid sequences, the second PCR segment has a second set of primer pairs and A second set of primers is used to bind a second set of complementary nucleic acid sequences that differ in the second set of complementary nucleic acid sequences. GCF021.4 Preferably, the first PCR segment and the second segment are constructed and operable with different amplification parameters, at least one of the following parameters: reverse transcriptase species; polymerase Species; concentration of deoxyribonucleoside triphosphate; buffer solution; thermal cycle time; number of cycles of thermal cycling; and temperature during a particular phase of PCR. GCF021.5 Preferably, the LOC device also includes a first miscellaneous segment, a second hybrid segment and a photo sensor, the first hybrid segment being located downstream of a PCR segment and having the first hybrid segment a first probe array for hybridization with the first nucleic acid sequence, and the second hybrid segment is downstream of the second PCR segment and the second hybrid segment has a second for hybridization with the second nucleic acid sequence A probe array, and the photosensor is used for the hybridization reaction of any of the probes in the first array or the second array. GCF02 1.6 Preferably, the photosensor is less than 1 600 microns from the first probe array and the second probe array. Primer, and pair and PCR addition regions, the target is in the target detection column or -27-201211539 GCF02 1.7 preferably, the incubation segment has a heater that heats the genetic material and such The enzyme is to achieve a predetermined enzyme catalytic inverse. GCF02 1 .8 Preferably, one of the reagent storage tanks contains a primer primer' such adapter adapters for engagement with a sequence within the incubation section. GCF021.9 Preferably, the first nucleic acid amplification segment is a first nucleic acid amplification segment and the second nucleic acid amplification segment is a second thermostatic amplification segment. GCF02 1.10 Preferably, the reagent storage tanks each have a surface tension valve for leaving the reagent in the reagent storage tank, the surface tension having a meniscus anchor, and the meniscus anchor is used to fix the meniscus of the reagent. The meniscus of the reagent contacts the sample fluid to remove the meniscus to allow the agent to flow out of the reagent reservoir. Preferably, the LOC device also has a complementary metallization semiconductor (CMOS) circuit, a temperature sensor and a micro-system (MST) layer, the MST layer comprising the first PCR segment and the second segment, Wherein the CMOS circuit is disposed between the carrier substrate and the layer, the C Μ 电路 S circuit is configured to use the temperature sensor to achieve feedback control of the first PCR segment and the second PCR segment String GCF021.12 preferably 'this PCR segment has a PCR microchannel for the thermal cycling' that defines a flow path with a flow cross-sectional area of 100,000 square microns. GCF021.13 preferably 'the PCR microchannel has at least "heating temperature", rotating nucleic acid, constant temperature, acid expansion
用於 閥具 到該 許試 屬氧 PCR MST 之輸 樣本 低於 個長For the valve to the test, the oxygen sample MST is less than the length of the sample.
-28- 201211539 形加熱器元件,該長形加熱器元件係與該PCR微通道成 平行地延伸。 GCF021.14較佳地,該PCR區段具有複數個長形 PCR腔室,且每個長形PCR腔室係由該PCR微通道之個 別區段形成,該PCR微通道具有由一系列寬曲流道所形 成之蜿蜒構形,且每個寬曲流道係一個用於形成該等長形 PCR腔室之一者的通道區段。-28- 201211539 A heater element that extends parallel to the PCR microchannel. Preferably, the PCR segment has a plurality of elongate PCR chambers, and each elongate PCR chamber is formed by individual segments of the PCR microchannel having a series of wide curves The channel formed by the flow path, and each wide curved channel is a channel section for forming one of the elongate PCR chambers.
GCF02 1.15較佳地,該LOC裝置亦具有容納用於 PCR之試劑的試劑貯存槽;及 具有孔之表面張力閥,該具有孔之表面張力閥係經建 構以定住該試劑之彎液面,如此該彎液面使試劑留在該試 劑貯存槽內直到該彎液面與該流體樣本接觸而去除彎液面 且該試劑流出該試劑貯存槽。 GCF021.16較佳地,該LOC裝置亦包含用於容納該 等第一探針的第一雜合腔室陣列,使得每個雜合腔室內的 該等第一探針係經配置以與該等第一標靶核酸序列之一者 雜合。 GCF02 1.17較佳地,該光感測器係配準該等雜合腔 室設置而成的光二極體陣列。 GCF021.18較佳地,該CMOS電路具有數位記憶體 及數據界面,該數位記憶體係用於儲存源自該光感測器之 輸出的雜合數據,且該數據界面係傳輸該雜合數據至外部 裝置。 GCF021.19較佳地,該第一 PCR區段具有主動閥, 29 - 201211539 該主動閥係於熱循環期間使液體留在該第一PCR區段內 且回應源自該CMOS電路之啓動信號而允許液體流至該第 一雜合腔室陣列。 GCF02 1.20較佳地,該主動閥係沸騰啓動式閥,該 沸騰啓動式閥具有彎液面錨及加熱器,該彎液面錨係經建 構以定住該阻止液體之毛細驅動流動的彎液面,且該加熱 器係用於使該液體沸騰以使彎液面脫離該彎液面錨,使得 毛細驅動流動得以繼續》GCF02 1.15 Preferably, the LOC device also has a reagent storage tank containing reagents for PCR; and a surface tension valve having a hole, the surface tension valve having a hole configured to hold the meniscus of the reagent, The meniscus leaves the reagent in the reagent reservoir until the meniscus contacts the fluid sample to remove the meniscus and the reagent exits the reagent reservoir. Preferably, the LOC device also includes an array of first hybrid chambers for receiving the first probes such that the first probes within each hybrid chamber are configured to One of the first target nucleic acid sequences is heterozygous. GCF02 1.17 Preferably, the photosensor is associated with an array of photodiodes arranged in the hybrid chambers. GCF021.18 Preferably, the CMOS circuit has a digital memory and a data interface, the digital memory system is configured to store the hybrid data originating from the output of the photo sensor, and the data interface transmits the hybrid data to External device. Preferably, the first PCR section has an active valve, 29 - 201211539. The active valve retains liquid in the first PCR section during thermal cycling and responds to an activation signal originating from the CMOS circuit. Liquid is allowed to flow to the first hybrid chamber array. GCF02 1.20 Preferably, the active valve is a boiling start valve having a meniscus anchor and a heater, the meniscus anchor being constructed to hold the meniscus that prevents the capillary drive flow of the liquid And the heater is used to boil the liquid to disengage the meniscus from the meniscus anchor, so that the capillary drive flow continues.
該使用簡易、可量產且費用不高之用於病原偵測和基 因體分析的LOC裝置係經由該LOC裝置之樣本放置槽接 收生物樣本,且利用儲存於該LOC裝置之試劑貯存槽內 的試劑於該LOC裝置之化學溶胞腔室中溶解該樣本之細 胞以釋出該樣本之遺傳物質、於該LOC裝置之培育區段 內對該遺傳物質進行預處理、擴增標靶基因序列,及藉著 與寡聚核苷酸探針進行雜合且藉由該LOC裝置之整合式 成像陣列感測該等探針之雜合反應以分析樣本之核酸序列 該溶胞方法係自樣本中的細胞萃取出分析和診斷之標 靶物且提供該等標靶物之連續性的處理與分析。整合於該 裝置中的溶胞子單元可提供簡約的分析檢驗程序、低的系 統元件數量及簡約的系統製造程序,從而獲得不昂貴的分 析檢驗系統。 於培育區段中,遺傳物質接受各種預處理,例如核酸 限制剪切及轉接子引子之接合反應,藉以爲後續分析階段 -30- 201211539 提供最適宜或必要之條件、提高分析結果的訊息含量且提 高該分析檢驗系統之靈敏度、信號雜訊比和可靠度。 標靶基因序列之擴增反應可提高該分析檢驗系統之靈 敏度與信號雜訊比。再者,該等並聯的擴增腔室允許不同 的標靶物或標靶物群組適當地使用各自不同的引子對或引 子群組且亦允許使用各自不同的最佳擴增參數,從而提高 分析檢驗之靈敏度、信號雜訊比和可靠度。The LOC device for pathogen detection and genomic analysis, which is simple to use, mass-produced, and inexpensive, receives a biological sample through a sample placement tank of the LOC device, and utilizes a reagent storage tank stored in the LOC device. Resolving the cells of the sample in a chemical lysis chamber of the LOC device to release the genetic material of the sample, pretreating the genetic material in the incubation section of the LOC device, and amplifying the target gene sequence, And analysing the nucleic acid sequence of the sample by heterozygous with the oligonucleotide probe and sensing the hybridization reaction of the probes by the integrated imaging array of the LOC device. The lysis method is from the sample The cells extract the analytes for analysis and diagnosis and provide processing and analysis of the continuity of the targets. The lysing subunit integrated in the device provides a simple analytical test procedure, low system component count, and a simple system manufacturing process to obtain an inexpensive analytical test system. In the culture section, the genetic material undergoes various pretreatments, such as nucleic acid-restricted shearing and conjugation of the primers, to provide the most appropriate or necessary conditions for subsequent analysis stages -30-201211539, and to improve the information content of the analysis results. And improve the sensitivity, signal noise ratio and reliability of the analytical inspection system. The amplification reaction of the target gene sequence can increase the sensitivity and signal to noise ratio of the analytical test system. Furthermore, the parallel amplification chambers allow different target or target groups to appropriately use different primer pairs or primer groups and also allow for the use of different optimal amplification parameters, thereby increasing Analyze the sensitivity, signal-to-noise ratio, and reliability of the test.
該探針雜合區段係藉由提供雜合反應達成該等標靶物 之分析。該整合式探針雜合區段提供一種使用簡易、可量 產、不昂貴且具有低系統元件數量的整合式解決方案。 該整合式成像感測器免除對昂貴之外部成像系統的需 求且提供具有低系統元件數量、可量產且不昂貴的整合式 解決方案,此整合式解決方案係一種小巧、質輕且極方便 攜帶之系統。該整合式成像感測器因受益於大的光線收集 角度而提高讀取靈敏度且免除在光學收集系統中使用諸多 光學元件之需求。 整合於該LOC裝置中且把持該分析檢驗之所有試劑 需求的該等試劑貯存槽可提供低的系統元件數量和簡約的 製造程序,從而獲得不昂貴的分析檢驗系統。 GCF022.1本發明之此體系提供一種用於生物樣本之 病原偵測和基因分析的晶片上實驗室(LOC )裝置,該 LOC裝置包含: 用於接收該樣本之入口; 載體基板; -31 - 201211539 複數個試劑貯存槽; 溶胞區段,該溶胞區段係用於溶解該樣本中之病原和 白血球以釋出並病原和白血球內的遺傳物質’該溶胞區段 係與該等含有用於溶解該溶胞區段中之病原和白血球之溶 胞試劑的試劑貯存槽之—者流體連通;The probe hybrid segment achieves analysis of the targets by providing a hybrid reaction. The integrated probe hybrid section provides an integrated solution that is easy to use, productive, inexpensive, and has a low number of system components. The integrated imaging sensor eliminates the need for expensive external imaging systems and offers an integrated solution with low system component count, mass production and low cost. This integrated solution is compact, lightweight and extremely convenient. Carrying system. The integrated imaging sensor increases read sensitivity and eliminates the need to use many optical components in an optical collection system by benefiting from large light collection angles. The reagent reservoirs integrated into the LOC device and holding all of the reagent requirements for the assay can provide a low number of system components and a simple manufacturing procedure to obtain an inexpensive analytical inspection system. GCF022.1 This system of the invention provides a on-wafer laboratory (LOC) device for pathogen detection and genetic analysis of biological samples, the LOC device comprising: an inlet for receiving the sample; a carrier substrate; 201211539 a plurality of reagent storage tanks; a lysis section for dissolving pathogens and white blood cells in the sample to release and genetic material in the pathogen and white blood cells' the lytic segment and the containing a reagent storage tank for dissolving the pathogen in the lysing section and the lysis reagent of the white blood cell;
培育區段,該培育區段位於該溶胞區段下游’且該培 育區段係與該等含有用於與該遺傳物質進行酶催化反應之 多種酶的試劑貯存槽之一者流體連通; 第一核酸擴增區段,該第一核酸擴增區段位於該培育 區段下游以用於擴增該遺傳物質中的第一核酸序列;及 第二核酸擴增區段,該第二核酸擴增區段係位於該第 一核酸擴增區段下游以用於擴增源自該第一核酸擴增區段 之擴增子內的第二核酸序列;其中, 該溶胞區段、該培育區段、該第一核酸擴增區段和該 第二核酸擴增區段皆承載於該載體基板上。a growing section, the growing section is downstream of the lysis section and the culturing section is in fluid communication with one of the reagent storage tanks containing a plurality of enzymes for enzymatically reacting with the genetic material; a nucleic acid amplification section, the first nucleic acid amplification section being located downstream of the incubation section for amplifying a first nucleic acid sequence in the genetic material; and a second nucleic acid amplification section, the second nucleic acid amplification An extension segment is located downstream of the first nucleic acid amplification segment for amplifying a second nucleic acid sequence derived from an amplicon derived from the first nucleic acid amplification segment; wherein the lysis segment, the culturing The segment, the first nucleic acid amplification segment, and the second nucleic acid amplification segment are all carried on the carrier substrate.
GCF022.2較佳地,該第一核酸擴增區段係第一聚合 酶鏈鎖反應(PCR )區段,且該第二核酸擴增區段係第二 聚合酶鏈鎖反應(PCR)區段。 GCF022.3較佳地,該第一PCR區段具有第一組引子 對且該第一組引子對係用於黏合第一組互補核酸序列,及 該第二PCR區段具有第二組引子對且該第二組引子對係 用於黏合第二組互補核酸序列,該第一組互補核酸序列與 該第二組互補核酸序列不同。Preferably, the first nucleic acid amplification segment is a first polymerase chain reaction (PCR) segment, and the second nucleic acid amplification segment is a second polymerase chain reaction (PCR) region. segment. GCF022.3 preferably, the first PCR segment has a first set of primer pairs and the first set of primer pairs is used to bind the first set of complementary nucleic acid sequences, and the second PCR segment has a second set of primer pairs And the second set of primer pairs is used to bind a second set of complementary nucleic acid sequences that differ from the second set of complementary nucleic acid sequences.
GCF022.4較佳地,該第一PCR區段和該第二PCR -32- 201211539 區段係經建構而可用不同擴增參數進行操作,該等擴增參 數係下列參數之至少一者: 反轉錄酶種類; 聚合酶種類; 去氧核糖核苷三磷酸濃度; 緩衝溶液; 熱循環時間;GCF022.4 Preferably, the first PCR segment and the second PCR-32-201211539 segment are constructed and operable with different amplification parameters, the amplification parameters being at least one of the following parameters: Transcriptase species; polymerase species; deoxyribonucleoside triphosphate concentration; buffer solution; thermal cycle time;
熱循環重複次數;及 於PCR之一特定階段期間內的溫度。 GCF022.5較佳地,該LOC裝置亦具有雜合區段, 該雜合區段係位於該第二PCR區段下游,且該雜合區段 具有探針陣列及光感測器,該探針陣列係用於與標靶核酸 序列雜合且該光感測器係用於偵測該陣列中之任何探針的 雜合反應。 GCF022.6較佳地,該光感測器與該探針陣列相距不 到1 6 0 0微米。 GCF022.7較佳地,該培育區段具有加熱器,該加熱 器係加熱該遺傳物質和該等酶以達到預定之酶催化反應溫 度。 GCF022.8較佳地,該等試劑貯存槽中之一者含有轉 接子引子,該等轉接子引子係用於與該培育區段內之核酸 序列接合。 GCF022.9較佳地,該第一核酸擴增區段係第一恆溫 核酸擴增區段,且該第二核酸擴增區段係第二恆溫核酸擴 -33- 201211539 增區段。 GCF022.1 0較佳地,該等試劑貯存槽各自具有 劑留在試劑貯存槽內的表面張力閥,該表面張力閥具 液面錨,該彎液面錨係用於定住該試劑之彎液面直到 劑之彎液面與該樣本流體接觸而去除該彎液面以允許 劑從該試劑貯存槽流出。 GCF022.il 較佳地,該LOC裝置亦具有CMOS 、溫度感測器及微系統技術(MST )層,該MST層 該第一 PCR區段和該第二PCR區段,其中該CMOS 係設置於該載體基板和該MST層之間,該CMOS電 經建構以使用該溫度感測器之輸出達成該第一 PCR 和該第二P C R區段的反饋控制。 GCF022.1 2較佳地,該第一 PCR區段具有PCR 道,該PCR微通道係用於使該樣本進行熱循環,該 微通道界定具有低於100000平方微米之流動橫斷截 的流動路徑。 GCF022.1 3較佳地,該PCR微通道具有至少一 形加熱器元件,該長形加熱器元件與該PCR微通道 行地延伸。 GCF022.14 較佳地,該 PCR區段具有複數個 PCR腔室,且每個長形PCR腔室係由該PCR微通道 別區段形成,該PCR微通道具有由一系列寬曲流道 成之蜿蜒構形,且每個寬曲流道係一個用於形成該等 PCR腔室之一者的通道區段。 使試 有彎 該試 該試 電路 包含The number of thermal cycle repetitions; and the temperature during a particular phase of the PCR. Preferably, the LOC device also has a hybrid segment located downstream of the second PCR segment, and the hybrid segment has a probe array and a photo sensor. A needle array is used to hybridize to a target nucleic acid sequence and the photosensor is used to detect a heterozygous reaction of any of the probes in the array. Preferably, the photosensor is less than 1600 microns from the array of probes. GCF022.7 Preferably, the incubation section has a heater that heats the genetic material and the enzymes to achieve a predetermined temperature of the enzyme catalyzed reaction. GCF022.8 Preferably, one of the reagent storage tanks contains a adaptor primer for binding to the nucleic acid sequence within the incubation section. Preferably, the first nucleic acid amplification segment is a first thermosensitive nucleic acid amplification segment, and the second nucleic acid amplification segment is a second thermostated nucleic acid amplification segment. Preferably, the reagent storage tanks each have a surface tension valve that remains in the reagent storage tank, the surface tension valve has a liquid surface anchor, and the meniscus anchor is used to fix the meniscus of the reagent. The meniscus is contacted with the sample fluid to remove the meniscus to allow the agent to flow out of the reagent reservoir. GCF022.il Preferably, the LOC device also has a CMOS, temperature sensor and micro system technology (MST) layer, the MST layer, the first PCR segment and the second PCR segment, wherein the CMOS system is disposed on Between the carrier substrate and the MST layer, the CMOS is configured to achieve feedback control of the first PCR and the second PCR segment using the output of the temperature sensor. GCF022.1 2 preferably, the first PCR segment has a PCR channel for thermal cycling of the sample, the microchannel defining a flow path having a flow cross-section of less than 100,000 square microns . GCF022.1 3 Preferably, the PCR microchannel has at least one shaped heater element extending axially from the PCR microchannel. GCF022.14 Preferably, the PCR segment has a plurality of PCR chambers, and each elongate PCR chamber is formed by the PCR microchannel segment having a series of wide curved channels The crucible configuration, and each wide curved channel is a channel section for forming one of the PCR chambers. Make the test bend, the test, the test circuit,
路係 區段 微通 PCR 面積 個長 成平 長形 之個 所形 長形Road section micro-pass PCR area length long flat shape long shape
-34- 201211539 GCF022.15較佳地,該LOC裝置亦具有容納用於 PCR之試劑的試劑貯存槽;及 具有孔之表面張力閥,該具有孔之表面張力閥係經建 構以定住該試劑之彎液面,使得該彎液面使該試劑留在該 試劑貯存槽內直到該彎液面與該流體樣本接觸而去除該彎 液面且該試劑流出該試劑貯存槽。-34- 201211539 GCF022.15 Preferably, the LOC device also has a reagent storage tank containing reagents for PCR; and a surface tension valve having a hole, the surface tension valve having a hole configured to hold the reagent The meniscus is such that the meniscus leaves the reagent in the reagent reservoir until the meniscus contacts the fluid sample to remove the meniscus and the reagent exits the reagent reservoir.
GCF022.1 6較佳地,該LOC裝置亦具有用於容納該 等探針的雜合腔室陣列,使得每個雜合腔室內的該等探針 係經配置以與該等標耙核酸序列之一者雜合。 G C F 0 2 2.1 7較佳地,該光感測器係配準該等雜合腔 室設置而成的光二極體陣列。 GCF022.18較佳地,該CMOS電路具有數位記憶體 及數據界面,該數位記億體係用於儲存源自該光感測器之 輸出的雜合數據,且該數據界面係傳輸該雜合數據至外部 裝置。 GCF022.19較佳地,該第一 PCR區段具有主動閥, 該主動閥係於熱循環期間使液體留在該第一 PCR區段內 且回應源自該CMOS電路之啓動信號而允許液體流至該第 一雜合腔室陣列。 GCF022.20較佳地,該主動閥係沸騰啓動式閥,該 沸騰啓動式閥具有彎液面錨及加熱器,該彎液面錨係經建 構以定住該阻止液體之毛細驅動流動的彎液面,且該加熱 器係用於使液體沸騰以使彎液面脫離該彎液面錨,使得毛 細驅動流動得以繼續》 -35- 201211539GCF022.1 6 preferably, the LOC device also has an array of hybrid chambers for receiving the probes such that the probes within each hybrid chamber are configured to interact with the standard nucleic acid sequences One of them is heterozygous. G C F 0 2 2.1 7 Preferably, the photosensor is associated with an array of photodiodes arranged by the hybrid chambers. GCF022.18 Preferably, the CMOS circuit has a digital memory and a data interface, the digital system is used to store the hybrid data originating from the output of the photo sensor, and the data interface transmits the hybrid data. To an external device. Preferably, the first PCR section has an active valve that retains liquid within the first PCR section during thermal cycling and allows liquid flow in response to an activation signal originating from the CMOS circuit To the first hybrid chamber array. GCF022.20 Preferably, the active valve is a boiling start valve having a meniscus anchor and a heater, the meniscus anchor being constructed to hold the meniscus that prevents the capillary drive flow of the liquid And the heater is used to boil the liquid to disengage the meniscus from the meniscus anchor, so that the capillary drive flow can continue. -35- 201211539
該使用簡易、可量產且費用不高之用於病原偵測和基 因體分析的LOC裝置係藉由該LOC裝置之樣本放置槽接 收生物樣本,且利用儲存於該LOC裝置之試劑貯存槽內 的試劑於該LOC裝置之化學溶胞腔室中溶解該樣本之細 胞以釋出該樣本之遺傳物質、於該LOC裝置之培育區段 中對該遺傳物質進行預處理、擴增標靶基因序列’及藉著 與寡聚核苷酸探針進行雜合且藉由該LOC裝置之整合式 成像陣列感測該等探針之雜合反應以分析該樣本之核酸序 列。 該溶胞方法係自樣本中的細胞萃取出分析和診斷之標 靶物且提供該等標靶物之連續性的處理與分析。整合於該 裝置中的溶胞子單元可提供簡約的分析檢驗程序、低的系 統元件數量及簡約的系統製造程序,從而獲得不昂貴的分 析檢驗系統。The LOC device for pathogen detection and genomic analysis, which is simple to use, mass-produced, and inexpensive, receives the biological sample by the sample placement tank of the LOC device, and utilizes the reagent storage tank stored in the LOC device. Resolving the cells of the sample in the chemical lysis chamber of the LOC device to release the genetic material of the sample, pretreating the genetic material in the incubation section of the LOC device, and amplifying the target gene sequence And analyzing the nucleic acid sequence of the sample by heterozygous with the oligonucleotide probe and sensing the hybridization reaction of the probes by the integrated imaging array of the LOC device. The lysis method extracts analytical and diagnostic targets from cells in the sample and provides processing and analysis of the continuity of the targets. The lysing subunit integrated in the device provides a simple analytical test procedure, low system component count, and a simple system manufacturing process to obtain an inexpensive analytical test system.
於培育區段中,遺傳物質接受各種預處理,例如核酸 限制剪切及轉接子引子之接合反應,藉以爲後續分析階段 提供最適宜或必要之條件、提高分析結果的訊息含量且提 高該分析檢驗系統之靈敏度、信號雜訊比和可靠度。 標靶基因序列之擴增反應可提高該分析檢驗系統之靈 敏度與信號雜訊比。再者,該等串接之擴增腔室允許對該 擴增處理之早期循環和晚期循環做分段式的局部最佳化, 從而提高分析檢驗之靈敏度、信號雜訊比和可靠度。 該探針雜合區段係藉由提供雜合反應達成該等標靶物 之分析。整合式探針雜合區段提供一種使用簡易、可量產 -36- 201211539 、不昂貴且具有低系統元件數量的整合式解決方案。 該整合式成像感測器免除對昂貴之外部成像系統的需 求且提供具有低系統元件數量、可量產且不昂貴的整合式 解決方案,此整合式解決方案係一種小巧、質輕且極方便 攜帶之系統。該整合式成像感測器因受益於大的光線收集 角度而提高讀取靈敏度且免除在光學收集系統中使用諸多 光學元件之需求。In the incubation section, the genetic material undergoes various pretreatments, such as nucleic acid-limited shearing and conjugation of the primers, to provide optimal or necessary conditions for subsequent analysis stages, to increase the message content of the analysis results, and to enhance the analysis. Verify system sensitivity, signal-to-noise ratio, and reliability. The amplification reaction of the target gene sequence can increase the sensitivity and signal to noise ratio of the analytical test system. Furthermore, the cascaded amplification chambers allow for segmental local optimization of the early and late cycles of the amplification process, thereby increasing sensitivity, signal to noise ratio and reliability of the assay. The probe hybrid segment achieves analysis of the targets by providing a hybrid reaction. The integrated probe hybrid section provides an easy-to-use, mass-produced, integrated solution that is inexpensive and has a low number of system components. The integrated imaging sensor eliminates the need for expensive external imaging systems and offers an integrated solution with low system component count, mass production and low cost. This integrated solution is compact, lightweight and extremely convenient. Carrying system. The integrated imaging sensor increases read sensitivity and eliminates the need to use many optical components in an optical collection system by benefiting from large light collection angles.
整合於該LOC裝置中且把持該分析檢驗之所有試劑 需求的該等試劑貯存槽可提供低的系統元件數量和簡約的 製造程序,從而獲得不昂貴的分析檢驗系統。 【實施方式】 綜述 此綜述指出納入本發明具體實施例之分子診斷系統的 主要構件。該系統結構和操作之全面性細節將稍後陳述於 本案說明書中。 參閱第1、2、3、93和94圖,該系統具有下列首要 構件: 檢驗模組1 〇和檢驗模組1 1係典型USB記憶鍵的尺 寸且該等模組之造價極低。檢驗模組1 0和檢驗模組1 1各 自包含一個微流體裝置,該微流體裝置通常爲晶片上實驗 室(LOC )裝置30之形態,該LOC裝置30已預先裝入 用於分子.診斷之分析檢驗的試劑和通常1 000種以上之探 針(見第1和93圖)。第1圖中槪要顯示之檢驗模組1 〇 -37- 201211539The reagent reservoirs integrated into the LOC device and holding all of the reagent requirements for the assay can provide a low number of system components and a simple manufacturing procedure to obtain an inexpensive analytical inspection system. [Embodiment] Summary This review indicates the main components of the molecular diagnostic system incorporating the specific embodiment of the present invention. Comprehensive details of the structure and operation of the system will be set forth later in this specification. Referring to Figures 1, 2, 3, 93 and 94, the system has the following primary components: Inspection Module 1 and Inspection Module 1 1 are the dimensions of typical USB memory keys and the cost of such modules is extremely low. The inspection module 10 and the inspection module 1 1 each comprise a microfluidic device, typically in the form of a laboratory on-wafer (LOC) device 30, which has been preloaded for molecular and diagnostic purposes. Analyze the tested reagents and usually more than 1 000 probes (see Figures 1 and 93). The test module to be displayed in Figure 1 〇 -37- 201211539
使用以螢光爲基礎之偵測技術以鑑定標靶分子’同時第 93圖中之檢驗模組1 1使用以電致化學發光爲基礎之偵測 技術。該LOC裝置30具有整合式光感測器44以用於螢 光偵測或電致化學發光偵測(此等偵測方法將詳述於下) 。檢驗模組1 〇和檢驗模組1 1兩者皆使用標準微型USB 插頭1 4以用於供電、資料傳輸及控制,該兩模組皆具有 印刷電路板(P C B ) 5 7,且該兩模組皆具有外部供電電容 器3 2和電感器1 5。檢驗模組1 0和檢驗模組1 1兩者皆爲 單次使用性以達成採即用型滅菌包裝進行批量生產及銷售Fluorescence-based detection techniques are used to identify target molecules' while assay module 1 in Figure 93 uses electrochemiluminescence-based detection techniques. The LOC device 30 has an integrated photosensor 44 for use in fluorescence detection or electrochemiluminescence detection (the detection methods will be described in more detail below). Both the inspection module 1 and the inspection module 1 1 use a standard micro USB plug 14 for power supply, data transmission and control, both of which have a printed circuit board (PCB) 5 7, and the two modules The groups each have an external supply capacitor 32 and an inductor 15. Both the inspection module 10 and the inspection module 1 1 are single-use for mass production and sales in ready-to-use sterilization packaging.
外殼13具有用於接收生物樣本的大放置槽24及於使 用前遮蓋該大放置槽24的可撕式滅菌密封膠帶22 (膠帶 22較佳具有低黏性黏著劑)。具有薄膜護片410之密封 膜408形成部份的外殻1 3以降低該檢驗模組內的除濕作 用且同時釋放因氣壓小幅波動所造成之壓力。該薄膜護片 410保護該密封膜40 8免於受損。 檢驗模組讀取器12經由微型USB插槽16供電給該 等檢驗模組1 0或檢驗模組1 1。檢驗模組讀取器1 2可採 用許多不同形式,且於稍後說明此等形式之選擇。第1、 3和93圖中所顯示的讀取器12之版本係一種智慧型手機 具體實施例。第3圖中顯示此讀取器12之方塊圖。處理 器42運行源自程式儲存器43的應用軟體。該處理器42 亦連結顯示螢幕18及使用者介面(UI)觸控螢幕17和按 鍵1 9、蜂巢式無線電2 1、無線網路連接器2 3及衛星導航 -38-The outer casing 13 has a large placement groove 24 for receiving a biological sample and a tearable sterilizing sealing tape 22 (the adhesive tape 22 preferably has a low viscous adhesive) that covers the large placement groove 24 before use. The sealing film 408 having the film guard 410 forms part of the outer casing 13 to reduce the dehumidification effect in the inspection module while simultaneously releasing the pressure caused by small fluctuations in the air pressure. The film protector 410 protects the sealing film 40 8 from damage. The inspection module reader 12 supplies power to the inspection module 10 or the inspection module 11 via the micro USB slot 16. The inspection module reader 12 can take many different forms and the selection of such forms will be described later. The version of the reader 12 shown in Figures 1, 3 and 93 is a smart phone embodiment. A block diagram of the reader 12 is shown in FIG. The processor 42 runs application software originating from the program storage 43. The processor 42 also connects the display screen 18 and the user interface (UI) touch screen 17 and the button 19 , the cellular radio 2 1 , the wireless network connector 23 and the satellite navigation -38-
201211539 系統25。蜂巢式無線電21和無線網路連接器23 通訊。衛星導航系統25係用於更新附帶位置資料 病學資料庫。或可選擇經由觸控螢幕17或按鍵19 入該位置資料。資料儲存器2 7容納遺傳和診斷訊 驗結果、病患資料、用於識別每種探針和該探針之 置的分析檢驗與探針資料。資料儲存器2 7與程式 43可能被分享給一個共用的記憶設備。安裝於該 組讀取器12上的應用軟體提供結果分析且隨附額 驗與診斷訊息。 爲進行診斷性檢驗,係使檢驗模組1 0 (或檢 11)插入該檢驗模組讀取器12上的微型USB插槽 起該滅菌密封膠帶22且把(液體形式之)生物樣 該樣本大放置槽24。按下啓動鈕20開始藉由該應 進行檢驗。該樣本流入該LOC裝置30,且該載板 析檢驗係對該樣本核酸(該標靶物)進行萃取、培 增且利用預先合成之雜合反應性寡聚核苷酸探針與 核酸進行雜合。於檢驗模組1 0之情況下(檢驗模 用以螢光爲基礎之偵測法),該等探針係經螢光標 容納於該外殻13內的發光二極體(LED ) 26提供 激發光以誘發該等經雜合之探針發出螢光(見第1 )。於檢驗模組1 1之情況下(檢驗模組1 1使用以 學發光爲基礎之偵測法),該LOC裝置30中裝 ECL探針,且不必使用發光二極體(LED ) 26產生 發光作用(見第1和2圖)。改用電極860和電極 係用於 之流行 手動輸 息、檢 陣列位 儲存器 檢驗模 外的檢 驗模組 1 6 0掀 本注入 用軟體 上之分 育、擴 該樣本 i 10使 示,且 必要的 和2圖 電致化 有上述 冷光之 870提 -39- 201211539 供激發電流(見第94圖)。使用整合於各個LOC裝置之 CMOS電路中的光感測器44偵測該發光作用(螢光或冷 光)。所測得之信號係經放大且轉換成數位輸出値,且藉 由該檢驗模組讀取器1 2分析該數位輸出値。隨後該讀取 器顯示結果。 該資料可就地儲存且/或上傳至含有病患記錄的網路 伺服器。從該檢驗模組讀取器1 2上移除該檢驗模組1 〇或 檢驗模組1 1且妥善處置該檢驗模組。201211539 System 25. The cellular radio 21 communicates with the wireless network connector 23. The satellite navigation system 25 is used to update the accompanying location data library. Alternatively, the location data can be entered via the touch screen 17 or the button 19. The data store 27 contains genetic and diagnostic test results, patient data, analytical tests and probe data for identifying each probe and the probe. Data storage 2 7 and program 43 may be shared with a shared memory device. The application software installed on the set of readers 12 provides results analysis and is accompanied by diagnostic and diagnostic messages. For diagnostic testing, the test module 10 (or test 11) is inserted into the micro USB slot on the test module reader 12 to act as the sterilizing sealing tape 22 and to take the sample (in liquid form). Place the slot 24 large. Pressing the start button 20 begins the test by this. The sample flows into the LOC device 30, and the plate analysis test extracts and grows the sample nucleic acid (the target) and performs hybridization with the nucleic acid using a pre-synthesized hybrid reactive oligonucleotide probe. Hehe. In the case of the inspection module 10 (the inspection mode is based on a fluorescence-based detection method), the probes are excited by a light-emitting diode (LED) 26 housed in the housing 13 by a fluorescent cursor. Light is used to induce the heterozygous probe to emit fluorescence (see 1st). In the case of the inspection module 1 1 (the inspection module 1 1 uses a detection method based on learning illumination), the LOC device 30 is equipped with an ECL probe, and it is not necessary to use a light-emitting diode (LED) 26 to generate light. Role (see Figures 1 and 2). The electrode 860 and the electrode system are used for the popular manual transmission, and the inspection module of the array storage test module is used for the division of the injection software, and the sample is expanded. The electroluminescence of Figure 2 and the above-mentioned luminescence of 870-39-201211539 for excitation current (see Figure 94). The illuminating effect (fluorescent or luminescent) is detected using a photo sensor 44 integrated in a CMOS circuit of each LOC device. The measured signal is amplified and converted to a digital output 値, and the digital output 値 is analyzed by the test module reader 12. The reader then displays the result. This information can be stored locally and/or uploaded to a web server containing patient records. The inspection module 1 or the inspection module 1 1 is removed from the inspection module reader 1 2 and the inspection module is properly disposed.
第1、3及93圖顯示建構成行動電話/智慧型手機28 般的檢驗模組讀取器1 2。在其他形態方面,該檢驗模組 讀取器係可用於醫院、私人開業診所或實驗室中.的手提式 個人電腦/筆記型電腦101、專用讀取器1〇3、電子書讀取 器107、平板電腦1〇9或桌上型電腦105(見第95圖)。 該讀取器可連結諸多附加應用用途,例如病患記錄、帳單 、線上資料庫及多人使用環境。該讀取器亦可連接諸多的 當地週邊設備或遠端週邊設備,例如印表機及病患之智慧 卡。 參閱第96圖’可經由讀取器12與網路125使用由該 檢驗模組1 〇所生成的資料更新流行病學資料之主機系統 111內建的流行病學資料庫' 遺傳資料之主機系統113內 建的遺傳資料庫、電子健康記錄(EHR)之主機系統115 內建的電子健康記錄、電子醫療記錄(EMR)之主機系統 121內建的電子醫療記錄及個人健康記錄(piiR)之主機 系統123內建的個人健康記錄。反之,可經由網路125和 -40- 201211539 讀取器1 2使用流行病學資料之主機系統u丨內建的流行 病學資料庫、遺傳資料之主機系統113內建的遺傳資料庫 、電子健康記錄(EHR )之主機系統115內建的電子健康 記錄、電子醫療記錄(EMR)之主機系統121內建的電子 醫療記錄及個人健康記錄(PHR)之主機系統123內建的 個人健康記錄更新該檢驗模組10之LOC裝置30中的數 位記憶體。Figures 1, 3, and 93 show the construction of a test module reader 12 that constitutes a mobile phone/smartphone. In other aspects, the test module reader can be used in a hospital, a private practice clinic or a laboratory. A portable personal computer/notebook 101, a dedicated reader 1〇3, an e-book reader 107 , tablet 1〇9 or desktop computer 105 (see Figure 95). The reader can be used to link a variety of additional application uses, such as patient records, bills, online databases, and multi-person environments. The reader can also be connected to a variety of local peripherals or remote peripherals such as printers and patient smart cards. Referring to Figure 96, the host system of the epidemiological database built into the host system 111 that can update the epidemiological data via the reader 12 and the network 125 using the data generated by the test module 1 ' 113 built-in genetic database, electronic health record (EHR) host system 115 built-in electronic health record, electronic medical record (EMR) host system 121 built-in electronic medical record and personal health record (piiR) host A personal health record built into system 123. On the other hand, the epidemiological database built into the host system of the epidemiological data, the genetic database built in the host system 113 of the genetic data, and the electronic data can be used via the network 125 and the -40-201211539 reader. The health record (EHR) built-in electronic health record, electronic medical record (EMR) host system 121 built-in electronic medical record and personal health record (PHR) host system 123 built-in personal health record update The digital memory in the LOC device 30 of the inspection module 10.
回到第1、2、93和94圖,該讀取器12使用行動電 話配置的電池電力。該行動電話讀取器包含已預先上傳的 所有檢驗和診斷資訊。亦可經由一些無線界面或接觸界面 裝載或更新資料而能與周邊裝置、電腦或線上服務器進行 通訊。微型USB插槽16係供連接電腦或連接主電源供應 器以供電池充電之用。 第62圖顯示該檢驗模組10的一個具體實施例,該檢 驗模組1 〇係用於僅需取得特定標靶物之陽性或陰性結果 的檢驗,諸如用於檢驗個人是否感染例如H1N1 A型流感 病毒。爲特定目而建造之僅靠USB供電和作爲指示器的 模組47可勝任此任務。無需其他的讀取器或應用軟體。 僅靠USB供電和作爲指示器之模組47上的指示器45發 出信號以顯示陽性或陰性結果。此種結構配置非常適用於 大量舖檢。 隨該系統提供的附加工具可包括含有試劑之檢驗試管 (該等試劑係用於某些樣本之預處理)且附帶用於採集樣 本之刮勺和刺血針。第62圖顯示一種爲方便使用而包含 -41 - 201211539 彈壓伸縮式刺血針390及採血針釋放按鈕3 92的檢驗模組 之具體實施例。衛星電話可用於偏遠地區。 檢驗模組之電子構件Returning to Figures 1, 2, 93 and 94, the reader 12 uses the battery power of the mobile phone configuration. The mobile phone reader contains all the inspection and diagnostic information that has been pre-uploaded. It can also be loaded or updated via some wireless interface or contact interface to communicate with peripheral devices, computers or online servers. The micro USB slot 16 is for connecting to a computer or to a mains power supply for charging the battery. Figure 62 shows a specific embodiment of the test module 10 for testing a positive or negative result of only a particular target, such as for testing whether an individual is infected, for example, H1N1 Type A. flu virus. A module 47 that is solely powered by USB and is an indicator built for a particular purpose is sufficient for this task. No other readers or application software is required. Only the USB powered and indicator 45 on the module 47 as an indicator signals to indicate a positive or negative result. This structural configuration is ideal for a large number of inspections. Additional tools provided with the system may include test tubes containing reagents (for the pretreatment of certain samples) with a spatula and lancet for collecting samples. Figure 62 shows a specific embodiment of an inspection module including a -41 - 201211539 spring-loaded lancet 390 and a lancet release button 3 92 for ease of use. Satellite phones can be used in remote areas. Inspection module electronic component
第2和94圖分別是檢驗模組1 〇及檢驗模組1 1內部 之電子構件的方塊圖。整合於LOC裝置30內的CMOS電 路具有USB裝置驅動器36、控制器34、USB相容式LED 驅動器29、時鐘33'功率調節器31、隨機存取記憶體( RAM ) 3 8和程式及資料快閃記億體40。此等構件爲整個 檢驗模組1 〇或檢驗模組1 1 (包含光感測器44、溫度感測 器170、液體感測器174、各種加熱器152、154、182、 234連同相關驅動器37和39及記錄器35和41)提供控 制和記憶功能。僅發光二極體(LED ) 26 (如檢驗模組1 0 之例子)、外部供電電容器3 2和微型U S B插頭1 4位於 該LOC裝置30之外部。該LOC裝置30包含多個用於與 此等外部構件連接的焊墊(bond pad )。該隨機存取記憶 體(RAM ) 3 8和該程式及資料快閃記億體40具有該應用 軟體和用於1000個以上之探針的診斷及檢驗資訊(例如 經加密之快閃/安全性儲存)。於經建構以進行ECL偵測 之檢驗模組1 1的情況中不需發光二極體(LED ) 26 (見 第93和94圖)。藉由該LOC裝置3 0加密資料以達到安 全儲存且與外部裝置進行安全通訊。LOC裝置30裝有電 致化學發光探針,且該等雜合腔室各自具有一對ECL激 發電極860和870。 -42- 201211539 多種檢驗模組1 〇係經製造成諸多檢驗類型以供現成 使用。該等檢驗類型之間的差異取決於該等試劑和探針所 進行之載板上分析檢驗。 利用此系統快速鑑定的一些傳染性疾病具體實例包含 • 流感一 Α型流感病毒、Β型流感病毒、C型流感 病毒、傳染性鮭魚貧血病毒(Isavirus )、托高 土病毒(Thogotovirus)Figures 2 and 94 are block diagrams of the electronic components of the test module 1 and the test module 1 1 , respectively. The CMOS circuit integrated in the LOC device 30 has a USB device driver 36, a controller 34, a USB compatible LED driver 29, a clock 33' power conditioner 31, a random access memory (RAM) 38, and a program and data. Flash marks billion body 40. These components are the entire inspection module 1 or inspection module 1 1 (including light sensor 44, temperature sensor 170, liquid sensor 174, various heaters 152, 154, 182, 234 along with associated driver 37). And 39 and recorders 35 and 41) provide control and memory functions. Only the light-emitting diode (LED) 26 (as in the example of the test module 10), the external power supply capacitor 32 and the micro-U S B plug 14 are located outside the LOC device 30. The LOC device 30 includes a plurality of bond pads for connection to such external components. The random access memory (RAM) 380 and the program and data flashing device 40 have the application software and diagnostic and verification information for more than 1000 probes (eg, encrypted flash/security storage) ). In the case of the inspection module 1 1 constructed for ECL detection, no light-emitting diode (LED) 26 is required (see Figures 93 and 94). The data is encrypted by the LOC device 30 for secure storage and secure communication with external devices. The LOC device 30 is equipped with electrochemiluminescent probes, and each of the hybrid chambers has a pair of ECL excitation electrodes 860 and 870. -42- 201211539 A variety of inspection modules 1 are manufactured in a variety of inspection types for off-the-shelf use. The difference between these types of tests depends on the on-board analytical tests performed by the reagents and probes. Specific examples of some infectious diseases that are rapidly identified by this system include: Influenza-type influenza virus, Influenza-type influenza virus, Influenza-type influenza virus, Insect salmon anemia virus (Isavirus), Tohogotovirus
• 肺炎一呼吸道細胞融合性病毒(RSV )、腺病 毒、間質肺炎病毒、肺炎鏈球菌、金黃色葡萄球 菌 • 結核病一結核分枝桿菌、牛分枝桿菌、非洲 分枝桿菌、卡氏分枝桿菌及田鼠分枝桿菌 • 惡性瘧疾原蟲、弓漿蟲和其他原生動物寄生蟲 • 傷寒一腸道性傷寒沙門氏菌血清變異型( salmonella enterica serovar typhi ) • 伊波拉病毒 • 人類免疫不全病毒(HIV ) • 登革熱一黃病毒 • A型、B型、C型、D型、E型之肝炎 • 院內感染一例如困難梭狀桿菌、萬古黴素抗 藥性腸球菌及二甲苯青黴素抗藥性金黃色葡萄球 菌 • 單純皰疹病毒(HSV) -43- 201211539 巨細胞病毒(CMV ) 艾普斯坦·巴爾二氏病毒(EBV) 腦炎一日本腦炎病毒、錢德普病毒( Chandipura virus) 百日咳一百日咳博氏菌 麻疼一副黏液病毒• Pneumonia-respiratory cell fusion virus (RSV), adenovirus, interstitial pneumonia virus, Streptococcus pneumoniae, Staphylococcus aureus • Tuberculosis-Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium tuberculosis, Carbachol branch Mycobacterium and M. vaccae • Plasmodium falciparum, Toxoplasma gondii and other protozoan parasites • Salmonella enteric serovar typhi • Salmonella • Human immunodeficiency virus (HIV) • Dengue-yellow virus • Type A, B, C, D, and E hepatitis • In-hospital infections such as Clostridium difficile, vancomycin-resistant enterococci, and xylene penicillin-resistant Staphylococcus aureus • Herpes simplex virus (HSV) -43- 201211539 Cytomegalovirus (CMV) Epstein Barr's virus (EBV) Encephalitis - Japanese encephalitis virus, Chandipura virus Pertussis I. Hemp virus
腦膜炎一肺炎鏈球菌及腦膜炎雙球菌 炭疽熱一炭疽桿菌 可利用此系統鑑定的一些遺傳性疾病具體實例包含: • 囊狀纖維化 • 血友病 • 鐮刀型貧血症 • 泰薩二氏症(Tay-Sachs disease,又稱家族性黑 矇癡呆症)Meningitis-Streptococcus pneumoniae and meningococcus, anthrax, and anthrax, can be identified by some of the hereditary diseases identified by this system: • Cystic fibrosis • Hemophilia • Sickle anemia • Tessa's disease (Tay-Sachs disease, also known as familial black dementia)
• 血色素沉著症 • 白腦病(cerebral arteriopathy) • 克隆氏症(crohn's disease ) • 多囊性腎臟病 • 先天性心臟病 • 蕾特式症(Rett syndrome ) 可藉由該診斷系統鑑定之少數癌症選項包含: • 卵巢腫瘤 -44- 201211539• Hemochromatosis • cerebral arteriopathy • Crohn's disease • Polycystic kidney disease • Congenital heart disease • Rett syndrome A few cancer options that can be identified by this diagnostic system Includes: • Ovarian Tumor-44- 201211539
大腸癌 多發性內分泌贅瘤 視網膜胚細胞瘤 透克氏症(turcot syndrome ) 上述選項尙未詳盡列出,且該診斷系統可經建 用核酸及蛋白質體分析技術偵測遠勝於上述種類之 病與身體狀況。 系統構件之細節構造 LOC裝置 L Ο C裝置3 0係該診斷系統的核心。該L Ο C裝 微流體平臺快速地依賴核酸之分子診斷性分析檢驗 主要步驟,即製備樣本 '萃取核酸、擴增核酸與偵 :LOC裝置亦具有不同用途,且將於稍候詳細說明此 。如上述,檢驗模組1 〇和檢驗模組Π可採用不同 配置以偵測不同標靶物。同樣地,該LOC裝置3 0 多針對所關注之標靶物量身定做的不同具體實施 LOC裝置30之其中一種形式係用於對全血樣本內 中的標靶核酸序列進行螢光偵測的L0C裝置3 0 1。 說明目的,現將參照第4〜26及27〜57圖詳細描述 置3 0 1之結構和操作。 第4圖係該LOC裝置301之構造的槪要表示 求方便,係使用與該L0C裝置301用於執行該方 構以利 各種疾 置使用 的四個 測。該 等用途 之結構 具有許 例。該 之病原 爲達成 LOC裝 圖。爲 法階段 -45- 201211539 之功能區段相應的元件符號標示出第4圖中所示之該等方 法階段。與核酸分子診斷性分析檢驗之各個主要步驟相關 的該等方法階段亦標示爲:樣本之置入與製備階段288、 萃取階段290、培育階段291、擴增階段292及偵測階段 2 94。稍候將更詳細地描述該LOC裝置301之各種貯存槽 、腔室、閥和其他構件。Colorectal cancer multiple endocrine neoplasia retinoblastoma turcot syndrome The above options are not exhaustive, and the diagnostic system can be used to detect diseases far superior to the above types by using nucleic acid and proteosome analysis techniques. With physical condition. Detail construction of the system components LOC device L Ο C device 30 is the core of the diagnostic system. The L Ο C-loaded microfluidic platform relies rapidly on molecular diagnostic diagnostic assays for nucleic acids. The main step is to prepare samples 'extracting nucleic acids, amplifying nucleic acids, and detecting: LOC devices have different uses, and will be described in detail later. As mentioned above, the inspection module 1 and the inspection module can be configured differently to detect different targets. Similarly, the LOC device 30 is one of a plurality of different implementations of the LOC device 30 tailored to the target of interest for fluorescence detection of the target nucleic acid sequence in the whole blood sample. L0C device 3 0 1. For the purpose of explanation, the structure and operation of the 301 will now be described in detail with reference to Figs. 4 to 26 and 27 to 57. Fig. 4 is a diagram showing the convenience of the construction of the LOC device 301, using four tests for use with the LOC device 301 for performing the various devices. The structure of these uses has a number of examples. The cause of this is to achieve LOC mapping. The corresponding component symbols for the functional sections of the method phase -45- 201211539 are labeled with the method stages shown in Figure 4. The method stages associated with each of the major steps in the diagnostic assay of nucleic acid molecules are also indicated as: sample insertion and preparation stage 288, extraction stage 290, incubation stage 291, amplification stage 292, and detection stage 2 94. The various reservoirs, chambers, valves, and other components of the LOC device 301 will be described in more detail later.
第5圖係LOC裝置301之透視圖。該LOC裝置301 係使用CMOS及MST (微系統技術)大量製造技術所製 造而成。第1 2圖之槪要(未按比例)局部剖面圖中繪示 該LOC裝置301之層狀結構。該LOC裝置301具有用於 承載CMOS + MST晶片48之矽基板84,該CMOS + MST晶 片48包含互補金屬氧化物半導體(CMOS)電路86和微 系統技術(MST)層87,且具有覆蓋於該MST層87上的 蓋層46。針對本專利說明書之該等目的,「微系統技術 (MST )層」一詞係指一種使用各種試劑處理樣本之結構 與膜層的集合體。因此,此等結構與構件係經建構以界定 多條具有特性尺寸的流動路徑,該等特性尺寸可於處理期 間支持液體(該液體與該樣本具有類似之物理性質)進行 毛細驅動流動。有鑒於此,一般使用面型(surface)微機 械加工技術及/或體型(bulk)微加工技術製造該等MST 層和構件。然而,其他製造方法亦可製造出尺寸經設計以 達成毛細驅動流動且可處理極小量體積的結構和構件。本 寒說明書中所描述之特定具體實施例顯示該MST層係承 載於該CMOS電路86上但不包含該蓋層46之特徵的多個 -46- 201211539 結構與主動構件。然而,所屬領域中熟悉該項技藝者將明 白該MST層不必具有下層的CMOS或確實不具有上方蓋 層也能處理樣本。 下列圖式中所顯示之LOC裝置的整體尺寸係1 760微 米X 5 82微米。當然,針對不同應用製成的LOC裝置可能 具有不同尺寸》Figure 5 is a perspective view of the LOC device 301. The LOC device 301 is fabricated using mass production techniques of CMOS and MST (Microsystem Technology). The layered structure of the LOC device 301 is illustrated in a partial cross-sectional view (not to scale) in FIG. The LOC device 301 has a germanium substrate 84 for carrying a CMOS + MST wafer 48 that includes a complementary metal oxide semiconductor (CMOS) circuit 86 and a microsystem technology (MST) layer 87 with overlying A cap layer 46 on the MST layer 87. For the purposes of this patent specification, the term "microsystem technology (MST) layer" refers to an assembly of structures and layers that process samples using various reagents. Accordingly, the structures and components are constructed to define a plurality of flow paths having characteristic dimensions that support the liquid during the processing period (the liquid has similar physical properties to the sample) for capillary drive flow. In view of this, the MST layers and components are typically fabricated using surface micromachining techniques and/or bulk micromachining techniques. However, other manufacturing methods can also produce structures and components that are sized to achieve capillary drive flow and that can handle very small volumes. The particular embodiment described in the cold description shows that the MST layer is carried on the CMOS circuit 86 but does not include a plurality of features of the cover layer 46 and active components. However, those skilled in the art will appreciate that the MST layer does not have to have an underlying CMOS or does not have an upper cap layer to process the sample. The overall dimensions of the LOC device shown in the following figures are 1 760 microns X 5 82 microns. Of course, LOC devices made for different applications may have different sizes.
第6圖顯示與該蓋層之特徵重疊的該MST層87之特 徵。第6圖中所示之插圖AA〜AD和插圖AG〜AH分別放 大顯示於第13、14、35、56、55和58圖中,且對該等插 圖AA~AD和插圖AG-AH做詳細說明如下以供全面性地 瞭解該LOC裝置301中之各個結構。第7~10圖單獨顯示 該蓋層46之特徵,同時第11圖單獨顯示該CMOS + MST 裝置48之結構。 層狀結構 第12和22圖係圖示該CMOS + MST裝置48之層狀結 構、蓋層46和兩者間之流體互動關係的槪略圖。該等圖 式未按比例繪示,目的是作爲圖解說明之用。第1 2圖係 穿過樣本入口 68的槪要剖面圖,且第22圖係穿過貯存槽 54的槪要剖面圖。最佳如第12圖所示般,該CMOS + MST 裝置48具有矽基板84,該矽基板84支撐著CMOS電路 86,且該CMOS電路86操作位於上方該MST層87內的 主動元件。鈍化層8 8密封且保護該CMO S層8 6不受流經 該MST層87之流體影響。 • 47- 201211539Figure 6 shows the features of the MST layer 87 that overlap the features of the cap layer. The illustrations AA to AD and the illustrations AG to AH shown in Fig. 6 are enlarged and displayed in the figures 13, 13, 35, 56, 55 and 58, respectively, and the illustrations AA to AD and the illustration AG-AH are detailed. The following is provided for a comprehensive understanding of the various structures in the LOC device 301. Figures 7 through 10 show the features of the cover layer 46 separately, while Figure 11 shows the structure of the CMOS + MST device 48 separately. Layered Structures Figures 12 and 22 are schematic diagrams showing the layered structure of the CMOS + MST device 48, the cap layer 46, and the fluid interaction between the two. The drawings are not to scale and are intended to be illustrative. Figure 12 is a cross-sectional view through the sample inlet 68, and Figure 22 is a cross-sectional view through the reservoir 54. Preferably, as shown in Fig. 12, the CMOS + MST device 48 has a germanium substrate 84 that supports the CMOS circuit 86 and that operates the active components located above the MST layer 87. The passivation layer 88 seals and protects the CMO S layer 8.6 from the fluid flowing through the MST layer 87. • 47- 201211539
流體流經分別位於該蓋層46及MST通道層100中的 該等蓋層通道94和該等微系統技術(MST )通道90 (見 第7和16圖)。細胞運送作用發生在製造於該蓋層46中 的該等較大通道94內,同時生化處理係於該等較小的 MST通道90內進行。細胞運送通道之尺寸係建構成能把 樣本中的細胞運送至該等MST通道90內之預定位置處。 運送尺寸大於20微米的細胞(例如某些白血球)需要大 於20微米之通道尺寸,因此流動橫斷截面積係大於400 平方微米。MST通道(特別是位於該LOC裝置內無需運 送細胞之位置處的MST通道)可明顯較小。The fluid flows through the capping channels 94 and the microsystem technology (MST) channels 90 located in the cap layer 46 and the MST channel layer 100, respectively (see Figures 7 and 16). Cell transport occurs in the larger channels 94 fabricated in the cap layer 46 while biochemical processing is performed in the smaller MST channels 90. The cell transport channel is sized to transport cells in the sample to predetermined locations within the MST channels 90. Cells carrying sizes greater than 20 microns (e.g., certain white blood cells) require channel sizes greater than 20 microns, and thus the cross-sectional cross-sectional area is greater than 400 square microns. The MST channel (especially the MST channel located at the location within the LOC device where no cells are transported) can be significantly smaller.
將可理解蓋層通道94與MST通道90係統稱,且特 別是MST通道90亦可依據通道的特殊功能而例如稱爲經 加熱之微通道或透析M S T通道。係利用光阻進行圖案化 且蝕刻穿透沉積於該鈍化層88上的MST通道層100而形 成MST通道90。藉由頂層66蓋住該等MST通道90,且 該頂層66形成該CMOS + MST裝置48之頂部(參考圖式 中顯示之方位)。 雖然圖中有時顯示蓋層通道層8〇和貯存槽層78是不 同的膜層,但該蓋層通道層80和該貯存槽層78係由整片 的材料片所形成。當然’該材料片也可能不是一整片。此 材料片之兩面皆經蝕刻以形成蓋層通道層8 〇 (與此層中 飽刻出該等蓋層通道94)及貯存槽層78(於此層中蝕刻 出該等貯存槽54、56、5S、60和62 )。或可藉由微鑄模 法形成該等貯存槽與該等蓋層通道。蝕刻技術及微鑄模技 -48- 201211539 術兩者係用於製造具有高達約20000平方微米且小至約8 平方微米之流動橫斷截面積的通道。It will be understood that the cover channel 94 and the MST channel 90 system, and in particular the MST channel 90, may also be referred to as a heated microchannel or a dialysis M S T channel depending on the particular function of the channel. The MST channel 90 is formed by patterning with photoresist and etching through the MST channel layer 100 deposited on the passivation layer 88. The MST channels 90 are covered by a top layer 66 and the top layer 66 forms the top of the CMOS + MST device 48 (refer to the orientation shown in the figures). Although the cover channel layer 8 and the reservoir layer 78 are sometimes shown as different film layers, the cover channel layer 80 and the reservoir layer 78 are formed from a single piece of material. Of course, the piece of material may not be a whole piece. Both sides of the sheet of material are etched to form a capping channel layer 8 (and the capping channels 94 are saturated with the layer) and a reservoir layer 78 (the reservoirs 54, 56 are etched in this layer, 5S, 60 and 62). Alternatively, the storage tanks and the cover channels may be formed by micro-molding. Etching Techniques and Micro-Molding Techniques -48-201211539 Both are used to fabricate channels having flow cross-sectional areas of up to about 20,000 square microns and as small as about 8 square microns.
於該LOC裝置中之不同位置處,該等通道之流動橫 斷截面積可能具有適當的選擇範圍。當該通道中含有大量 樣本或該通道中所含樣本之成分眾多時,適合使用高達 2 0000平方微米之截面積(例如於100微米之厚層中具有 200微米寬的通道)。當該通道中含有小量液體或不含大 型細胞之混合物時,較佳使用極小的流動橫斷截面積。 下密封層64封住該等蓋層通道94,且上密封層82 封住該等貯存槽54、56、58、60和62。 該等五個貯存槽54、56、58、60和62係預先裝入分 析檢驗專用之試劑。於本案所述之具體實施例中,該等貯 存槽係預先裝入下列試劑,但亦可容易地置換成其他試劑 ,該等試劑如下: • 貯存槽54:抗凝血劑且可隨意地包含紅血球溶 胞緩衝液 • 貯存槽56 :溶胞試劑 • 貯存槽58:限制酶、接合酶與連接子(用於進 行連接子-引子PCR,見第61圖,此圖係摘錄自 參閱T. Stanchan等人著作且於1999年於紐約和 倫敦由 Garland Science出版社出版之《人類分 子遺傳學2》)。 • 貯存槽60:擴增混合物(去氧核糖核苷三磷酸 (dNTPs)、引子、緩衝液),及 -49- 201211539 • 貯存槽62: DNA聚合酶。 該蓋層46與該CMOS + M ST層48藉由位於下密封膜 64與頂層66中的對應開口而流體連通。此等開口係根據 流體是從該等MST通道90流向該等蓋層通道94或反向 流動而稱爲上吸孔96與下吸孔92。At different locations in the LOC device, the flow cross-sectional area of the channels may have an appropriate range of choice. When the channel contains a large number of samples or the composition of the sample contained in the channel is large, it is suitable to use a cross-sectional area of up to 20,000 square micrometers (for example, a channel having a width of 200 micrometers in a thick layer of 100 micrometers). When the channel contains a small amount of liquid or a mixture containing no large cells, it is preferred to use a very small flow cross-sectional area. The lower sealing layer 64 seals the cap channel 94 and the upper sealing layer 82 encloses the reservoirs 54, 56, 58, 60 and 62. The five storage tanks 54, 56, 58, 60, and 62 are pre-loaded with reagents for analysis and inspection. In the specific embodiments described herein, the storage tanks are prefilled with the following reagents, but may be readily substituted with other reagents, such as: • Storage tank 54: anticoagulant and optionally included Red blood cell lysis buffer • Storage tank 56: Lysis reagent • Storage tank 58: Restriction enzyme, ligase and linker (for linker-primer PCR, see Figure 61, this is an excerpt from T. Stanchan Et al., "Human Molecular Genetics 2" published by Garland Science in New York and London in 1999). • Storage tank 60: amplification mixture (deoxyribonucleoside triphosphates (dNTPs), primers, buffer), and -49- 201211539 • Storage tank 62: DNA polymerase. The cap layer 46 and the CMOS + M ST layer 48 are in fluid communication by corresponding openings in the lower sealing film 64 and the top layer 66. These openings are referred to as upper suction holes 96 and lower suction holes 92 depending on whether fluid flows from the MST passages 90 to the cover channels 94 or vice versa.
LOC裝置之操作Operation of the LOC device
以下係以分析血液樣本中之病原DNA爲例採逐步方 式說明該LOC裝置301之操作。當然,亦可使用一組適 當(或適當組合)的試劑、檢驗程序、LOC裝置變化型與 偵測系統對其他種類之生物性或非生物性流體進行分析。 回到第4圖,分析生物樣本涉及五個主要步驟,該五個主 要步驟包含樣本之置入與製備步驟288、核酸萃取步驟 290、核酸培育步驟291、核酸擴增步驟2 92及偵測與分 析步驟294。 該樣本之置入與製備步驟28 8涉及使血液與抗凝血劑 1 1 6混合且隨後利用該病原透析區段70使病原與白血球 和紅血球分離。最佳如第7和1 2圖所示般,該血液樣本 經由樣本入口 6 8進入該裝置內。毛細作用吸引該血液樣 本沿著該蓋層通道94前往貯存槽54。當血液樣本流體使 表面張力閥118開啓時,從貯存槽54中釋出抗凝血劑( 見第1 5和22圖)。抗凝血劑避免形成可能阻斷流體流動 的凝結塊。 -50- 201211539 最佳如第22圖所示,藉由毛細作用從貯存槽54吸出 抗凝血劑1 1 6,且抗凝血劑1 1 6經由下吸孔92流入該 MST通道90。下吸孔92具有毛細作用引動特徵(C IF) 102以塑造該彎液面之幾何形狀,使得該彎液面不會停泊 在該下吸孔92之邊緣。當從貯存槽54中吸出抗凝血劑 1 16時,位於該上密封層82中之通氣孔122允許空氣進 入而取代抗凝血劑116。The following is a step-by-step description of the operation of the LOC device 301 by analyzing pathogenic DNA in a blood sample. Of course, other types of biological or abiotic fluids can also be analyzed using a suitable (or appropriate combination) of reagents, testing procedures, LOC device variants, and detection systems. Returning to Figure 4, the analysis of the biological sample involves five major steps, including the implantation and preparation of the sample 288, the nucleic acid extraction step 290, the nucleic acid incubation step 291, the nucleic acid amplification step 2 92, and the detection and Analysis step 294. The sample placement and preparation step 28 8 involves mixing the blood with the anticoagulant 1 16 and then using the pathogenic dialysis section 70 to separate the pathogen from the white blood cells and red blood cells. Preferably, as shown in Figures 7 and 12, the blood sample enters the device via sample inlet 68. Capillary action draws the blood sample along the cover channel 94 to the reservoir 54. When the blood sample fluid causes the surface tension valve 118 to open, the anticoagulant is released from the reservoir 54 (see Figures 15 and 22). Anticoagulants avoid the formation of agglomerates that may block fluid flow. -50- 201211539 Preferably, as shown in Fig. 22, the anticoagulant 116 is aspirated from the reservoir 54 by capillary action and the anticoagulant 116 is introduced into the MST channel 90 via the lower suction hole 92. The lower suction aperture 92 has a capillary action priming feature (CIF) 102 to shape the geometry of the meniscus such that the meniscus does not park at the edge of the lower suction aperture 92. When the anticoagulant 1 16 is aspirated from the reservoir 54, the vent 122 in the upper seal layer 82 allows air to enter in place of the anticoagulant 116.
第22圖所示之MST通道90係表面張力閥118的一 部分。抗凝血劑116塡滿該表面張力閥118且使彎液面 120定住於該上吸孔96之彎液面錨98處。於使用前,彎 液面120保持定住於該上吸孔96處,使得抗凝血劑不會 流入該蓋層通道94。當血液流經該蓋層通道94抵達該上 吸孔96時會去除該彎液面120且把該抗凝血劑吸入該血 液流體中。 第15~21圖顯示插圖AE’該插圖AE係第13圖所示 之插圖AA的一部分。如第15、16和17圖所示’表面張 力閥118具有三個獨立之MST通道90’該三個MST通道 90延伸於各自的上降孔92與上吸孔96之間。表面張力 閥中之MST通道90的數量可變化以改變流入樣本混合物 中的試劑流率。當該樣本混合物與該等試劑藉由擴散作用 混合在一起時,流出貯存槽的流率決定該樣本流體中的試 劑濃度。因此,每個貯存槽的表面張力閥係經建構以符合 期望之試劑濃度。 血液流入病原透析區段70(見第4和15圖)’於該 -51 - 201211539 病原透析區段70中使用由多個按預定臨界値製造尺寸之 孔1 6 4所組成的陣列自該樣本中濃縮該等標靶細胞。小於 該臨界値的細胞可通過該等孔,同時較大的細胞無法通過 該等孔。不想要的細胞可能是被該孔1 64陣列攔下的較大 細胞或通過該等孔的較小細胞之任一者,且引導該等不想 要的細胞轉向而前往廢料單元76,同時該等標靶細胞繼 續進行分析檢驗。The MST channel 90 shown in Fig. 22 is part of a surface tension valve 118. The anticoagulant 116 fills the surface tension valve 118 and positions the meniscus 120 at the meniscus anchor 98 of the upper suction port 96. Prior to use, the meniscus 120 remains settled at the upper suction aperture 96 such that the anticoagulant does not flow into the cover passage 94. When the blood flows through the capping passage 94 to the upper suction hole 96, the meniscus 120 is removed and the anticoagulant is drawn into the blood fluid. Figures 15 to 21 show an illustration of AE' which is part of the illustration AA shown in Fig. 13 of the illustration AE. As shown in Figures 15, 16 and 17, the surface tension valve 118 has three separate MST channels 90' which extend between the respective upper and lower suction holes 92, 96. Surface tension The number of MST channels 90 in the valve can be varied to vary the flow rate of reagents flowing into the sample mixture. When the sample mixture is mixed with the reagents by diffusion, the flow rate out of the reservoir determines the concentration of the reagent in the sample fluid. Thus, the surface tension valve of each reservoir is constructed to meet the desired reagent concentration. Blood flows into the pathogen dialysis section 70 (see Figures 4 and 15). In the -51 - 201211539 pathogen dialysis section 70, an array of a plurality of apertures 164 having a predetermined threshold 値 size is used from the sample. The target cells are concentrated in the medium. Cells smaller than the critical enthalpy can pass through the wells while larger cells cannot pass through the wells. The unwanted cells may be any of the larger cells that are blocked by the array of holes 1 64 or smaller cells that pass through the holes, and direct the unwanted cells to turn to the waste unit 76, and at the same time The target cells continue to be analyzed for analysis.
於本案所述之病原透析區段/〇中,源自全血樣本中 的病原係經濃縮以進行微生物DNA分析。該孔陣列係由 眾多直徑3微米的孔1 64所形成,且該等孔1 64使該蓋層 通道94中的入料流體可流體連通地連接至標靶物通道74 。該等直徑3微米的孔164係藉由一系列透析MST通道 2〇4而與該標靶物通道74的該等透析上吸孔168連接( 最佳顯示於第1 5和2 1圖)。病原夠小而可通過該等直徑 3微米之孔164,且病原係經由該等透析MST通道204注 入該標靶物通道74。大於3微米之細胞(例如,紅血球 與白血球)留在該蓋層46中的廢液通道72內,該廢液通 道7 2係通往廢料貯存槽7 6 (見第7圖)。 可使用其他的孔造形、尺寸及深寬比以分離特定之病 原或其他標靶細胞,例如用於進行人類DNA分析之白血 球。稍候提供該透析區段及透析法之變化型的更詳細描述 再次參閱第6和7圖,該流體受牽引而通過該標靶物 通道74抵達該溶胞試劑貯存槽56的表面張力閥1 28。表 -52- 201211539 面張力閥128具有七個MST通道90’該七個MST通道 90延伸於該溶胞試劑貯存槽56與該標靶物通道74之間 。當藉由該樣本流體去除該等彎液面時’假設該等流體之 物理性質大致相等’源自全部七個MST通道90的流率將 大於源自抗凝血劑貯存槽54(貯存槽54之表面張力閥 118具有三個MST通道90)之流率。因此’該樣本混合 物中之溶胞試劑所占比例大於抗凝血劑所占比例。In the pathogenic dialysis section/sputum described in this case, the pathogens derived from the whole blood sample are concentrated for microbial DNA analysis. The array of holes is formed by a plurality of holes 1 64 having a diameter of 3 microns, and the holes 1 64 allow the feed fluid in the cover channel 94 to be fluidly coupled to the target channel 74. The 3 micron diameter holes 164 are coupled to the dialysis uptake holes 168 of the target channel 74 by a series of dialysis MST channels 2〇4 (best shown in Figures 15 and 21). The pathogen is small enough to pass through the 3 micron diameter holes 164 and the pathogen is injected into the target channel 74 via the dialysis MST channels 204. Cells larger than 3 microns (e.g., red blood cells and white blood cells) remain in the waste channel 72 in the cap layer 46, which leads to the waste storage tank 7 6 (see Figure 7). Other pore shapes, sizes, and aspect ratios can be used to isolate specific pathogens or other target cells, such as white blood cells for human DNA analysis. A more detailed description of the variation of the dialysis section and the dialysis method will be provided later. Referring again to Figures 6 and 7, the fluid is drawn through the target channel 74 to the surface tension valve 1 of the lysis reagent reservoir 56. 28. Table - 52 - 201211539 Face tension valve 128 has seven MST channels 90' extending between the lysis reagent reservoir 56 and the target channel 74. When the meniscus is removed by the sample fluid, 'assuming that the physical properties of the fluids are substantially equal', the flow rate from all seven MST channels 90 will be greater than the source from the anticoagulant storage tank 54 (storage tank 54) The surface tension valve 118 has a flow rate of three MST passages 90). Therefore, the proportion of lytic reagent in the sample mixture is greater than the proportion of anticoagulant.
該溶胞試劑與該等標靶細胞於化學溶胞區段130內的 標靶物通道74中藉由擴散作用而混合。沸騰啓動式閥 1 26使該流體停止流動一段時間,該段時間足以進行擴散 和溶胞作用以釋出該等標靶細胞內的遺傳物質(見第6和 7圖)。以下參照第3 1與3 2圖更詳細地描述該沸騰啓動 式閥之結構與操作。本案申請人亦已硏發出可用於本發明 中以替代該沸騰式啓動閥的其他主動閥類型(主動閥係相 對於諸如表面張力閥1〗8之被動閥而言)。此等替代性之 閥設計亦稍候做說明。 當沸騰啓動式閥1 26開啓時,已溶解之細胞流入混合 區段1 3 1以進行擴增之前的限制剪切反應和連接子接合反 應。 參閱第13圖,當該流體解除位於該混合區段131起 始點處之該表面張力閥1 3 2處的彎液面時,從貯存槽5 8 釋出限制酶、連接子和接合酶。該混合物流經該混合區段 1 3 1之全長以進行擴散混合。位於該混合區段1 3 1之終點 處的下吸孔134係通往培育區段114之培育室入口通道 -53- 201211539 133(見第13圖)。培育室入口通道133把該混合物餽入 由多個經加熱之微型通道2 1 0組成的蜿蜒構形中’該等微 型通道210之蜿蜒構形可提供於限制剪切反應及連接子之 接合反應期間用於容納該樣本的培育腔室(見第13及14 圖)。The lysis reagent is mixed with the target cells in the target channel 74 in the chemical lysis section 130 by diffusion. The boiling start valve 126 stops the flow of the fluid for a period of time sufficient for diffusion and lysis to release the genetic material within the target cells (see Figures 6 and 7). The structure and operation of the boiling start valve will be described in more detail below with reference to Figures 31 and 32. The applicant has also issued other active valve types that can be used in the present invention to replace the boiling start valve (active valves are relative to passive valves such as surface tension valve 1). These alternative valve designs are also described later. When the boiling start valve 126 is opened, the dissolved cells flow into the mixing section 133 to perform the limiting shear reaction and the linker engagement reaction before amplification. Referring to Fig. 13, when the fluid releases the meniscus at the surface tension valve 132 at the starting point of the mixing section 131, the restriction enzyme, the linker and the ligase are released from the reservoir 58. The mixture flows through the entire length of the mixing section 133 for diffusion mixing. The lower suction opening 134 at the end of the mixing section 133 is the entrance to the incubation chamber of the cultivation section 114 -53 - 201211539 133 (see Figure 13). The incubation chamber inlet channel 133 feeds the mixture into a crucible configuration comprised of a plurality of heated microchannels 210. The crucible configuration of the microchannels 210 can be provided to limit shear reactions and linkers. The incubation chamber for holding the sample during the ligation reaction (see Figures 13 and 14).
第23、24、25、26、27、28和29圖顯示第6圖之插 圖AB中該LOC裝置301的該等膜層。第23〜29圖各自 顯示形成CMOS + MST裝置48和蓋層46之該等膜層依序 遞增的情形。插圖AB顯示培育區段114之終點和擴增區 段1 1 2之起點。最佳如第1 4和23圖所示,該流體注入培 育區段114之該等微通道210直到該流體抵達該沸騰啓動 式閥106,於該沸騰啓動式閥106處該流體停止流動且同 時進行擴散。如上述,位於沸騰啓動式閥106上游的微通 道2 1 0成爲含有樣本、限制酶、接合酶和連接子的培育腔 室。隨後該等加熱器1 54係經啓動且維持恆定溫度持續— 段特定時間以供進行限制剪切反應和連接子接合反應。 熟悉該項技藝者將理解此培育步驟2 9 1 (見第4圖) 係選用性步驟,且僅有某些類型的核酸擴增分析檢驗需要 此培育步驟29 1。此外,在某些情況下,於培育階段的終 點時可能需要加熱步驟以提高溫度至高於該培育溫度。於 流體進入擴增區段1 1 2之前提高溫度係使該等限制酶和接 合酶失去活性。使限制酶和接合酶失去活性與何時將進行 恆溫核酸擴增法特別有關。 於培育後,沸騰啓動式閥1 06係經啓動(開啓)且該 -54- 201211539 流體繼續流動而進入擴增區段112。參閱第31和32圖, 多個微通道158形成一個或一個以上之擴增腔室,該混合 物注入該等經加熱之微通道1 5 8的蜿蜒構形中直到該混合 物抵達沸騰啓動式閥1 0 8。最佳如第3 0圖之槪要剖面圖 所示,自貯存槽60釋出擴增混合物(dNTP、引子、緩衝 液)且隨後自貯存槽62釋出聚合酶而流入連接該培育區 段1 1 4和該擴增區段1 1 2的中間MST通道2 1 2。Figures 23, 24, 25, 26, 27, 28 and 29 show the layers of the LOC device 301 in Figure AB of Figure 6. Figures 23 to 29 each show the case where the layers of the CMOS + MST device 48 and the cap layer 46 are sequentially increased. The inset AB shows the end of the incubation section 114 and the beginning of the amplification section 112. Preferably, as shown in Figures 14 and 23, the fluid is injected into the microchannels 210 of the incubation section 114 until the fluid reaches the boiling start valve 106 where the fluid stops flowing while simultaneously Spread. As described above, the microchannel 210 in the upstream of the boiling start valve 106 becomes an incubation chamber containing a sample, a restriction enzyme, a ligase, and a linker. The heaters 154 are then activated and maintained at a constant temperature for a specific period of time for the limiting shear reaction and the linker ligation reaction. Those skilled in the art will appreciate that this incubation step 291 (see Figure 4) is an optional step and that only some types of nucleic acid amplification assays require this incubation step 291. In addition, in some cases, a heating step may be required at the end of the incubation phase to raise the temperature above the incubation temperature. Increasing the temperature before the fluid enters the amplification section 112 removes the restriction enzymes and the binding enzyme. The inactivation of restriction enzymes and ligases is particularly relevant when a constant temperature nucleic acid amplification method will be performed. After incubation, the boiling start valve 106 is activated (turned on) and the -54-201211539 fluid continues to flow into the amplification section 112. Referring to Figures 31 and 32, a plurality of microchannels 158 form one or more amplification chambers which are injected into the crucible configuration of the heated microchannels 158 until the mixture reaches the boiling start valve 1 0 8. Preferably, as shown in the cross-sectional view of FIG. 30, the amplification mixture (dNTP, primer, buffer) is released from the storage tank 60 and then the polymerase is released from the storage tank 62 to flow into the incubation section 1 1 4 and an intermediate MST channel 2 1 2 of the amplification section 1 1 2 .
第35至51圖顯示第6圖之插圖AC中的LOC裝置 301之該等膜層。第35至51圖各自顯示形成CMOS + MST 裝置48和蓋層46之該等膜層依序遞增的情形。插圖Ac 係位於該擴增區段1 1 2之終點和該雜合與偵測區段52之 起點處。經培育之樣本、擴增混合物及聚合酶流經該等微 通道1 5 8而到達沸騰啓動式閥1 〇 8。經過足夠時間以進行 擴散混合之後,該等微通道158中的該等加熱器154係經 啓動以用於進行熱循環或恆溫擴增。該擴增混合物經歷預 定之熱循環次數或經過預設之擴增時間以擴增充足的標靶 DN A。於該核酸擴增處理之後,沸騰啓動式閥〗〇8開啓, 且流體繼續流入該雜合與偵測區段5 2。該等沸騰啓動式 閥之操作係於稍候做進一步詳細說明。 如第52圖所示,該雜合與偵測區段52具有雜合腔室 陣列110。第52、53、54和56圖顯示該雜合腔室陣列 1 1 〇及各別雜合腔室1 80之細節。擴散阻障器1 75係位於 雜合腔室180之入口處,該擴散阻障器175防止於雜合期 間在該等雜合腔室180之間發生該等標靶核酸、探針鏈與 -55 - 201211539 已雜合之探針的擴散作用,從而避免發生錯誤的雜合偵測 結果。該等擴散阻障器1 75提供一段流動路徑長度’該流 動路徑長度係夠長而足以於供探針與核酸分子進行雜合且 偵測信號的時間內防止該等標靶序列和探針擴散出一個腔 室且污染另一個腔室,從而避免得到錯誤結果。Figures 35 through 51 show the layers of the LOC device 301 in the illustration AC of Figure 6. Figures 35 through 51 each show the case where the layers of the CMOS + MST device 48 and the cap layer 46 are sequentially incremented. The illustration Ac is located at the end of the amplification segment 112 and at the beginning of the hybrid and detection segment 52. The incubated sample, amplification mixture, and polymerase flow through the microchannels 1 58 to the boiling start valve 1 〇 8. After sufficient time has elapsed for diffusion mixing, the heaters 154 in the microchannels 158 are activated for thermal cycling or isothermal amplification. The amplification mixture undergoes a predetermined number of thermal cycles or a predetermined amplification time to amplify sufficient target DN A . After the nucleic acid amplification process, the boiling start valve 〇8 is turned on, and the fluid continues to flow into the hybrid and detection section 52. The operation of these boiling start valves will be further described later. As shown in Fig. 52, the hybrid and detection section 52 has a hybrid chamber array 110. Figures 52, 53, 54 and 56 show details of the hybrid chamber array 1 1 and individual hybrid chambers 180. A diffusion barrier 1 75 is located at the entrance of the hybrid chamber 180, which prevents the target nucleic acid, probe strand and - from occurring between the hybrid chambers 180 during hybridization. 55 - 201211539 The diffusion of hybrid probes to avoid false hybrid detection results. The diffusion barriers 175 provide a length of flow path 'the length of the flow path is long enough for the probe to hybridize with the nucleic acid molecule and to prevent diffusion of the target sequence and probe during the time the signal is detected One chamber is left out and the other chamber is contaminated to avoid erroneous results.
另一種防止錯誤讀値的機制係使多個該等雜合腔室中 具有相同探針。多個光二極體184對應於該等含有相同探 針之雜合腔室180,且CMOS電路自該等光二極體184推 導出單一結果。於單一結果之推導過程中異常的結果可忽 略不列入計算或採差別加權計算。Another mechanism for preventing erroneous readings is to have the same probe in a plurality of such hybrid chambers. A plurality of photodiodes 184 correspond to the hybrid chambers 180 containing the same probes, and the CMOS circuit derives a single result from the photodiodes 184. Abnormal results in the derivation of a single result can be omitted from calculation or differential weighting.
藉由受CMOS控制之加熱器182提供雜合反應所需之 熱能(以下進一步詳細描述該等加熱器182)。該等加熱 器經啓動之後,互補的標靶序列與探針序列之間發生雜合 反應。該CMOS電路86中的LED驅動器29發送信號給 位於該檢驗模組1 0中的發光二極體(LED ) 26以使LED 發光。此等探針僅於已發生雜合反應時才會發光,因而可 免除一般用於去除未結合之探針鏈的清洗和乾燥步驟。雜 合反應迫使該等螢光共振能量轉移(FRET)探針186的 幹-環狀結構打開,以允許螢光發光基團回應LED的激發 光而發出螢光能量,對此將於稍候做更詳細描述。藉由位 於各個雜合腔室180下方之CMOS電路86中的光二極體 184偵測螢光(有關雜合腔室之說明請見下文)。用於所 有雜合腔室之該等光二極體184和相關電子構件全體共同 形成該光感測器44(見第59圖)。於其他具體實施例中 -56- 201211539 ,該光感測器可能是電荷耦合裝置陣列(CCD陣列)。 自光二極體1 84所測得的信號係經放大且轉換成數位輸出 値,且藉由該檢驗模組讀取器12分析該數位輸出値。該 偵測方法之進一步細節於稍候說明。 LOC裝置之附加細節 設計之模組化The thermal energy required for the hybridization reaction is provided by a CMOS controlled heater 182 (the heaters 182 are described in further detail below). After activation of the heaters, a hybrid reaction occurs between the complementary target sequence and the probe sequence. The LED driver 29 in the CMOS circuit 86 sends a signal to a light emitting diode (LED) 26 located in the test module 10 to cause the LED to illuminate. These probes only illuminate when a heterozygous reaction has taken place, thus eliminating the cleaning and drying steps typically used to remove unbound probe strands. The hybrid reaction forces the dry-loop structure of the fluorescent resonance energy transfer (FRET) probe 186 to open, allowing the fluorescent luminescent group to emit fluorescent energy in response to the excitation light of the LED, which will be done later More detailed description. Fluorescence is detected by photodiode 184 located in CMOS circuit 86 below each of the hybrid chambers 180 (see below for a description of the hybrid chamber). The photodiodes 184 and associated electronic components for all of the hybrid chambers collectively form the photosensor 44 (see Figure 59). In other embodiments -56-201211539, the photosensor may be a charge coupled device array (CCD array). The signal measured from the photodiode 184 is amplified and converted to a digital output 値, and the digital output 値 is analyzed by the test module reader 12. Further details of this detection method are described later. Additional details of the LOC device modularization of the design
該LOC裝置301具有許多功能區段,包括該等試劑 貯存槽54、56、58、60和62、透析區段70、溶胞區段 130、培育區段114及擴增區段112、多種類型之閥、增 濕器和濕度感測器。於LOC裝置之其他具體實施例中, 此等功能區段可能省略,且可添加額外的功能區段,或該 等功能可用於達成除上述用途以外之不同用途。 例如,培育區段1 1 4可作爲串接擴增分析檢驗系統的 第一擴增區段1 1 2,且該化學溶胞試劑貯存槽5 6係用於 添加由引子、dNTP和緩衝液組成之第一擴增混合物,及 試劑貯存槽58係用於添加反轉錄酶及/或聚合酶。若期 望對該樣本進行化學溶胞,化學溶胞試劑亦可隨著該擴增 混合物一同加入該貯存槽5 6中,或者,可藉著加熱該樣 本持續一段預定時間以於該培育區段中進行熱溶胞。於某 些具體實施例中,若需要進行化學溶胞且期望該引子、 dNTP和緩衝液之混合物與化學溶胞試劑分開時,可於緊 鄰貯存槽5 8之上游處併入一個附加貯存槽以容納該引子 、dNTP和緩衝液之混合物。 -57- 201211539The LOC device 301 has a number of functional sections including the reagent storage tanks 54, 56, 58, 60 and 62, the dialysis section 70, the lysis section 130, the incubation section 114, and the amplification section 112, various types Valves, humidifiers and humidity sensors. In other embodiments of the LOC device, such functional segments may be omitted and additional functional segments may be added, or such functionality may be used to achieve different uses than those described above. For example, the incubation section 1 14 can serve as the first amplification section 1 1 2 of the tandem amplification assay assay system, and the chemical lysis reagent storage tank 56 is used for the addition of primers, dNTPs, and buffers. The first amplification mixture, and reagent storage tank 58, is used to add reverse transcriptase and/or polymerase. If chemical lysis of the sample is desired, the chemical lysis reagent may also be added to the reservoir along with the amplification mixture, or by heating the sample for a predetermined period of time in the incubation section. Perform hot lysis. In some embodiments, if chemical lysis is desired and a mixture of the primer, dNTP, and buffer is desired to be separated from the chemical lysis reagent, an additional storage tank can be incorporated immediately upstream of the storage tank 58 A mixture of the primer, dNTP and buffer is contained. -57- 201211539
於某些情況中,可能期望省略某一步驟’例如培育步 驟29 1。於此情況下,LOC裝置可經特殊製造以省略該試 劑貯存槽5 8和培育區段1 1 4,或可簡單地不把試劑裝入 該貯存槽,或者若具有主動閥時可使該等主動閥不啓動而 不把該等試劑分配至該樣本流體中,且此時簡單地使該培 育區段轉爲通道以把該樣本從溶胞區段130輸送至擴增區 段112。該等加熱器可獨立操作,且當此反應的進行係取 決於熱能(例如熱溶胞反應係取決於熱能)時,可編程該 等加熱器使該等加熱器於此步驟期間不啓動以確保在不需 要熱溶胞反應的LOC裝置內不會發生熱溶胞反應。透析 區段70可位於如第4圖所示之微流體裝置內之流體系統 的起始點處,或透析區段70可位於該微流體裝置內的其 他任何地方》例如,於某些情況下,於擴增階段292之後 進行透析以於該雜合與偵測步驟294之前去除細胞殘渣可 能是有益的。或者,可於整個LOC裝置的任何位置處倂 入兩個或兩個以上的透析區段。類似地,該LOC裝置可 倂入多個附加的擴增區段1 1 2以確保採並聯或串聯方式擴 增多個標靶物,隨後於雜合腔室陣列1 1 0中利用特定核酸 探針偵測該等標靶物。對於不需透析的樣本(例如全血樣 本)進行分析時,可簡單地從該LOC裝置設計的該樣本 之置入與製備區段28 8中省略該透析區段70。於某些情 況下’即使該項分析不需透析,也無需從該LOC裝置中 省略該透析區段70。若透析區段的存在不會對該分析檢 驗造成幾何性障礙,仍可使用在該樣本之置入與製備區段 -58- 201211539 中具有透析區段70的LOC裝置而不會損及必要功能。 再者,該偵測區段2 94可包含多個蛋白質體腔室陣列 ,該等蛋白質體腔室陣列係與雜合腔室陣列相同,但於該 等蛋白質體腔室陣列中裝入經設計用於與存在於未經擴增 之樣本中的樣本標靶蛋白結合或雜合之探針,而非裝入經 設計用於與標靶核酸序列雜合的核酸探針。In some cases, it may be desirable to omit a certain step' such as incubation step 291. In this case, the LOC device may be specially manufactured to omit the reagent storage tank 58 and the incubation section 112, or may simply not load the reagent into the storage tank, or may have such an active valve if it has an active valve The active valve is not activated without dispensing the reagents into the sample fluid, and at this point the incubation section is simply turned into a channel to deliver the sample from the lysis section 130 to the amplification section 112. The heaters can be operated independently, and when the reaction is carried out depending on thermal energy (e.g., the thermal lysis reaction depends on thermal energy), the heaters can be programmed to prevent the heaters from starting during this step to ensure The hot lysis reaction does not occur in a LOC device that does not require a hot lysis reaction. The dialysis section 70 can be located at the starting point of the fluid system within the microfluidic device as shown in Figure 4, or the dialysis section 70 can be located anywhere else within the microfluidic device, for example, in some cases It may be beneficial to perform dialysis after the amplification phase 292 to remove cell debris prior to the hybridization and detection step 294. Alternatively, two or more dialysis sections can be inserted at any location throughout the LOC device. Similarly, the LOC device can incorporate a plurality of additional amplification segments 1 1 2 to ensure amplification of multiple targets in parallel or in series, followed by specific nucleic acid probes in the hybrid chamber array 1 1 0 The needle detects the targets. For analysis of a sample that does not require dialysis (e. g., a whole blood sample), the dialysis section 70 can simply be omitted from the placement and preparation section 28 of the sample designed for the LOC device. In some cases, the dialysis section 70 need not be omitted from the LOC device even if the analysis does not require dialysis. If the presence of the dialysis section does not create a geometrical impediment to the analytical test, the LOC device with the dialysis section 70 in the insertion and preparation section of the sample -58-201211539 can still be used without damaging the necessary functions. . Furthermore, the detection section 2 94 can comprise a plurality of protein body chamber arrays that are identical to the hybrid chamber array, but are loaded into the protein body chamber arrays to be designed for use with A probe that binds or hybridizes to a sample target protein present in an unamplified sample, rather than a nucleic acid probe designed to hybridize to a target nucleic acid sequence.
將可理解,爲用於此診斷系統中而製造的該LOC裝 置係根據特定LOC用途選出多個功能區段之不同組合。 對於該等LOC裝置中之許多LOC裝置而言皆具有大多數 的功能區段,且藉著從現有LOC裝置內所使用之功能區 段的廣泛選項中彙整出由多個功能區段組成之適當組合可 設計出用於新用途的額外LOC裝置。 本案說明書中僅出示少數的LOC裝置,更有一些 LOC裝置僅爲槪要繪示以圖解說明針對此系統所製造之 LOC裝置的設計靈活性。所屬技術領域中熟悉該項技藝者 將可輕易地理解本案說明書中所出示的該等LOC裝置尙 未詳盡列出,且藉著從現有LOC裝置內所使用之功能區 段的廣泛選項中彙整出由多個功能區段組成之適當組合可 做出許多額外的LOC設計。 樣本種類 多種LOC裝置變化型可接受且分析液態之各種樣本 種類中的核酸成分或蛋白質成分,該等液態樣本種類包含 但不限於血液和血液製品、唾液、腦脊髓液、尿液、精液 -59- 201211539 、羊水、臍帶血、母乳、汗液、胸膜滲出液、淚液、心囊 液、腹水、環境水樣及飮料樣本。亦可使用該LOC裝置 分析從大量核酸擴增所獲得的擴增子;於此種情況下,所 有的試劑貯存槽將被清空或配置成不會釋放出貯存槽內的 成分,且該等透析區段、溶胞區段、培育區段及擴增區段 將僅用於把該樣本從該樣本入口 68輸送到該等雜合腔室 1 8 0以進行如上述之核酸偵測。It will be appreciated that the LOC device manufactured for use in this diagnostic system selects different combinations of multiple functional segments depending on the particular LOC application. Most of the LOC devices in these LOC devices have most of the functional segments, and are suitably composed of multiple functional segments by extensive options from the functional segments used within existing LOC devices. The combination can be designed with additional LOC devices for new uses. Only a few LOC devices are shown in this specification, and some LOC devices are only shown to illustrate the design flexibility of the LOC devices manufactured for this system. Those skilled in the art will readily appreciate that the LOC devices shown in the present specification are not exhaustively listed and are derived from a wide range of options from the functional segments used in existing LOC devices. Many additional LOC designs can be made with the appropriate combination of multiple functional sections. Sample Types A variety of LOC device variants that accept and analyze nucleic acid components or protein components in various sample types of liquids, including but not limited to blood and blood products, saliva, cerebrospinal fluid, urine, semen-59 - 201211539, amniotic fluid, cord blood, breast milk, sweat, pleural exudate, tears, pericardial fluid, ascites, environmental water samples and dips. The LOC device can also be used to analyze amplicons obtained from amplification of a large number of nucleic acids; in this case, all reagent storage tanks will be emptied or configured so as not to release components in the storage tank, and such dialysis The segment, lysis segment, incubation segment, and amplification segment will only be used to deliver the sample from the sample inlet 68 to the hybrid chambers 180 for nucleic acid detection as described above.
對於某些樣本種類而言需要預處理步驟,例如把樣本 置入該LOC裝置中之前,精液可能需要經液化,且黏液 可能需要利用酶進行預處理以降低黏度。 樣本之匱入For some sample types, a pretreatment step is required. For example, the semen may need to be liquefied before the sample is placed in the LOC device, and the mucus may need to be pretreated with an enzyme to reduce the viscosity. Sample entry
參與第1和1 2圖,把該樣本加到該檢驗模組1 〇之大 放置槽24中。大放置槽24係截頭狀圓錐體,且藉由毛細 作用把該樣本饋入該LOC裝置301之入口 68。該樣本於 此處流入64微米寬X 60微米深的蓋層通道94,且於該蓋 層通道94中藉由毛細作用吸引該樣本朝向抗凝血劑貯存 槽54流動。 試劑貯存槽 使用微流體裝置(例如LOC裝置301)之分析檢驗系 統需要小體積的試劑,故允許該等試劑貯存槽容納進行生 化處理所需要的所有試劑,每個試劑貯存槽皆具有小體積 。此體積約小於1,〇〇〇,〇〇〇,〇〇〇立方微米,且於大多數的 -60- 201211539 情況下此體積小於 300,000,000立方微米,通常小於 70,000,000立方微米,並且於該等圖式所示之.LOC裝置 301的例子中,此體積小於20,000,000立方微米。 透析區段Participating in Figures 1 and 12, the sample is added to the large placement slot 24 of the inspection module 1 . The large placement slot 24 is a frustoconical cone and the sample is fed into the inlet 68 of the LOC device 301 by capillary action. The sample is here flowed into a 64 micron wide x 60 micron deep cap channel 94 and the sample is attracted to the anticoagulant reservoir 54 by capillary action in the cap layer channel 94. Reagent Storage Tanks Analytical inspection systems that use microfluidic devices (e.g., LOC device 301) require a small volume of reagents, thus allowing the reagent storage tanks to contain all of the reagents required for biochemical processing, each reagent reservoir having a small volume. This volume is less than about 1, 〇〇〇, 〇〇〇, 〇〇〇 cubic microns, and in most cases -60-201211539 this volume is less than 300,000,000 cubic microns, typically less than 70,000,000 cubic microns, and in these patterns In the example of the LOC device 301 shown, this volume is less than 20,000,000 cubic microns. Dialysis section
參閱第15至21、33和34圖,病原透析區段70係經 設計以自該樣本中濃縮病原標靶細胞。如先前所述,於頂 層66中具有複數個孔,該等孔之形狀係呈直徑3微米之 孔1 64,該複數個孔從大量樣本中濾出標靶細胞。當該樣 本流過該等直徑3微米之孔164,微生物病原通過該等孔 而進入一系列透析MST通道204,且該等微生物病原經 由16微米之透析上吸孔168向上流流回該標靶物通道74 中(見第33與34圖)。該樣本之剩餘部分(如紅血球等 等)留在該蓋層通道94中。於病原透析區段70之下游處 ,該蓋層通道94轉爲通往廢料貯存槽76的廢液通道72 。對於產生相當數量之廢料的生物樣本種類,係於檢驗模 組1 〇之外殼1 3內配置泡榫狀插入物或其他多孔性元件 49以與該廢料貯存槽76流體連通(見第1圖)。 病原透析區段70的運作完全仰賴流體樣本之毛細作 用。位於病原透析區段70之上游末端處的該等直徑3微 米之孔164具有毛細作用引動特徵(CIF ) 166 (見第33 圖),以便吸引該流體向下流入下方的該透析MST通道 2 04。該標靶物通道74之第一上吸孔198亦具有毛細作用 引動特徵(CIF ) 202 (見第15圖),以避免該流體輕易 -61 - 201211539 地使彎液面定住在該等透析上吸孔1 6 8上。Referring to Figures 15 through 21, 33 and 34, the pathogenic dialysis section 70 is designed to concentrate pathogenic target cells from the sample. As previously described, there are a plurality of holes in the top layer 66 which are in the form of holes 1 64 having a diameter of 3 microns which filter out target cells from a large number of samples. As the sample flows through the 3 micron diameter holes 164, microbial pathogens pass through the holes into a series of dialysis MST channels 204, and the microbial pathogens flow back up to the target via a 16 micron dialysis uptake 168. In channel 74 (see Figures 33 and 34). The remainder of the sample (e.g., red blood cells, etc.) remains in the capping channel 94. Downstream of the pathogenic dialysis section 70, the cover channel 94 is turned into a waste channel 72 to the waste storage tank 76. For biological sample types that produce a significant amount of waste, a bubble-like insert or other porous element 49 is disposed in the outer casing 13 of the test module 1 to be in fluid communication with the waste storage tank 76 (see Figure 1). . The operation of the pathogen dialysis section 70 relies entirely on the capillary action of the fluid sample. The 3 micron diameter holes 164 located at the upstream end of the pathogenic dialysis section 70 have a capillary action priming feature (CIF) 166 (see Figure 33) to attract the fluid downwardly into the dialysis MST channel below. . The first upper suction hole 198 of the target passage 74 also has a capillary action priming feature (CIF) 202 (see Fig. 15) to prevent the fluid from being easily settled on the dialysis surface -61 - 201211539 The suction hole is 1 6 8 .
第78圖槪要示出之小成分透析區段6 8 2可具有類似 於該病原透析區段70的結構。該小成分透析區段藉著塑 造孔之尺寸(且如有必要,可塑造孔之形狀)使該等孔適 合讓小標靶細胞或分子通過,而從樣本中分離該等小標靶 細胞或分子,以使該等小標靶細胞或分子進入標靶物通道 中且繼續進行進一步分析。較大尺寸之細胞或分子被送往 廢料貯存槽766。因此,該LOC裝置30(見第1和93圖 )不僅限於用於分離尺寸小於3微米之病原,也可用於分 離任何期望尺寸之細胞或分子。 溶胞區段The small component dialysis section 682 to be shown in Fig. 78 may have a structure similar to the pathogenic dialysis section 70. The small component dialysis section separates the small target cells from the sample by shaping the size of the pores (and, if necessary, shaping the shape of the pores) such that the pores are adapted to allow small target cells or molecules to pass through or Molecules, such that the small target cells or molecules enter the target channel and continue for further analysis. Larger sized cells or molecules are sent to waste storage tank 766. Thus, the LOC device 30 (see Figures 1 and 93) is not limited to isolation of pathogens having a size of less than 3 microns, but can also be used to separate cells or molecules of any desired size. Lysis segment
回到第7、11和13圖,藉由化學溶胞法自細胞內釋 出該樣本中之遺傳物質。如上述般,源自溶胞試劑貯存槽 56的溶胞試劑於該溶胞試劑貯存槽56之表面張力閥128 下游處的標靶物通道74內與該樣本流體混合。然而,某 些診斷性分析檢驗更適合使用熱溶胞法,或甚至對標靶細 胞使用化學溶胞法兼熱溶胞法。該LOC裝置301提供該 培育區段1 1 4之經加熱的微通道2 1 0以供熱溶胞之用。該 樣本流體注入培育區段1 1 4且停止於該沸騰啓動式閥1 06 之處。培育微通道2 1 0加熱該樣本以達到使細胞膜破裂之 溫度。 於某些熱溶胞應用中,化學溶胞區段130內的酶催化 反應並非必要,且熱溶胞反應完全取代該化學溶胞區段 -62- 201211539 130內的酶催化反應。 沸騰啓動式閥 如上述討論般,LOC裝置301具有三個沸騰啓動式閥 126、106和108。此等閥之位置係顯示於第6圖中。第 31圖係單獨位於擴增區段112之該等經加熱之微通道158 末端處的沸騰啓動式閥108之放大平面圖。Returning to Figures 7, 11, and 13, the genetic material in the sample is released from the cells by chemical lysis. As described above, the lysis reagent from the lysis reagent reservoir 56 is mixed with the sample fluid in the target channel 74 downstream of the surface tension valve 128 of the lysis reagent reservoir 56. However, some diagnostic assays are more suitable for use with the hot lysis method, or even for the target cells using the chemical lysis method and the hot lysis method. The LOC device 301 provides the heated microchannels 210 of the incubation section 112 for thermal lysis. The sample fluid is injected into the incubation section 1 14 and stops at the boiling start valve 106. Incubate the microchannels 210 to heat the sample to reach the temperature at which the cell membrane ruptures. In some hot lysis applications, the enzymatic reaction in the chemical lysis section 130 is not necessary, and the hot lysis reaction completely replaces the enzymatic reaction in the chemical lysis section -62-201211539 130. Boiling Start Valve As discussed above, LOC unit 301 has three boiling start valves 126, 106 and 108. The position of these valves is shown in Figure 6. Figure 31 is an enlarged plan view of a boiling start valve 108 located at the end of the heated microchannels 158 of the amplification section 112, respectively.
藉由毛細作用吸引該樣本流體1 1 9沿著該等經加熱之 微通道158流動,直到該樣本流體抵達該沸騰啓動式閥 108。該樣本流體之該領先彎液面120定住於該閥入口 146處之彎液面錨98處。彎液面錨98之幾何形狀使該領 先彎液面停止以中止該毛細流動。如第3 1和32圖所示, 彎液面錨98係藉由從MS T通道90通往該蓋層通道94的 上吸孔所提供之開孔。彎液面120之表面張力使該閥保持 關閉。環形加熱器1 5 2係位於該閥入口 1 46之周長邊緣處 。該環形加熱器1 52係經由該沸騰啓動式閥之加熱器接觸 點1 5 3而受C Μ Ο S控制。 爲打開該閥,CMOS電路86傳送電脈衝給該閥之加 熱器接觸點153。環形加熱器152以電阻方式加熱該液體 樣本1 1 9直到該液體樣本沸騰。沸騰作用使該彎液面1 20 脫離該閥入口 1 46且開始潤濕該蓋層通道94。一旦開始 潤濕該蓋層通道94,再度進行毛細流動。流體樣本! i 9 注入蓋層通道94且流經該閥之下吸孔150而前往該閥出 口 148 ’於該閥出口 148處,該毛細驅動流體沿著該擴增 -63- 201211539 區段離開通道1 60繼續流動而進入該雜合與偵測區段5 2 。多個液體感測器1 74設置於該閥前後處以供判斷之用。 將可理解,一旦該等沸騰啓動式閥係經開啓,該等沸 騰啓動式閥無法再關閉。然而,當LOC裝置301與檢驗 模組1 0係單次使用裝置,便無需再次關閉該等閥。 培育區段及核酸擴增區段 第 6、 7、 13、 14、 23、 24、 25、 35 至 45、 50 與 51The sample fluid 1 1 9 is attracted by capillary action along the heated microchannels 158 until the sample fluid reaches the boiling start valve 108. The leading meniscus 120 of the sample fluid settles at the meniscus anchor 98 at the valve inlet 146. The geometry of the meniscus anchor 98 stops the leading meniscus to stop the capillary flow. As shown in Figures 31 and 32, the meniscus anchor 98 is provided by an opening provided from the MS T-channel 90 to the upper suction opening of the cover channel 94. The surface tension of the meniscus 120 keeps the valve closed. A ring heater 1 5 2 is located at the perimeter edge of the valve inlet 1 46. The ring heater 152 is controlled by C Μ Ο S via the heater contact point 1 5 3 of the boiling start valve. To open the valve, CMOS circuit 86 delivers an electrical pulse to heater contact 153 of the valve. The annular heater 152 heats the liquid sample 1 1 9 until the liquid sample boils. The boiling action causes the meniscus 1 20 to disengage from the valve inlet 1 46 and begin to wet the cap channel 94. Once the cover channel 94 begins to wet, capillary flow is again performed. Fluid sample! i 9 is injected into the cap channel 94 and flows through the lower suction port 150 of the valve to the valve outlet 148 ′ at the valve outlet 148, the capillary drive fluid exiting the channel 1 along the augmentation-63-201211539 segment. Continue to flow into the hybrid and detection section 5 2 . A plurality of liquid sensors 1 74 are disposed at the front and rear of the valve for judgment. It will be appreciated that once the boiling start valves are opened, the boiling start valves can no longer be closed. However, when the LOC device 301 and the inspection module 10 are single-use devices, there is no need to close the valves again. Incubation section and nucleic acid amplification section 6, 6, 13, 14, 23, 24, 25, 35 to 45, 50 and 51
圖顯示培育區段114與擴增區段112。該培育區段114具 有單條經加熱之培育微通道210,該經加熱之培育微通道 210係位於該MST通道層100中且經蝕刻成從該下吸孔 134通到該沸騰啓動式閥106的蜿蜒圖案(見第13與14 圖)。控制該培育區段1 1 4之溫度能夠以更高效率進行酶 催化反應。同樣地,擴增區段U 2具有從該沸騰啓動式閥 1 06通往該沸騰啓動式閥1 08且呈蜿蜒構形的經加熱之擴 增微通道158(見第6與14圖)。此等閥中止該流體之 流動以使該等標靶細胞留在該經加熱之培育微通道2 1 0或 擴增微通道158中且同時進行混合、培育與核酸擴增。該 等微通道之蜿蜒圖案於某種程度上亦有利於混合該等標靶 細胞與試劑。 於培育區段1 1 4和擴增區段1 1 2中,使用脈衝寬度調 變(PWM)藉由CMOS電路86控制該等加熱器154加熱 該等樣本細胞與試劑。該經加熱之培育微通道2 1 0和擴增 微通道158之蜿蜒構形的每個曲流道皆具有三個可獨立操 -64- 201211539The figure shows the incubation section 114 and the amplification section 112. The incubation section 114 has a single heated incubation microchannel 210 that is positioned in the MST channel layer 100 and etched from the lower suction aperture 134 to the boiling start valve 106.蜿蜒 pattern (see Figures 13 and 14). Controlling the temperature of the incubation section 112 can enable an enzymatic reaction with higher efficiency. Similarly, the amplification section U 2 has heated amplifying microchannels 158 from the boiling start valve 106 to the boiling start valve 108 in a 蜿蜒 configuration (see Figures 6 and 14). . The valves terminate the flow of the fluid to allow the target cells to remain in the heated incubation microchannel 210 or amplification microchannel 158 and to simultaneously mix, incubate and nucleic acid amplification. The pattern of the microchannels is also advantageous to some extent to the mixing of the target cells and reagents. In the incubation section 1 14 and the amplification section 112, the heaters 154 are controlled by the CMOS circuit 86 to heat the sample cells and reagents using pulse width modulation (PWM). Each of the curved channels of the heated incubation microchannel 2 1 0 and the amplification microchannel 158 has three independent operations - 64 - 201211539
作的加熱器154,該等加熱器154延伸於該等加熱器各自 的加熱器接觸點156之間(見第14圖),該等加熱器接 觸點1 5 6提供輸入熱通量密度之二維控制。最佳如第5 i 圖所示,該等加熱器154係承載於該頂層66上且包埋於 該下密封層64內。該加熱器材料係鈦鋁合金(TiAl), 但多種其他導電性材料亦適用。該等長形加熱器154係與 每個通道區段(每個通道區段形成該蜿蜒造形的該等寬曲 流道)之長度成平行。於擴增區段1 1 2中,藉由個別加熱 器控制使每一個寬曲流道皆可作爲獨立的PCR腔室而運 作。 使用微流體裝置(例如LOC裝置301)的該分析檢驗 系統需要小體積的擴增子,因此允許於擴增區段112內以 低的擴增混合物體積進行擴增反應。此體積大約小於400 毫微升(nanoliter ),大多數的情況下小於1 70毫微升, 一般小於70毫微升且於LOC裝置301的情況下此體積介 於2毫微升至3 0毫微升之間。 加熱速率提高與更高的擴散混合作用 每個通道區段的小截面提高該擴增流體混合物之加熱 速率。所有流體與該加熱器154相距一段相對短的距離。 可見到使該通道截面(即該擴增微通道1 5 8之截面)縮小 至小於1 00,000平方微米所達成的加熱速率比利用較大規 格之設備所提供的加熱速率更高。微影製造技術允許製造 出具有低於1 6,000平方微米之流動路徑橫斷截面積的擴 -65- 201211539 增微通道158,該低於1 6,000平方微米之流動路徑橫斷截 面積可提供實質較高的加熱速率。利用微影技術可輕易達 成1微米程度的特徵尺寸。若需要極少的擴增子(如LO C 裝置301的情況),該截面積可縮小至低於2,5 00平方微 米。爲了達到於該LOC裝置上使用1 000種至2000種探 針進行診斷分析檢驗且於一分鐘內完成「置入樣本、輸出 結果」的要求,介於400平方微米至1平方微米之間的流 動橫斷截面積可滿足此要求。a heater 154 extending between respective heater contact points 156 of the heaters (see Figure 14), the heater contact points 156 providing input heat flux density Dimensional control. Preferably, as shown in Figure 5i, the heaters 154 are carried on the top layer 66 and are embedded in the lower sealing layer 64. The heater material is titanium aluminum alloy (TiAl), but a variety of other conductive materials are also suitable. The elongate heaters 154 are in parallel with the length of each of the channel segments (each of the channel segments forming the wide curved channel of the crucible shape). In the amplification section 112, each wide curved flow path can be operated as a separate PCR chamber by individual heater control. This analytical assay system using a microfluidic device (e.g., LOC device 301) requires a small volume of amplicons, thus allowing amplification reactions to be performed in the amplification section 112 with a low volume of amplification mixture. This volume is less than about 400 nanoliters, in most cases less than 1 70 nanoliters, typically less than 70 nanoliters and in the case of LOC device 301 this volume is between 2 nanoliters to 30 millimeters. Between microliters. Increased heating rate and higher diffusion mixing The small cross section of each channel section increases the heating rate of the augmented fluid mixture. All fluids are at a relatively short distance from the heater 154. It can be seen that reducing the cross-section of the channel (i.e., the cross section of the amplifying microchannel 158) to less than 100,000 square microns results in a heating rate that is higher than that provided by a larger gauge device. The lithography manufacturing technique allows the fabrication of a -65-201211539 microchannel 158 with a cross-sectional cross-sectional area of a flow path of less than 1 6,000 square microns, which provides a substantial cross-sectional area of the flow path below 1 6,000 square microns. High heating rate. Feature sizes of up to 1 micron can be easily achieved using lithography. If very few amplicons are required (as is the case with LO C device 301), the cross-sectional area can be reduced to less than 2,500 square microns. In order to achieve the diagnostic analysis test using 1 000 to 2000 probes on the LOC device and completing the "put sample, output result" requirement within one minute, the flow between 400 square microns and 1 square micrometer The cross sectional area can meet this requirement.
該擴增微通道1 5 8內的加熱器元件以每秒8 0凱氏溫 度(K)以上之速率加熱該等核酸序列,且於大多數的情 況下係以高於每秒1 〇〇 K之速率加熱該等核酸序列。一般 而言,該加熱器元件以每秒1 ,〇〇〇 K以上之速率加熱該等 核酸序列,且於許多情況下,該加熱器元件以每秒1 0,000 K以上之速率加熱該等核酸序列。通常依據該分析檢驗系 統之需求,該加熱器元件係以每秒1 00,000 K以上之速率 、每秒1,000,000 K以上之速率、每秒ιο,οοο,οοο K以上 之速率、每秒20,000,000 K以上之速率、每秒40,000,000 κ以上之速率、每秒 80,000,000 K以上之速率及每秒 1 6 0,000,000 K以上之速率加熱該等核酸序列。 小截面積之通道亦有益於任何試劑與該樣本流體的擴 散混合作用。於完成擴散混合之前,一種液體擴散進入另 一種液體的擴散作用係以靠近兩液體間之界面處的擴散作 用最大。濃度會隨著遠離該界面之距離而遞減。使用具有 相對較小之流動方向橫斷截面積的微通道可確保兩種流體 -66- 201211539The heater elements within the amplification microchannel 158 heat the nucleic acid sequences at a rate above 80 Kelvin per second (K), and in most cases are above 1 〇〇K per second. The nucleic acid sequences are heated at a rate. In general, the heater element heats the nucleic acid sequences at a rate of 1 〇〇〇K or more per second, and in many cases, the heater element heats the nucleic acid sequences at a rate of more than 10 000 K per second. . Generally, according to the requirements of the analysis and inspection system, the heater element is at a rate of more than 100,000 K per second, a rate of 1,000,000 K or more per second, a rate of ιο, οοο, οοο K or more per second, 20,000,000 K per second. The nucleic acid sequences are heated at a rate of above 40,000,000 κ per second, at a rate of more than 80,000,000 K per second, and at a rate of more than 1600,000,000 K per second. The passage of the small cross-sectional area is also beneficial for the diffusion mixing of any reagent with the sample fluid. The diffusion of one liquid into the other prior to the diffusion mixing is maximized by the diffusion near the interface between the two liquids. The concentration will decrease with distance from the interface. The use of microchannels with a relatively small cross-sectional area of flow direction ensures two fluids -66- 201211539
緊鄰著界面流動以達到更快地擴散混合。可看出使該通道 截面縮小至低於1 00,000平方微米所達成之混合速率高於 利用較大規格之設備所提供的混合速率。微影製造技術允 許製造具有低於16000平方微米之流動路徑橫斷截面積的 微通道,該低於1 6000平方微米之截面積可提供明顯較高 的混合速率。若需要極小的體積(如LOC裝置301的情 況),該截面積可縮小至低於2500平方微米。爲了達到 於該LOC裝置上使用1 000種至2000種探針進行診斷性 分析檢驗且於一分鐘內完成「置入樣本、輸出結果」的要 求’介於4 00平方微米至1平方微米之間的流動橫斷截面 積可滿足此要求。 短的熱循環時間 使該樣本混合物保持靠近該等加熱器且使用極小流體 體積允許於核酸擴增過程期間進行快速熱循環。對於長度 高達150個鹼基對(bp)的標靶序列而言,每個熱循環( 即,變性、黏合與引子延長)係於30秒內完成。於大多 數的診斷性分析檢驗中,個別的熱循環時間係在1 1秒以 內,且大部分熱循環的時間係在4秒以內。用於進行一部 分最常用之診斷性分析檢驗的LOC裝置30對於長度高達 150個鹼基對的標靶序列而言具有介於約0.45秒至1.5秒 之間的熱循環時間。以此速率進行熱循環允許該檢驗模組 完成核酸擴增程序的時間遠少於1 〇分鐘,且通常少於 2 20秒。對於多數分析檢驗而言,該擴增區段可從該樣本 -67- 201211539 流體進入該樣本入口起算80秒以內產生足夠的擴增子。 對於絕大多數的分析檢驗而言,係於30秒內產生足夠的 擴增子。 當完成預定次數之擴增循環後,使該等擴增子經由沸 騰啓動式閥108饋入該雜合與偵測區段52。 雜合腔室Flow next to the interface for faster diffusion mixing. It can be seen that the mixing rate achieved by narrowing the cross-section of the channel to less than 100,000 square microns is higher than the mixing rate provided by equipment using larger specifications. The lithography manufacturing technique allows the fabrication of microchannels having cross-sectional cross-sectional areas of flow paths below 16,000 square microns, which provide a significantly higher mixing rate than the cross-sectional area of 16,000 square microns. If a very small volume is required (as is the case with LOC unit 301), the cross-sectional area can be reduced to less than 2500 square microns. In order to achieve a diagnostic analysis test using 1000 to 2000 probes on the LOC device and completing the "implantation sample, output result" requirement within one minute 'between 400 square micrometers to 1 square micrometer The cross-sectional area of the flow crosses this requirement. A short thermal cycle time keeps the sample mixture close to the heaters and uses a very small fluid volume to allow for rapid thermal cycling during the nucleic acid amplification process. For target sequences up to 150 base pairs (bp) in length, each thermal cycle (i.e., denaturation, adhesion, and primer extension) is completed in 30 seconds. In most diagnostic assays, individual thermal cycling times are within 11 seconds, and most thermal cycling time is within 4 seconds. The LOC device 30 for performing a portion of the most commonly used diagnostic assays has a thermal cycle time of between about 0.45 seconds and 1.5 seconds for a target sequence of up to 150 base pairs in length. Thermal cycling at this rate allows the assay module to complete the nucleic acid amplification procedure for much less than 1 minute, and typically less than 2 20 seconds. For most analytical assays, the amplified segment can produce sufficient amplicons within 80 seconds from the sample -67-201211539 fluid entering the sample inlet. For most analytical tests, sufficient amplicons are produced within 30 seconds. The amplicon is fed to the hybrid and detection section 52 via a boiling start valve 108 after a predetermined number of amplification cycles have been completed. Hybrid chamber
第52、53、54、56與57圖顯示該雜合腔室陣列11〇 中的該等雜合腔室180。該雜合與偵測區段52具有由雜 合腔室180組成24x45的陣列110,且每個雜合腔室具有 雜合敏感性FRET探針186、加熱器元件182和整合式光 二極體184»該光二極體184係經併入以用於偵測標靶核 酸序列或蛋白質與該等FRET探針186之雜合反應所產生 的螢光。藉由CMOS電路86獨立地控制每個光二極體 184。介於該等FRET探針186與光二極體184之間的任 何材料皆必需可讓釋放光通過。因此,位於該等探針1 8 6 與光二極體1 84之間的隔牆區段97對於該釋放光而言亦 爲可透光性。於該LOC裝置301中,該隔牆區段97係二 氧化矽薄層(約0.5微米)。 於每一個雜合腔室180正下方倂入一個光二極體184 允許該等探針-標靶物雜合體的體積達到極小同時仍能發 出可偵測的螢光信號(見第54圖)。小量的探針-標靶物 雜合體允許使用小體積之雜合腔室。欲達到可偵測量之探 針-標靶物雜合體’於雜合前所需要的探針量係低於約 -68- 201211539Figures 52, 53, 54, 56 and 57 show the hybrid chambers 180 in the hybrid chamber array 11A. The hybrid and detection section 52 has an array 110 of 24x45 composed of a hybrid chamber 180, and each hybrid chamber has a hybrid sensitive FRET probe 186, a heater element 182, and an integrated photodiode 184. » The photodiode 184 is incorporated for detection of fluorescence produced by a hybrid reaction of a target nucleic acid sequence or protein with the FRET probes 186. Each of the photodiodes 184 is independently controlled by the CMOS circuit 86. Any material between the FRET probe 186 and the photodiode 184 must allow release of light. Therefore, the partition wall section 97 between the probes 1 8 6 and the photodiodes 1 84 is also permeable to the emitted light. In the LOC device 301, the partition wall section 97 is a thin layer of hafnium oxide (about 0.5 microns). Incorporating a photodiode 184 directly beneath each of the hybrid chambers 180 allows the probe-target hybrid to be minimally small while still producing a detectable fluorescent signal (see Figure 54). A small amount of probe-target hybrids allow the use of small volumes of hybrid chambers. The amount of probe required to achieve detectable amount of probe-target hybrids prior to hybridization is less than about -68-201211539
2 70微微克(相當於900,000立方微米),於多數情況下 低於約60微微克(相當於200,000立方微米),通常低 於約12微微克(相當於40,00 0立方微米)且於該等附圖 中所示之LOC裝置301的情況下低於約2.7微微克(相 當於9,000立方微米之腔室體積)。當然,縮小該等雜合 腔室之尺寸允許於該LOC裝置上具有更高的腔室密度且 從而可具有更多探針。於LOC裝置301中,該雜合區段 於1500微米乘1500微米的面積中具有1000個以上的腔 室(即’每個腔室之面積係低於2250平方微米)。較小 的體積亦可縮短反應時間,使得雜合與偵測更快速。每個 腔室中需要小量探針的附加優點係於LOC裝置之製造期 間僅需要在每個腔室中點入極小量的探針溶液。本發明之 LOC裝置具體實施例係使用1〇·12升或低於10·ΐ2升的探 針溶液體積點製而成。 於核酸擴增之後,沸騰啓動式閥108係經啓動,且該 擴增子沿著流動路徑1 7 6流動且流入每一個雜合腔室1 8 〇 (見第5 2和5 6圖)。終點液體感測器1 7 8指示何時把該 擴增子注入該等雜合腔室1 8 0及何時可啓動該等加熱器 182° 經過足夠的雜合時間之後,該發光二極體(LED ) 26 係經啓動。位於每個雜合腔室180中的開孔提供一個光學 窗口 130以用於使該等FRET探針暴露於激發光下(見第 52、54和56圖)。該發光二極體(LED) 26持續發光足 夠長的時間以誘使該等探針發出高強度之螢光信號。於激 -69 - 201211539 發期間,係使該等光二極體1 84短路。經過一段預先編程 的(pre-progemmed)延遲時間300之後(見第2圖), 使該光二極體1 84運作且於無激發光下偵測螢光發光作用 。於該光二極體184之主動區185上的入射光(見第54 圖)係經轉換成光電流,隨後可使用CMOS電路86測量 該光電流。2 70 pg (equivalent to 900,000 cubic microns), in most cases less than about 60 pg (equivalent to 200,000 cubic microns), usually less than about 12 pg (equivalent to 40,00 cubic microns) and In the case of the LOC device 301 shown in the drawings, it is less than about 2.7 pg (corresponding to a chamber volume of 9,000 cubic microns). Of course, reducing the size of the hybrid chambers allows for a higher chamber density on the LOC device and thus more probes. In LOC device 301, the hybrid section has more than 1000 chambers in an area of 1500 microns by 1500 microns (i.e., the area of each chamber is less than 2250 square microns). Smaller volumes also reduce reaction time, making hybridization and detection faster. An additional advantage of requiring a small amount of probe in each chamber is that only a minimal amount of probe solution needs to be dispensed into each chamber during manufacture of the LOC device. A specific embodiment of the LOC device of the present invention is formed using a volume of a probe solution of 1 〇 12 liters or less. After nucleic acid amplification, the boiling start valve 108 is activated and the amplicon flows along the flow path 176 and flows into each of the hybrid chambers 1 8 〇 (see Figures 5 2 and 5 6). The end liquid sensor 178 indicates when the amplicon is injected into the hybrid chambers 180 and when the heaters can be activated 182° after sufficient hybridization time, the light emitting diodes (LEDs) ) 26 is activated. The openings in each of the hybrid chambers 180 provide an optical window 130 for exposing the FRET probes to excitation light (see Figures 52, 54 and 56). The light emitting diode (LED) 26 continues to illuminate for a sufficient amount of time to induce the probes to emit high intensity fluorescent signals. During the period of -69 - 201211539, the photodiodes 1 84 were short-circuited. After a pre-progemmed delay time of 300 (see Figure 2), the photodiode 1 84 operates and detects fluorescence illumination without excitation light. Incident light (see Fig. 54) on the active region 185 of the photodiode 184 is converted to photocurrent, which can then be measured using a CMOS circuit 86.
該等雜合腔室180係各自裝有用於偵測單一種標靶核 酸序列之探針。如有需要,可於每個雜合腔室180中裝入 探針以偵測超過1 〇〇〇個以上之不同標靶物。或者,可於 多個雜合腔室或所有雜合腔室中裝入相同探針以重覆偵測 相同之標靶核酸。以此種方式於整個雜合腔室陣列110中 重複裝入該等探針導致提高所獲得之結果的可信度,且如 有需要,可使藉由與該等雜合腔室相鄰之該等光二極體所 測得的多個結果合倂以提供單一個結果。所屬技術領域中 熟悉該項技藝者將理解根據該分析檢驗之規格要求,該雜 合腔室陣列1 1 0上可能具有一種至1 〇〇〇種以上的不同探 針。 使用電致化學發光偵測法之雜合腔室 第86、98、123和124圖顯示用於該LOC裝置ECL 變化型(LOC裝置變化型L 729 )中的該等雜合腔室180 。於該LOC裝置之此具體實施例中,由24 X45個雜合腔 室180(每個雜合腔室具有雜合敏感性ECL探針237)組 成的陣列1 10係配準由多個整合於該CMOS中之光二極體 •70- 201211539 1 84組成的對應陣列所配置而成。以類似針對螢光偵測法 所建構之LOC裝置的方式納入每個光二極體184以用於 偵測標靶核酸序列或蛋白質與ECL探針23 7之雜合反應 所產生的電致化學發光作用(ECL)。藉由CMOS電路86 獨立地控制每個光二極體184。同樣地,該釋放光可穿過 位於該等探針186與該光二極體184之間的透明隔牆區段 97 «The hybrid chambers 180 are each equipped with a probe for detecting a single target nucleic acid sequence. If desired, probes can be placed in each of the hybrid chambers 180 to detect more than one or more different targets. Alternatively, the same probe can be loaded into multiple hybrid chambers or all hybrid chambers to repeatedly detect the same target nucleic acid. Repeated loading of the probes throughout the hybrid chamber array 110 in this manner results in increased confidence in the results obtained and, if desired, adjacent to the hybrid chambers The multiple results measured by the photodiodes are combined to provide a single result. Those skilled in the art will appreciate that depending on the specifications of the analytical test, the hybrid chamber array 110 may have from one to more than one different probe. Hybrid Chambers Using Electrochemiluminescence Detection Figures 86, 98, 123 and 124 show such hybrid chambers 180 for use in the LOC device ECL variant (LOC device variant L 729 ). In this particular embodiment of the LOC device, an array of 10 x 45 hybrid chambers 180 (each heterozygous chamber having a hybrid sensitive ECL probe 237) is registered by a plurality of integrated The corresponding array of light diodes in the CMOS, 70-201211539 1 84, is configured. Each photodiode 184 is incorporated in a manner similar to the LOC device constructed for the fluorescence detection method for detecting electrochemiluminescence produced by the hybridization reaction of the target nucleic acid sequence or protein with the ECL probe 23 Function (ECL). Each of the photodiodes 184 is independently controlled by the CMOS circuit 86. Similarly, the release light can pass through a transparent partition section 97 between the probes 186 and the photodiode 184 «
緊鄰各個雜合腔室180的光二極體184允許使探針-標靶物雜合體的量達到極小且同時仍能產生可偵測的ECL 信號(見第8 6圖)。小量的探針一標靶物雜合體允許使 用小體積的雜合腔室。可偵測量之探針-標靶物雜合體於 雜合前所需要的探針量係低於約270微微克(相當於 900,000立方微米之腔室體積),於多數情況下低於約60 微微克(相當於200,000立方微米),通常低於約12微 微克(相當於40,000立方微米)且於該等附圖中所示之 LOC裝置的情況下低於約2.7微微克(相當於9,000立方 微米之腔室體積)。當然,縮小該等雜合腔室之尺寸允許 於該LOC裝置上具有更高的腔室密度且從而具有更多探 針。於所示之LOC裝置中,該雜合區段於1 500微米乘 I5〇〇微米的面積中具有10 00個以上的腔室(即,每個腔 室之面積係低於2250平方微米)。較小的體積亦可縮短 反應時間,使得雜合與偵測更快速。每個腔室中需要小量 探針的附加優點係於該LOC裝置之製造期間僅需要在每 個腔室中點入極小量的探針溶液。於該等圖式所示之LOC 201211539 裝置的情況下,可使用1(Γ12升或低於ΙΟ·12升的探針溶液 體積點製該需要量之探針。 於核酸擴增之後,沸騰啓動式閥1 08係經啓動,且該 擴增子沿著流動路徑176流動且流入每一個雜合腔室180 (見第52和124圖)。終點液體感測器1 78指示何時把 該擴增子注入該等雜合腔室180以便於啓動該等加熱器 182°The photodiode 184 in close proximity to each of the hybrid chambers 180 allows the amount of probe-target hybrid to be minimized while still producing a detectable ECL signal (see Figure 8 6). A small amount of probe-target hybrid allows the use of a small volume of hybrid chamber. The detectable amount of probe-target hybrid is less than about 270 pg (equivalent to a chamber volume of 900,000 cubic microns) prior to hybridization, and in most cases less than about 60 Picograms (equivalent to 200,000 cubic microns), typically less than about 12 pg (equivalent to 40,000 cubic microns) and less than about 2.7 pg in the case of the LOC device shown in the figures (equivalent to 9,000 cubic meters) Micron chamber volume). Of course, reducing the size of the hybrid chambers allows for a higher chamber density on the LOC device and thus more probes. In the LOC device shown, the hybrid segment has more than 100 cells in an area of 1500 microns by I5 〇〇 microns (i.e., the area of each chamber is less than 2250 square microns). Smaller volumes also reduce reaction time, making hybridization and detection faster. An additional advantage of requiring a small amount of probe in each chamber is that only a minimal amount of probe solution needs to be dispensed into each chamber during manufacture of the LOC device. In the case of the LOC 201211539 device shown in these figures, the required amount of probe can be made using 1 (Γ 12 liters or less than 12 liters of probe solution volume point). After nucleic acid amplification, boiling start Valve 108 is activated and flows along flow path 176 and into each of the hybrid chambers 180 (see Figures 52 and 124). Endpoint liquid sensor 1 78 indicates when the amplification is to be performed Sub-injecting the hybrid chambers 180 to facilitate activation of the heaters 182°
經過足夠的雜合時間之後,該光二極體1 8 4係經啓動 以準備收集ECL信號。隨後該ECL激發驅動器39 (見第 94圖)啓動該等ECL電極860和電極870持續一段預定 時間長度。於停止該ECL激發電流之後使該光二極體184 持續啓動一段短時間以使該信號雜訊比最大化。例如,若 該光二極體184持續啓動達到該冷光發光衰退週期五倍的 時間,則該信號將會衰退至該初始値的1%»該光二極體 184上的入射光係經轉換成光電流,隨後可使用CMOS電 路86測量該光電流。 增濕器及濕度感測器 第6圖之插圖AG標示該增濕器1 96之位置。該增濕 器防止於該LOC裝置301之操作期間的該等試劑與探針 之蒸發作用。最佳係如第5 5圖之放大圖所示,水貯存槽 1 8 8係與三個蒸發器丨90流體連通。於製造期間,係以分 子生物級的水注入該水貯存槽1 8 8且密封該水貯存槽1 8 8 。最佳係如第5 5與60圖所示,藉由毛細作用使水被吸入 -72- 201211539 三個下吸孔194且沿著各自的水供應通道192流至位於該 等蒸發器190處三個爲一組的上吸孔193。彎液面定住於 各個上吸孔193之處以留住水。該等蒸發器具有環形加熱 器191,該等環形加熱器環繞該等上吸孔193。該等環形 加熱器191藉由通往頂部金屬層195 (見第37圖)的導 電柱3 76而連接該CMOS電路86。當啓動時,環形加熱 器191加熱該水,而造成水份蒸發且使該裝置環境增濕。After sufficient hybridization time, the photodiode 1 8 4 is activated to prepare for the collection of ECL signals. The ECL excitation driver 39 (see Fig. 94) then activates the ECL electrodes 860 and electrodes 870 for a predetermined length of time. The photodiode 184 is continuously activated for a short period of time after the ECL excitation current is stopped to maximize the signal noise ratio. For example, if the photodiode 184 is continuously activated for five times of the luminescence luminescence decay period, the signal will decay to 1% of the initial »» the incident light on the photodiode 184 is converted into a photocurrent. The photocurrent can then be measured using CMOS circuit 86. Humidifier and Humidity Sensor The illustration AG of Figure 6 indicates the location of the humidifier 1 96. The humidifier prevents evaporation of the reagents and probes during operation of the LOC device 301. Preferably, as shown in the enlarged view of Figure 5, the water storage tank 108 is in fluid communication with the three evaporators 90. During the manufacturing process, the biological storage water is injected into the water storage tank 1 8 8 and the water storage tank 1 8 8 is sealed. Preferably, as shown in Figures 5 and 60, water is drawn into the three lower suction holes 194 of the -72-201211539 by capillary action and flows along the respective water supply channels 192 to the evaporators 190. A set of upper suction holes 193. The meniscus is positioned at each of the upper suction holes 193 to retain water. The evaporators have an annular heater 191 that surrounds the upper suction holes 193. The ring heaters 191 are connected to the CMOS circuit 86 by a conductive post 376 that leads to the top metal layer 195 (see Figure 37). When activated, the annular heater 191 heats the water, causing moisture to evaporate and humidifying the device environment.
濕度感測器232之位置亦顯示於第6圖中。然而,最 佳係如第58圖中的插圖AH之放大圖所示,該濕度感測 器具有電容梳狀結構。經微影蝕刻之第一電極296和經微 影蝕刻之第二電極298面向彼此,使得第一電極296與第 二電極298的齒交錯穿插。該等相對的電極形成具有電容 量之電容器,且可藉由CMOS電路86監視該電容器。當 濕度提高時,該等電極間之氣隙的電容率隨之提高,使得 ‘電容量亦隨之增加。濕度感測器232鄰接該雜合腔室陣列 1 1 0,於雜合腔室陣列1 1 0處進行濕度測量對於延緩溶液 (含有經曝光之探針)之蒸發作用極爲重要。 反饋感測器 溫度感測器與液體感測器係納入該L Ο C裝置3 0 1各 處,以於裝置運作期間提供反饋與診斷。參閱第3 5圖, 九個溫度感測器1 7 0分佈於該擴增區段1 1 2各處。同樣地 ’該培育區段1 1 4亦具有九個溫度感測器1 70。此等感測 器各自使用2 X 2的雙極接面電晶體(BJTs )以監測該流體 -73- 201211539 溫度且提供反饋給該CMOS電路86。CMOS電路86使用 此反饋以精確地控制該核酸擴增程序期間之熱循環及精確 地控制熱溶胞和培育期間的任何加熱作用。 於該雜合腔室180中,CMOS電路86使用該等雜合 加熱器1 82作爲溫度感測器(見第56圖該等雜合加 熱器182之電阻係溫度依賴性,且CMOS電路86利用該 電阻是溫度依賴性這點推倒出該等雜合腔室180之每個腔 室的加熱器讀値。The position of the humidity sensor 232 is also shown in Figure 6. However, as best shown in the enlarged view of the inset AH in Fig. 58, the humidity sensor has a capacitive comb structure. The lithographically etched first electrode 296 and the lithographically etched second electrode 298 face each other such that the teeth of the first electrode 296 and the second electrode 298 are interleaved. The opposing electrodes form a capacitor having a capacitance and the capacitor can be monitored by CMOS circuitry 86. As the humidity increases, the permittivity of the air gap between the electrodes increases, causing the 'capacitance to increase.' Humidity sensor 232 abuts the hybrid chamber array 110, and humidity measurement at the hybrid chamber array 110 is extremely important to retard evaporation of the solution (containing the exposed probe). Feedback Sensors Temperature sensors and liquid sensors are included in each of the L Ο C devices 310 to provide feedback and diagnostics during device operation. Referring to Figure 35, nine temperature sensors 170 are distributed throughout the amplification section 112. Similarly, the incubation section 112 also has nine temperature sensors 170. Each of these sensors uses a 2 X 2 bipolar junction transistor (BJTs) to monitor the temperature of the fluid -73 - 201211539 and provide feedback to the CMOS circuit 86. The CMOS circuit 86 uses this feedback to precisely control the thermal cycling during the nucleic acid amplification procedure and to precisely control any heating during thermal lysis and incubation. In the hybrid chamber 180, the CMOS circuit 86 uses the hybrid heaters 182 as temperature sensors (see the resistance system temperature dependence of the hybrid heaters 182 in Fig. 56, and the CMOS circuit 86 utilizes The resistance is temperature dependent, which pushes out the heater readings of each of the chambers of the hybrid chambers 180.
LOC裝置301亦具有複數個MST通道液體感測器 174和蓋層通道液體感測器208。第35圖出示一列MST 通道液體感測器1 74,該列MST通道液體感測器丨74係 位於該經加熱之微通道158的每隔一個曲流道之一末端處 。最佳係如第37圖所示,該等MST通道液體感測器174 係一對電極,該對電極係由CMOS結構86中的頂部金屬 層1 95之暴露區域所形成。液體使該等電極間之電路斷路 以指示液體出現於該感測器之位置處。 第25圖顯示蓋層通道液體感測器208之放大透視圖 。多對相對的鈦鋁(TiAl )電極21 8和220係設置於該頂 層66上。間隙222係介於該等電極218與220之間,以 於無液體時使電路保持開路。液體的存在係使該電路斷路 ,且C Μ Ο S電路8 6使用此反饋信號以監測該流體。 重力非依賴性 檢驗模組1 〇係位向非依賴性。無需爲了進行操作而 •74- 201211539 使該檢驗模組ι〇固定於平坦穩定之表面上。毛細驅動流 體流動且無通往輔助設備之外部配管,因而允許該等模組 方便攜帶且可輕易地插入同爲手提可攜式讀取器(例如行 動電話)中。具有重力非依賴性之操作方式表示該檢驗模 組於所有實際情況下亦爲加速非依賴性。該等檢驗模組耐 衝擊且耐震,且該等檢驗模組將可於正在移動中的交通工 具上或正手持行動電話時進行操作。The LOC device 301 also has a plurality of MST channel liquid sensors 174 and a capping channel liquid sensor 208. Figure 35 shows a list of MST channel liquid sensors 174 at the end of one of every other meandering channel of the heated microchannel 158. Preferably, as shown in Figure 37, the MST channel liquid sensors 174 are a pair of electrodes formed by exposed regions of the top metal layer 195 in the CMOS structure 86. The liquid breaks the circuit between the electrodes to indicate that liquid is present at the location of the sensor. Figure 25 shows an enlarged perspective view of the capping channel liquid sensor 208. A plurality of pairs of opposing titanium aluminum (TiAl) electrodes 218 and 220 are disposed on the top layer 66. A gap 222 is interposed between the electrodes 218 and 220 to keep the circuit open when there is no liquid. The presence of liquid breaks the circuit and the C Μ S circuit 86 uses this feedback signal to monitor the fluid. Gravity-independent test module 1 〇 system position independent. It is not necessary to operate it. • 74- 201211539 The test module is fixed on a flat and stable surface. The capillary drive fluid flows without external piping to the auxiliary equipment, thus allowing the modules to be easily carried and easily inserted into a portable portable reader (e.g., a mobile phone). A gravity-independent mode of operation indicates that the test module is also acceleration-independent in all practical situations. The inspection modules are shock and shock resistant, and the inspection modules will operate on a moving vehicle or while holding a mobile phone.
透析之變化型 具有防止氣泡陷落之流動通道的透析區段 下述係稱爲LOC裝置變化型VIII 518的LOC裝置具 體實施例,且該LOC裝置變化型VIII 518顯示於第64、 65、66和67圖中。此LOC裝置具有可注入流體樣本又不 會留下陷落於通道內之空氣氣泡的透析區段。LOC裝置變 化型VIII 518亦具有一層附加材料層,該材料層稱爲界 面層594。該界面層5 94係位於該蓋層通道層80與該 CMOS + MST裝置48之MST通道層100之間。該界面層 5 94允許於該等試劑貯存槽與該MST層87之間具有更複 雜的流體互連結構且不會增加矽基板84之尺寸。 參閱第65圖,旁通渠道600係經設計以於該流體樣 本從該界面廢液通道604流到該界面標靶物通道602時導 入一段時間延遲。此時間延遲允許該流體樣本流經該透析 MST通道204而到達使彎液面定住的透析上吸孔168。利 用位於從該旁通渠道600通往該界面標靶物通道602之上 -75- 201211539 吸孔處的毛細作用引動特徵(CIF ) 202,使該樣本流體從 源自透析MST通道204的所有透析上吸孔168之上游端 注入該界面標靶物通道602。A dialysis section of a dialysis variant having a flow channel for preventing bubble collapse is described below as a LOC device embodiment of LOC device variant VIII 518, and the LOC device variant VIII 518 is shown at 64, 65, 66 and 67 in the picture. This LOC device has a dialysis section that can inject a fluid sample without leaving air bubbles trapped in the channel. The LOC device variant VIII 518 also has a layer of additional material, referred to as the interface layer 594. The interface layer 5 94 is between the capping channel layer 80 and the MST channel layer 100 of the CMOS + MST device 48. The interfacial layer 5 94 allows for a more complex fluid interconnect structure between the reagent reservoirs and the MST layer 87 without increasing the size of the tantalum substrate 84. Referring to Fig. 65, the bypass channel 600 is designed to introduce a delay in the flow of the fluid sample from the interface waste channel 604 to the interface target channel 602. This time delay allows the fluid sample to flow through the dialysis MST channel 204 to the dialysis uptake 168 that holds the meniscus. The dialysis of the sample fluid from all of the dialysis MST channels 204 is utilized by a capillary action priming feature (CIF) 202 located at the suction port from the bypass channel 600 to the interface target channel 602 -75-201211539. The interface target channel 602 is injected into the upstream end of the upper suction hole 168.
無旁通渠道600時,該樣本流體仍會從該上游端注入 該界面標靶物通道6 02,但最後向前推進的彎液面抵達且 通過屬於尙未塡滿之MST通道的上吸孔,而導致空氣陷 落於該點位置。該陷落的空氣會減少通過該白血球透析區 段3 2 8的樣本流率。 核酸擴增變化型 並聯式聚合酶鏈鎖反應 LOC裝置之數種變化型具有多個以並聯方式運作的擴 增區段。例如,第63圖顯示之LOC裝置變化型VII 492 具有多個並聯的擴增區段1 1 2 . 1〜1 1 2.4,該等並聯的擴增 區段1 1 2.1〜1 1 2.4允許同時執行多個核酸擴增分析檢驗。Without the bypass channel 600, the sample fluid will still be injected from the upstream end of the interface target channel 62, but finally the forward advancing meniscus arrives and passes through the upper suction hole belonging to the unfilled MST channel. , causing the air to fall at this point. This trapped air reduces the sample flow rate through the leukocyte dialysis section 3 28 . Nucleic Acid Amplification Variants Parallel Polymerase Chain Reactions Several variants of LOC devices have multiple expansion sections that operate in parallel. For example, the LOC device variant VII 492 shown in Fig. 63 has a plurality of parallel amplification sections 1 1 2 2 . 1 to 1 1 2.4, and the parallel amplification sections 1 1 2.1 to 1 1 2.4 allow simultaneous execution Multiple nucleic acid amplification analysis tests.
第82圖顯示之LOC裝置變化型XI 746亦具有多個 並聯的擴增區段112.1〜112.4,但額外具有多個並聯之培 育區段1 1 4.1〜1 Μ . 4,使得該樣本可於進行擴增之前先經 不同處理。其他LOC裝置變化型(例如第69圖槪要顯示 之LOC裝置變化型XIV 641 )說明該複數個並聯的擴增區 段可爲「X」個,此數目僅受限於LOC裝置之尺寸大小。 LOC裝置越大可容納越多個並聯的擴增反應區段。 該等分開的擴增區段可經配置以針對特定標靶物大小 或特定之擴增混合物組成實施不同的循環次數及/或溫度 -76- 201211539The LOC device variant XI 746 shown in Fig. 82 also has a plurality of parallel amplification sections 112.1 to 112.4, but additionally has a plurality of parallel incubation sections 1 1 4.1~1 Μ . 4 , so that the sample can be performed Different treatments are performed before amplification. Other LOC device variations (e.g., LOC device variant XIV 641 to be shown in Figure 69) indicate that the plurality of parallel amplified segments can be "X", which is limited only by the size of the LOC device. The larger the LOC device, the more multiple amplification reaction segments can be accommodated in parallel. The separate amplification segments can be configured to perform different cycles and/or temperatures for a particular target size or a particular amplification mixture composition -76-201211539
。藉由數個平行運行的擴增區段,該LOC裝置可於各個 區段中執行多重式核酸擴增法或單重式核酸擴增法。於多 重式核酸擴增中,係使用一對以上之引子擴增一個以上的 標靶序列。具有「m」個腔室的並聯式核酸擴增系統可執 行相當於η重的擴增反應,其中n = n(l)+n(2)+n(3)+·.· + n(m),且n(i)係表示在用於該多重式擴增反應之不同引 子對中欲用於腔室「i」之引子號碼,且需謹記該並聯式 擴增系統中之信號雜訊比(SNR )係高於在單腔室系統中 執行η韋式擴增反應之信號雜訊比。當於n(i) =1的特 殊情況下,腔室[i]中的擴增反應正好成爲單重式擴增反應 串接式聚合酶鏈鎖反應. The LOC device can perform a multiplex nucleic acid amplification method or a single nucleic acid amplification method in each segment by a plurality of amplification segments operating in parallel. In multi-nucleic acid amplification, more than one target sequence is amplified using one or more primers. A parallel nucleic acid amplification system having "m" chambers can perform an amplification reaction equivalent to η weight, where n = n(l)+n(2)+n(3)+·.· + n(m And n(i) indicates the primer number to be used for the chamber "i" in the different primer pairs used for the multiplex amplification reaction, and it is necessary to keep in mind the signal noise in the parallel amplification system. The ratio (SNR) is higher than the signal-to-noise ratio of the η-wei amplification reaction performed in a single-chamber system. In the special case of n(i) =1, the amplification reaction in chamber [i] is just a single amplification reaction.
該等圖式中之第70、71、72、73和74圖槪要說明裝 置內之擴增區段112.1和112.2採串聯運作的LOC裝置。 該第一擴增區段112.1包含擴增混合物之試劑貯存槽60.1 及聚合酶之兩個試劑貯存槽62.1。加於該初始區段之後的 每個擴增區段亦包含兩個試劑貯存槽,擴增混合物之貯存 槽6〇.2和聚合酶之貯存槽62.2。 串聯的多個擴增區段允許進行串接式PCR分析檢驗 ’使得該第一擴增區段112.1係用於進行預擴增反應( Pre-amplification )以提高於區段112.2中執行後續核酸 擴增反應之靈敏度。串聯之多個擴增區段亦可用於進行巢 式聚合酶鏈鎖反應(PCR)。 -77- 201211539Figures 70, 71, 72, 73 and 74 of the drawings illustrate the LOC devices operating in series with the amplification sections 112.1 and 112.2 in the apparatus. The first amplification section 112.1 comprises a reagent storage tank 60.1 of the amplification mixture and two reagent storage tanks 62.1 of the polymerase. Each of the amplification sections applied after the initial section also contains two reagent storage tanks, a storage tank of the amplification mixture 6〇.2 and a storage tank 62.2 of the polymerase. Multiple amplification segments in series allow for tandem PCR analysis to verify that the first amplification segment 112.1 is used to perform a pre-amplification reaction to enhance subsequent nucleic acid expansion in segment 112.2 Increase the sensitivity of the reaction. Multiple amplification segments in tandem can also be used to perform nested polymerase chain reaction (PCR). -77- 201211539
在用於預擴增之串接式PCR中,第一擴增區段112.1 係擴增該含有標靶序列之樣本內的核酸序列。此擴增反應 無需對該標靶序列具有專一性(例如,全基因體之擴增反 應),但此擴增反應確實提高該標靶序列之濃度。進行預 擴增反應之後’使該樣本與源自貯存槽60.2和貯存槽 62.2的試劑混合且隨後使該樣本混合物流入第二擴增區段 112.2。儲存於貯存槽60.2中的該等試劑包含僅會擴增該 經預擴增之樣本混合物中之標靶序列的專一性探針。應注 意亦可採用如第一擴增階段或第二擴增階段中以恆溫技術 取代PCR的類似方法以達到預擴增之諸多優點。In tandem PCR for pre-amplification, the first amplification segment 112.1 amplifies the nucleic acid sequence within the sample containing the target sequence. This amplification reaction does not require specificity for the target sequence (e.g., amplification reaction of the whole genome), but the amplification reaction does increase the concentration of the target sequence. After the pre-amplification reaction is carried out, the sample is mixed with the reagents derived from the storage tank 60.2 and the storage tank 62.2 and then the sample mixture is flowed into the second amplification section 112.2. The reagents stored in reservoir 60.2 comprise specific probes that only amplify the target sequences in the preamplified sample mixture. It should be noted that similar methods of replacing PCR with a thermostatic technique, such as the first amplification phase or the second amplification phase, can also be employed to achieve the advantages of pre-amplification.
巢式PCR係一種特殊形式的串接式PCR法,此方法 具有高標靶專一性之附加優點。於巢式PCR法中,第一 擴增區段112.1內的核酸擴增步驟係藉著使用引子擴增一 段長度比該最終標靶序列要大的序列,該等引子係形成該 貯存槽60.1內所儲存之擴增混合試劑的一部分,且該等 引子係與標靶序列外側處的區域互補。第一擴增區段 1 12.1中之反應生成由標靶序列加上夾擊區序列(flanking section )所組成的擴增子。此經擴增之混合物係與源自貯 存槽60.2之試劑和源自貯存槽62.2之聚合酶混合。儲存 於貯存槽60.2中的該等試劑包含與該標靶序列兩末端處 之位置(即,源自第一擴增階段之擴增子的子區序列)互 補的引子。當於第二擴增區段112.2中執行核酸擴增反應 時,由於源自第一擴增階段的擴增子濃度遠大於原始樣本 分子之濃度,因此在與該標靶物無關之序列位置處發生擴 -78- 201211539 增反應的機率大幅減小。當利用序列專一性恒溫擴增技術 取代該等PCR擴增階段之其中一個階段或兩個階段時, 亦能達成巢式PCR法的靈敏度與專一性之優點。Nested PCR is a special form of tandem PCR that has the added advantage of high target specificity. In the nested PCR method, the nucleic acid amplification step in the first amplification section 112.1 is to use a primer to amplify a sequence having a length greater than the final target sequence, and the primers are formed in the storage tank 60.1. A portion of the amplified amplification reagent is stored, and the primers are complementary to the region at the outside of the target sequence. The reaction in the first amplification segment 1 12.1 produces an amplicon consisting of the target sequence plus a flanking section. This amplified mixture is mixed with a reagent derived from storage tank 60.2 and a polymerase derived from storage tank 62.2. The reagents stored in storage tank 60.2 comprise primers that complement the position at both ends of the target sequence (i.e., the sequence of sub-regions derived from the amplicon of the first amplification stage). When performing a nucleic acid amplification reaction in the second amplification section 112.2, since the concentration of the amplicon derived from the first amplification stage is much larger than the concentration of the original sample molecule, at a sequence position unrelated to the target The probability of an increase in the -78-201211539 increase is greatly reduced. The sensitivity and specificity of the nested PCR method can also be achieved when one or both of these PCR amplification stages are replaced by sequence-specific thermostatic amplification techniques.
分開儲存聚合酶且單獨地添加聚合酶於該樣本混合物 中的優點在於可爲預擴增步驟和最終核酸擴增步驟選用不 同的聚合酶。例如,此做法允許爲預擴增步驟選用一種低 錯誤率(例如’可校讀)的聚合酶以防止創造出含錯誤之 標靶序列或不正確之標靶序列,同時允許於最終擴增步驟 中使用較高速或更耐溫的聚合酶。 直接式聚合酶鏈鎖反應 傳統上,於製備反應混合物之前,PCR需要進行標靶 DNA的大規模純化。然而,藉著適當改變化學試劑與樣 本濃度,可能藉由最小程度的D N A純化便能執行核酸擴 增或可直接進行擴增。當核酸擴增方法是PCR法時,此 種方法稱爲直接式PCR。於受控制之恆定溫度下執行核酸 擴增的LOC裝置中,該方法係直接恆溫擴增法。於LOC 裝置中使用直接核酸擴增技術(特別是有關簡化所需流體 設計方面)具有相當多的優點。針對直接PCR或直接恆 溫擴增法之擴增化學試劑的調整包括提高緩衝強度、使用 具有高活性和高持續性之聚合酶及可與聚合酶抑制劑螯合 之添加劑。稀釋存在於樣本中的抑制劑亦相當重要。 爲利用直接核酸擴增技術之優勢,該LOC裝置設計 納入兩個附加特徵。第一種特徵係試劑貯存槽(例如第8 -79- 201211539The advantage of separately storing the polymerase and separately adding the polymerase to the sample mixture is that different polymerases can be selected for the pre-amplification step and the final nucleic acid amplification step. For example, this approach allows for a low error rate (eg, 'readable') polymerase for the preamplification step to prevent the creation of a faulty target sequence or an incorrect target sequence while allowing for the final amplification step. Use a higher speed or temperature resistant polymerase. Direct Polymerase Chain Reactions Traditionally, PCR requires large-scale purification of target DNA prior to preparation of the reaction mixture. However, by appropriately changing the chemical reagent and the sample concentration, it is possible to perform nucleic acid amplification or directly perform amplification by minimizing D N A purification. When the nucleic acid amplification method is a PCR method, this method is called direct PCR. In a LOC device that performs nucleic acid amplification at a controlled constant temperature, the method is a direct isothermal amplification method. The use of direct nucleic acid amplification techniques in LOC devices, particularly in terms of simplifying the required fluid design, has considerable advantages. Adjustments to amplification chemistries for direct PCR or direct constant temperature amplification include increasing buffer strength, using polymerases with high activity and high persistence, and additives that can be chelated with polymerase inhibitors. It is also important to dilute the inhibitor present in the sample. To take advantage of direct nucleic acid amplification techniques, the LOC device design incorporates two additional features. The first feature is a reagent storage tank (eg, 8 - 79 - 201211539
圖之貯存槽58),該貯存槽具有適當尺寸以供應足量的 擴增反應混合物或稀釋劑,使得可能干擾擴增化學試劑之 樣本成分的最終濃度夠低以允許成功地進行核酸擴增。非 細胞性樣本成分的期望稀釋程度係介於5倍至20倍。可 於適當時機使用不同的LOC結構(例如第4圖中之病原 透析區段70 )以確保標靶核酸序列的濃度維持在可進行 擴增和偵測的夠高濃度》於此具體實施例中(進一步繪示 於第6圖),係於該樣本萃取區段290之上游處採用透析 區段,該透析區段係有效濃縮該些小到足以進入擴增區段 292的病原且剔除較大細胞而使該較大細胞進入廢料貯存 槽76。於另一具體實施例中,透析區段係選擇性地剔除 血漿中的蛋白質和鹽類,同時留下所關注之細胞。The storage tank 58) is suitably sized to supply a sufficient amount of amplification reaction mixture or diluent such that the final concentration of sample components that may interfere with the amplification chemical is low enough to allow for successful nucleic acid amplification. The expected dilution of non-cellular sample components is between 5 and 20 times. Different LOC structures (e.g., pathogenic dialysis section 70 in Figure 4) can be used at appropriate times to ensure that the concentration of the target nucleic acid sequence is maintained at a sufficiently high concentration for amplification and detection. In this particular embodiment (further depicted in Figure 6), a dialysis section is employed upstream of the sample extraction section 290, which effectively concentrates the pathogens small enough to enter the amplification section 292 and rejects larger cells The larger cells are brought into the waste storage tank 76. In another embodiment, the dialysis section selectively rejects proteins and salts in the plasma while leaving the cells of interest.
該第二種LOC結構特徵(用於支援直接核酸擴增之 特徵)係通道深寬比之設計,以調整該樣本與該等擴增混 合物成分之間的混合比例。例如,爲確保可通過單次混合 步驟使該樣本帶來之抑制劑較佳稀釋5倍〜20倍,該等樣 本通道與試劑通道的長度和截面係經設計,使得位於該混 合作用啓始位置上游的該樣本通道之流動阻抗比該試劑混 合物所流經之通道的流動阻抗要大4倍〜1 9倍。可透過控 制該設計之幾何結構而輕易地達到控制微通道中之流動阻 抗。對於恆定截面而言,微通道之流動阻抗係隨著通道長 度呈線性遞增。混合設計的重點是,微通道中的流動阻抗 更主要取決於最小之截面尺寸。例如,當微通道之深寬比 不一致,具有矩形截面之微通道的流動阻抗係與最小垂直 • 80 - 201211539 尺寸之立方成反比。 反轉錄酶-聚合酶鏈鎖反應(RT-PCR)The second LOC structural feature (characteristic for supporting direct nucleic acid amplification) is a channel aspect ratio design to adjust the mixing ratio between the sample and the components of the amplification mixture. For example, to ensure that the inhibitor of the sample is preferably diluted 5 to 20 times by a single mixing step, the length and cross section of the sample channel and the reagent channel are designed such that the mixing action is initiated. The flow impedance of the upstream sample channel is 4 to 19 times greater than the flow impedance of the channel through which the reagent mixture flows. The flow resistance in the control microchannel can be easily achieved by controlling the geometry of the design. For a constant cross section, the flow impedance of the microchannel increases linearly with channel length. The focus of the hybrid design is that the flow impedance in the microchannel is more dependent on the smallest cross-sectional dimension. For example, when the aspect ratios of microchannels are inconsistent, the flow impedance of a microchannel with a rectangular cross section is inversely proportional to the cube of the smallest vertical • 80 - 201211539 size. Reverse transcriptase-polymerase chain reaction (RT-PCR)
當欲分析或萃取之樣本核酸物種係RNA時,例如源 自RNA病毒之RNA或訊息RNA,進行PCR擴增之前, 首先需使該RNA反轉錄成互補DNA ( cDNA )。可在與進 行PCR相同的腔室中執行反轉錄反應(單步驟式rt-PCR ),或該反轉錄反應可作爲獨立初始反應(雙步驟式RT-PCR)而執行。於本案所述之該等LOC裝置變化型中,可 藉著使反轉錄酶連同聚合酶一同加入試劑貯存槽62中, 且程式化該等加熱器154以執行先進行反轉錄步驟且隨後 進行核酸擴增步驟之循環,便可簡單地執行單步驟式RT-PCR。藉著利用該培育區段114及利用該試劑貯存槽58 儲存且分配該等緩衝液、引子、dNTP和反轉錄酶進行反 轉錄步驟,且隨後利用一般方法於擴增區段1 1 2中進行擴 增,亦可輕易地達成雙步驟式RT-PCR。 恆溫核酸擴增法 對於某些應用而言,恆溫核酸擴增法係較佳的核酸擴 增方法,因此免除使該等反應成分重複循環,經歷各種溫度 循環的需要,取而代之的是使該擴增區段保持一個恆定溫 度(通常約37°C〜41°C)。前述已揭示多種恆溫核酸擴增 方法,包括鏈置換擴增法(SDA )、轉錄介導擴增法( TMA)、核酸序列依賴性擴增法(NASBA )、重組酶聚合 -81 - 201211539 酶擴增法(RPA )、解旋酶依賴性恆溫DNA擴增法( HDA)、滾環擴增法(RCA)、分枝擴增法(ramification amplification,RAM )和環形核酸介導擴增法(LAMP ) ’且於本案所述之LOC裝置的特定具體實施例中可採用 此等方法之任意一者或其他恆溫擴增方法。When the sample nucleic acid species RNA to be analyzed or extracted, such as RNA or message RNA derived from RNA virus, is first subjected to PCR amplification, the RNA is first reverse transcribed into complementary DNA (cDNA). The reverse transcription reaction (single-step rt-PCR) can be performed in the same chamber as the PCR, or the reverse transcription reaction can be performed as an independent initial reaction (two-step RT-PCR). In the variants of the LOC devices described in the present application, the reverse transcriptase can be added to the reagent storage tank 62 together with the polymerase, and the heaters 154 can be programmed to perform the reverse transcription step followed by the nucleic acid. A single-step RT-PCR can be performed simply by cycling through the amplification step. The reverse transcription step is carried out by using the incubation section 114 and storing and dispensing the buffer, primer, dNTP and reverse transcriptase using the reagent storage tank 58, and then performing the amplification in the amplification section 1 1 2 by a general method. Amplification can also easily achieve two-step RT-PCR. Thermostatic Nucleic Acid Amplification Method For some applications, the constant temperature nucleic acid amplification method is a preferred nucleic acid amplification method, thereby eliminating the need to repeat the cycle of the reaction components, undergoing various temperature cycles, and instead making the amplification The section is maintained at a constant temperature (typically about 37 ° C to 41 ° C). A variety of thermostatic nucleic acid amplification methods have been disclosed, including strand displacement amplification (SDA), transcription-mediated amplification (TMA), nucleic acid sequence-dependent amplification (NASBA), and recombinant enzyme polymerization -81 - 201211539 Addition (RPA), helicase-dependent isothermal DNA amplification (HDA), rolling circle amplification (RCA), ramification amplification (RAM), and circular nucleic acid-mediated amplification (LAMP) And any one of these methods or other isothermal amplification methods may be employed in a particular embodiment of the LOC device described herein.
爲執行恆溫核酸擴增,與擴增區段鄰接的該等試劑貯 存槽60與試劑貯存槽62中將裝入適用於進行所述恆溫法 的試劑’以替代PCR擴增混合物和聚合酶。例如,爲進 行鏈置換擴增法(S D A ),試劑貯存槽6 0含有擴增緩衝 液、引子和dNTP,且試劑貯存槽62含有適當的切口酶( nickase)和外聚- DNA 聚合酶(exo-DNA polymerase)。 爲進行重組酶聚合酶擴增法(RPA ),試劑貯存槽60含 有擴增緩衝液、引子、dNTP和重組酶,且試劑貯存槽62 含有鏈置換DNA聚合酶(例如,5^ )。同樣地,爲進行 解旋酶依賴性恆溫DNA擴增法(HDA ),試劑貯存槽60 含有擴增緩衝液、引子和dNTP,且試劑貯存槽62含有適 合的DNA聚合酶和取代加熱用於解開雙股DNA鏈的解旋 酶。熟悉該項技藝者將理解可於該兩個試劑貯存槽之間採 任何適合進行核酸擴增法的方式分配該等必要試劑。 由於核酸序列依賴性擴增法(NASBA )或轉錄介導擴 增法(TMA)無需先把RNA轉錄成cDNA,因此NASBA 法或TMA法係合適用於擴增源自RNA病毒(例如HIV病 毒或C型肝炎病毒)的病毒核酸。於此範例中,試劑貯存 槽60中係裝入擴增緩衝液、引子和dNTP,且試劑貯存槽 -82-To perform the thermostatic nucleic acid amplification, the reagent storage tank 60 and the reagent storage tank 62 adjacent to the amplification section are loaded with a reagent 'supplied for performing the constant temperature method to replace the PCR amplification mixture and the polymerase. For example, to perform strand displacement amplification (SDA), reagent storage tank 60 contains amplification buffer, primers, and dNTPs, and reagent storage tank 62 contains appropriate nickase and exo-DNA polymerase (exo) -DNA polymerase). For performing recombinase polymerase amplification (RPA), reagent storage tank 60 contains amplification buffer, primers, dNTPs, and recombinase, and reagent storage tank 62 contains a strand displacement DNA polymerase (e.g., 5^). Similarly, to perform helicase-dependent isothermal DNA amplification (HDA), reagent storage tank 60 contains amplification buffer, primers, and dNTPs, and reagent storage tank 62 contains suitable DNA polymerase and substitution heating for solution. Open the double-stranded DNA strand helicase. Those skilled in the art will appreciate that such necessary reagents can be dispensed between the two reagent reservoirs in any manner suitable for nucleic acid amplification. Since nucleic acid sequence-dependent amplification (NASBA) or transcription-mediated amplification (TMA) does not require transcription of RNA into cDNA, NASBA or TMA is suitable for amplification of RNA viruses (eg HIV or Viral nucleic acid of hepatitis C virus). In this example, the reagent reservoir 60 is filled with amplification buffer, primer and dNTP, and the reagent storage tank -82-
201211539 62中裝入RN A聚合酶、反轉錄酶和隨意選用的RN A polymerase, reverse transcriptase and randomly selected in 201211539 62
I 酶 H ( RNase Η )。 對於某些形式的恆溫核酸擴增法而言,於維 溫核酸擴增法的溫度之前,可能需要具有初始變 使該雙鏈DNA模板分開。由於可藉由該等擴 158內的加熱器154謹慎地控制該擴增區段1 12 物之溫度(見第14圖),因此於本案所述LOC 有具體實施例中皆可輕易達成此步驟。 恆溫核酸擴增法更能忍受該樣本中潛在的抑 如上述般,恆溫核酸擴增法通常適用於當希望以 行直接核酸擴增反應之時。因此,恆溫核酸擴增 別適用於LOC裝置變化型XLIII 673、LOC裝 XLIV 674和 LOC裝置變化型 XLVII 677,該 673、674和677係分別顯示於第79、80和81 式恆溫擴增法亦可與如第79和8 1圖所示之一個 上的擴增前透析步驟70、686或682及/或如舞 示之雜合前透析步驟682合倂使用,以分別於進 增反應之茚幫助部分濃縮該樣本中的標靶細胞或 進入雜合腔室陣列1 1 〇之前先去除不想要的細胞 屬技術領域中熟悉該項技藝者將理解可使用上述 析步驟和雜合前透析步驟之任意組合。 亦可於並聯的多個擴增區段(如第63、68牙 要繪示之擴增區段)內執行恆溫核酸擴增法,許 恆溫核酸擴增方法(例如’環形核酸介導擴增艺I enzyme H ( RNase Η ). For some forms of thermophilic nucleic acid amplification, it may be necessary to have an initial change to separate the double-stranded DNA template prior to the temperature of the Wiver nucleic acid amplification method. Since the temperature of the amplification section 12 can be carefully controlled by the heater 154 in the extension 158 (see Figure 14), this step can be easily achieved in the specific embodiment of the LOC described in the present application. . The thermostatic nucleic acid amplification method is more tolerant of the potential in the sample. As described above, the thermostatic nucleic acid amplification method is generally suitable when it is desired to perform a direct nucleic acid amplification reaction. Therefore, thermostatic nucleic acid amplification is applicable to both LOC device variant XLIII 673, LOC XLIV 674 and LOC device variant XLVII 677, which are shown in the 79, 80 and 81 isothermal amplification methods, respectively. The pre-amplification dialysis step 70, 686 or 682 and/or the pre-hybrid pre-dialysis step 682 as shown in Figures 79 and 81 may be used in combination with the dialysis step 682, respectively. Helping to partially concentrate the target cells in the sample or to enter the heterozygous chamber array 1 1 〇 to remove unwanted cells. Those skilled in the art will appreciate that the above-described precipitation step and pre-hybridization dialysis step can be used. random combination. The thermostatic nucleic acid amplification method can also be performed in multiple amplification sections in parallel (such as the amplification section to be shown in the 63th and 68th teeth), and the constant temperature nucleic acid amplification method (for example, 'circular nucleic acid-mediated amplification art
RNA水解 持進行恆 性循環以 增微通道 內的混合 裝置之所 制劑,且 該樣本進 法有時特 置變化型 等變化型 圖。直接 或一個以 > 8 0圖所 行核酸擴 於該樣本 殘渣。所 擴增前透 □ 69圖槪 多或某些 t ( LAMP •83- 201211539 ))係與初始的反轉錄步驟兼容以用於擴增RNA。 光二極體RNA hydrolysis is carried out in a constant cycle to increase the preparation of the mixing device in the microchannel, and the sample is sometimes subjected to variations such as a variant. Directly or one of the nucleic acids in the > 80 plot is extended to the sample residue. Pre-amplification 69 69 Figure 槪 More or some t (LAMP • 83- 201211539 )) is compatible with the initial reverse transcription step for amplification of RNA. Light diode
第54圖顯示整合於LOC裝置301之CMOS電路86 中的光二極體184。光二極體184係製成CMOS電路86 的一部分,而無需附加遮罩或步驟。此爲CM0S*二極體 明顯勝於C C D的優勢(C C D係一種替代性的感測技術’ 使用非標準處理步驟可把CCD整合於同一個晶片上或製 造於鄰近的晶片上)。晶片上偵測法係低成本且可縮小該 分析檢驗系統之尺寸。較短之光學路徑長度可減小源自周 遭環境之雜訊,以達到有效收集螢光信號且免除對於由透 鏡和濾波器所組成之傳統光學組件的需求。Figure 54 shows the photodiode 184 integrated in the CMOS circuit 86 of the LOC device 301. Light diode 184 is formed as part of CMOS circuit 86 without the need for additional masking or steps. This is the advantage of the CM0S* diode over C C D (C C D is an alternative sensing technique that uses a non-standard processing step to integrate the CCD on the same wafer or on an adjacent wafer). The on-wafer detection method is low cost and can reduce the size of the analytical inspection system. The shorter optical path length reduces noise from ambient environments for efficient collection of fluorescent signals and eliminates the need for conventional optical components consisting of lenses and filters.
光二極體184之量子效率係光子撞擊於該光二極體 184之主動區185上而有效轉換成光電子之比例。對於標 準矽製程而言,視製程參數(例如,覆蓋層之數量和吸收 性質)而定,針對可見光之量子效率係介於0.3至0.5。 光二極體1 84之偵測臨界値決定所能偵測到之螢光信 號的最小強度。該偵測臨界値亦決定光二極體1 84之尺寸 且從而決定該雜合與偵測區段52中的雜合腔室180之數 目(見第52圖)。腔室的尺寸和數目係技術性參數,該 等技術性參數受限於LOC裝置之尺寸(於LOC裝置301 之例子中,該尺寸係1 7 6 0微米X 5 8 2 4微米)和納入其他 功能模組(例如病原透析區段7 0及擴增區段1 1 2 )之後 可獲得的實際佔地面積。 -84- 201211539 對於標準矽製程而言,光二極體1 84偵測最少5個光 子。然而,爲確保可靠地偵測,該最少値可設定爲1 0個 光子。因此,如上述具有介於0.3〜0.5的量子效率而言, 源自該等探針的螢光釋放光必需最少爲1 7個光子,但爲 了達成可靠偵測可納入適當誤差範圍而爲30個光子。 作爲替代性偵測方法之電致化學發光法The quantum efficiency of the photodiode 184 is caused by photons impinging on the active region 185 of the photodiode 184 to be efficiently converted into photoelectrons. For standard 矽 process, the quantum efficiency for visible light ranges from 0.3 to 0.5 depending on process parameters (for example, the number of cover layers and the absorption properties). The detection threshold of the photodiode 1 84 determines the minimum intensity of the fluorescent signal that can be detected. The detection threshold also determines the size of the photodiode 184 and thereby determines the number of hybrid chambers 180 in the hybrid and detection section 52 (see Figure 52). The size and number of chambers are technical parameters that are limited by the size of the LOC device (in the case of LOC device 301, which is 1 760 microns x 5 8 2 4 microns) and incorporates other The actual footprint available after the functional module (eg, pathogen dialysis section 70 and amplification section 1 1 2). -84- 201211539 For standard 矽 process, photodiode 1 84 detects a minimum of 5 photons. However, to ensure reliable detection, the minimum 値 can be set to 10 photons. Therefore, as described above with a quantum efficiency of 0.3 to 0.5, the fluorescent light emitted from the probes must have a minimum of 17 photons, but 30 can be included in the appropriate error range for reliable detection. Photon. Electrochemiluminescence as an alternative detection method
電致化學發光(ECL )涉及於電極表面處生成多種物 種且隨後該等物種經歷電子轉移反應以形成會發光之激發 態。電致化學發光法與一般化學發光法之差異在於電致化 學發光法依賴於電極處使冷光發光基團或共反應物進行氧 化或還原反應而生經激發之物種。於本案內容中,共反應 物(coreactant)係添加於ECL溶液中之附加試劑,該共 反應物可增進ECL發光效率。於一般化學發光法中,純 粹透過多種適當試劑之混合而生成該等經激發之物種。該 發光原子或錯合物傳統上係稱爲冷光發光基團。簡言之, ECL法係仰賴生成激發態的冷光發光基團,且於生成激發 態的冷光發光基團之時將射出光子。當利用任何此類方法 時,可能採取另一種方法取消該激發態而導致不會發生期 望的發光作用(即,消光作用)。 使用ECL法取代螢光偵測法的檢驗模組具體實施例Electrochemiluminescence (ECL) involves the formation of a variety of species at the surface of the electrode and subsequent exposure of the species to an electron transfer reaction to form an excited state that illuminates. The difference between electrochemiluminescence and general chemiluminescence is that electrochemiluminescence relies on species that are excited by oxidation or reduction of the luminescent group or co-reactant at the electrode. In the present context, a coreactant is an additional reagent added to an ECL solution that enhances ECL luminescence efficiency. In general chemiluminescence, the excited species are produced by a mixture of various suitable reagents. The luminescent atom or complex is conventionally referred to as a luminescent group. In short, the ECL method relies on the formation of an illuminating luminescent group in an excited state, and will emit photons when an luminescent layer of an excited state is generated. When utilizing any such method, another method may be employed to cancel the excited state resulting in a desired luminescence (i.e., matting). A specific example of an inspection module using the ECL method instead of the fluorescence detection method
I 不無需使用激發LED。於該等雜合腔室內製造電極以提供I don't need to use an excitation LED. Fabricating electrodes in the hybrid chambers to provide
I 用於發生ECL的電脈衝,且使用該光感測器44偵測該等 光子。該電脈衝之持續時間和電壓係受控制;於某些具體 -85- 201211539 實施例中,係利用控制電流以代替控制電壓。 冷光發光基團及消光基團I is used to generate an electrical pulse of the ECL, and the photosensor 44 is used to detect the photons. The duration and voltage of the electrical pulse are controlled; in some specific embodiments, the control current is used instead of the control voltage. Cold light emitting group and extinction group
前述用於探針中以作爲螢光報導基團的釕錯合物 [Ru(bpy)3]2 +亦可用於該等雜合腔室內的ECL反應中以作 爲冷光發光基團,且使用TPrA (三-正丙胺, (CH3CH2-CH2)3N )作爲共反應物。共反應物ECL之優點 係於發射光子之後不會消耗冷光發光基團,且該等試劑可 供該方法重複使用。再者,該[Ru(bpy)3]2 + /TPrA ECL系 統於水溶液中在具生理意義之酸鹼値(pH )條件下提供 良好的信號強度。可與釕錯合物倂用且產生與TPrA相等 或更佳結果的共反應物係 N- 丁基二乙醇胺(N-butyldoethanolamine)及 2-(二丁 胺基)乙醇(2-( dibutyl amino ) ethanol ) 〇The aforementioned ruthenium complex [Ru(bpy)3]2 + used as a fluorescent reporter in the probe can also be used in the ECL reaction in the hybrid chambers as a luminescent light-emitting group, and using TPrA (Tri-n-propylamine, (CH3CH2-CH2)3N) as a co-reactant. The advantage of the co-reactant ECL is that it does not consume luminescence luminescent groups after the emission of photons, and such reagents can be reused for this method. Furthermore, the [Ru(bpy)3]2 + /TPrA ECL system provides good signal intensity in aqueous solution under physiologically acidic pH conditions. A co-reactant system N-butyldoethanolamine and 2-(dibutylamino) ethanol which can be used in combination with ruthenium complexes and produce results equal to or better than TPrA. Ethanol ) 〇
第84圖說明於ECL處理期間發生的該等反應,於該 ECL處理中[RU(bpy)3]2 + 係該冷光發光基團 864 且TPrA係 該共反應物8 66。於[Ru(bpy)3]2 + /TPrA ECL系統中,係於 陽極(anode ) 860處發生[Ru(bpy)3]2 +與TPrA兩者之氧 化反應後跟著發生化學電致發光發光作用8 62。該等反應 如下: -86- (1)201211539Figure 84 illustrates the reactions that occur during ECL processing in which [RU(bpy)3]2+ is the luminescent light-emitting group 864 and TPrA is the co-reactant 866. In the [Ru(bpy)3]2 + /TPrA ECL system, the oxidation reaction of [Ru(bpy)3]2 + and TPrA occurs at the anode 860 followed by chemical electroluminescence. 8 62. These reactions are as follows: -86- (1)201211539
Ru(bpy)32+ -e' Ru(bpy)33+ TPrA -e -> [TPrA*]+ TPrA* + H+Ru(bpy)32+ -e' Ru(bpy)33+ TPrA -e -> [TPrA*]+ TPrA* + H+
Ru(bpy)33+ +TPrA· —^ Ru(bpy)3'2+ + 產物 Ru(bpy)3,2+ -> Ru(bpy)32+ +huRu(bpy)33+ +TPrA·^^ Ru(bpy)3'2+ + product Ru(bpy)3,2+ -> Ru(bpy)32+ +hu
相對於Ag/AgCl參考電極而言,該釋放光862之波長 係約620奈米,且該陽極電位係約1.1伏特(V )。對於 [Ru(bpy)3]2 + /TPrA ECL系統,前述黑洞式消光基團( BHQ2 )或愛荷華黑消光基團RQ之任一者可爲適合的消 光基團。於本案所述之具體實施例中,該消光基團係一種 於最初即接附於該探針上的官能基團,但於其他具體實施 例中該消光基團亦可作爲自由存在於溶液中的獨立分子。 用於ECL偵測之雜合探針The wavelength of the release light 862 is about 620 nm with respect to the Ag/AgCl reference electrode, and the anode potential is about 1.1 volts (V). For the [Ru(bpy)3]2 + /TPrA ECL system, any of the aforementioned black hole type matting group (BHQ2) or Iowa black extinction group RQ may be a suitable extinction group. In a specific embodiment described in the present invention, the matting group is a functional group attached to the probe initially, but in other embodiments the extinction group may also be freely present in the solution. Independent molecule. Hybrid probe for ECL detection
(2) (3) (4) 第101和102圖顯示雜合敏感性ECL探針23 7。此等 探針通常稱爲分子信標且爲幹-環狀探針,此等探針係由 單鏈核酸生成,且當該等探針與互補核酸雜合時會發出冷 光。第101圖顯示與標靶核酸序列238雜合前的單個ECL 探針237。該探針具有環部2 40、主幹2 42、位於5,端的 冷光發光基團864及位於端的消光基團248。該環部 240係由與該標靶核酸序列23 8互補的序列所組成。位於 該探針序列兩側上的互補序列黏合在一起而形成該主幹 242 〇 -87- 201211539 當缺乏互補之標靶序列時,該探針保持如第101圖所 示之閉合狀。該主幹242使該冷光發光基團與消光基團之 配對保持彼此靠近,使得該冷光發光基團與該消光基團之 間可發生顯著的共振能量轉移,而實質消除該冷光發光基 團經電致化學激發後的發光能力。(2) (3) (4) Figures 101 and 102 show heterozygous sensitive ECL probes 23 7 . Such probes are commonly referred to as molecular beacons and are dry-loop probes that are produced from single-stranded nucleic acids and that emit cold light when the probes are hybridized to complementary nucleic acids. Figure 101 shows a single ECL probe 237 prior to hybridization with the target nucleic acid sequence 238. The probe has a ring portion 420, a stem 242, a luminescent light-emitting group 864 at the 5' end, and a matting group 248 at the end. The loop portion 240 is composed of a sequence complementary to the target nucleic acid sequence 238. Complementary sequences located on both sides of the probe sequence are fused together to form the backbone 242 87 -87 - 201211539 When a complementary target sequence is lacking, the probe remains closed as shown in Figure 101. The stem 242 keeps the pair of the luminescent group and the extinction group close to each other, so that significant resonance energy transfer can occur between the luminescent group and the extinction group, and the luminescence group is substantially eliminated. Luminescence ability after chemical excitation.
第102圖顯示ECL探針23 7處於打開或已雜合之結 構。當與標靶核酸序列23 8雜合時,該幹-環狀結構會瓦 解’該冷光發光基團864和消光基團248係呈空間上分離 ,因而恢復該冷光發光基團8 64之發光能力。光學測得該 ECL釋放光862係代表該探針已經雜合。Figure 102 shows the ECL probe 23 7 in an open or hybrid configuration. When hybridized with the target nucleic acid sequence 23 8 , the dry-loop structure disintegrates 'the luminescent light emitting group 864 and the extinction group 248 are spatially separated, thereby restoring the luminescent ability of the luminescent light emitting group 8 64 . Optically measuring the ECL release light 862 means that the probe has been hybridized.
由於該探針之主幹螺旋結構係經設計以使該主幹螺旋 結構比該具有單個核酸不互補的探針-標靶物螺旋結構更 穩定’因此該等探針以非常高的專一性與互補標靶物雜合 。由於雙鏈DNA係相對較剛硬,因此雙鏈DNA於立體結 構上不可能發生該探針-標靶物螺旋結構與該主幹螺旋結 構共同存在的情況。 接有引子之ECL探針 接有引子之幹-環狀探針及接有引子之線性探針(或 稱蠍型探針)係分子信標之替代物,且該等探針可用於該 LOC裝置中以進行即時且定量性核酸擴增。即時擴增法可 於該LOC裝置的該等雜合腔室內直接執行。使用接有引 子之探針的益處在於該探針分子係與該引子物理性連接, 因此於核酸擴增期間期間僅需發生單次雜合事件,而無需 -88- 201211539 使引子之雜合反應與探針之雜合反應分開進行。此可確保 反應有效地即時進行,且相較於分開使用引子與探針而言 ,該接有引子之探針可得到更強信號、更短的反應時間和 更佳的識別力。可於製造期間把該等探針(連同聚合酶和 擴增混合物)置入該等雜合腔室180內,且無需於該LOC 裝置上另闢一個擴增區段。或者,該等擴增區段可保留但 不使用或用於進行其他反應。Since the backbone helical structure of the probe is designed such that the backbone helical structure is more stable than the probe-target helical structure that is not complementary to a single nucleic acid, the probes have very high specificity and complementarity The target is heterozygous. Since the double-stranded DNA system is relatively rigid, it is unlikely that the double-stranded DNA is stereostructured to coexist with the probe-target helix structure and the backbone helix structure. The ECL probe with the primer is followed by a dry-loop probe with a primer and a linear probe (or 蝎 probe) with a primer, which is a substitute for the molecular beacon, and the probe can be used for the LOC In the device for immediate and quantitative nucleic acid amplification. The instant amplification method can be performed directly in the hybrid chambers of the LOC device. The benefit of using a probe with a primer is that the probe molecule is physically linked to the primer, so that only a single heterozygous event occurs during the nucleic acid amplification period, without the need for a heterozygous reaction of -88-201211539 The hybrid reaction with the probe is carried out separately. This ensures that the reaction is carried out efficiently and immediately, and that the probe with the primer provides a stronger signal, shorter reaction time and better discrimination than the separate use of the primer and the probe. The probes (along with the polymerase and amplification mixture) can be placed into the hybrid chambers 180 during manufacture without the need for an additional amplification section on the LOC device. Alternatively, the amplification segments can be retained but not used or used for other reactions.
接有引子之線性ECL探針 第103和104圖分別顯示於初始回合的核酸擴增反應 期間內一種接有引子之線性ECL探針693及於後續回合 之核酸擴增反應期間該線性ECL探針經雜合的結構。參 閱第103圖,該接有引子之線性探針693具有一個雙鏈主 幹部位242。該雙鏈中之一鏈包含該接有引子之探針序列 696,該探針序列696係與該標靶核酸序列696上的一段 區域相同,該探針序列696之5'端上標記冷光發光基團 864且該探針序列696之Y端係透過擴增阻斷子694連接 寡聚核苷酸引子700。於該主幹242之另一條鏈的V端處 標記消光基團248。於初始回合之核酸擴增反應完成後, 該探針可圈成環狀且利用現已互補之序列698與該經延長 之核酸鏈雜合。於初始回合之核酸擴增反應期間,該寡聚 核苷酸引子700黏合於該標靶DNA23 8上(見第103圖) 且隨後該引子700係經延長而形成包含該探針序列與該擴 增產物兩者的DNA鏈。該擴增阻斷子694防止聚合酶讀 -89- 201211539Linear ECL probes with primers Figures 103 and 104 show a linear ECL probe 693 with primers during the initial round of the nucleic acid amplification reaction and a linear ECL probe during the subsequent round of nucleic acid amplification reactions, respectively. Hybrid structure. Referring to Fig. 103, the linear probe 693 with the primer has a double-stranded main cadre 242. One of the double strands comprises the probe sequence 696 with the primer, the probe sequence 696 is identical to a region on the target nucleic acid sequence 696, and the 5' end of the probe sequence 696 is labeled with luminescence The group 864 and the Y-terminus of the probe sequence 696 are ligated to the oligonucleotide primer 700 via amplification blocker 694. The matting group 248 is marked at the V-terminus of the other chain of the stem 242. Upon completion of the nucleic acid amplification reaction of the initial round, the probe can be looped and hybridized to the extended nucleic acid strand using the now complementary sequence 698. During the nucleic acid amplification reaction of the initial round, the oligonucleotide primer 700 is adhered to the target DNA 23 8 (see FIG. 103) and then the primer 700 is extended to form the probe sequence and the extension. The DNA strand of both products is increased. The amplification blocker 694 prevents polymerase reading -89- 201211539
取和複製該探針區域696。當進行接續之變性反應時,該 經延長之寡聚核苷酸引子700與模板之雜合體係解離,且 該接有引子之線性探針的雙鏈主幹242亦會解離而釋出該 消光基團248。一旦溫度降低以進行黏合步驟和延長步驟 時,該接有引子之線性ECL探針的接有引子之探針序列 696會捲起且與該經延長之核酸鏈上的該經擴增之互補序 列698雜合,且測得釋放光係表示存在該標靶DNA。未 延長的接有引子之線性探針保有本身的雙鏈主幹且仍保持 消光狀態。由於此種偵測方法係憑藉單分子處理(single molecular process ),因此此偵測方法特別適用於快速偵 測系統。 接有引子之幹-環狀ECL探針The probe area 696 is taken and copied. When the subsequent denaturation reaction is carried out, the extended oligonucleotide primer 700 is dissociated from the hybrid system of the template, and the double-stranded stem 242 of the linear probe with the primer is also dissociated to release the extinction base. Mission 248. Once the temperature is lowered for the binding step and the extension step, the primer-attached probe sequence 696 of the primer-attached linear ECL probe is rolled up and the amplified complementary sequence on the extended nucleic acid strand 698 is heterozygous and the measured release light indicates the presence of the target DNA. Unextended linear probes with primers retain their own double-stranded backbone and remain in a matte state. Since this detection method relies on a single molecular process, this detection method is particularly suitable for fast detection systems. Dry-ring ECL probe with primer
第105A至105F圖顯示接有引子之幹-環狀ECL探針 705的操作。參閱第ι〇5Α圖,接有引子之幹-環狀ECL探 針705具有由互補雙鏈DNA組成之主幹242和含有該探 針序列之環部240。該等主幹鏈708中之一主幹鏈的5,端 上標記冷光發光基團864。該另一條主幹鏈710係於3,端 標記消光基團248,且該主幹鏈710同時攜帶擴增阻斷子 6 94和寡聚核苷酸引子700兩者。於初始變性階段期間( 見第105B圖),該標靶核酸238之該等核酸鏈係如同該 接有引子之幹-環狀ECL探針705之主幹242般分離。當 冷卻溫度以進行黏合階段時(見第105C圖),該接有引 子之幹-環狀ECL探針705上的寡聚核苷酸引子700與該 -90- 201211539 標靶核酸序列23 8雜合。於延長階段期間(見第l〇5D圖 )’合成出與該標靶核酸序列23 8互補的互補序列7〇6而Figures 105A through 105F show the operation of the dry-loop ECL probe 705 with the primer attached. Referring to Figure 〇5, the dry-loop ECL probe 705 with primer has a stem 242 consisting of complementary double stranded DNA and a loop 240 containing the probe sequence. The luminescence luminescent group 864 is labeled on the 5th end of one of the backbone chains 708. The other backbone strand 710 is ligated to the 3, terminally labeled matting group 248, and the backbone strand 710 carries both the amplification blocker 6 94 and the oligonucleotide primer 700. During the initial denaturation phase (see Figure 105B), the nucleic acid strands of the target nucleic acid 238 are separated as the backbone 242 of the stem-loop ECL probe 705 with the primer attached. When the temperature is cooled to carry out the bonding stage (see Fig. 105C), the oligonucleotide primer 700 on the stem-loop ECL probe 705 with the primer and the nucleic acid sequence of the -90-201211539 target are arbitrarily Hehe. Complementing the complementary sequence 7〇6 complementary to the target nucleic acid sequence 23 8 during the elongation phase (see Figure 5D)
II
形成同時含有該探針序列705和擴增產物兩者的DNA鏈 。擴增阻斷子094防止聚合酶讀取和複製該探針區域7〇5 。當該探針於變性步驟(見105E)之後接著進行黏合, 該接有引子之幹-環狀探針之環部240的探針序列(見第 105F圖)與該延長鏈上的互補序列706黏合。此種結構 使該冷光發光基團864相對遠離該消光基團248,得以明 顯提高發光作用。A DNA strand is formed which contains both the probe sequence 705 and the amplification product. Amplification blocker 094 prevents the polymerase from reading and replicating the probe region 7〇5. The probe is then ligated after the denaturation step (see 105E), the probe sequence of the loop portion 240 of the dry-loop probe attached to the primer (see Figure 105F) and the complementary sequence 706 on the extended strand. Bonding. This structure allows the luminescent group 864 to be relatively far from the extinction group 248 to significantly enhance the luminescence.
I ECL對照探針 雜合腔室陣列1 1 0包含一些含有陽性對照ECL探針 及陰性對照ECL探針的雜合腔室180,該等探針係用於分 析檢驗之品質控制。第1 06及1 07圖槪要說明不含冷光發 光基團之陰性對照ECL探針78 6,且第108及109圖係不I ECL Control Probes Hybrid chamber arrays 110 contain a number of hybrid chambers 180 containing positive control ECL probes and negative control ECL probes for quality control of analytical assays. Figures 1 06 and 1 07 illustrate the negative control ECL probe 78 6 without the luminescent group, and the 108 and 109 diagrams are not
I 含消光基團之陽性對照ECL探針78 7的槪要圖。陽性對 照ECL探針和陰性對照ECL探針具有類似上述ECL探針 的幹-環狀‘結構。然而,不論該等探針是否雜合而成爲打A summary of the positive control ECL probe 78 7 containing the extinction group. The positive control ECL probe and the negative control ECL probe have a dry-loop structure similar to the ECL probe described above. However, regardless of whether the probes are heterozygous or not
I 開結構或保持閉合狀態,陽性對照ECL探針787將一直I open structure or remain closed, positive control ECL probe 787 will always
I 發出ECL信號862 (見第102圖),且陰性對照ECL探 針78 6則永遠不會發出ECL信號8 62。 參閱第106及107圖,陰性對照ECL探針786不具 冷光發光基團(且可具有或可能不具有消光基團248 ) ^ 因此,不論該標靶核酸序列23 8是否如第1 07圖所示般與 -91 - 201211539I issues an ECL signal 862 (see Figure 102), and the negative control ECL probe 78 6 never issues an ECL signal 8 62. Referring to Figures 106 and 107, the negative control ECL probe 786 has no luminescent light-emitting groups (and may or may not have an extinction group 248). ^ Thus, regardless of whether the target nucleic acid sequence 23 8 is as shown in Figure 07 General with -91 - 201211539
該探針雜合,或是該探針維持如第106圖所示之本身的主 幹242與環部240結構,該ECL信號皆微不足道。或者 ,陰性對照ECL探針可經設計,而使該陰性對照ECL探 針永遠保持消光。例如,藉著具有一段將不會與硏究中之 樣本內任何核酸序列雜合的人造探針(環狀)序列240, 該探針分子之主幹242將重新與該探針分子本身雜合,且 冷光發光基團與消光基團將保持靠近且將不會偵測到可見 之ECL信號。此陰性對照信號可相當於未完全消光時可 能發生的任何低度發光作用。 反之,如第108和109圖所示般,該陽性對照ECL 探針78 7係經建構成不含消光基團。不論該陽性對照ECL 探針78 7是否與該標靶核酸序列2 3 8雜合,皆無法消除該 冷光發光基團864的ECL釋放光862。The probe is heterozygous, or the probe maintains its own backbone 242 and loop 240 structure as shown in Fig. 106, and the ECL signal is negligible. Alternatively, the negative control ECL probe can be designed such that the negative control ECL probe remains matte forever. For example, by having an artificial probe (loop) sequence 240 that will not hybridize to any nucleic acid sequence within the sample under investigation, the backbone 242 of the probe molecule will re-hybridize with the probe molecule itself, The luminescent group and the matting group will remain close and no visible ECL signal will be detected. This negative control signal can correspond to any low luminescence that may occur when incomplete extinction. Conversely, as shown in Figures 108 and 109, the positive control ECL probe 78 7 is constructed to contain no matting groups. Whether or not the positive control ECL probe 78 7 is hybridized to the target nucleic acid sequence 2 3 8 does not eliminate the ECL release light 862 of the luminescent light-emitting group 864.
第99和100圖顯示另一種建構陽性對照腔室的可行 方法。於此情況下,該等校準腔室382係與該擴增子(或 任何含有標靶分子之流體)密封隔離,且可於該等校準腔 室3 82中注入該ECL冷光發光基團溶液而得以於該電極 處永久偵測到陽性信號。 同樣地,由於該等對照腔室缺乏入口而避免任何標靶 物接觸到該等探針,因而永遠無法偵測到E C L信號,因 此該等對照腔室可爲陰性對照腔室。 第5 2圖顯示陽性對照探針及陰性對照探針於該雜合 腔室陣列1 1 〇各處的可能分佈情形(分別爲3 7 8和3 8 0 ) 。用於ECL法時’陽性對照ECL探針786與陰性對照 -92- 201211539 ECL探針78 7分別取代對照螢光探針3 7 8和3 8 0。該等對 照探針係置於沿著該延伸跨越雜合腔室陣列1 1 0之對角線 •排列的該等雜合腔室180中。然而,該等對照探針於該陣 列中的配置方式係隨意配置(依據雜合腔室陣列110當時 的配置形態而定)。 於ECL偵測之校準腔室Figures 99 and 100 show another possible method for constructing a positive control chamber. In this case, the calibration chambers 382 are sealed from the amplicon (or any fluid containing the target molecules), and the ECL luminescent luminescent group solution can be injected into the calibration chambers 382. A positive signal is permanently detected at the electrode. Similarly, the E C L signal can never be detected because the control chamber lacks an inlet to prevent any target from contacting the probes, and thus the control chamber can be a negative control chamber. Figure 5 2 shows the possible distribution of positive control probes and negative control probes throughout the array of heterozygous chambers (3 7 8 and 380, respectively). For the ECL method, the positive control ECL probe 786 and the negative control -92-201211539 ECL probe 78 7 replaced the control fluorescent probes 3 7 8 and 380, respectively. The control probes are placed in the hybrid chambers 180 arranged along the diagonal line extending across the array of hybrid chambers 110. However, the arrangement of the control probes in the array is arbitrarily configured (depending on the configuration of the hybrid chamber array 110 at the time). Calibration chamber for ECL detection
光二極體184回應存在於該感測器陣列處之周遭環境 光線及源自該陣列中其他位置處之光線的電性不一致性會 該輸出信號中導入背景雜訊和偏移。藉由該雜合腔室陣列 110中之多個校準腔室382去除每個輸出信號中的此背景 値,其中該等校準腔室3 82係不含任何探針、或含有不具 ECL冷光發光基團之探針、或含有冷光發光基團和消光基 團但該等團係經配置而預期消光作用會一直發生的探針The photodiode 184 responds to ambient ambient light present at the sensor array and electrical inconsistencies from light rays at other locations in the array that introduce background noise and offset into the output signal. This background 每个 in each output signal is removed by a plurality of calibration chambers 382 in the hybrid chamber array 110, wherein the calibration chambers 382 are free of any probes or contain non-ECL luminescent bases. a probe of a group, or a probe containing a luminescent light-emitting group and an extinction group, but the groups are configured to expect the extinction to occur all the time.
I 。該等校準腔室3 82於整個雜合腔室陣列中之數目和配置 係可隨意決定。然而,若藉由相對最接近的校準腔室382 校準該等光二極體184,該校準係更加精確。參閱第124 圖,雜合腔室陣列11〇具有一個校準腔室382以供全部八 個雜合腔寒180使用。即是,校準腔室382係位於由該等 雜合腔室1 80所組成之3 χ3方形陣列的中央。於此種配置 中,係藉由緊鄰的校準腔室382校準該等雜合腔室ISO。 第83>圖顯示一種微分成像電路788,該微分成像電 路788係用於使源自周圍該等雜合腔室180的ECL信號 減去施加電脈衝造成與校準腔室3 82對應之光二極體184 -93- 201211539 所發出的信號。該微分成像電路788抽樣源自像素790和 「虛擬」像素792之信號。由該腔室陣列區域中之周遭光 線引起的信號亦經扣除。源自像素790之信號很小(即, 接近暗信號)’且若不參考暗信號則難以區分該背景値和 極小之信號。I. The number and configuration of the calibration chambers 382 in the entire array of hybrid chambers can be arbitrarily determined. However, if the photodiodes 184 are calibrated by the relatively closest calibration chamber 382, the calibration is more accurate. Referring to Fig. 124, the hybrid chamber array 11A has a calibration chamber 382 for use by all eight hybrid chambers. That is, the calibration chamber 382 is located in the center of the 3 χ 3 square array comprised of the hybrid chambers 180. In such a configuration, the hybrid chambers ISO are calibrated by the immediately adjacent calibration chamber 382. Fig. 83 shows a differential imaging circuit 788 for subtracting the application of electrical pulses from the ECL signals surrounding the hybrid chambers 180 to create a photodiode corresponding to the calibration chamber 3 82. Signals sent by 184 -93- 201211539. The differential imaging circuit 788 samples signals originating from pixel 790 and "virtual" pixel 792. Signals caused by ambient light in the array of cells are also subtracted. The signal originating from pixel 790 is small (i.e., close to a dark signal)' and it is difficult to distinguish between the background 値 and the minimum signal without reference to the dark signal.
使用期間,「讀列線(read_row )」794及「虛擬像 素讀列線(read_row_d)」795係經啓動,且 M4電晶體 797及MD4電晶體801係經開啓。切換器807和切換器 8 09關閉’使得源自像素790及「虛擬」像素792的輸出 値分別儲存於像素電容器803與虛擬像素電容器805上。 該等像素彳3 5虎經儲存之後’使切換器807和切換器809停 ±運作。隨後,「讀行線(read_C〇l )」切換器81 1及虛 擬像素「讀行線」切換器8 1 3係經關閉,且位於該輸出端 處之該等經切換之電容器放大器815放大該微分信號817During use, "read column line (read_row)" 794 and "virtual pixel read column line (read_row_d)" 795 are activated, and M4 transistor 797 and MD4 transistor 801 are turned on. Switch 807 and switch 8 09 are turned off so that the output 源自 from pixel 790 and "virtual" pixel 792 are stored on pixel capacitor 803 and virtual pixel capacitor 805, respectively. After the pixels are stored, the switch 807 and the switch 809 are stopped. Subsequently, the read read line (read_C〇l) switch 81 1 and the virtual pixel "read line" switch 8 1 3 are turned off, and the switched capacitor amplifiers 815 at the output are amplified. Differential signal 817
ECL強度和信號效率 ECL反應中之標準效率量數係每個「法拉第」電子( 即參與該電化學反應的每個電子)所獲得之光子數目。該 ECL效率係表示成ψΕα : \ΐάτ Φεα =TNAr (5) JJo 其中I係強度(光子/秒),i係電流(安培),F係法拉 第常數,及NA係亞佛加厥常數。 -94- 201211539 共反應物之ECL反應效率ECL Intensity and Signal Efficiency The standard efficiency measure in an ECL reaction is the number of photons obtained for each "Faraday" electron (ie, each electron participating in the electrochemical reaction). The ECL efficiency is expressed as ψΕα : \ΐάτ Φεα = TNAr (5) JJo where I is the intensity (photons/second), the i-line current (amperes), the F-system Faraday constant, and the NA-based Yafotian constant. -94- 201211539 ECL reaction efficiency of co-reactants
於經除氧之非質子性溶液(例如經吹氮處理之乙腈溶 液)中的離子消滅型電致發光反應(annihilation ECL) 係足夠-純,以允許測量效率,且之共識値係約5 % 。然而該共反應物系統已普遍被認爲超過有意義的效率直 接測量値。取代的是,藉著按比例放大,以相同方式可測 得該釋放光強度係與簡易製備的標準溶液(例如 Ru(bpy)32+ )有關。該等文獻(例如參閱K. Leland與 M. J. Powell 於 1990 年發表於 J. Electrochem. Soc.第 137 期3127頁之論文及R. pyati和Μ. M. Richter於2007年 發表於 Annu. Rep. Prog. Chem. C 第 103 期 12~78 頁之論 文)指出在不含促進劑(例如界面活性劑)下, Ru(bpy)32 +與TPrA共反應物之效率的峰値係相當於在乙 腈中進行離子消滅型ECL反應中所見到之峰値的5 % (例 如,2%的效率,可參閱I. Rubinstein與A. J. Bard於 1981年發表於J. Am. Chem. Soc.第103期512〜516頁之 論文)。 ECL電位 該Ru(bpy)32 + /TPrA ECL系統之該工作電極處的電壓 係約+1.1伏特(文義上通常是指對照Ag/AgCl參考電極 測量而得)。如此高的電壓會縮短電極壽命,但對於單次 使用式裝置(例如本發明之診斷系統中使用的LOC裝置 -95- 201211539 )而言這不是問題。The ion-eliminating electroluminescent reaction (annihilation ECL) in an oxygenated aprotic solution (eg, a nitrogen-treated acetonitrile solution) is sufficiently pure to allow for measurement efficiency, and the consensus is about 5%. . However, this co-reactant system has been generally considered to measure helium directly beyond meaningful efficiency. Instead, the release light intensity can be measured in the same manner by scaling up in relation to a readily prepared standard solution (e.g., Ru(bpy)32+). Such documents (see, for example, K. Leland and MJ Powell, 1990, J. Electrochem. Soc., 137, p. 3127, and R. pyati and M. Richter, 2007, published in Annu. Rep. Prog Chem. C No. 103, pp. 12-78, states that the peak enthalpy of the efficiency of the Ru(bpy)32+ and TPrA co-reactant is equivalent to acetonitrile in the absence of a promoter (eg, a surfactant). Performing 5% of the peak enthalpy seen in the ion-eliminating ECL reaction (for example, 2% efficiency, see I. Rubinstein and AJ Bard, 1981, J. Am. Chem. Soc. 103, 512~516 Page paper). ECL potential The voltage at the working electrode of the Ru(bpy)32 + /TPrA ECL system is about +1.1 volts (generally referred to as the control Ag/AgCl reference electrode). Such a high voltage will shorten the electrode life, but this is not a problem for a single-use device such as the LOC device used in the diagnostic system of the present invention -95-201211539.
該陽極與陰極之間的理想電壓取決於該等溶液成分和 電極材料兩者之組合。選擇正確的電壓可能需要在最高信 號強度、試劑與電極之穩定性及發生非期望之副反應(例 如在腔室內發生水之電解反應)之間做出折衷處理。於使 用經緩衝之Ru (bp y)32 + /共反應物水性溶液和白金電極之 試驗中,該ECL發光作用在2.1伏特〜2.2伏特(取決於 所選擇的共反應物)處達到最大。當電壓低於1 .9伏特及 高於2.6伏特時該釋放光強度掉落至小於該峰値的75%, 且當電壓低於1.7伏特及高於2.8伏特時該釋放光強度掉 落至小於該峰値的50%。因此對於此種系統中的ECL操 作而言,較佳之陽極-陰極電壓差係介於1.7伏特~2.8伏 特,且特佳係介於K9伏特~2.6伏特。此範圍之電壓差允 許爲電壓函數之釋放光強度最大化,同時防止於該等電極 處觀察到明顯的氣體發生現象。The desired voltage between the anode and the cathode depends on the combination of the solution components and the electrode material. Choosing the correct voltage may require a compromise between the highest signal strength, the stability of the reagents and electrodes, and the occurrence of undesirable side reactions such as the electrolytic reaction of water in the chamber. In experiments using buffered Ru (bp y) 32 + /co-reactant aqueous solutions and platinum electrodes, the ECL luminescence reached a maximum at 2.1 volts to 2.2 volts (depending on the selected co-reactant). When the voltage is lower than 1.9 volts and higher than 2.6 volts, the emitted light intensity drops to less than 75% of the peak ,, and when the voltage is lower than 1.7 volts and higher than 2.8 volts, the emitted light intensity drops to less than 50% of this peak. Therefore, for ECL operation in such systems, the preferred anode-cathode voltage difference is between 1.7 volts and 2.8 volts, and the preferred system is between K9 volts and 2.6 volts. The voltage difference in this range allows the maximum light intensity to be released as a function of voltage while preventing significant gas formation at the electrodes.
ECL發光波長 源自ECL反應之釋放光8 62的波長在約620奈米處 具有一個強波峰(於空氣或真空下測得),且該釋放光跨 越相對寬廣的波長範圍。顯著釋放光發生在從約5 50奈米 至700奈米的波長位置處。此外,由於該活性物種周圍的 化學環境變化,該峰値釋放光波長可具有約10%的變化 幅度。本案所述之LOC裝置具體實施例(其不含特定波 長濾波器)在用於捕捉具有如此寬且可變光譜之信號上具 -96- 201211539 有兩項優點。第一項優點係靈敏度:任何波長濾波器都會 降低光的穿透率,即使光線落在該濾波器之通帶內亦然, 因此藉著不含濾波器以增進該裝置之效率》第二項優點係 靈活度:當次要的試劑發生變化之後可無需調整濾波器之 通帶,且該信號對於該置入樣本之非標靶成分中的小差異 依賴性較低。ECL luminescence wavelength The wavelength of the release light 8 62 derived from the ECL reaction has a strong peak (measured under air or vacuum) at about 620 nm, and the release light spans a relatively broad wavelength range. Significant release of light occurs at wavelengths from about 5 50 nm to 700 nm. In addition, the peak light emission wavelength can have a variation of about 10% due to changes in the chemical environment surrounding the active species. The LOC device embodiment described herein (which does not contain a specific wavelength filter) has two advantages in capturing signals having such a wide and variable spectrum with -96-201211539. The first advantage is sensitivity: any wavelength filter will reduce the light transmittance, even if the light falls within the passband of the filter, so the efficiency of the device is improved by the absence of a filter. Advantages: Flexibility: There is no need to adjust the passband of the filter after a change in the secondary reagent, and the signal is less dependent on small differences in the non-target components of the implanted sample.
參與ECL反應之溶液體積Solution volume involved in the ECL reaction
I ECL反應係仰賴溶液中之冷光發光基團(和共反應物 )的可利_用性(a v a i 1 a b 1 i. t y )。然而,如第8 6圖所不, 僅在靠近該等電極8 6 0和電極870處生成該等經激發之物 種8 68。本案所示模組中的邊界層深度係指位於該電極 860附近處可生成經激發物種868之溶液層872的深度。 1 此深度係經簡化,因爲溶液動力學可能驅使該可用濃The I ECL reaction relies on the availability (a v a i 1 a b 1 i. t y ) of the luminescent light-emitting groups (and co-reactants) in the solution. However, as shown in Fig. 8 6 , the excited species 8 68 are generated only near the electrodes 860 and the electrodes 870. The boundary layer depth in the module of the present invention refers to the depth at which the solution layer 872 of the excited species 868 can be generated near the electrode 860. 1 This depth is simplified because solution kinetics may drive the available thick
I 度升高或_低: • 提高可利用性:擴散作用與電泳效應將允許更多I degree increases or _ low: • Increases availability: diffusion and electrophoresis effects will allow more
I 的溶液進行交換。 • 降低可利用性:試劑可能吸附於該等電極上且變 成無法供ECL反應利用。 對於0.5微米的邊界層深度値,得到下列觀察結果: 在使用與直徑最高達4.5微米之磁珠接合之冷光發光 基團864以將該冷光發光基團864吸引至該陽極860上的 實驗中觀察ECL反應。 -97- 201211539 針對互相叉合之電極陣列,該Ru(bpy)32 + /TPrA 發光作用862係爲電極間距之函數,且發現於0.8微 電極間距時該Ru(bpy)32 + /TPrA ECL發光作用8 62達 大。當電極間距約2微米時,水溶液872中可能需要 共反應物866。此表示該等經激發之物種868擴散數 ,這暗示著該等處於基態之物種可能進行類似規模的 交換作用。 穩態及脈衝操作 於該等電極860和電極870之脈衝活動期間,該 發光作用862之強度(見第102圖)係通常高於該電 於穩態活動期間之發光作用862的強度。因此,係 CMOS電路86(見第91圖)對傳送該等電極860和 的啓動信號進脈衝寬度調變。 試劑之再循環及物種之壽命週期 該Ru(bpy)32 + /TPrA ECL系統中的釕(Ru)錯合 不會消耗,因此進行連續反應循環時該發光作用862 度不會降低。若總反應循環時間約1毫秒,該速率限 驟的壽命週期係約0.2毫秒。 ECL 米之 到最 使用 微米 擴散The solution of I is exchanged. • Reduced availability: Reagents may be adsorbed on these electrodes and become unavailable for ECL reactions. For a 0.5 micron boundary layer depth 値, the following observations were obtained: observed in an experiment using a luminescent luminescent group 864 bonded to a magnetic bead having a diameter of up to 4.5 microns to attract the luminescent light-emitting group 864 onto the anode 860 ECL reaction. -97- 201211539 For the interdigitated electrode array, the Ru(bpy)32 + /TPrA luminescence 862 is a function of electrode spacing and the Ru(bpy)32 + /TPrA ECL luminescence is found at 0.8 microelectrode spacing The effect of 8 62 is large. Co-reactant 866 may be required in aqueous solution 872 when the electrode spacing is about 2 microns. This represents the number of diffusions of the germinated species 868, suggesting that these species in the ground state may undergo similar scale exchanges. Steady State and Pulse Operation During the pulsed activity of the electrodes 860 and 870, the intensity of the illuminating effect 862 (see Figure 102) is typically higher than the intensity of the illuminating effect 862 during steady state activity. Therefore, the CMOS circuit 86 (see Fig. 91) modulates the pulse width of the enable signal for transmitting the electrodes 860 and . Recycling of reagents and life cycle of species The ruthenium (Ru) mismatch in the Ru(bpy)32 + /TPrA ECL system is not consumed, so the 862 degree does not decrease when the continuous reaction cycle is performed. If the total reaction cycle time is about 1 millisecond, the life cycle of the rate limit is about 0.2 milliseconds. ECL meters to the most use micron diffusion
ECL 極處 藉由 870 物係 的強 制步ECL is the strongest step by the 870 system
電泳效應與其他限制條件 由於該雜合腔室中之該等溶液的複雜性,當開啓 電壓時會發生許多現象。大分子之電泳作用、歐姆傳 ECL 導及 -98 -Electrophoretic effects and other constraints Due to the complexity of the solutions in the hybrid chamber, many phenomena occur when the voltage is turned on. Electrophoresis of macromolecules, ohmic transmission ECL and -98 -
201211539 源自小型離子遷移作用的電容效應係同時發生。 由於DNA係帶有高負電性且會受陽極8 60吸 往陽極860,因此寡聚核苷酸(探針和擴增子)之 用可能使得探針-標靶物雜合體之偵測更難進行。 的時間通常很短(約數毫秒)。由於該陽極860201211539 The capacitive effects from small ion migration occur simultaneously. Since the DNA system is highly electronegative and is attracted to the anode 860 by the anode 860, the use of oligonucleotides (probes and amplicons) may make probe-target hybrids more difficult to detect. get on. The time is usually very short (about a few milliseconds). Due to the anode 860
I 8 70之間的間距很小,因此即使施加溫和的電壓( 特),電泳效應仍很強。 於LOC裝置之某些具體實施例中,電泳可增 發光作甩862,且在其他具體實施例中電泳會降低 作用。藉著提高或減少電極間距從而提高或降低電 可解決此問題。位於該光二極體1 84上方之該陽極 該陰極8 70的互相叉合配置係表示使此間距最小化 例子。即使在碳電極860和碳電極870中不使'用共 ,此種電極配置也能製造ECL反應。 歐姆加熱(直流電流) 參照第87圖槪要圖示之ECL反應室874,維f 伏特之ECL電壓所需之電流係如下述方式決定。 通過該腔室之直流(DC )電流係由兩個電阻 該等電極860和870與該主體溶液之間的界面電距 該溶液之電阻Rs,該Rs電阻係源自該主體溶液電阻 電路徑之幾何形狀。對於具有離子強度之溶液(] 裝置內之條件有關),該腔室電阻主要由該等電極 電極8 70處的界面電阻決定,且Rs可忽略不計。 引而前 電泳作 此運動 與陰極 約1伏 進 ECL 該發光 泳效用 860與 的極端 反應物 ,約 2.2 決定: .V及 率和導 a loc 8 60和 99 - 201211539 可藉由針對該LOC裝置中之電極幾何結構按比例放 大規模地測量通過相同溶液之宏觀電流來估算該界面電阻 之作用效果。 採用宏觀方式測量電流通過相同溶液時於白金電極處 的電流密度。與可能遇到之最壞狀況(高電流)的方法一 致,該檢驗溶液中之總離子強度及ECL反應物濃度係高 於該LOC裝置中所使用之總離子強度及ECL反應物濃度 。該陽極面積小於該陰極面積,且該陽極被具有相等面積 且呈環形幾何形狀的陰極環繞著。對於呈直徑2毫米之圓 形的陽極而言,所測得的電流係1 · 1毫安培(mA ),且 得到3 5 0安培/平方公尺之電流密度。 於該加熱模型中,該電極面積係呈現如第87圖槪要 圖示之方形環狀之幾何結構》該陽極係寬度1微米且厚度 1微米之環。該表面積係196平方微米,且因此計算得到 電流1 = 69毫微安培(nA )。 針對最壞的情況下(最壞情況係所有熱量都用於升高 該腔室中之水的溫度)建立該加熱作用(功率=V2/R )之 模型。若不考慮該LOC裝置主體所移除的熱,則於2.2 伏特之電壓差下,此加熱作用造成以5.8 °C /秒之速度加熱 該腔室內容物。 藉著加熱該等腔室以提高約20°C可造成大多數的雜 合探針變性。針對用於突變偵測的高專一性探針而言,較 佳係限制僅加熱4°C或更小。藉著此種程度的溫度穩定性 ,使得利用經適當設計之序列進行單鹼基錯配敏感性雜合 -100- 201211539 反應變得能夠實行。此方法允許偵測單核苷酸多型性之程 度的突變及等位基因差異。因此,該直流電流係施加於該 1* 等電極860和電極870上持續0.69秒’以使該加熱作用 限制在4°C。 1The spacing between I 8 70 is small, so even if a gentle voltage (special) is applied, the electrophoretic effect is still strong. In some embodiments of the LOC device, electrophoresis can enhance luminescence as 862, and in other embodiments electrophoresis can reduce the effect. This problem can be solved by increasing or decreasing the electrode spacing to increase or decrease the power. The anode located above the photodiode 1 84 is an interdigitated configuration of the cathode 8 70 which is an example of minimizing this spacing. Even in the carbon electrode 860 and the carbon electrode 870, the ECL reaction can be produced without such a common electrode configuration. Ohmic Heating (Direct Current) Referring to the ECL reaction chamber 874 shown in Fig. 87, the current required for the ECL voltage of the f volt is determined as follows. The direct current (DC) current through the chamber is electrically separated from the interface between the electrodes 860 and 870 and the bulk solution by a resistance Rs of the solution, the Rs resistance being derived from the electrical path of the bulk solution. Geometric shape. For solutions with ionic strength (related to conditions within the device), the chamber resistance is primarily determined by the interfacial resistance at the electrode electrodes 870, and Rs is negligible. Leading the electrophoresis to this movement and the cathode to about 1 volt into the ECL. The luminescent effect is 860 with the extreme reactants, about 2.2 determines: .V and rate and guide a loc 8 60 and 99 - 201211539 can be used for the LOC device The electrode geometry in the scale measures the macroscopic current through the same solution to estimate the effect of the interface resistance. The current density at the platinum electrode when the current passes through the same solution is measured in a macroscopic manner. Consistent with the worst-case conditions (high current) that may be encountered, the total ionic strength and ECL reactant concentration in the test solution is higher than the total ionic strength and ECL reactant concentration used in the LOC device. The anode area is smaller than the cathode area and the anode is surrounded by a cathode having an equal area and having a toroidal geometry. For an anode having a circular shape of 2 mm in diameter, the measured current was 1 · 1 milliamperes (mA) and a current density of 305 amps per square meter was obtained. In the heating model, the electrode area exhibits a square ring geometry as shown in Fig. 87. The anode is a ring having a width of 1 μm and a thickness of 1 μm. This surface area is 196 square microns and thus a current of 1 = 69 nanoamperes (nA) is calculated. This model of heating (power = V2/R) is established for the worst case (worst case where all heat is used to raise the temperature of the water in the chamber). If the heat removed by the LOC device body is not considered, this heating causes the chamber contents to be heated at a rate of 5.8 ° C / sec at a voltage difference of 2.2 volts. Increasing the temperature of the chambers by about 20 °C can cause most of the hybrid probes to denature. For highly specific probes for mutation detection, it is preferred to limit heating to only 4 ° C or less. By such a degree of temperature stability, the single-base mismatch sensitivity heterozygous -100-201211539 reaction with a suitably designed sequence becomes feasible. This method allows for the detection of mutations and allelic differences in the degree of single nucleotide polymorphism. Therefore, the direct current is applied to the 1* electrode 860 and the electrode 870 for 0.69 seconds to limit the heating to 4 °C. 1
通適該腔室之約69毫微安培的電流係遠超過該微莫 耳濃度之ECL物種所能提供的法拉第電流量。因此’該 等電極8 60和電極870的小責任週期(l〇w-duty-cycle) 脈衝係進一步降低加熱作用(至1 °C或更低)且同時維持 足夠的ECL發光作用862,而不會引入與試劑耗盡之相關 問題。於其他具體實施例中,該電流係降至〇. 1毫微安培 (此電流可免除使電極之脈衝式啓動的需要)。即便電流 低達0.1毫微安培,該ECL發光作用8 62仍受限於冷光發 光基團。 腔室與電極之幾何結構 ECL冷光I與光感測器間之光學耦合作用最大化 ECL冷光即時化學前驅物係生成於距工作電極之數奈 米距離內再次參閱第86圖,發光作用(已激發之物種 868 )通常發生於該位置處之數微米或更小距離內。由於 該光感測器44之對應的光二極體1 84可觀察到緊鄰該工 作電極(陽極8 60 )的體積。因此,該等電極8 60和電極 8 7〇係直搂緊鄰著該光感測器44中之對應光二極體184 的主動表區185。此外,該陽極860之形狀係經塑造以增 加該光二巧體1 84可見到的該陽極側面周長之長度。此種The current of about 69 nanoamperes that is compatible with the chamber is well above the amount of Faraday current that the ECL species of the micromolar concentration can provide. Thus, the small duty cycle (l〇w-duty-cycle) of the electrodes 8 60 and 870 further reduces the heating (to 1 ° C or lower) while maintaining sufficient ECL luminescence 862 without Problems associated with depletion of reagents will be introduced. In other embodiments, the current is reduced to 0.1 nanoamperes (this current eliminates the need for pulsed activation of the electrodes). Even with currents as low as 0.1 nanoamperes, the ECL luminescence 8 62 is still limited by the luminescent light-emitting groups. The geometry of the chamber and the electrode The optical coupling between the ECL luminescence I and the photosensor maximizes the ECL luminescence. The instant chemical precursor is generated within a few nanometers of the working electrode. See Figure 86 again. The excited species 868) typically occur within a few microns or less of the location. Since the corresponding photodiode 1 84 of the photo sensor 44 can observe the volume of the working electrode (anode 8 60). Therefore, the electrodes 8 60 and the electrodes 8 搂 are directly adjacent to the active surface region 185 of the corresponding photodiode 184 in the photo sensor 44. In addition, the shape of the anode 860 is shaped to increase the length of the circumference of the anode side visible to the photometric body 184. Such
I -101 - S; 201211539 配置之目的在於使能被該下方光二極體184偵測到的該已 激發物種868之體積達到最大。 第85圖槪要顯示該陽極8 60之三種具體實施例。梳 狀結構陽極87 8具有之優點在於該等平行指狀物8 8 0可與 陰極8 70之指狀物互相叉合。該互相叉合之結構係顯示於 第92圖及顯示於第98和100圖中之LOC佈局的局部視 圖。該互相叉合之結構提供一致的介電空隙8 76 (見第86 圖),該介電空隙8 76相對狹窄(1微米至2微米),且 對於微影製造方法而言製造該互相叉合之梳狀結構係相對 簡單。如前述般,由於該等已激發之物種868將可擴散於 該陽極與陰極之間,因此介於該等電極860與電極870之 間的相對狹窄介電空隙8 76可免除於某些溶液8 72中使用 共反應物的需要。免除對於共反應物的需求可免去該共反 應物對各種不同分析檢驗之化學藥劑可能造成的化學衝擊 且提供更廣的可用分析檢驗方法之選擇範圍。 再次參閱第85圖,陽極8 60之某些具體實施例具有 蜿蜒曲結構8 82。爲達成高的周長長度且同時維持可容許 的製造誤差,該結構係適合製造成多個寬的矩形曲流道 8 84 〇 如有需要或依期望,該陽極可具有更複雜之結構886 。例如,該陽極可能具有鋸齒狀區段888、分枝狀結構 8 90或兩者之組合。包含分枝狀結構890之LOC裝置設計 的局部視圖係顯示於第1 23和1 24圖。該更複雜之結構( 例如結構886 )提供較長的側邊周長長度,且由於圖案化 -102- 201211539 緊密間隔之相對陰極的步驟更加困難,因此該複雜 最適合用於採用共反應物的溶液狀化學試劑。 電極厚度 通常,ECL反應室(ECL cell)包含一個外觀 來平坦的工作電極。此外,傳統用於製造金屬層的 技術易於做出約1微米金屬厚度的平坦結構。如先 述且槪要顯示於第8 5、8 8和8 9圖般,增加側面周 度可增進該ECL釋放光與該光二極體184之間的 用。 進一涉提高藉由該光二極體184收集該釋放光I -101 - S; 201211539 The purpose of the configuration is to maximize the volume of the excited species 868 detected by the lower photodiode 184. Figure 85 shows three specific embodiments of the anode 8 60. The comb-like anode 87 8 has the advantage that the parallel fingers 880 can be interdigitated with the fingers of the cathode 870. The interdigitated structure is shown in Figure 92 and a partial view of the LOC layout shown in Figures 98 and 100. The interdigitated structure provides a uniform dielectric void 8 76 (see Figure 86) that is relatively narrow (1 micron to 2 microns) and is fabricated for lithographic fabrication methods. The comb structure is relatively simple. As described above, since the excited species 868 will diffuse between the anode and the cathode, the relatively narrow dielectric voids 8 76 between the electrodes 860 and the electrodes 870 are exempt from certain solutions 8 The need to use a co-reactant in 72. Eliminating the need for a co-reactant eliminates the chemical shocks that the co-reactant can have on the chemicals of the various analytical tests and provides a wider range of available analytical test methods. Referring again to Fig. 85, certain embodiments of the anode 8 60 have a tortuous structure 8 82. To achieve a high perimeter length while maintaining acceptable manufacturing tolerances, the structure is suitable for fabrication into a plurality of wide rectangular curved channels 8 84 . The anode may have a more complex structure 886 if desired or desired. For example, the anode may have a serrated section 888, a branched structure 8 90, or a combination of both. A partial view of the LOC device design including the branched structure 890 is shown in Figures 1 23 and 24. This more complex structure (e.g., structure 886) provides a longer side perimeter length, and since the step of patterning -102-201211539 closely spaced relative cathodes is more difficult, this complexity is best suited for solutions using co-reactants. Chemical reagents. Electrode Thickness Typically, an ECL cell contains a working electrode that looks flat. In addition, the conventional technique for fabricating a metal layer is easy to make a flat structure having a metal thickness of about 1 micrometer. As previously described and briefly shown in Figures 85, 8 8 and 8 9, increasing the side circumference enhances the use of the ECL release light with the photodiode 184. Further enhancing the collection of the emitted light by the photodiode 184
I 見第102:圖)之收集效率的第二種方案係增加該陽 之厚度。此方案係槪要顯示於第86圖中。該參 8 92鄰近該工作電極之壁面的部份係與該光二極體 爲有效耦合之區域。因此,對於工作電極860之指 而言,可藉由增加電極之厚度而增進該釋放光862 收集效率「再者,由於不需要高的電流攜帶容量, 可能地縮小該工作電極8 6 0之寬度是可實際可行的 電極860和電極8 70之厚度不能無限度地增加。注 電極之特命及間距尺寸可能約爲1微米,且該液體 步驟使該等空隙之寬度不適合比該等空隙之深度要 等電極之最佳實際厚度係介於0.25微米至2微米。 電極間距 之結構I see the second option for the collection efficiency of Figure 102: Figure) to increase the thickness of the anode. This scheme is shown in Figure 86. The portion of the reference electrode adjacent to the wall surface of the working electrode is a region where the photodiode is operatively coupled. Therefore, for the finger of the working electrode 860, the collection efficiency of the release light 862 can be improved by increasing the thickness of the electrode. "Furthermore, since the high current carrying capacity is not required, the width of the working electrode 860 can be reduced. It is practical that the thickness of the electrode 860 and the electrode 8 70 cannot be increased indefinitely. The tip and pitch dimensions of the electrode may be about 1 micron, and the liquid step makes the width of the gap unsuitable for the depth of the gap. The optimum actual thickness of the equal electrode is between 0.25 micrometers and 2 micrometers.
上看起 微製造 前已描 長之長 耦合作 862 ( 極860 與體積 184最 定寬度 之整體 因此盡 。該等 意該等 之塡充 大,該 -103- 201211539 該等電極860與電極870之間的間距對於LOC裝置 之信號品質而言很重要,特別是在該等電極係互相叉合的 具體實施例而言更是重要。當該陽極8 60係呈分枝狀結構 (例如第8 5和8 9圖中所示之結構)的具體實施例中,該 等相鄰元件之間的間距亦相當重要。ECL發光效率及該釋 放光之收集效率兩者皆需最大化。 ECL發光作用之產生傾向偏好1微米或低於1微米之 電極間距。當沒有共反應物之存在下進行ECL反應時, 特別偏好使用小間距。該間距可能相當於釋放光8 62之波 長這項事實的重要性有限。因此,在不需要光線通過該等 電極8 60和電極870之間的位置處測量該釋放光862 (見 第102圖)的諸多具體實施例中,目標通常是使該電極間 距盡可能地小。然而,在該釋放光862必需通過該等電極 860和電極870之間的具體實施例中,不僅必需考慮到該 ECL發光方法,還需考慮該光線的波性。 源自[Ru(bpy)3]2 +之ECL反應的釋放光8 62之波長係 約620奈米,且因此其在水中之波長係460奈米(0.46微 米)。於光二極體184及該ECL已激發物種868係位於 該電極結構之不同側上且該電極結構爲金屬的具體實施例 中,該釋放光862必需能通過介於該等金屬結構的元件之 間的空隙。若此空隙相當於該釋放光之波長,繞射作用通 常會降低抵達該光二極體184之傳播光線的強度。然而, 當釋放光862以大角度照射於該空隙上的情況下,消散模 態耦合現象可受控制以增進所收集之信號的強度。可於該 -104-Look at the long coupling that has been described before microfabrication as 862 (the maximum width of the pole 860 and the volume 184 is therefore the same. This is the equivalent of the larger, the -103-201211539 the electrode 860 and the electrode 870 The spacing between the two is important for the signal quality of the LOC device, especially in the particular embodiment where the electrodes are interdigitated. When the anode 8 60 is in a branched structure (eg, 8th) In the specific embodiment of the structure shown in Figures 5 and 89, the spacing between the adjacent elements is also quite important. Both the ECL luminous efficiency and the collection efficiency of the emitted light need to be maximized. It tends to prefer an electrode spacing of 1 micron or less. When performing an ECL reaction in the absence of a co-reactant, it is particularly preferred to use a small pitch, which may be equivalent to the fact that the wavelength of light 8 62 is released. The nature is limited. Therefore, in many embodiments in which light is not required to pass through the position between the electrodes 8 60 and the electrode 870 (see Figure 102), the goal is usually to maximize the electrode spacing However, in the specific embodiment where the release of light 862 must pass between the electrodes 860 and the electrode 870, it is necessary not only to take into account the ECL illumination method, but also to consider the wave properties of the light. From [Ru(bpy 3] 2 + ECL reaction release light 8 62 wavelength is about 620 nm, and therefore its wavelength in water is 460 nm (0.46 μm). The photodiode 184 and the ECL excited species 868 series In a particular embodiment where the electrode structure is on a different side and the electrode structure is a metal, the release light 862 must pass through a gap between the elements of the metal structure. If the gap corresponds to the wavelength of the emitted light. The diffracting effect generally reduces the intensity of the propagating light reaching the photodiode 184. However, when the illuminating light 862 is irradiated onto the gap at a large angle, the dissipative mode coupling phenomenon can be controlled to enhance the collected The strength of the signal. Available at -104-
201211539 LOC裝ft中採取兩種測量方法以增進該光二極 釋放光8 6 2之間的耦合效率。 第一種方法係金屬元件之間的間距係不低 光在水中的波長,即約0.4微米。當結合對該 之電極間之小間距的其它觀察結果,此間距表 間距的最佳範圍介於0.4微米至2微米之間。 第二種方法係該等電極間之空隙到該光二 距離係經最小化。於本案所述之L0C裝置具 ,此距離表示介於該等電極860和870與該光 間之膜層的總厚度係1微米或低於1微米。在 該光二極體之間存在多個膜層的具體實施例中 層之厚度配置成具有四分之一波長或四分之三 係具有抑制釋放光862之反射作用的進一步優 電極模型 第86圖係該雜合腔室中之該等電極860 之槪要局都剖面圖。於該陽極860之側面周長In 201211539, two measurement methods are adopted in the LOC ft to improve the coupling efficiency between the light-emitting diodes 8 6 2 . The first method is that the spacing between the metal elements is not low in the wavelength of light in water, i.e., about 0.4 microns. The optimum range of pitch spacing is between 0.4 microns and 2 microns when combined with other observations of the small spacing between the electrodes. The second method is to minimize the gap between the electrodes to the optical distance. In the L0C device of the present invention, this distance indicates that the total thickness of the film layer between the electrodes 860 and 870 and the light is 1 micron or less. In a specific embodiment in which a plurality of film layers are present between the photodiodes, the thickness of the layers is configured to have a quarter-wavelength or three-quarters of a series of further excellent electrode models having a reflection inhibiting release light 862. A cross-sectional view of the electrodes 860 in the hybrid chamber. On the side circumference of the anode 860
I 經激發之知種所佔據的體積有時稱爲參與體積 位於該陽極860上方之圍堵區域894與該光二 光學耦合作用微不足道,因此該圍堵區域894 以下參照第8 7、8 8和8 9圖提出一種用於 電極結構是否能提供發生可用於該下方光二卷 ECL釋放光862強度的技術。 第87圖係一種環狀幾何結構,於該環狀 體184與該 於約該釋放 等互相叉合 不該電極之 極體1 84的 體實施例中 二極體184 該等電極與 ,使該等膜 波長的膜層 點。 和電極8 70 周圍被該等 892 。由於 極體184之 係可忽略。 判斷一特定 !體184之 幾何結構中 -105- 201211539 該陽極8 60係環繞著該光二極體184之传 88圖中,該陽極860係位於該光二極體1 第89圖顯示一種更複雜之結構配置’於監 陽極860具有一系列指狀物8 80以增加該間 的長度。 對於上述所有結構,該模型計算係如下 對於該溶液之參與體積Vecl 892,射極 係: Nem — N|um . Xp / TECL — ^ECL^lNa · "tp / ^ECL 其中該冷光發光基團之參與數目N|um = VeClI ECL作用之壽命,CL係冷光發光基團濃度1 期,及&係亞佛加厥數。 該等向發射之光子數NPh。1係: Nph〇t— φε〇ί Nem 其中to·係ECL效率且界定爲單個冷光發光 應所發出之平均光子數。 源自該光二極體之電極信號計算S則爲 S ~ Nph〇t· φοψς, 其中φ。係光學耦合效率(該光二極體1 84 ® 且\係該光二極體之量子效率。因此該信號s=vECLcLNA^EMq TECL 對於第87和88圖之電極結構,t係: 丨長邊緣。於第 84之周長內。 i結構配置中該 k極之側面邊緣 所示。 之有效總數Nem (6) 〕LNA,τΕα_ 係該 τρ係該脈衝週 (7) 基團之ECL反 (8) 收之光子數) 係: ⑼The volume occupied by the stimulated species is sometimes referred to as the trapping region 894 with the participating volume above the anode 860, and the optical coupling is negligible. Therefore, the containment region 894 is referred to below on pages 8, 8 and 8 Figure 9 presents a technique for the electrode structure to provide the strength that can be used for the underlying light two-volume ECL release light 862. Figure 87 is a ring-shaped geometric structure in which the electrode 184 and the electrode body 184 of the body of the electrode body 184 which is not mutually exclusive with the release or the like The film layer point of the film wavelength. And the electrode 8 70 is surrounded by the 892. Since the polar body 184 is negligible. Judging the geometry of a particular body 184 -105-201211539 The anode 8 60 is surrounded by the photodiode 184. The anode 860 is located in the photodiode. Figure 89 shows a more complicated The structural configuration 'on the anode 860 has a series of fingers 880 to increase the length of the space. For all of the above structures, the model is calculated as follows for the volume of the solution Vecl 892, emitter: Nem - N|um . Xp / TECL - ^ECL^lNa · "tp / ^ECL where the luminescent group The number of participants N|um = the lifetime of VeClI ECL, the concentration of CL-based luminescent group, and the & The number of photons emitted by the isotropic direction is NPH. 1 Series: Nph〇t— φε〇ί Nem where to· is the ECL efficiency and is defined as the average number of photons emitted by a single luminescence. The electrode signal S derived from the photodiode is S ~ Nph〇t · φοψς, where φ. Optical coupling efficiency (the photodiode 1 84 ® and \ is the quantum efficiency of the photodiode. Therefore the signal s = vECLcLNA ^ EMq TECL for the electrode structure of Figures 87 and 88, t system: 丨 long edge. Within the perimeter of the 84th. i The configuration shows the side edge of the k-pole. The effective total number of Nem (6) 〕 LNA, τ Ε α_ is the τρ is the ECL (8) of the pulse week (7) The number of photons): (9)
-106--106-
201211539 卢0 =(2 5 %的射向該光二極體1 8 4之光 (10%未被反射之光子) 即鈇對第8 7和8 8圖之結構而言,九201211539 Lu 0 = (2 5 % of the light directed to the photodiode 1 8 4 (10% unreflected photons) ie 鈇 for the structure of Figures 8 and 8 8
I 對妗第89圖之電極結構配置’ 50% 該光二極體184之方向發射,但該吸收效 關之方程式未改變,因此: 么=(50%的射向該光二極體之光子)x (1 0 %未被反射之光子) 即針對第8 9圖之結構而言,九=:5% 該參與體積892取決於該電極結構, 中提供詳細說明。 用於計算之輸入參數係陳列如下: F )χ = 2.5% 的光子係朝指向 率寫成與角度相 且係於相應段落 -107- 201211539 表5、輸入參數 參數 數値 說明 冷光發光基團濃度Cl 2.89 μΜ 先前計算之探針濃度 ECL再循環週期(壽命)rEa_ 1毫秒 冷光發光基團之多個反應步驟的合倂壽 口卩 邊界層深度D 0.5微米 參與ECL反應之溶液的有效體積(包含擴 散與電泳) 電流施加時間Γρ 0.69 秒 係經選擇以使歐姆加熱限制在4Τ:(如前 述) 腔室之X軸尺寸 28微米 腔室之Υ軸尺寸 28微米 腔室高度Ζ 8微米 光二極體之X軸尺寸 16微米 光二極體之Υ軸尺寸 16微米 電極厚度 (即,暴露之邊緣高度) 1微米 電極層之最小寬度和空隙 1微米 製程臨界尺寸 電極之面際電流密度 350安培/平方 公尺 針對歐姆加熱 溶液之體積電阻率 0.5歐姆X公尺 針對歐姆加熱 施加之電壓差 (工作電極-對電極) 2_2伏特I for the electrode structure configuration of Fig. 89 '50% The direction of the photodiode 184 is emitted, but the equation of the absorption effect is unchanged, so: ??? = (50% of the photons directed to the photodiode) x (10% unreflected photons) That is, for the structure of Fig. 89, nine =: 5% The participating volume 892 depends on the electrode structure, and a detailed description is provided. The input parameters used for the calculation are shown below: F) χ = 2.5% of the photonic system is written to the angle and is in the corresponding paragraph -107- 201211539 Table 5, the number of input parameter parameters 値 indicates the concentration of the luminescent group 2.89 μΜ Previously calculated probe concentration ECL recirculation period (life) rEa_ 1 millisecond luminescence luminescent group of multiple reaction steps of Shoukou 卩 boundary layer depth D 0.5 micron effective volume of solution involved in ECL reaction (including diffusion With electrophoresis) The current application time Γρ 0.69 sec is selected to limit ohmic heating to 4 Τ: (as mentioned above) X-axis size of the chamber 28 μm chamber Υ axis size 28 μm chamber height Ζ 8 μm photodiode X-axis size 16 micron photodiode x-axis size 16 micron electrode thickness (ie, exposed edge height) 1 micron electrode layer minimum width and void 1 micron process critical dimension electrode interfacial current density 350 amps per square meter Volume resistivity for ohmic heating solution 0.5 ohm x metric for voltage application of ohmic heating (working electrode - counter electrode) 2_2 volt
環繞光二極體之周長的環形幾何結構 參閱第87圖,該陽極8 60係環繞著該光二極體184 之邊緣的環狀物。於此種結構配置中,該參與體積8 92係 VECX=4x[(位於該電極壁旁側之膜層)+ (位於該電極壁上方之四分之一的圓柱體)] 計算得到= -108- 201211539 0.5微米之邊界層生成的光子:3·1χ105 光二極體184中之電子計數:2.3xl03 此信號係可藉由下方該L〇C裝置光感測器44之光二 極體1 8 4而輕易測得。 附加指狀物以增加邊緣長度Annular Geometry Around the Peripheral of the Light Dipole Referring to Figure 87, the anode 8 60 is an annulus surrounding the edge of the photodiode 184. In this configuration, the participating volume 8 92 is VECX=4x [(the film layer on the side of the electrode wall) + (a quarter of the cylinder above the electrode wall)] calculated = -108 - 201211539 Photon generated by the 0.5 micron boundary layer: 3·1χ105 The electron count in the photodiode 184: 2.3xl03 This signal can be obtained by the photodiode of the L〇C device photosensor 44 below. Easy to measure. Additional fingers to increase edge length
參聞第89圖,於整個陽極860上添加平行指狀物 880。圖中顯示僅水平邊緣對於該參與體積892有貢獻, 以避免重複計算該等垂直邊緣。此時該參與體積係如下式 VE<x;i8x2)><[(位於該電極壁旁側之膜層)+ (位於該電極壁上方之四分之一的圓柱體)] 第8 9圖之結構的計算結果: 0.5微米之邊界層生成的光子:UxlO6 光二極體184中之電子計數:8.0xl03 該光二極體1 84可輕易偵測到此信號。 完全覆蓋 第90和91圖所示之此種結構係屬於最大耦合表面積 之極限情況。實務上,該電極表面積與該光二極體184之 主動表面釋1 8 5之間的耦合達到90 %或更佳程度而達到 接近最佳的結果,即便該光二極體主動表面區185與該電 極表面積的耦合達到50%也能提供完全覆蓋式結構的大 多數好處。於兩種具體實施例中可達成完全覆蓋:第一種 -109- 201211539 係如第90圖槪要顯示般,藉著在與該光二極體184之表 面平行的平面中採用透明陽極860且使該陽極860之面積 與該光二極體之面積相當,及使該陽極配置成緊鄰該光二 極體184,使得該釋放光862穿過該陽極且照射於該光二 極體上。於第91圖槪要顯式之第二種具體實施例中,該 陽極860同樣與該光二極體之表面面積平行且配合該光二 極體面積做配置,但該溶液872塡充於介在該陽極860和 該光二極體184之間的空隙內。對於完全覆蓋式結構之信 號模型建立,係假設該陽極爲完全覆蓋於該光二極體184 上方之膜層,且有半數的光子經引導朝向該光二極體184 (吸收率仍爲10% )。 0.5微米之邊界層生成的光子:7·7χ105 光二極體中之電子計數:1.2χ104 除上述模組之外可藉著使用界面活性劑及使探針固定 於該陽極處以增進該信號和分析檢驗。 ECL探針與光二極體間之最大間距 雜合反應之晶片上偵測法免除需藉由共軛焦顯微鏡( 見先前技術之段落)進行偵測的需要。此種脫離傳統偵測 技術之偵測方式係本發明系統節約時間和節省成本之重要 因素。傳統偵測法要求必需用到諸多透鏡或曲面反射鏡的 成像光學技術。藉由採用非成像光學技術,該診斷系統免 除對複雜且體積龐大之光學元件串的需要。將該光二極體 置於極靠近該等探針之處具有極高集光效率的優點:當該 -110- 201211539Referring to Figure 89, parallel fingers 880 are added over the entire anode 860. The figure shows that only the horizontal edges contribute to the participating volume 892 to avoid double counting the vertical edges. At this time, the participating volume is as follows: VE<x;i8x2)><[(membrane layer on the side of the electrode wall)+ (a quarter of the cylinder above the electrode wall)] 8 9 The calculation result of the structure of the figure: photons generated by the boundary layer of 0.5 μm: the electron count in the UxlO6 photodiode 184: 8.0 x 103 This photodiode 1 84 can easily detect this signal. Full coverage The structure shown in Figures 90 and 91 is the limit of the maximum coupling surface area. In practice, the coupling between the surface area of the electrode and the active surface of the photodiode 184 reaches 90% or better to achieve near-optimal results, even if the photodiode active surface region 185 and the electrode A 50% coupling of the surface area also provides most of the benefits of a fully covered structure. Full coverage can be achieved in two specific embodiments: the first type -109 - 201211539 is as shown in Fig. 90, by using a transparent anode 860 in a plane parallel to the surface of the photodiode 184 and The area of the anode 860 is comparable to the area of the photodiode, and the anode is disposed in close proximity to the photodiode 184 such that the release light 862 passes through the anode and illuminates the photodiode. In a second embodiment, which is explicitly shown in FIG. 91, the anode 860 is also disposed in parallel with the surface area of the photodiode and is configured to match the area of the photodiode, but the solution 872 is interposed in the anode. Within the gap between the 860 and the photodiode 184. For the signal model establishment of the fully covered structure, it is assumed that the anode is completely covering the film layer above the photodiode 184, and half of the photons are directed toward the photodiode 184 (the absorption rate is still 10%). Photons generated by the 0.5 micron boundary layer: 7·7χ105 The electron count in the photodiode: 1.2χ104 In addition to the above modules, the signal and analysis can be improved by using a surfactant and fixing the probe to the anode. . Maximum spacing between the ECL probe and the photodiode The on-wafer detection of the hybridization reaction eliminates the need for detection by a conjugated focus microscope (see paragraph of the prior art). Such detection from the conventional detection technology is an important factor in saving time and cost in the system of the present invention. Traditional detection methods require imaging optics that require many lenses or curved mirrors. By employing non-imaging optics, the diagnostic system eliminates the need for complex and bulky strings of optical components. The advantage of placing the photodiode in close proximity to the probes is extremely high efficiency: when the -110-201211539
等探針與該光二極體之間的材料厚度係1微米時,釋放光 之收集角度係最高可達1 74。。此角度係依照位於該雜合 腔室最靠近該光二極體之表面的質心處之探針所發出的光 線計算而得,其中該光二極體具有與該腔室表面平行的平 坦主動表面區。於發光角之圓錐體內的光線能被光二極體 吸收’且該發光角之圓錐體係界定爲在該平坦腔室表面之 周長上的感測器角落處及該圓錐體之頂點處具有發光探針 。對於16微米χ16微米之感測器而言,此圓錐體之頂角 係170°;在光二極體擴大到使該光二極體之面積與28微 米x2 6.5微米之雜合腔室相當的極限情況下,該頂角係 174°。可輕易達到使該腔室表面與光二極體之主動表面之 間的分隔距離在1微米或低於1微米。 採用非成像光學技術之體系必需使光二極體1 84極靠 近該雜合腔室以收集充足的螢光光子。可如下述方法般決 定光二極體與探針之間的最大間距。 利用釕螯合物冷光發光基團及第89圖之電極結構配 置,假設感測器之量子效率爲30%,吾等計算出16微米 :< 16微米之感測器吸收27000個源自各別雜合腔室的光子 以產生8000個電子。執行此計算時,吾等假設雜合腔室 180之集光區具有與光二極體主動區185相等的基底面積 •且該等#合光子總數中有四分之一的光子變換角度而抵 達該感測器,且保守估計未因散射而離開該感測器-介電 質界面的光子比例爲10%。即是,該光學系統的集光效 率係 Α =0·025。 -111 - 201211539 更精確地,吾等可寫成公式么=[(雜合腔室之集光區 之基底面積)/ (光偵測器面積)][Ω/4π][ 1 〇 %吸收率], 其中Ω=位於該雜合腔室基底上一代表點處之該光偵測器 所正對的立體角。 對於正四棱錐之幾何形狀而言: ,其中4=該腔室與該光二極體 之間的距離,且α係該光二極體之尺寸。 每個雜合腔室釋出l.lxlO6個光子。選定之光二極體具 有1 7個光子之偵測臨界値;且當 <之値比該感測器尺寸 大1〇倍(即,實質垂直入射)時,於該感測器表面處未 被反射的光子比例可從10%提高至90%。因此,所需的 最小光學效率係: φ0= 17/(1.lxlO6 χ 0.9) = 1.72X10'5 該雜合腔室180之集光區的基底面積係29微米 X19.75 微米。 解出名,吾等將得到該雜合腔室之底部與光偵測器之 間的最大限制距離係< =1600微米。於此限制條件下,上 述界定之集光圓錐角係僅0.8度。應注意此分析忽略該微 不足道的折射效應。 LOC裝置變化型 以上詳細描述及圖解說明之LOC裝置301僅爲眾多 可行的LOC裝置設計中之一者。現將描述及/或以槪要 流程圖(從樣本入口到偵測)圖示多種使用不同組合之上 -112- 201211539When the material thickness between the probe and the photodiode is 1 micron, the collection angle of the released light is up to 1 74. . The angle is calculated from the light emitted by the probe at the center of mass of the hybrid chamber closest to the surface of the photodiode, wherein the photodiode has a flat active surface region parallel to the surface of the chamber . The light in the cone of the illuminating angle can be absorbed by the photodiode' and the conical system of the illuminating angle is defined as having a luminescence at the sensor corner at the perimeter of the flat chamber surface and at the apex of the cone needle. For a 16 micron χ 16 micron sensor, the apex angle of the cone is 170°; the limit is extended when the photodiode is enlarged to make the area of the photodiode comparable to a 28 micron x 2 6.5 micron hybrid chamber. Next, the apex angle is 174°. It is easily achieved that the separation distance between the surface of the chamber and the active surface of the photodiode is 1 micron or less. Systems employing non-imaging optics must have photodiodes 1 84 very close to the hybrid chamber to collect sufficient fluorescent photons. The maximum spacing between the photodiode and the probe can be determined as follows. Using the ruthenium chelate luminescent group and the electrode configuration of Fig. 89, assuming that the quantum efficiency of the sensor is 30%, we calculate 16 microns: < 16 micron sensor absorbs 27,000 from each Do not mix the photons of the chamber to produce 8000 electrons. When performing this calculation, we assume that the collection region of the hybrid chamber 180 has a base area equal to the photodiode active region 185 and that one quarter of the total number of photons has reached a photon conversion angle The sensor, and conservatively estimated that the photon ratio of the sensor-dielectric interface that did not leave the scattering due to scattering was 10%. That is, the light collection efficiency of the optical system is Α =0 025. -111 - 201211539 More precisely, we can write a formula = [(base area of the collection area of the hybrid chamber) / (photodetector area)] [Ω / 4π] [1 〇% absorption rate] Where Ω = the solid angle at which the photodetector is located at a representative point on the substrate of the hybrid chamber. For the geometry of a regular pyramid: where 4 = the distance between the chamber and the photodiode, and a is the size of the photodiode. Each hybrid chamber releases l.lxl6 photons. The selected photodiode has a detection threshold of 17 photons; and when < 値 is 1 〇 larger than the size of the sensor (ie, substantially perpendicular incidence), it is not at the surface of the sensor The proportion of reflected photons can be increased from 10% to 90%. Therefore, the minimum optical efficiency required is: φ0 = 17 / (1.lxlO6 χ 0.9) = 1.72X10'5 The base area of the light collecting region of the hybrid chamber 180 is 29 μm X 19.75 μm. Solving the name, we will get the maximum limit distance between the bottom of the hybrid chamber and the photodetector < = 1600 microns. Under this constraint, the above-defined light collecting cone angle is only 0.8 degrees. It should be noted that this analysis ignores this negligible refraction effect. LOC Device Variations The LOC device 301, described and illustrated above, is only one of many possible LOC device designs. It will now be described and/or illustrated in a summary flow chart (from sample entry to detection) using multiple combinations of different combinations -112- 201211539
述各種功能性區段的LOC裝置變化型,以說明該等可行 組合中之一部分組合。該等流程圖係經適當分割成樣本之 置入與製備階段288、萃取階段290、培育階段291、擴 增區段292、預雜合階段293及偵測階段294。對於以上 簡要描述或僅以槪略形式顯示之所有LOC裝置,基於清 晰及簡潔之理由,故不顯示完整佈局之附圖。亦爲求清晰 ,圖中未出示較小的功能性單元(例如,液體感測器及溫 度感測器,),但將可理解此等較小之功能性單元係已倂入 每個下列LOC裝置設計中之適當位置處》The LOC device variations of the various functional segments are described to illustrate one of the possible combinations. The flow diagrams are suitably divided into sample placement and preparation stages 288, extraction stage 290, incubation stage 291, expansion section 292, pre-hybridization stage 293, and detection stage 294. For all LOC devices that are briefly described above or only in the form of abbreviations, for the sake of clarity and conciseness, the drawings of the complete layout are not shown. Also for clarity, the smaller functional units (eg, liquid sensors and temperature sensors) are not shown, but it will be appreciated that such smaller functional units have been incorporated into each of the following LOCs. Appropriate position in the design of the device"
LOC裝置變化型XXIX 第75圖中顯示之LOC裝置變化型XXIX 659係一種 用於病原偵測和基因分析之LOC裝置。該樣本之置入與 製備區段288係經簡化,因此不包含任何透析步驟。去除 透析步驟句提高對於該等可能對透析功能產生不利影響之 病原體的偵測靈敏度。把全血樣本加於該樣本入口 6 8 ’ 且藉由該表面張力閥1 1 8添加源自貯存槽54之抗凝血劑 i 。該萃取嘴段290係於該化學溶胞區段130中使用源自貯 存槽56之溶胞試劑溶解該等病原和白血球。該培育階段 291包括使該樣本與源自貯存槽58之限制酶、接合酶和 連接子-引子一同培育且於該培育區段114中進行培育, 及經培育之後該樣本進入該擴增階段292 ’於該擴增階段 292中係使源自貯存槽60之擴增混合物和源自貯存槽62 之聚合酶加入該樣本中,且於該擴增區段112內擴增該樣 -113- 201211539 本。偵測階段294發生於該等雜合腔室陣列1 1 〇內。LOC Device Variant XXIX The LOC device variant XXIX 659 shown in Figure 75 is a LOC device for pathogen detection and genetic analysis. The placement and preparation section 288 of the sample is simplified and therefore does not include any dialysis steps. The removal of the dialysis step improves the detection sensitivity of the pathogens that may adversely affect the dialysis function. A whole blood sample is applied to the sample inlet 6 8 ' and the anticoagulant i derived from the reservoir 54 is added by the surface tension valve 1 18 . The extraction nozzle section 290 is used in the chemical lysis section 130 to dissolve the pathogens and white blood cells using a lysis reagent derived from the reservoir 56. The incubation stage 291 includes incubating the sample with restriction enzymes, ligase and linker-derived from storage tank 58 and culturing in the incubation section 114, and the sample enters the amplification stage 292 after incubation. In the amplification stage 292, the amplification mixture derived from the storage tank 60 and the polymerase derived from the storage tank 62 are added to the sample, and the sample is amplified in the amplification section 112-113-201211539 this. The detection phase 294 occurs within the array of heterozygous chambers 1 1 .
LOC裝置變化型XXX 第76圖中顯示之LOC裝置變化型XXX 660係一種 用於病原偵測和基因分析之LOC裝置。該樣本之置入與 製備區段28 8係經簡化,因此不包含任何透析步驟。去除 透析步驟可提高對於該等可能對透析功能產生不利影響之 病原體的偵測靈敏度。把全血樣本加於該樣本入口 68, 且藉由該表面張力閥1 1 8添加源自貯存槽5 4之抗凝血劑 。該萃取階段290係於該化學溶胞區段1 30中使用源自貯 存槽56之溶胞試劑溶解該等病原和白血球。接著於該培 育區段1 1 4中使該樣本與源自貯存槽58之限制酶、接合 酶和連接子進行培育之後,於並聯之擴增區段112.1、 112.2...112.Χ中擴增該樣本,且於個別的雜合腔室陣列 1 1 0.1、1 1 0.2 ... 1 1 0 . X 中偵測該樣本。LOC Device Variant XXX The LOC Device Variant XXX 660 shown in Figure 76 is a LOC device for pathogen detection and gene analysis. The placement and preparation of the sample is simplified and therefore does not include any dialysis steps. Removal of the dialysis step can increase the sensitivity of detection of such pathogens that may adversely affect dialysis function. A whole blood sample is applied to the sample inlet 68, and an anticoagulant derived from the storage tank 54 is added by the surface tension valve 118. The extraction stage 290 is used in the chemical lysis section 130 to dissolve the pathogens and white blood cells using a lysis reagent derived from the reservoir 56. The sample is then incubated with the restriction enzyme, ligase and linker derived from the storage tank 58 in the incubation section 112, and then expanded in parallel amplification sections 112.1, 112.2...112. The sample is added and the sample is detected in an individual hybrid chamber array 1 1 0.1, 1 1 0.2 ... 1 1 0 . X.
LOC裝置變化型XXXI 第77圖中顯示之LOC裝置變化型XXXI 661係一種 用於病原偵測和基因分析之LOC裝置。該樣本之置入與 製備區段28 8係經簡化,因此不包含任何透析步驟。去除 透析步驟可提高對於該等可能對透析功能產生不利影響之 病原體的偵測靈敏度。把全血樣本加於該樣本入口 68, 且藉由該表面張力閥1 1 8添加源自貯存槽5 4之抗凝血劑 。該萃取階段290係於該化學溶胞區段1 30中使用源自貯 -114- 201211539 存槽56之溶胞試劑溶解該等病原和白血球。接著於該培 育區段114中使該樣本與限制酶、接合酶和連接子進行培 育之後,於串接之擴增區段112.1和1 12.2中擴增該樣本 ,且於單個雜合腔室陣列1 1 0中偵測該樣本。 具有透析裝置、LOC裝置和互連蓋層之微流體裝置 具有透析裝置784、LOC裝置785和互連蓋層51之LOC Device Variant XXXI The LOC device variant XXXI 661 shown in Figure 77 is a LOC device for pathogen detection and genetic analysis. The placement and preparation of the sample is simplified and therefore does not include any dialysis steps. Removal of the dialysis step can increase the sensitivity of detection of such pathogens that may adversely affect dialysis function. A whole blood sample is applied to the sample inlet 68, and an anticoagulant derived from the storage tank 54 is added by the surface tension valve 118. The extraction stage 290 is used in the chemical lysis section 130 to dissolve the pathogens and white blood cells using a lysis reagent derived from reservoir 114-201211539 reservoir 56. Following incubation of the sample with restriction enzymes, ligases, and linkers in the incubation section 114, the samples are amplified in tandem amplification sections 112.1 and 12.2, and in a single hybrid chamber array. The sample was detected in 1 1 0. A microfluidic device having a dialysis device, a LOC device, and an interconnecting cap layer having a dialysis device 784, a LOC device 785, and an interconnect cap layer 51
微流體裝置78 3提供更大的模組性和經改善之靈敏度。對 照該結合所有功能的LOC裝置設計(例如第97圖之LOC 裝置變化型729 ),從該LOC裝置中分離出該透析功能允 許針對不同標靶物而選擇硏發不同的特製透析裝置784。 此等特製的透析裝置784可與LOC裝置7 85和互連蓋層 51合倂形成一個完整的分析檢驗系統。再者,亦可硏發 針對不同分析檢驗方法做最佳化之不同LOC裝置785,且 該不同LOC裝置78 5可與不同的透析裝置合作,從而提 供及強大且靈活的系統硏發方法。對於某些應用而言亦可 配置該LOC裝置使其不具有透析裝置或結合多個LOC裝 置 78 5。 可利用最佳且最具成本經濟效益之製造方法製造每一 個由該微流體裝置783構成的經表面微機械加工晶片。例 如,該透析裝置784無需CMOS電路,因此可使用較不昂 怪的材料及較少製程步驟製造該透析裝置784。再者,較 大且經最佳化之透析裝置784爲該分析檢驗系統提供提高 之靈敏度、信號雜訊比和動態範圍。 -115- 201211539 如第110圖圖示般,該流體裝置783製備該樣 288),且隨後萃取(290)、培育(291)、使用12 同擴增腔室(1 12.1至1 12.12 )擴增(292 )及偵測 )該病原DNA。該組件採用多個擴增腔室以提高分 驗之靈敏度且改善該信號雜訊比。此LOC裝置藉著 等雜合腔室陣列1 10.1至Π0.12進行ECL反應以偵 針-標靶物雜合體。該系統模組性提供不同的透析 784以用於偵測液體樣本中的其它標靶物,例如白血 紅血球、病原或諸如自由蛋白質或DNA等分子,且 本案說明書描述病原DNA偵測法,但熟悉該項技藝 可理解該微流體裝置7 8 3不僅限於偵測只此一種標靶 第111圖示出具有透析裝置784、LOC裝置78 5 連蓋層51之微流體裝置78 3。該互連蓋層51係由貯 層78、蓋層通道層80和界面層594組成。該界面層 係位於該蓋層通道層80和該CMOS + MST裝置48的 通道層100之間。該界面層594允許於該等試劑貯存 該MST層87之間具有更複雜的流體互連結構且不會 矽基板84之尺寸。第112圖重疊地顯示該等貯存槽 等頂部通道和該等界面通道,藉以說明利用該界面層 達成更精密複雜的配管工程。 參閱第1 1 2及1 1 3圖,該樣本(例如,血液)進 樣本入口 68,且毛細作用沿著蓋層通道94把該樣本 至該抗凝血劑表面張力閥1 1 8。最佳係如第1 1 3圖所 該抗凝血劑表面張力閥118具有位於該界面層5 94內 本( 個不 (294 析檢 於該 測探 裝置 球、 雖然 者將 物。 和互 存槽 594 MST 槽與 增加 、該 594 入該 吸引 示, 的兩 -116- 201211539 個界面逋道59ό和598。貯存槽側之界面通道596使該貯 存槽出□與該等下吸孔92連接在一起,且樣本側之界面 通道5 98使該等上吸孔96與蓋層通道94連接在一起。源 自貯存槽54的抗凝血劑經由該貯存槽側之界面通道596 流過該MST通道90直到該彎液面定住於該等上吸孔96The microfluidic device 78 3 provides greater modularity and improved sensitivity. In response to the LOC device design incorporating all of the functions (e.g., LOC device variant 729 of Figure 97), the dialysis function is separated from the LOC device to allow for the selection of different specialized dialysis devices 784 for different targets. These tailored dialysis devices 784 can be combined with the LOC device 785 and the interconnect cap layer 51 to form a complete analytical inspection system. Furthermore, different LOC devices 785 optimized for different analytical testing methods can be issued, and the different LOC devices 78 5 can cooperate with different dialysis devices to provide a powerful and flexible system bursting method. For some applications, the LOC device can also be configured to have no dialysis device or incorporate multiple LOC devices 78 5 . Each of the surface micromachined wafers comprised of the microfluidic device 783 can be fabricated using the best and most cost effective manufacturing method. For example, the dialysis device 784 does not require a CMOS circuit, so the dialysis device 784 can be fabricated using less expensive materials and fewer process steps. Moreover, the larger and optimized dialysis device 784 provides improved sensitivity, signal to noise ratio, and dynamic range for the analytical inspection system. -115- 201211539 As shown in Fig. 110, the fluid device 783 prepares the sample 288), and then extracts (290), incubates (291), and amplifies using the same amplification chamber (1 12.1 to 12.12). (292) and detecting) the pathogenic DNA. The assembly employs multiple amplification chambers to increase the sensitivity of the assay and improve the signal to noise ratio. The LOC device performs an ECL reaction by means of a hybrid chamber array 1 10.1 to Π0.12 to detect a needle-target hybrid. The system modularly provides different dialysis 784 for detecting other targets in a liquid sample, such as white blood red blood cells, pathogens or molecules such as free proteins or DNA, and the description describes pathogenic DNA detection, but is familiar with It is understood by the art that the microfluidic device 783 is not limited to detecting only one such target, and that the microfluidic device 78 3 having the dialysis device 784, the LOC device 78 5 with the cap layer 51 is shown. The interconnect cap layer 51 is comprised of a reservoir layer 78, a capping channel layer 80, and an interfacial layer 594. The interface layer is between the capping channel layer 80 and the channel layer 100 of the CMOS + MST device 48. The interfacial layer 594 allows for a more complex fluid interconnect structure between the MST layers 87 for storage of such reagents and does not squash the size of the substrate 84. Fig. 112 overlays the top channels and the interface channels, such as the storage tanks, to illustrate the use of the interface layer to achieve more sophisticated piping engineering. Referring to Figures 1 1 2 and 1 1 3, the sample (e. g., blood) is introduced into the sample inlet 68, and capillary action is applied to the anticoagulant surface tension valve 1 18 along the cap channel 94. Preferably, the anticoagulant surface tension valve 118 has a location in the interface layer 5 94 as shown in Figure 1 1 3 (the 294 is detected in the probe device ball, although the object is present. The trough 594 MST trough and the two-116-201211539 interface ramps 59ό and 598 which are added to the attraction, the storage tank side interface channel 596 connects the storage tank outlet to the lower suction holes 92. Together, and the sample side interface channel 5 98 connects the upper suction holes 96 with the cover layer channel 94. The anticoagulant from the storage tank 54 flows through the MST channel via the interface channel 596 on the storage tank side. 90 until the meniscus is settled in the upper suction holes 96
處。沿著蓋層通道94流動之該樣本流體浸濕該樣本側之 界面通道598以去除彎液面,使得當樣本流體繼續流向病 原透析區段70時,使抗凝血劑與該血液樣本合併。 參閱第1 1 2及1 1 3圖,此具體實施例中之該病原透析 區段70包含界面標靶物通道602及界面廢液通道604, 且藉由複數個具有預定臨界尺寸之孔流體連通地耦接該界 面標靶物通道6 02與界面廢液通道6 04。位於該透析區段 70之極上游處的該孔係與位於該透析區段70之下游處的 孔不同;該等下游的孔係選擇直徑小於8.0微米之孔以允 許標靶物通過該等孔而前往該界面標靶物通道602。於本 發明之具體實施例中,該等孔系選擇直徑3.0微米之孔 164以允許病原通過而前往該界面標靶物通道602。該病 原透析區段7 0係經建構,使得該樣本於毛細作用下流經 該等通道和該等孔。 參閱第1 1 2及1 1 3圖’該血液樣本流經該蓋層通道 94到達該界面廢細胞通道604之上游末端。該界面廢細 胞通道604係朝向該等直徑3.0微米之孔丨64開放且該等 孔164係通往該透析MST通道204。該等透析MST通道 204之每一者係從該等直徑3.0微米之孔164通往各自的 -117- 201211539 透析上吸孔1 6 8。該等透析上吸孔1 6 8係朝向該 物通道602開放。然而該等上吸孔係經建構以用 液面而不允許毛細驅動流動繼續進行。 該病原透析區段70包含包含旁通渠道600 渠道6 00係用於塡充該等流體通道結構又不會捕 泡。位於該病原透析區段70之極上游末端處的 6 00具有毛細引動特徵(C IF) 202,以促進毛細 從旁通渠道600流入界面標靶物通道602 (見K 113圖)。該旁通渠道亦具有一個寬曲流道以延 面廢細胞通道604至該界面標靶物通道602間的 。較長的流動路徑延遲該樣本流體,使得於最. M ST通道204處形成該等彎液面後,該樣本流 面標靶物通道602。該樣本流體始於該上游末端 該樣本流體沿著該界面標靶物通道602朝下游移 樣本流體解除位於每個透析上吸孔168處的彎液 本流體注入該透析區段時此做法可確保所有的透 道充滿樣本流體。無該旁通渠道600或無配置用 液面之透析上吸孔168時,某些透析MST通道 無法塡滿。同樣地,可能於界面標靶物通道602 氣氣泡。於上述任一種情況下皆可能實質地扼止 析區段之流動。 該界面廢液通道604注入該廢液通道72, 標靶物通道602注入該標靶物通道74 (見第11 圖)。藉由蓋層通道72和蓋層通道74使五個透 界面標靶 於定住彎 ,該旁通 獲空氣氣 旁通渠道 驅動流體 ;1 12 及 長自該界 流動路徑 上游透析 體注入界 處,且當 動時,該 面。當樣 析底部通 於定住彎 204可能 中形成空 流經該透 且該界面 2 和 1 1 3 析區段以 -118- 201211539 串連方式連接以提高該透析程序之效率。位於第五個透析 區段之出口處,藉由毛細作用自該透析裝置784吸引該含 有標靶物之樣本流體沿著該蓋層通道層中的標靶物通道 74流入該LOC裝置785。該廢液通道72通往該廢料貯存 槽76 (見第1 1 1圖)。At the office. The sample fluid flowing along the cover channel 94 wets the interface side 598 of the sample side to remove the meniscus such that when the sample fluid continues to flow to the pathological dialysis section 70, the anticoagulant is combined with the blood sample. Referring to Figures 1 1 2 and 1 1 3, the pathogenic dialysis section 70 in this embodiment includes an interface target channel 602 and an interface waste channel 604, and is fluidly connected by a plurality of pores having a predetermined critical dimension. The interface target channel 062 and the interface waste channel 604 are coupled to the interface. The pores located upstream of the poles of the dialysis section 70 are different from the pores located downstream of the dialysis section 70; the downstream pores select pores having a diameter of less than 8.0 microns to allow the target to pass through the pores Go to the interface target channel 602. In a particular embodiment of the invention, the holes are selected to have a pore size 164 of 3.0 microns to allow passage of the pathogen to the interface target channel 602. The pathogenic dialysis section 70 is constructed such that the sample flows through the channels and the pores under capillary action. Referring to Figures 1 1 2 and 1 1 3, the blood sample flows through the capping channel 94 to the upstream end of the interface spent cell channel 604. The interface waste cell channel 604 is open toward the 3.0 micron diameter apertures 64 and the holes 164 are routed to the dialysis MST channel 204. Each of the dialysis MST channels 204 is routed from the 3.0 mm diameter holes 164 to the respective -117-201211539 dialysis uptake holes 168. The dialysis upper suction holes 168 are open toward the passage 602. However, the upper suction holes are constructed to continue with the liquid level without allowing the capillary to drive the flow. The pathogenic dialysis section 70 includes a bypass channel 600 channel 600 system for accommodating the fluid channel structures without trapping. The 600 located at the extreme upstream end of the pathogenic dialysis section 70 has a capillary priming feature (C IF) 202 to facilitate capillary flow from the bypass channel 600 into the interface target channel 602 (see Figure K 113). The bypass channel also has a wide curved flow path to extend the waste cell channel 604 to the interface target channel 602. The longer flow path delays the sample fluid such that after the meniscus is formed at the most M ST channel 204, the sample flow target channel 602. The sample fluid begins at the upstream end and the sample fluid moves downstream along the interface target channel 602. The sample fluid is released from the lysate at each dialysis uptake 168. All channels are filled with sample fluid. Some dialysis MST channels cannot be filled when there is no such bypass channel 600 or when there is no dialysis upper suction port 168 for the liquid level. Likewise, air bubbles may be present at the interface target channel 602. In either case, it is possible to substantially stop the flow of the section. The interface waste channel 604 is injected into the waste channel 72, and the target channel 602 is injected into the target channel 74 (see Figure 11). The five transmissive interfaces are targeted by the capping channel 72 and the capping channel 74, and the bypass is driven by the air-bypass channel to drive the fluid; 1 12 and the length of the dialysis body injection boundary upstream of the boundary flow path, And when moving, the face. When the bottom of the sample passes through the set bend 204, an air flow may be formed through the pass and the interface 2 and the 1 1 3 split section are connected in series -118-201211539 to increase the efficiency of the dialysis procedure. Located at the exit of the fifth dialysis section, the sample fluid containing the target is drawn from the dialysis device 784 by capillary action into the LOC device 785 along the target channel 74 in the cap channel layer. The waste channel 72 leads to the waste storage tank 76 (see Figure 1 1 1).
該L〇C裝置7 8 5亦可作爲獨立的微流體裝置而使用 ,該微流體裝置具有適用於單一個裝置之替換蓋層,且於 此結構配置中,可隨意選用地使用抗凝血劑貯存槽55以 供應抗凝血劑。此種獨立使用之LOC裝置785的一個範 例係用於全血分析。參閱第1 1 4和1 1 5圖,該標靶物沿著 蓋層通道74流入LOC裝置78 5。該標靶物通過選用性的 抗凝血劑表面張力閥117(該表面張力閥117係用於添加 該選用性之抗凝血劑貯存槽55中之內含物),且該標靶 物繼續行進直到該標靶物抵達該溶胞表面張力閥128。於 此處所描述之結構配置中,此選用性貯存槽及表面張力閥 即便不使用也不影響該樣本流動或該LOC裝置之操作。 若具有上述之抗凝血劑表面張力閥118,該溶胞試劑 表面張力閥128具有溶胞試劑貯存槽側之界面通道606和 溶胞樣本側之界面通道608 (見第1 1 5圖)。溶胞試劑自 貯存槽56經由蓋層通道94流向該溶胞試劑貯存槽側之界 面通道60,6。該試劑流入該等下吸孔92、通過MST通道 90而流向該等上吸孔96,且該等試劑於該等上吸孔96處The L〇C device 785 can also be used as a stand-alone microfluidic device having a replacement cap layer suitable for a single device, and in this configuration, an anticoagulant can be optionally used. The tank 55 is used to supply an anticoagulant. An example of such a stand-alone LOC device 785 is for whole blood analysis. Referring to Figures 1 14 and 151, the target flows into the LOC device 78 5 along the cover channel 74. The target passes through an optional anticoagulant surface tension valve 117 (this surface tension valve 117 is used to add the contents of the optional anticoagulant reservoir 55) and the target continues Traveling until the target reaches the lysis surface tension valve 128. In the configuration described herein, the optional reservoir and surface tension valve do not affect the flow of the sample or the operation of the LOC device, even when not in use. If the anticoagulant surface tension valve 118 is provided, the lysis reagent surface tension valve 128 has an interface channel 606 on the lysis reagent storage tank side and an interface channel 608 on the lysis sample side (see Fig. 1 15). The lysis reagent flows from the storage tank 56 through the capping passage 94 to the interface passages 60, 6 on the side of the lysis reagent storage tank. The reagent flows into the lower suction holes 92, flows through the MST passage 90 to the upper suction holes 96, and the reagents are at the upper suction holes 96.
I 定住彎液面(見第1 1 5圖)。源自標靶物通道74之樣本 流體注入該溶胞樣本側之界面通道608。該樣本流體去除 -119- 201211539 該等上吸孔96處的彎液面,且當該樣本流體流入化學溶 胞區段130時,該溶胞試劑與該樣本合倂。I Hold the meniscus (see Figure 1 1 5). Sample fluid from target channel 74 is injected into interface channel 608 on the lysis sample side. The sample fluid removes the meniscus at the upper suction port 96 from -119 to 201211539, and the lysing reagent merges with the sample as the sample fluid flows into the chemical lysis cell segment 130.
於化學溶胞區段1 3 0中,溶胞試劑擴散混合於該樣本 流體各處以溶解該等標靶細胞且釋出標靶細胞內的遺傳物 質。該樣本流體停止於該混合區段出口閥206處。該混合 區段入口閥係沸騰啓動式閥2 06。位於該閥上游的液體感 測器174提供該樣本流體係大致抵達該閥上吸孔151的反 饋。若CMOS電路86係經程式化而寫入一段延遲時間以 確保該等標靶細胞被完全溶解,則該液體感測器之反饋會 開始執行該段延遲時間。待經過任何延遲時間之後,該沸 騰啓動式閥206係經啓動,且該下游液體感測器1 74指示 該流體已沿著該MST通道90再度開始流動。In the chemical lysis section 130, a lysis reagent is diffused and mixed throughout the sample fluid to dissolve the target cells and release the genetic material within the target cells. The sample fluid stops at the mixing section outlet valve 206. The mixing section inlet valve is a boiling start valve 206. A liquid sensor 174 located upstream of the valve provides feedback that the sample flow system generally reaches the suction port 151 of the valve. If the CMOS circuit 86 is programmed to write a delay time to ensure that the target cells are completely dissolved, the liquid sensor feedback will begin to perform the delay time. After any delay time has elapsed, the boiling start valve 206 is activated and the downstream liquid sensor 1 74 indicates that the fluid has begun to flow again along the MST passage 90.
該經溶胞之樣本流體持續流向該限制酶、接合酶和連 接子之表面張力閥132。該表面張力閥132之操作係與先 前所述之抗凝血劑表面張力閥118之操作相同。參閱第 115圖,當該樣本流體抵達位於該表面張力閥132處之該 等被定住的彎液面時,限制酶、接合酶和連接子-引子係 自該貯存槽58中釋出且與該樣本流體匯合。隨後該樣本 流經MST通道90前往該培育區段1 14的經加熱之微通道 。參閱第1 1 5和1 1 6圖,該培育區段1 1 4係由一條蜿蜒的 微通道210構成,且由多個加熱器154加熱該微通道210 參閱第116圖,該樣本流體係停止於培育室出口閥 2〇7處持續足夠長的時間。該培育室出口閥207係沸騰啓 -120- 201211539 動式閥,該沸騰啓動式閥類似於混合區段出口閥206。位 於該培育區段啓始處的液體感測器1 74聯合該流率感測器 74〇 (見,第12〇圖)和CMOS電路86開始執行一段培育時 間延遲。經充分培育之後,該培育室出口閥207啓動,且 流體再度沿著該MST培育出口通道630繼續流向該聚合 酶表面張力閥140(見第117圖)。當該樣本流體行經該 擴增注入通道632時,源自貯存槽62之聚合酶與該樣本The lysed sample fluid continues to flow to the surface tension valve 132 of the restriction enzyme, ligase, and linker. The operation of the surface tension valve 132 is the same as that of the anticoagulant surface tension valve 118 described previously. Referring to FIG. 115, when the sample fluid reaches the settled meniscus at the surface tension valve 132, the restriction enzyme, ligase, and linker-primer are released from the reservoir 58 and The sample fluids meet. The sample then flows through the MST channel 90 to the heated microchannel of the incubation section 146. Referring to Figures 1 15 and 116, the incubation section 112 is constructed of a single microchannel 210 and is heated by a plurality of heaters 154. Referring to Figure 116, the sample flow system Stop at the incubation chamber outlet valve 2〇7 for a sufficient period of time. The chamber exit valve 207 is a boiling valve - 120 - 201211539, which is similar to the mixing section outlet valve 206. The liquid sensor 1 74 at the beginning of the incubation section, in conjunction with the flow rate sensor 74 (see, Figure 12) and the CMOS circuit 86, begins performing a incubation time delay. After sufficient incubation, the incubation chamber outlet valve 207 is activated and fluid continues to flow along the MST incubation outlet passage 630 to the polymeric enzyme surface tension valve 140 (see Figure 117). The polymerase originating from reservoir 62 and the sample as the sample fluid travels through the amplification injection channel 632
流體合倂。 回到第116和117圖,擴增注入通道632引導該樣本 流體通過該十二個擴增混合物表面張力閥138。每個擴增Fluid is combined. Returning to Figures 116 and 117, the amplification injection channel 632 directs the sample fluid through the twelve amplification mixture surface tension valves 138. Each amplification
I 混合物貯存槽60.1〜60.12 (見第117圖)中的擴增混合物 流經各自的蓋層通道94以使該等彎液面定住於該該等擴 增混合物表面張力閥1 3 8處。該樣本流體依次打開該等表 面張力閥之每一者,且源自個別擴增混合物貯存槽 60.1〜60.12之擴增混合物與該樣本流體一同進入該12個 擴增腔室112.1~112.12之每一者。該 LOC裝置具有 CMOS電路,該CMOS電路允許藉由溫度感測器和加熱器 可操作地控制擴增區段。 參閱罕118圖,該等12個擴增腔室I12.1〜112.12之 每一者分別具有該等擴增出口閥108之一者。該等擴增出 口閥108係如同該培育區段出口閥207般的沸騰啓動式閥 =該樣本绮體停止於各個擴增出口閥108處。於擴增後, 該等擴增出口閥108開啓以使該擴增子流入該等雜合腔室 陣列1 1 0 · 1.〜1 1 〇. 1 2中,該等雜合腔室陣列1 1 〇 . 1〜1 1 〇 .1 2 -121 - 201211539 含有經建構以用於與該標靶核酸序列形成探針_標 合體的探針,於此例子中,該標靶核酸序列係病 。該樣本係沿著該流動路徑1 76流經該等不 110.1〜110.12之每一者且經由各自的擴散阻障器/ 進入個別之雜合腔室180 (見第98圖和第119圖) 參閱第99及1 1 9圖,當該樣本流體抵達該終 感測器1 78時,該等雜合加熱器1 82係經啓動且持 延遲時間以促進生成探針-標靶物雜合體。該流率 740 (見第120圖)係包含於該病原培育區段1 14 定該段延遲時間。經過適當的延遲時間以進行雜合 後,施加於該等ECL電極860和電極870(見第 122圖)的激發電流造成該等探針-標靶物雜合體 線之光子,且利用該下方CMOS電路86中的光感 偵測該等光子。該光感測器係由多個光二極體1 84 之陣列組成,且該等光二極體1 84係配置成與該等 室之每一個腔室相鄰。 第121和122圖顯示該等校準腔室382。如本 書之他處段落所述般,該等校準腔室係用於校準該 極體1 84以調整系統雜訊和背景値。此外,陽性 照探針787及陰性ECL對照探針7 8 6係置於該等 室180中之某些腔室內以用於分析檢驗品質之控 1〇〇圖係顯示具有互相叉合之ECL電極的該等校 3 82之變化型。 增濕器196和濕度感測器23 2係用於控制該 ί靶物雜 原 DNA 同陣列 、口 175 〇 V點液體 ;續一段 感測器 內以決 _反應之 1 19和 射出光 測器44 所構成 雜合腔 案說明 等光二 ECL對 雜合腔 制。第 準腔室 LOC裝 -122- 201211539 置785中(特別是雜合腔室陣列110中)的蒸發作用和凝 結作用。第1 1 8圖顯示該增濕器1 9 6之主要構件,水貯存 槽188和蒸發器190。The amplification mixtures in the mixture storage tanks 60.1 to 60.12 (see Figure 117) are passed through respective cover channels 94 to position the meniscus at the surface tension valve 138 of the expansion mixture. The sample fluid sequentially opens each of the surface tension valves, and the amplification mixture from the individual amplification mixture storage tanks 60.1~60.12 enters the 12 amplification chambers 112.1~112.12 together with the sample fluid. By. The LOC device has a CMOS circuit that allows operative control of the amplification section by a temperature sensor and a heater. Referring to Figure 118, each of the twelve amplification chambers I12.1 to 112.12 has one of the amplification outlet valves 108, respectively. The amplifying outlet valve 108 is a boil-start valve like the culturing section outlet valve 207 = the sample cartridge is stopped at each of the amplifying outlet valves 108. After amplification, the amplification outlet valve 108 is opened to cause the amplicon to flow into the hybrid chamber array 1 1 0 · 1.~1 1 〇. 1 2, the hybrid chamber array 1 1 1. 1~1 1 〇.1 2 -121 - 201211539 A probe constructed to form a probe-conjugate with the target nucleic acid sequence, in which case the target nucleic acid sequence is ill. The sample flows along the flow path 176 through each of the non-110.1~110.12 and through the respective diffusion barrier/into the individual hybrid chamber 180 (see Figures 98 and 119). In Figures 99 and 119, when the sample fluid reaches the final sensor 1 78, the hybrid heaters 182 are activated and held for a delay time to facilitate the generation of probe-target hybrids. The flow rate 740 (see Fig. 120) is included in the pathogen incubation section 1 14 to determine the delay time. After a suitable delay time for hybridization, the excitation current applied to the ECL electrode 860 and the electrode 870 (see Figure 122) causes photons of the probe-target hybrid line and utilizes the underlying CMOS The light perception in circuit 86 detects the photons. The photosensor is comprised of an array of a plurality of photodiodes 1 84, and the photodiodes 184 are configured to be adjacent to each of the chambers. Figures 121 and 122 show the calibration chambers 382. As described elsewhere in this document, the calibration chambers are used to calibrate the polar body 1 84 to adjust system noise and background artifacts. In addition, the positive-illuminated probe 787 and the negative ECL control probe 786 are placed in some of the chambers 180 for analysis of the quality of the test. The Figure 1 shows the ECL electrodes with interdigitated cross-sections. The change of the school's 3 82. The humidifier 196 and the humidity sensor 23 2 are used to control the liquid of the 靶 target heterogeneous DNA, the 175 〇V point liquid; the continuation of a sensor to determine the reaction 1 19 and the emission photodetector 44 The composition of the hybrid cavity case is explained by the optical ECL pair hybrid cavity system. The first chamber LOC-122-201211539 is placed in 785 (especially in the hybrid chamber array 110) for evaporation and condensation. Figure 1 18 shows the main components of the humidifier 96, the water storage tank 188 and the evaporator 190.
參閱第117圖’該蒸發指示器189指示該裝置之包裝 是否於禽儲期間已受損且從而指示該微流體裝置之完整性 和可靠性是否已降低。於製造期間,係將一小滴液體滴於 位在該蒸發指示器1 89之中心處的液體感測器i 74。若該 密封包裝於倉儲期間係已破裂,則該液滴將會蒸發。可藉 由該液體感測器1 74偵測該液體之存在或消失,從而指示 該微流體裝置上的密封完整性。 結論 本案所述之裝置、系統和方法有利於以低價、高速及 重點照護方式進行分子診斷檢驗。 上述之系統與該系統之構件純爲解說之用,且所屬技 術領域中熟悉該項技藝者將可輕易地領悟許多不偏離本案 廣義發明槪念之精神與範圍的變化體系與修飾態樣。 【圖式簡單說明】 現參照附圖描述之本發明的多個較佳具體實施例係僅 供示範之用,該等附圖如下: 第1圖顯示經建構以用於螢光偵測之檢驗模組及檢驗 模組讀取器。 第2圖係該經建構以用於螢光偵測之檢驗模組內的電 -123- 201211539 子構件之槪要總覽圖》 第3圖係該檢驗模組讀取器內之電子構件的槪要總覽 圖。 第4圖係該LOC裝置之構造的槪要表示圖。 第5圖係該LOC裝置之透視圖。 第6圖係具有源自所有彼此重疊膜層之特徵與結構的 該LOC裝置之平面圖。 第7圖係單獨出示該蓋層結構的該LOC裝置平面圖 〇 第8圖係具有內部通道及貯存槽之該蓋層的俯視透視 圖,該等內部通道及貯存槽係以虛線繪示。 第9圖係具有內部通道及貯存槽之該蓋層的俯視分解 透視圖’該等內部通道及貯存槽係以虛線繪示。 第1 〇圖係該蓋層之仰視透視圖,該仰視透視圖顯示 該等頂部通道的結構配置。 第π圖係該LOC裝置之平面圖,該平面圖單獨顯示 該CMOS + MST裝置的結構。 第1 2圖係該LOC裝置於該樣本入口處的槪要剖面圖 〇 第13圖係第6圖所示之插圖AA的放大圖。 第14圖係第6圖所示之插圖AB的放大圖。 第15圖係第13圖所示之插圖AE的放大圖。 第Ιό圖係繪示插圖AE中之該LOC裝置的層狀結構 之部分透視圖。 -124- 201211539 第17圖係繪示插圖AE中之該LOC裝置的層狀結構 之部分透視圖。 第,1 8圖係繪示插圖AE中之LOC裝置的層狀結構之 部分透視圖。 第19圖係繪示插圖AE中之LOC裝置的層狀結構之 部分透視圖。Referring to Figure 117, the evaporative indicator 189 indicates whether the package of the device has been damaged during poultry storage and thereby indicates whether the integrity and reliability of the microfluidic device has decreased. During manufacture, a small drop of liquid is dropped onto liquid sensor i 74 at the center of the evaporation indicator 189. If the sealed package has broken during storage, the droplet will evaporate. The presence or absence of the liquid can be detected by the liquid sensor 1 74 to indicate the seal integrity on the microfluidic device. Conclusion The devices, systems, and methods described in this case facilitate molecular diagnostic testing at low cost, high speed, and focused care. The above-described system and the components of the system are purely illustrative, and those skilled in the art will be able to readily comprehend many variations and modifications without departing from the spirit and scope of the broad inventive concept. BRIEF DESCRIPTION OF THE DRAWINGS A number of preferred embodiments of the present invention, which are described with reference to the drawings, are for illustrative purposes only, and the drawings are as follows: Figure 1 shows a test constructed for fluorescence detection. Module and inspection module reader. Figure 2 is a summary view of the sub-components of the electric-123-201211539 sub-assembly in the inspection module constructed for fluorescence detection. Figure 3 is the 电子 of the electronic components in the inspection module reader. To map the map. Figure 4 is a schematic representation of the construction of the LOC device. Figure 5 is a perspective view of the LOC device. Figure 6 is a plan view of the LOC device having features and structures derived from all of the overlapping film layers. Figure 7 is a plan view of the LOC device showing the cover structure separately. Figure 8 is a top perspective view of the cover layer having internal passages and storage slots, the internal passages and storage slots being shown in dashed lines. Figure 9 is a top exploded perspective view of the cover layer having internal passages and storage tanks. The internal passages and storage tanks are shown in dashed lines. The first drawing is a bottom perspective view of the cover, the bottom perspective showing the structural configuration of the top channels. The πth diagram is a plan view of the LOC device, which shows the structure of the CMOS + MST device separately. Fig. 1 is a schematic cross-sectional view of the LOC device at the entrance of the sample. Fig. 13 is an enlarged view of the inset AA shown in Fig. 6. Fig. 14 is an enlarged view of the illustration AB shown in Fig. 6. Fig. 15 is an enlarged view of the illustration AE shown in Fig. 13. The figure is a partial perspective view showing the layered structure of the LOC device in the illustration AE. -124- 201211539 Figure 17 is a partial perspective view showing the layered structure of the LOC device in the illustration AE. First, Fig. 18 is a partial perspective view showing the layered structure of the LOC device in the illustration AE. Figure 19 is a partial perspective view showing the layered structure of the LOC device in the illustration AE.
I 第圖係繪示插圖AE中之LOC裝置的層狀結構之I. The figure shows the layered structure of the LOC device in the illustration AE.
部分透視圖。 第21圖係繪示插圖AE內之該LOC裝置的層狀結構 之部分透視圖。 第22圖係第2 1圖所示之該溶胞試劑貯存槽的槪要剖 面圖。 第23圖係繪示插圖AB中之該LOC裝置的層狀結構 之部分透視圖。 第24圖係繪示插圖AB中之該LOC裝置的層狀結構 之部分透視圖。Partial perspective. Figure 21 is a partial perspective view showing the layered structure of the LOC device in the inset AE. Fig. 22 is a schematic cross-sectional view showing the lysis reagent storage tank shown in Fig. 21. Figure 23 is a partial perspective view showing the layered structure of the LOC device in the inset AB. Figure 24 is a partial perspective view showing the layered structure of the LOC device in the inset AB.
I 第25圖係繪示插圖AI中之該LOC裝置的層狀結構 之部分透視圖。 第26圖係繪示插圖AB內之該LOC裝置的層狀結構 之部分透視圖。 第27圖係繪示插圖AB內之該LOC裝置的層狀結構 之部分透視圖。 第28圖係繪示插圖AB內之LOC裝置的層狀結構之 部分透視圖。 -125- 201211539 第29圖係繪示插圖AB內之LOC裝置的層狀結構之 部分透視圖。 第3 0圖係該擴增混合物貯存槽及該聚合酶貯存槽之 槪要剖面圖。 第31圖單獨繪示沸騰啓動式閥之特徵。 第32圖係沿第31圖所示之線段3 3 -3 3取得該沸騰啓 動式閥的槪要剖面圖。 第33圖係第15圖所示之插圖AF的放大圖。 第34圖係沿第33圖中所示之線段3 5 -3 5取得該透析 區段之上游末端的槪要剖面圖。 第35圖係第6圖所示之插圖AC的放大圖。 第36圖係顯不該擴增區段之插圖AC內部的進一步 放大圖。 第37圖係顯不該擴增區段之插圖AC內部的進一步 放大圖。 第38圖係顯示該擴增區段之插圖AC內部的進一步 放大圖。 第39圖係第38圖所示之插圖AK的進一步放大圖。 第40圖係顯示該擴增腔室之插圖AC內部的進一步 放大圖。 第41圖係顯示該擴增區段之插圖AC內部的進一步 放大圖。 第42圖係顯示該擴增腔室之插圖AC內部的進一步 放大圖 -126- 201211539 第43圖係第42圖所示之插圖AL內部的進一步放大 圖。 第44圖係顯示該擴增區段之插圖AC內部的進一步 放大圖。 第45圖係第44圖所示之插圖AM內部的進一步放大 圖。I Fig. 25 is a partial perspective view showing the layered structure of the LOC device in the illustration AI. Figure 26 is a partial perspective view showing the layered structure of the LOC device in the inset AB. Figure 27 is a partial perspective view showing the layered structure of the LOC device in the inset AB. Figure 28 is a partial perspective view showing the layered structure of the LOC device in the inset AB. -125- 201211539 Figure 29 is a partial perspective view showing the layered structure of the LOC device in the illustration AB. Figure 30 is a schematic cross-sectional view of the amplification mixture storage tank and the polymerase storage tank. Figure 31 is a separate illustration of the characteristics of a boiling start valve. Figure 32 is a cross-sectional view of the boiling start valve taken along the line 3 3 - 3 3 shown in Figure 31. Fig. 33 is an enlarged view of the illustration AF shown in Fig. 15. Figure 34 is a schematic cross-sectional view of the upstream end of the dialysis section taken along line 35-35 of Figure 33. Fig. 35 is an enlarged view of the illustration AC shown in Fig. 6. Figure 36 shows a further enlarged view of the inside of the illustration AC of the amplified section. Figure 37 is a further enlarged view of the inside of the illustration AC of the enlarged section. Figure 38 is a further enlarged view showing the inside of the illustration AC of the amplified section. Figure 39 is a further enlarged view of the illustration AK shown in Figure 38. Figure 40 is a further enlarged view showing the inside of the illustration AC of the amplification chamber. Fig. 41 is a further enlarged view showing the inside of the illustration AC of the enlarged section. Fig. 42 is a further enlarged view showing the inside of the illustration AC of the amplification chamber -126 - 201211539 Fig. 43 is a further enlarged view of the inside of the illustration AL shown in Fig. 42. Figure 44 is a further enlarged view showing the inside of the illustration AC of the amplified section. Fig. 45 is a further enlarged view of the inside of the illustration AM shown in Fig. 44.
第46圖係顯示該擴增腔室之插圖AC內部的進一步 放大圖。 第47圖係第46圖所示之插圖AN的進一步放大圖。 第48圖係顯示該擴增腔室之插圖AC內部的進一步 放大圖。 第49圖係顯示該擴增腔室之插圖AC內部的進一步 放大圖。 第50圖係顯示該擴增區段之插圖AC內部的進一步 放大圖。 第51圖係該擴增區段之槪要剖面圖。 第52圖係該雜合區段之放大平面圖。 第53圖係單獨顯示兩個雜合腔室的進一步放大剖面 圖。 第54圖係單個雜合腔室之槪要剖面圖。 第55圖係第6圖所示之插圖AG內繪示的增濕器之 放大圖。 第56圖係第52圖所示之插圖ad的放大圖。 第57圖係插圖AD內之L〇c裝置的分解透視圖。 •127- 201211539 第5 8圖係第6圖之插圖AH中所顯示之濕度感測器 的放大平面圖。 第5 9圖係顯示該光感測器之部分光二極體陣列的槪 要圖。 第60圖係第55圖之插圖AP中所示之蒸發器的放大 圖。 第61圖係連接子引子PCR之圖解。 第62圖係配備有刺胳針之檢驗模組的槪要表示圖。 第63圖係LOC裝置變化型VII之構造的圖解表示圖 〇 第64圖係具有源自所有彼此重疊膜層之特徵和結構 的LOC裝置變化型VIII之構造的平面圖。 第65圖係第64圖中所示之插圖CA的放大圖》 第66圖係部分透視圖,該部分透視圖繪示第64圖所 示之插圖CA內的LOC裝置變化型VIII之層狀結構。 第67圖係第65圖所示之插圖CE的放大圖。 第68圖係該LOC裝置變化型VIII之結構的圖解表 示圖》 第69圖係該LOC裝置變化型XIV之結構的槪要圖。 第70圖係該LOC裝置變化型XV之結構的槪要圖。 第71圖係該LOC裝置變化型XVIII之結構的槪要圖 〇 第72圖係該LOC裝置變化型XXII之結構的槪要圖 -128- 201211539 第73圖係該LOC裝置變化型XXV之結構的槪要圖 第74圖係該LOC裝置變化型χχνΙΠ之結構的槪要 第75圖係該LOC裝置變化型XXIX之結構的槪要圖 第76圖係該LOC裝置變化型XXX之結構的槪要圖Figure 46 is a further enlarged view showing the inside of the illustration AC of the amplification chamber. Fig. 47 is a further enlarged view of the illustration AN shown in Fig. 46. Figure 48 is a further enlarged view showing the inside of the illustration AC of the amplification chamber. Figure 49 is a further enlarged view showing the inside of the illustration AC of the amplification chamber. Figure 50 is a further enlarged view showing the inside of the illustration AC of the amplification section. Figure 51 is a schematic cross-sectional view of the amplified section. Figure 52 is an enlarged plan view of the hybrid section. Figure 53 is a further enlarged cross-sectional view showing two hybrid chambers separately. Figure 54 is a cross-sectional view of a single hybrid chamber. Fig. 55 is an enlarged view of the humidifier shown in the illustration AG shown in Fig. 6. Fig. 56 is an enlarged view of the illustration ad shown in Fig. 52. Figure 57 is an exploded perspective view of the L〇c device in the illustration AD. • 127- 201211539 Figure 5 8 is an enlarged plan view of the humidity sensor shown in Figure AH of Figure 6. Figure 5 is a schematic diagram showing a portion of the photodiode array of the photosensor. Fig. 60 is an enlarged view of the evaporator shown in the illustration AP of Fig. 55. Figure 61 is a diagram of the PCR of the linker primer. Figure 62 is a schematic representation of a test module equipped with a lancet. Fig. 63 is a diagrammatic view showing the configuration of the LOC device variation VII. Fig. 64 is a plan view showing the configuration of the LOC device variation VIII derived from all the features and structures of the mutually overlapping film layers. Fig. 65 is an enlarged view of the inset CA shown in Fig. 64. Fig. 66 is a partial perspective view showing the layered structure of the LOC device variation VIII in the inset CA shown in Fig. 64. . Fig. 67 is an enlarged view of the illustration CE shown in Fig. 65. Figure 68 is a schematic representation of the structure of the LOC device variant VIII. Figure 69 is a schematic diagram of the structure of the LOC device variant XIV. Figure 70 is a schematic diagram showing the structure of the variable XV of the LOC device. Figure 71 is a schematic view of the structure of the LOC device variant XVIII. Figure 72 is a schematic diagram of the structure of the LOC device variant XXII - 128 - 201211539 Figure 73 is the structure of the LOC device variant XXV BRIEF DESCRIPTION OF THE DRAWINGS Fig. 74 is a schematic diagram of the structure of the LOC device variant χχνΙΠ. Fig. 76 is a schematic diagram of the structure of the LOC device variant XXIX. Fig. 76 is a schematic diagram of the structure of the LOC device variant XXX.
第77圖係該LOC裝置變化型XXXI之結構的槪要圖 第78圖係該LOC裝置變化型XLI之結構的槪要圖。 第79圖係該LOC裝置變化型XLIII之結構的槪要圖 第80圖係該LOC裝置變化型XLIV之結構的槪要圖 第81圖係該LOC裝置變化型XLVII之結構的槪要圖 第82圖係該LOC裝置變化型XI之結構的槪要圖。 第83圖係該微分成像器之電路圖。 第84圖顯示電致化學發光(ECL)處理期間所發生 的該等反應。 第85圖槪要顯示三種不同的陽極結構配置。 第86圖係該雜合腔室中之陽極和陰極之槪要局部剖 面圖。 -129- 201211539 第87圖槪要圖示一種圍繞光二極體之周長邊緣且呈 環形幾何結構的陽極。 第88圖槪要圖示一種位於光二極體之周長邊緣內部 且呈環形幾何結構的陽極。 第89圖槪要圖示一種具有一組指狀部之陽極,該組 指狀部係用於增加該陽極之側向邊緣長度。 第90圖槪要說明使用透明陽極以使用於耦合和ECL 信號偵測的表面積最大化。 第91圖槪要說明使用固定於該雜合腔室之頂部的陽 極以使用於耦合和ECL信號偵測的表面積最大化。 第92圖槪要圖示一種與陰極相互叉合的陽極。 第93圖顯示經建構而可與ECL偵測倂用的檢驗模組 和檢驗模組讀取器。 第94圖係經建構而可與ECL偵測倂用之檢驗模組內 的電子構件之槪要總覽圖。 第95圖顯示檢驗模組和替代的檢驗模組讀取器。 第96圖顯示搭配容納各種資料庫之主機系統的檢驗 模組和替代之檢驗模組讀取器。 第97圖係LOC裝置變化型L之平面圖,該平面圖顯 示彼此重疊之所有特徵結構且顯示插圖GA-GL之位置。 第98圖係第97圖中所示之插圖GD的放大圖。 第99圖係第97圖中所示之插圖GG的放大圖。 第100圖係第97圖中所示之插圖GH的放大圖。 第1 〇 1圖係處於閉合結構的電致化學發光共振能量轉 -130- 201211539 移探針之圖解。 第1 02圖係處於打開且經雜合之結構的電致化學發光 共振能量轉移探針圖解。 第丨03圖係接有引子之發光線性探針於擴增反應之最 初回合_間的圖解。 第1 04圖係接有引子之發光線性探針於後續擴增循環 期間之圖解。Fig. 77 is a schematic view showing the structure of the LOC device variation type XXXI. Fig. 78 is a schematic view showing the structure of the LOC device variation type XLI. Figure 79 is a schematic view of the structure of the LOC device variant XLIII. Figure 80 is a schematic view of the structure of the LOC device variant XLIV. Figure 81 is a schematic diagram of the structure of the LOC device variant XLVII. The figure is a schematic diagram of the structure of the LOC device variant XI. Figure 83 is a circuit diagram of the differential imager. Figure 84 shows the reactions that occurred during electrochemiluminescence (ECL) processing. Figure 85 shows three different anode configurations. Figure 86 is a fragmentary cross-sectional view of the anode and cathode of the hybrid chamber. -129- 201211539 Figure 87 is a diagram showing an anode having a ring-shaped geometry around the perimeter edge of the photodiode. Fig. 88 is a view showing an anode which is located inside the peripheral edge of the photodiode and has a ring-shaped geometry. Figure 89 is a diagram showing an anode having a set of fingers for increasing the lateral edge length of the anode. Figure 90 illustrates the use of a transparent anode to maximize surface area for coupling and ECL signal detection. Figure 91 illustrates the use of an anode fixed to the top of the hybrid chamber to maximize surface area for coupling and ECL signal detection. Fig. 92 is a view showing an anode which is interdigitated with the cathode. Figure 93 shows the test module and test module reader that are constructed to be used with ECL detection. Figure 94 is a summary overview of the electronic components in the test module that can be constructed for use with ECL detection. Figure 95 shows the inspection module and the alternative inspection module reader. Figure 96 shows an inspection module and an alternative inspection module reader with a host system that houses various databases. Fig. 97 is a plan view showing a variation L of the LOC device, which shows all the features overlapping each other and shows the position of the illustration GA-GL. Fig. 98 is an enlarged view of the inset GD shown in Fig. 97. Fig. 99 is an enlarged view of the illustration GG shown in Fig. 97. Fig. 100 is an enlarged view of the illustration GH shown in Fig. 97. The first 〇 1 diagram is an electrochemiluminescence resonance energy transfer in a closed structure. -130- 201211539 Diagram of the shift probe. Figure 102 is an illustration of an electrochemiluminescence resonance energy transfer probe in an open and heterozygous structure. Fig. 03 is a diagram showing the initial round _ of the amplification reaction with an illuminating linear probe of the primer. Figure 1 04 is an illustration of a light-emitting linear probe with primers for subsequent amplification cycles.
第105A〜105F圖圖解說明一種接有引子之發光幹-環 狀探針的熱循環。 第1 06圖槪要圖示一種處於幹環狀結構之陰性對照組 冷光探針。 第107圖槪要圖示處於打開結構之第106圖的陰性對 照組冷光探針。 第1 08圖槪要圖示一種處於幹環狀結構之陰性對照組 冷光探針。 第109圖槪要圖示處於打開結構之第106圖的陰性對 照組冷光探針。 第110圖係具有透析裝置' LOC裝置、互連蓋層和電 致化學發光(ECL)偵測之微流體裝置之圖解表示圖。 第111圖係具有透析裝置、LOC裝置和互連蓋層之微 流體裝置的透視圖。 第112圖係顯示該微流體裝置之透析裝置的該等特徵 且顯示插圖JA之位置。 第113圖係第112圖中所示之插圖JA的放大圖。 -131 - 201211539 第114圖係顯示該微流體裝置之LOC裝置的該等特 徵且顯示插圖JB-JJ之位置。 第115圖係第114圖中所示之插圖JB的放大圖。 第116圖係第114圖中所示之插圖JC的放大圖。 第117圖係第114圖中所示之插圖JD的放大圖。 第118圖係第114圖中所示之插圖JE的放大圖。 第119圖係第114圖中所示之插圖JF的放大圖。 第120圖係第114圖中所示之插圖JG的放大圖。 第121圖係第114圖中所示之插圖JH的放大圖。 第122圖係第114圖中所示之插圖的放大圖。 第123圖係LOC裝置變化型L之該雜合腔室的放大 圖。 第124圖係LOC裝置變化型L之該雜合腔室陣列的 放大圖,該放大圖顯示多個校準腔室之分佈情形。 【主要元件符號說明】 1 0 :檢驗模組 1 1 :檢驗模組 1 2 :檢驗模組讀取器 13 :外殼 14 :微型USB插頭 15 :電感器 16 :微型USB插槽 1 7 :觸控螢幕 -132- 201211539 18 :顯示螢幕 19 :按鍵 20 :啓動鈕 2 1 :蜂巢式無線電 22:可撕式滅菌密封膠帶 23 :無線網路連接器 24 :大放置槽 25 ::衛星導航系統Figures 105A-105F illustrate thermal cycling of a luminescent dry-loop probe with primers attached thereto. Figure 1 06 shows a negative control cold light probe in a dry loop configuration. Figure 107 is a schematic illustration of the negative control group luminescence probe in Figure 106 of the open configuration. Figure 1 08 shows a negative control cold light probe in a dry loop configuration. Figure 109 is a schematic illustration of the negative control group luminescence probe in Figure 106 of the open configuration. Figure 110 is a graphical representation of a microfluidic device having a dialysis device 'LOC device, interconnect capping layer, and electrochemiluminescence (ECL) detection. Figure 111 is a perspective view of a microfluidic device having a dialysis device, a LOC device, and an interconnecting cap layer. Figure 112 shows the features of the dialysis device of the microfluidic device and shows the location of the inset JA. Fig. 113 is an enlarged view of the illustration JA shown in Fig. 112. -131 - 201211539 Figure 114 shows these features of the LOC device of the microfluidic device and shows the position of the inset JB-JJ. Fig. 115 is an enlarged view of the illustration JB shown in Fig. 114. Fig. 116 is an enlarged view of the illustration JC shown in Fig. 114. Fig. 117 is an enlarged view of the illustration JD shown in Fig. 114. Fig. 118 is an enlarged view of the illustration JE shown in Fig. 114. Fig. 119 is an enlarged view of the illustration JF shown in Fig. 114. Fig. 120 is an enlarged view of the illustration JG shown in Fig. 114. Fig. 121 is an enlarged view of the inset JH shown in Fig. 114. Figure 122 is an enlarged view of the illustration shown in Figure 114. Figure 123 is an enlarged view of the hybrid chamber of the LOC device variant L. Figure 124 is an enlarged view of the hybrid chamber array of the LOC device variant L showing the distribution of multiple calibration chambers. [Main component symbol description] 1 0 : Inspection module 1 1 : Inspection module 1 2 : Inspection module reader 13 : Housing 14 : Micro USB plug 15 : Inductor 16 : Micro USB slot 1 7 : Touch Screen -132- 201211539 18 : Display Screen 19 : Button 20 : Start Button 2 1 : Honeycomb Radio 22 : Tornable Sealing Tape 23 : Wireless Network Connector 24 : Large Placement Slot 25 :: Satellite Navigation System
26 :發光二極體(LED ) 27 :資料儲存器 28 :行動電話/智慧型手機 2 9 : L E D驅動器 30 :晶片上實驗室(LOC )裝置 3 1 :功率調節器 32 :電容器 33 :時鐘 1 34 :控制器26: Light-emitting diode (LED) 27: Data storage 28: Mobile phone/smart phone 2 9 : LED driver 30: On-wafer laboratory (LOC) device 3 1 : Power conditioner 32: Capacitor 33: Clock 1 34: Controller
I 3 5:記錄器 36 : l|SB裝置驅動器 3 7 :驅動器 38 :隨機存取記億體(RAM) 39 :驅動器 40 =程式及資料快閃記憶體 41 :記錄器 -133- 201211539 42 :處理器 43 :程式儲存器 44 :光感測器/光感測器陣列 45 :指示器 4 6 :蓋層 47 :僅靠USB供電和作爲指示 48 : CMOS + MST 晶片 49 :泡綿狀插入物/多孔性元件 51 :互連蓋層 5 2 :雜合與偵測區段 5 4 :貯存槽 5 6 :貯存槽 5 7 :印刷電路板 5 8 :貯存槽 60 :貯存槽 60. 1 :貯存槽 60.2 :貯存槽 60.3 :貯存槽 60.4 :貯存槽 60.5 :貯存槽 60.6 :貯存槽 6 〇 . 7 :貯存槽 60.8 :貯存槽 60.9 :貯存槽 之模組I 3 5: Recorder 36: l|SB Device Driver 3 7: Driver 38: Random Access Memory (RAM) 39: Driver 40 = Program and Data Flash Memory 41: Recorder - 133 - 201211539 42 : Processor 43: Program Memory 44: Light Sensor/Photo Sensor Array 45: Indicator 4 6: Cover Layer 47: Powered by USB only and as an indication 48: CMOS + MST Wafer 49: Foam Insert /Porous element 51: Interconnecting cap layer 5 2 : Hybrid and detecting section 5 4 : Storage tank 5 6 : Storage tank 5 7 : Printed circuit board 5 8 : Storage tank 60 : Storage tank 60. 1 : Storage Tank 60.2: Storage tank 60.3: Storage tank 60.4: Storage tank 60.5: Storage tank 60.6: Storage tank 6 〇. 7: Storage tank 60.8: Storage tank 60.9: Module of storage tank
-134- 201211539 60.10 :貯存槽 60.1 1 :貯存槽 60.12 :貯存槽 60.X :貯存槽 62 :貯存槽 62.1 :貯存槽 62.2 :貯存槽 62.3 :貯存槽-134- 201211539 60.10 : Storage tank 60.1 1 : Storage tank 60.12 : Storage tank 60.X : Storage tank 62 : Storage tank 62.1 : Storage tank 62.2 : Storage tank 62.3 : Storage tank
62.4 :貯存槽 62.X :貯存槽 64 :下密封層 66 :頂層 68 :樣本入口 70 :透析區段/透析步驟 72 :廢液通道 74 :標靶通道 76 :廢料單元/廢料貯存槽 78 :貯存槽層 8 0 :蓋層通道層 8 2 :上密封層 84 :矽基板 (CMOS )電路 86 :互補金屬氧化物半導體 87 :微系統技術(MST)層 8 8 :鈍化層 -135- 201211539 90 :微系統技術(MST )通道 92 :下吸孔 94 :蓋層通道 96 :上吸孔 9 7 :隔牆區段 9 8 :彎液面錨62.4: Storage tank 62.X: Storage tank 64: Lower sealing layer 66: Top layer 68: Sample inlet 70: Dialysis section/dialysis step 72: Waste liquid channel 74: Target channel 76: Waste unit/waste storage tank 78: Storage tank layer 80: Cover channel layer 8 2: Upper sealing layer 84: 矽 substrate (CMOS) circuit 86: Complementary metal oxide semiconductor 87: Microsystem technology (MST) layer 8 8 : Passivation layer -135 - 201211539 90 : Microsystem Technology (MST) Channel 92: Lower Suction Hole 94: Cover Channel 96: Upper Suction Hole 9 7 : Partition Wall Section 9 8 : Meniscus Anchor
100 :微系統技術(MST)通道層 1 〇 1 :手提式個人電腦/筆記型電腦 102 :毛細作用引動特徵(CIF ) 103 :專用讀取器 105 :桌上型電腦 106 :沸騰啓動式閥 107 :電子書讀取器 108 :沸騰啓動式閥/擴增出口閥 1 0 9 :平板電腦100: Microsystem Technology (MST) channel layer 1 〇1: Portable personal computer/notebook computer 102: Capillary action priming feature (CIF) 103: Dedicated reader 105: Desktop computer 106: Boiling start valve 107 : e-book reader 108: boiling start valve / amplification outlet valve 1 0 9 : tablet
1 1 〇 :雜合腔室陣列 1 1 〇 . 1 :雜合腔室陣列 1 1 〇 . 2 :雜合腔室陣列 1 1 〇 . 3 :雜合腔室陣列 1 1 〇 . 4 :雜合腔室陣列 1 1 〇 . 5 :雜合腔室陣列 1 1 〇 . 6 :雜合腔室陣列 1 1 〇 . 7 :雜合腔室陣列 1 1 〇 . 8 :雜合腔室陣列 -136- 201211539 110.9:雜合腔室陣列 1 1 0.1 0 :雜合腔室陣列 1 1 0.1 1 :雜合腔室陣列 1 10.12 :雜合腔室陣列 1 10.X :雜合腔室陣列 1 η::流行病學資料之主機系統 1 1 2 :擴增區段1 1 〇: Hybrid chamber array 1 1 〇. 1 : Hybrid chamber array 1 1 〇. 2 : Hybrid chamber array 1 1 〇. 3 : Hybrid chamber array 1 1 〇. 4 : Hybrid Chamber array 1 1 〇. 5 : Hybrid chamber array 1 1 〇. 6 : Hybrid chamber array 1 1 〇. 7 : Hybrid chamber array 1 1 〇. 8 : Hybrid chamber array - 136- 201211539 110.9: Hybrid chamber array 1 1 0.1 0 : Hybrid chamber array 1 1 0.1 1 : Hybrid chamber array 1 10.12: Hybrid chamber array 1 10.X: Hybrid chamber array 1 η:: Epidemiological data host system 1 1 2: amplification section
1 1 2.1 :擴增區段 1 12.2 :擴增區段 1 12.3 :擴增區段 1 12.4 :擴增區段 1 1 2.5 :擴增區段 1 1 2.6 :擴增區段 1 12.7 :擴增區段 112.8:擴增區段 1 1 2.9 :擴增區段 1 1 2.1 0 :擴增區段 1 1 2.1 1 :擴增區段 1 1 2 . 1 2 :擴增區段 112.X :擴增區段 1 1 3 :遺傳資料之主機系統 1 1 4 :培育區段 1 1 4.1 :培育區段 1 1 4.2 :培育區段 -137- 201211539 1 1 4.3 :培育區段 1 1 4.4 :培育區段 1 15 :電子健康記錄(EHR )之主機系統 1 1 6 :抗凝血劑 117:抗凝血劑表面張力閥 1 1 8 :表面張力閥 1 1 9 :樣本流體 1 2 0 :彎液面 121 :電子醫療記錄(EMR )之主機系統 1 2 2 :通氣孔 123 :個人醫療記錄(PHR)之主機系統 125 :網路 126 :沸騰啓動式閥 1 2 8 :表面張力閥 1 3 0 :(化學)溶胞區段 1 3 1 :混合區段 132 :表面張力閥 1 3 3 :培育室入口通道 1 3 4 :下吸孔 1 36 :光學窗口 1 3 8 :擴增混合物表面張力閥 1 3 8 . 1 :擴增混合物表面張力閥 138.2 :擴增混合物表面張力閥 1 3 8 . 3 :擴增混合物表面張力閥 201211539 13δ.4:擴增混合物表面張力閥 1 38 .X :擴增混合物表面張力閥 140:聚合酶表面張力閥 14〇.1 :聚合酶表面張力閥 140.2 :聚合酶表面張力閥1 1 2.1: Amplified segment 1 12.2: Amplified segment 1 12.3: Amplified segment 1 12.4: Amplified segment 1 1 2.5: Amplified segment 1 1 2.6: Amplified segment 1 12.7: Amplification Section 112.8: Amplification section 1 1 2.9 : Amplification section 1 1 2.1 0 : Amplification section 1 1 2.1 1 : Amplification section 1 1 2 . 1 2 : Amplification section 112.X: expansion Increased section 1 1 3 : host system of genetic data 1 1 4 : incubation section 1 1 4.1 : incubation section 1 1 4.2 : cultivation section -137- 201211539 1 1 4.3 : cultivation section 1 1 4.4 : cultivation area Paragraph 1 15: Host system for electronic health record (EHR) 1 1 6 : Anticoagulant 117: Anticoagulant surface tension valve 1 1 8 : Surface tension valve 1 1 9 : Sample fluid 1 2 0 : Meniscus 121: Electronic medical record (EMR) host system 1 2 2 : vent 123: personal medical record (PHR) host system 125: network 126: boiling start valve 1 2 8 : surface tension valve 1 3 0 : ( Chemical) lysis section 1 3 1 : mixing section 132 : surface tension valve 1 3 3 : incubation chamber inlet channel 1 3 4 : lower suction hole 1 36 : optical window 1 3 8 : amplification mixture surface tension valve 1 3 8 . 1 : Amplification mixture surface tension valve 138.2 : expansion Mixture surface tension valve 1 3 8 . 3 : Amplification mixture surface tension valve 201211539 13δ.4: Amplification mixture surface tension valve 1 38 .X : Amplification mixture surface tension valve 140: Polymerase surface tension valve 14〇.1 : Polymerase Surface Tension Valve 140.2: Polymerase Surface Tension Valve
140.3 :聚合酶表面張力閥 Μ0.4 :聚合酶表面張力閥 14〇·Χ :聚合酶表面張力閥 146 :閥入口 1 4 8 :閥出口 150 :下吸孔 1 5 1 :閥上吸孔 1 5 2 :加熱器 1 53 :沸騰啓動式閥之加熱器接觸點 1 5 4 :加熱器 1 5 6 :加熱器接觸點 158 :微通道 160 :擴增區段離開通道 164 :孔 165 :孔 166 :毛細作用引動特徵(CIF ) 168 :透析上吸孔 170 :溫度感測器 174 :液體感測器 -139- 201211539 175 :擴散阻障器 176 :流動路徑140.3: polymerase surface tension valve Μ 0.4: polymerase surface tension valve 14 〇 · Χ : polymerase surface tension valve 146 : valve inlet 1 4 8 : valve outlet 150 : lower suction hole 1 5 1 : valve upper suction hole 1 5 2 : Heater 1 53 : Heater contact point of boiling start valve 1 5 4 : Heater 1 5 6 : Heater contact point 158 : Microchannel 160 : Amplification section leaves channel 164 : Hole 165 : Hole 166 : capillary action priming feature (CIF) 168: dialysis upper suction hole 170: temperature sensor 174: liquid sensor - 139 - 201211539 175 : diffusion barrier 176 : flow path
1 7 8 :終點液體感測器 1 80 :雜合腔室 1 8 2 :加熱器 1 84 :光二極體 18 5:主動區 186: FRET 探針 1 8 8 :水貯存槽 189 :蒸發指示器 190 :蒸發器 1 9 1 :環形加熱器 192 :水供應通道 193 :上吸孔 1 9 4 :下吸孔1 7 8 : End point liquid sensor 1 80 : Hybrid chamber 1 8 2 : Heater 1 84 : Light diode 18 5: Active area 186: FRET probe 1 8 8 : Water storage tank 189 : Evaporation indicator 190: evaporator 1 9 1 : ring heater 192: water supply passage 193: upper suction hole 1 9 4 : lower suction hole
195 :頂部金屬層之暴露區域 1 9 6 :增濕器 197 :蓋層通道液體感測器 198 :第一上吸孔 202 :毛細作用引動特徵(CIF ) 204:透析MST通道 2 06 :混合區段出口閥/沸騰啓動式閥 207 :培育室出口閥 2 0 8 :混合區段出口閥 -140- 201211539 2 1 0 :經加熱之微通道 212:中間MST通道 2 1 8 :鈦銘電極 220 :鈦鋁電極 222 :間隙 232 :濕度感測器195: exposed area of the top metal layer 1 9 6 : humidifier 197: cap layer channel liquid sensor 198: first upper suction hole 202: capillary action priming feature (CIF) 204: dialysis MST channel 2 06 : mixing zone Segment outlet valve/boiling start valve 207: incubation chamber outlet valve 2 0 8 : mixing section outlet valve -140- 201211539 2 1 0 : heated microchannel 212: intermediate MST channel 2 1 8 : titanium electrode 220: Titanium-aluminum electrode 222: gap 232: humidity sensor
2 3 4 :加熱器 23 7 : ECL 探針 23 8 :標靶核酸序列/標靶DNA 240 :環部 242 :主幹 248 :消光基團 28 8 :樣本之置入與製備階段 290 :萃取階段(萃取區段) 291 :培育階段/培育步驟 292 :擴增階段/擴增步驟/擴增區段 293 :預雜合階段 294 :偵測階段/偵測區段 296 :第一電極 29 8 :第二電極 3 00 :預編程之延遲時間 301 :晶片上實驗室(LOC )裝置 3 2 8 :透析區段 3 7 6 :導電柱 -141 - 201211539 3 78 :對照探針 3 8 0 :對照探針 3 82 :校準腔室 3 90 :彈壓伸縮式刺血針 3 9 2 :刺血針釋放按鈕 408 :密封膜 410 :薄膜護片2 3 4 : Heater 23 7 : ECL probe 23 8 : Target nucleic acid sequence / target DNA 240 : Ring 242 : backbone 248 : extinction group 28 8 : sample insertion and preparation stage 290 : extraction stage ( Extraction section) 291: incubation stage/cultivation step 292: amplification stage/amplification step/amplification section 293: pre-hybridization stage 294: detection stage/detection section 296: first electrode 29 8 : Two electrodes 3 00 : Preprogrammed delay time 301 : On-wafer laboratory (LOC) device 3 2 8 : Dialysis section 3 7 6 : Conductive column -141 - 201211539 3 78 : Control probe 3 8 0 : Control probe 3 82 : Calibration chamber 3 90 : Retractable lancet 3 9 2 : lancet release button 408 : sealing film 410 : film guard
492: LOC裝置變化型VII492: LOC Device Variant VII
518: LOC裝置變化型VIII 594 :界面層 5 96 :界面通道 5 98 :界面通道 600 :旁通渠道 602 :界面標靶物通道 604 :界面廢液(細胞)通道518: LOC device variant VIII 594: interface layer 5 96 : interface channel 5 98 : interface channel 600 : bypass channel 602 : interface target channel 604 : interface waste (cell) channel
6 06 :溶胞試劑貯存槽側之界面通道 608 :溶胞樣本側之界面通道 610 :界面導管 6 1 2 :混合區段出口下吸孔 614 :閥界面通道 616 :閥界面凹槽 630: MST培育出口通道 63 2 :擴增注入通道 63 8 :熱溶胞腔室 -142- 2012115396 06 : Interface channel 608 on the side of the lysis reagent storage tank: interface channel 610 on the lysis sample side: interface conduit 6 1 2 : mixing section outlet lower suction hole 614: valve interface channel 616: valve interface groove 630: MST Nutrient outlet channel 63 2 : Amplification injection channel 63 8 : Hot lysis chamber -142- 201211539
641 : LOC裝置變化型XIV641 : LOC device variant XIV
659 : LOC裝置變化型 XXIX659 : LOC device variant XXIX
660 : LOC裝置變化型XXX660 : LOC device variant XXX
661 : LOC裝置變化型XXXI 673: LOC裝置變化型XLIII 674: LOC裝置變化型XLIV 677: LOC裝置變化型XLVII661 : LOC device variant XXXI 673: LOC device variant XLIII 674: LOC device variant XLIV 677: LOC device variant XLVII
6 82 :透析區段/透析步驟/雜合前透析步驟 684:進一步樣本分析 6 8 ό :,擴增前透析步驟 693 :接有引子之線性ECL探針 694 :擴增阻斷子 696 :接有引子之探針序列 698 :經擴增之互補序列 700 :寡聚核苷酸引子 705 :接有引子之幹-環狀ECL探針/探針區域 706 :互補序列 708 :主幹鏈 710 :主幹鏈 7 1 2 :第一光學稜鏡 729 : LOC裝置變化型. 74〇 :谛率感測器 746 : L0C裝置變化型XI 766 :廢料貯存槽 -143- 201211539 7 6 8 :廢料貯存槽 7 8 3 :微流體裝置 7 84 :透析裝置 7 8 5 : LOC 裝置 7 86 :陰性對照ECL探針 7 8 7 :陽性對照ECL探針 7 8 8 :微分成像電路 7 9 0 :像素6 82 : dialysis section / dialysis section / pre-hybridization dialysis step 684: further sample analysis 6 8 ό :, pre-amplification dialysis step 693: linear ECL probe 694 with primer: amplification blocker 696: Probe sequence with primer 698: amplified complementary sequence 700: oligonucleotide primer 705: stem-looped ECL probe/probe region 706: complementary sequence 708: backbone strand 710: backbone Chain 7 1 2 : first optical 稜鏡 729 : LOC device variant. 74 〇: 感 rate sensor 746 : L0C device variant XI 766 : waste storage tank - 143 - 201211539 7 6 8 : waste storage tank 7 8 3: microfluidic device 7 84 : dialysis device 7 8 5 : LOC device 7 86 : negative control ECL probe 7 8 7 : positive control ECL probe 7 8 8 : differential imaging circuit 7 9 0 : pixel
7 9 2 :虛擬像素 794 :讀列線 795 :虛擬像素讀列線 797 : M4電晶體 8 0 1 : M D 4電晶體 8 03 :像素電容器 8 05 :虛擬像素電容器7 9 2 : Virtual pixel 794 : Read column line 795 : Virtual pixel read column line 797 : M4 transistor 8 0 1 : M D 4 transistor 8 03 : Pixel capacitor 8 05 : Virtual pixel capacitor
8 07 :切換器 8 09 :切換器 8 1 1 :讀行線切換器 8 1 3 :虛擬像素讀行線切換器 815 :電容器放大器 8 1 7 :微分信號 8 6 0 :電極/陽極 8 62 : ECL信號/釋放光 8 64 :冷光發光基團 -144- 201211539 8 6 6 :共反應物 86 8 : ECL已激發物種 8 70 :電極 8 7 2 :溶液 874 : ECL反應室 8 7 6:介電空隙 8 78 :梳狀結構陽極8 07 : switch 8 09 : switch 8 1 1 : read line switch 8 1 3 : virtual pixel read line switch 815 : capacitor amplifier 8 1 7 : differential signal 8 6 0 : electrode / anode 8 62 : ECL signal/release light 8 64 : luminescence luminescent group -144- 201211539 8 6 6 : co-reactant 86 8 : ECL excited species 8 70 : electrode 8 7 2 : solution 874 : ECL reaction chamber 8 7 6 : dielectric Air gap 8 78: comb-shaped anode
8 8 0 ::指狀物 8 8 2 ;蜿蜒結構 8 8 4 :曲流道 886:更複雜之結構 8 8 8 :鋸齒狀結構 8 90 :分枝狀結構 892 :參與體積 894 :圍堵區域8 8 0 :: Finger 8 8 2 ; 蜿蜒 structure 8 8 4 : Curved channel 886: More complex structure 8 8 8 : Serrated structure 8 90 : Branched structure 892 : Participation volume 894 : Containment region
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US35601810P | 2010-06-17 | 2010-06-17 | |
US43768611P | 2011-01-30 | 2011-01-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201211539A true TW201211539A (en) | 2012-03-16 |
Family
ID=46552736
Family Applications (22)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100119248A TW201211243A (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with dialysis section having stomata tapering counter to flow direction |
TW100119226A TW201211240A (en) | 2010-06-17 | 2011-06-01 | LOC device for pathogen detection with dialysis, thermal lysis, nucleic acid amplification and prehybridization filtering |
TW100119235A TW201209403A (en) | 2010-06-17 | 2011-06-01 | LOC device for genetic analysis which performs nucleic acid amplification after sample preparation in a dialysis section |
TW100119245A TW201209405A (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with flow-channel structure having active valve for capillary-driven fluidic propulsion without trapped air bubbles |
TW100119251A TW201209159A (en) | 2010-06-17 | 2011-06-01 | Genetic analysis LOC with non-specific nucleic acid amplification section and subsequent specific amplification of particular sequences in a separate section |
TW100119232A TW201211241A (en) | 2010-06-17 | 2011-06-01 | LOC device for pathogen detection, genetic analysis and proteomic analysis with dialysis, chemical lysis, incubation and tandem nucleic acid amplification |
TW100119249A TW201211534A (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with PCR section and diffusion mixer |
TW100119253A TW201219776A (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with conductivity sensor |
TW100119227A TW201211538A (en) | 2010-06-17 | 2011-06-01 | LOC device for pathogen detection with dialysis, chemical lysis and tandem nucleic acid amplification |
TW100119241A TW201211533A (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for simultaneous detection of multiple conditions in a patient |
TW100119246A TW201209406A (en) | 2010-06-17 | 2011-06-01 | Test module with microfluidic device having LOC and dialysis device for separating pathogens from other constituents in a biological sample |
TW100119234A TW201211540A (en) | 2010-06-17 | 2011-06-01 | LOC device for pathogen detection and genetic analysis with dialysis and nucleic acid amplification |
TW100119250A TW201211244A (en) | 2010-06-17 | 2011-06-01 | Test module with diffusive mixing in small cross sectional area microchannel |
TW100119252A TW201219115A (en) | 2010-06-17 | 2011-06-01 | Microfluidic test module with flexible membrane for internal microenvironment pressure-relief |
TW100119223A TW201219770A (en) | 2010-06-17 | 2011-06-01 | Test module incorporating spectrometer |
TW100119224A TW201209402A (en) | 2010-06-17 | 2011-06-01 | Apparatus for loading oligonucleotide spotting devices and spotting oligonucleotide probes |
TW100119238A TW201211532A (en) | 2010-06-17 | 2011-06-01 | LOC device with parallel incubation and parallel DNA and RNA amplification functionality |
TW100119231A TW201211539A (en) | 2010-06-17 | 2011-06-01 | LOC device for pathogen detection and genetic analysis with chemical lysis, incubation and tandem nucleic acid amplification |
TW100119254A TW201209407A (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with reagent mixing proportions determined by number of active outlet valves |
TW100119243A TW201211242A (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for genetic and mitochondrial analysis of a biological sample |
TW100119228A TW201209158A (en) | 2010-06-17 | 2011-06-01 | LOC device for genetic analysis with dialysis, chemical lysis and tandem nucleic acid amplification |
TW100119237A TW201209404A (en) | 2010-06-17 | 2011-06-01 | LOC device for genetic analysis which performs nucleic acid amplification before removing non-nucleic acid constituents in a dialysis section |
Family Applications Before (17)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100119248A TW201211243A (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with dialysis section having stomata tapering counter to flow direction |
TW100119226A TW201211240A (en) | 2010-06-17 | 2011-06-01 | LOC device for pathogen detection with dialysis, thermal lysis, nucleic acid amplification and prehybridization filtering |
TW100119235A TW201209403A (en) | 2010-06-17 | 2011-06-01 | LOC device for genetic analysis which performs nucleic acid amplification after sample preparation in a dialysis section |
TW100119245A TW201209405A (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with flow-channel structure having active valve for capillary-driven fluidic propulsion without trapped air bubbles |
TW100119251A TW201209159A (en) | 2010-06-17 | 2011-06-01 | Genetic analysis LOC with non-specific nucleic acid amplification section and subsequent specific amplification of particular sequences in a separate section |
TW100119232A TW201211241A (en) | 2010-06-17 | 2011-06-01 | LOC device for pathogen detection, genetic analysis and proteomic analysis with dialysis, chemical lysis, incubation and tandem nucleic acid amplification |
TW100119249A TW201211534A (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with PCR section and diffusion mixer |
TW100119253A TW201219776A (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with conductivity sensor |
TW100119227A TW201211538A (en) | 2010-06-17 | 2011-06-01 | LOC device for pathogen detection with dialysis, chemical lysis and tandem nucleic acid amplification |
TW100119241A TW201211533A (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for simultaneous detection of multiple conditions in a patient |
TW100119246A TW201209406A (en) | 2010-06-17 | 2011-06-01 | Test module with microfluidic device having LOC and dialysis device for separating pathogens from other constituents in a biological sample |
TW100119234A TW201211540A (en) | 2010-06-17 | 2011-06-01 | LOC device for pathogen detection and genetic analysis with dialysis and nucleic acid amplification |
TW100119250A TW201211244A (en) | 2010-06-17 | 2011-06-01 | Test module with diffusive mixing in small cross sectional area microchannel |
TW100119252A TW201219115A (en) | 2010-06-17 | 2011-06-01 | Microfluidic test module with flexible membrane for internal microenvironment pressure-relief |
TW100119223A TW201219770A (en) | 2010-06-17 | 2011-06-01 | Test module incorporating spectrometer |
TW100119224A TW201209402A (en) | 2010-06-17 | 2011-06-01 | Apparatus for loading oligonucleotide spotting devices and spotting oligonucleotide probes |
TW100119238A TW201211532A (en) | 2010-06-17 | 2011-06-01 | LOC device with parallel incubation and parallel DNA and RNA amplification functionality |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100119254A TW201209407A (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with reagent mixing proportions determined by number of active outlet valves |
TW100119243A TW201211242A (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for genetic and mitochondrial analysis of a biological sample |
TW100119228A TW201209158A (en) | 2010-06-17 | 2011-06-01 | LOC device for genetic analysis with dialysis, chemical lysis and tandem nucleic acid amplification |
TW100119237A TW201209404A (en) | 2010-06-17 | 2011-06-01 | LOC device for genetic analysis which performs nucleic acid amplification before removing non-nucleic acid constituents in a dialysis section |
Country Status (1)
Country | Link |
---|---|
TW (22) | TW201211243A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI721680B (en) * | 2018-12-06 | 2021-03-11 | 穩銀科技股份有限公司 | Encoded microflakes |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2904116A4 (en) * | 2012-10-05 | 2016-05-11 | California Inst Of Techn | Methods and systems for microfluidics imaging and analysis |
TWI512286B (en) * | 2013-01-08 | 2015-12-11 | Univ Nat Yunlin Sci & Tech | Microfluidic bio-sensing system |
US11318479B2 (en) | 2013-12-18 | 2022-05-03 | Berkeley Lights, Inc. | Capturing specific nucleic acid materials from individual biological cells in a micro-fluidic device |
US20170173585A1 (en) * | 2014-07-11 | 2017-06-22 | Advanced Theranostics Inc. | Point of care polymerase chain reaction device for disease detection |
JP2016148574A (en) * | 2015-02-12 | 2016-08-18 | セイコーエプソン株式会社 | Electronic component carrier device and electronic component inspection apparatus |
US20160340632A1 (en) * | 2015-04-22 | 2016-11-24 | Berkeley Lights, Inc. | Culturing station for microfluidic device |
EP3275992A1 (en) * | 2016-07-29 | 2018-01-31 | Bayer Aktiengesellschaft | Adapter for cell-culture vessel |
JP2019050798A (en) * | 2017-07-05 | 2019-04-04 | 株式会社Screenホールディングス | Sample container |
US11441701B2 (en) * | 2017-07-14 | 2022-09-13 | Hewlett-Packard Development Company, L.P. | Microfluidic valve |
TWI671397B (en) * | 2017-07-14 | 2019-09-11 | 國立中興大學 | Granular body extraction device |
CA3082898C (en) * | 2017-11-17 | 2023-03-14 | Siemens Healthcare Diagnostics Inc. | Sensor assembly and method of using same |
CN115161157A (en) * | 2018-01-11 | 2022-10-11 | 纳诺卡夫公司 | Microfluidic cellular devices and methods of use thereof |
JP7172988B2 (en) | 2018-02-01 | 2022-11-16 | 東レ株式会社 | Apparatus for evaluating particles in liquid and method for operating the same |
EP3560593B1 (en) * | 2018-04-25 | 2024-06-05 | OPTOLANE Technologies Inc. | Cartridge for digital real-time pcr |
US12134093B2 (en) | 2018-11-15 | 2024-11-05 | Mgi Tech Co., Ltd. | System and method for integrated sensor cartridge |
TWI711822B (en) * | 2019-10-18 | 2020-12-01 | 國立成功大學 | Miniature and intelligent urine sensing system |
TWI739318B (en) * | 2020-02-24 | 2021-09-11 | 國立陽明交通大學 | An impedance-type chip for measuring instantaneous sweat pressure, a micro-control system for sweat pressure measurement, and a measuring method of instantaneous sweat pressure |
EP4139052A4 (en) * | 2020-04-21 | 2023-10-18 | Roche Diagnostics GmbH | High-throughput nucleic acid sequencing with single-molecule sensor arrays |
TWI795735B (en) * | 2021-02-26 | 2023-03-11 | 行政院農業委員會水產試驗所 | Automatic portable detection system for pathogenic bacteria |
CN115494833B (en) * | 2021-06-18 | 2024-10-22 | 广州视源电子科技股份有限公司 | Robot control method and device |
TWI793671B (en) * | 2021-07-09 | 2023-02-21 | 中國醫藥大學 | Tumor microenvironment on chip and production method thereof |
TWI814499B (en) * | 2021-07-22 | 2023-09-01 | 中央研究院 | Device for continuously producing and analyzing rna, and methods of producing rna by using the device |
TWI800964B (en) * | 2021-10-29 | 2023-05-01 | 宏碁股份有限公司 | Power supply device and electronic system |
TWI805205B (en) * | 2022-01-26 | 2023-06-11 | 國立中正大學 | High stability waveguide analog resonance biosensing system with self-compensation |
TWI818596B (en) * | 2022-06-22 | 2023-10-11 | 嘉碩生醫電子股份有限公司 | Shear-mode liquid-phase sensor having groove structure and methods of manufacturing and using the same |
TWI840226B (en) * | 2023-05-17 | 2024-04-21 | 博錸生技股份有限公司 | Automatic sample preparation system |
-
2011
- 2011-06-01 TW TW100119248A patent/TW201211243A/en unknown
- 2011-06-01 TW TW100119226A patent/TW201211240A/en unknown
- 2011-06-01 TW TW100119235A patent/TW201209403A/en unknown
- 2011-06-01 TW TW100119245A patent/TW201209405A/en unknown
- 2011-06-01 TW TW100119251A patent/TW201209159A/en unknown
- 2011-06-01 TW TW100119232A patent/TW201211241A/en unknown
- 2011-06-01 TW TW100119249A patent/TW201211534A/en unknown
- 2011-06-01 TW TW100119253A patent/TW201219776A/en unknown
- 2011-06-01 TW TW100119227A patent/TW201211538A/en unknown
- 2011-06-01 TW TW100119241A patent/TW201211533A/en unknown
- 2011-06-01 TW TW100119246A patent/TW201209406A/en unknown
- 2011-06-01 TW TW100119234A patent/TW201211540A/en unknown
- 2011-06-01 TW TW100119250A patent/TW201211244A/en unknown
- 2011-06-01 TW TW100119252A patent/TW201219115A/en unknown
- 2011-06-01 TW TW100119223A patent/TW201219770A/en unknown
- 2011-06-01 TW TW100119224A patent/TW201209402A/en unknown
- 2011-06-01 TW TW100119238A patent/TW201211532A/en unknown
- 2011-06-01 TW TW100119231A patent/TW201211539A/en unknown
- 2011-06-01 TW TW100119254A patent/TW201209407A/en unknown
- 2011-06-01 TW TW100119243A patent/TW201211242A/en unknown
- 2011-06-01 TW TW100119228A patent/TW201209158A/en unknown
- 2011-06-01 TW TW100119237A patent/TW201209404A/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI721680B (en) * | 2018-12-06 | 2021-03-11 | 穩銀科技股份有限公司 | Encoded microflakes |
Also Published As
Publication number | Publication date |
---|---|
TW201219770A (en) | 2012-05-16 |
TW201209404A (en) | 2012-03-01 |
TW201209402A (en) | 2012-03-01 |
TW201209159A (en) | 2012-03-01 |
TW201211540A (en) | 2012-03-16 |
TW201219115A (en) | 2012-05-16 |
TW201219776A (en) | 2012-05-16 |
TW201211532A (en) | 2012-03-16 |
TW201211242A (en) | 2012-03-16 |
TW201211533A (en) | 2012-03-16 |
TW201209158A (en) | 2012-03-01 |
TW201209403A (en) | 2012-03-01 |
TW201211243A (en) | 2012-03-16 |
TW201211241A (en) | 2012-03-16 |
TW201209405A (en) | 2012-03-01 |
TW201211534A (en) | 2012-03-16 |
TW201211538A (en) | 2012-03-16 |
TW201211240A (en) | 2012-03-16 |
TW201209407A (en) | 2012-03-01 |
TW201211244A (en) | 2012-03-16 |
TW201209406A (en) | 2012-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201211539A (en) | LOC device for pathogen detection and genetic analysis with chemical lysis, incubation and tandem nucleic acid amplification | |
EP3132073B1 (en) | Portable nucleic acid analysis system and high-performance microfluidic electroactive polymer actuators | |
CN105004596B (en) | Instrument and method for the sample preparation of integration, reaction and detection | |
US8354074B2 (en) | Test module with low-volume reagent reservoir | |
KR20170016915A (en) | Microfluidic cartridges and apparatus with integrated assay controls for analysis of nucleic acids | |
TW200406487A (en) | Microfluidic system for analyzing nucleic acids | |
KR20220167379A (en) | High-plex guide pooling for nucleic acid detection |