TW200935485A - Thermionic emission device - Google Patents

Thermionic emission device

Info

Publication number
TW200935485A
TW200935485A TW97105425A TW97105425A TW200935485A TW 200935485 A TW200935485 A TW 200935485A TW 97105425 A TW97105425 A TW 97105425A TW 97105425 A TW97105425 A TW 97105425A TW 200935485 A TW200935485 A TW 200935485A
Authority
TW
Taiwan
Prior art keywords
electrode
carbon nanotube
electronic device
insulating substrate
thermal
Prior art date
Application number
TW97105425A
Other languages
Chinese (zh)
Other versions
TWI330858B (en
Inventor
Peng Liu
Liang Liu
Kai-Li Jiang
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97105425A priority Critical patent/TWI330858B/en
Publication of TW200935485A publication Critical patent/TW200935485A/en
Application granted granted Critical
Publication of TWI330858B publication Critical patent/TWI330858B/en

Links

Landscapes

  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)

Abstract

The present invention relates to a thermionic emission device. The thermionic emission device includes an insulated substrate having a number of isometric and equidistant grooves, a number of row electrodes and a number of column electrodes disposed on the insulated substrate, and a plurality of thermionic emission units disposed on the insulated substrate. Every two adjacent row electrodes and every two adjacent column electrodes form a grid. Each of the thermionic emission units is disposed in a grid, and each of the thermionic emission units includes a first electrode, a second electrode and a thermionic emitter. The first electrode and second electrode are electrically connected to the thermionic emitter. The thermionic emitter is suspending and corresponding to each of the grooves.

Description

200935485 九、發明說明: *【發明所屬之技術領域】 . 本發明涉及一種電子發射器件,尤其涉及一種基於奈 米碳管的熱發射電子器件。 【先前技術】 k 1991年曰本科學家iijima首次發現奈米碳管以來 (凊參見 Helical microtubules of graphitic carbon,Nature, ❹Sumio Iijima,vol 354’ p56(1991)),以奈米碳管為代表的奈 :材料以其獨特的結構和性質引起了人們極大的關注。近 成年來,大1有關其在電子發射器件、感測器、新型光學 材料、軟鐵磁材料等領域的應用研究不斷被報導。 、、先前的電子發射器件依據電子發射原理的不同,可以 „電子器件和熱發射電子器件。先前技術中的場 ‘於括一絕緣基底,複數個電子發射單元設 ❹引線设置於該絕緣基底上。其中,所述的複數 ^ 線與複數個列電極引線分別平木 上。斛. 丁〜且寻間&没置於絕緣基底 設置,且丁電極引線與複數個列電極引線相互交又 在订电極引線與列電極y線交又,人併 層隔離,以防止短路。每兩個相鄰的 ^絕緣 相鄰的列電極弓I線形成一網格,且 ^線與母兩個 發射單元。每個電子發射單元包:電=位-個電子 -電子發射體設置於該行電極與列電2極與:列電極及 電極對應且間隔設置。 違行電極與列 7 200935485 電子ί =術中的熱發射電子器件通常包括複數個單個熱 •子發射體和兩個電極。所述熱電子發射體設=== 與:述兩個電極電接觸。通常採用金屬、领化物材 枓或者乳化物材料作為熱電子發射體材料。將金屬加 帶狀或者極細㈣,料料等技麟金屬^到所述兩 固電極之間。或者將以领化物材料或者氧化物材料製成的 ❹漿料直接塗覆或者電时塗在—加熱子上;通過焊接等技 術將加熱子固定到所述兩個電極之間。然而,由於製備工 藝和熱電子發射體材料所限制,很難將複數個單個鈥電子 發料元集成為熱發射電子器件,而不能實現發射性能均 勻-致且具有複數個熱電子發射單元的Α面積陣列形式的 •^面’4不裝置。而且’以金屬、硼化物材料或者鹼土金屬 发酉文鹽材料製作的熱電子發射體難以做到較小的尺寸,從 而限制了其在微型器件方面的應用。由於含金屬、刪化物 ©材料或者驗土金屬碳酸鹽材料的塗層具有相當高的電阻 率’所製備熱電子發射單元在加熱而發射時產生的功耗比 較大,限制了其對於快速開關的响應,因此不適合於高清 晰度和咼亮度的應用。 >主有鑒於此,提供一種具有優良的熱發射性能,可用于 问β晰度和同冗度的平板顯示和邏輯電路等複數個領域的 熱發射電子器件實為必要。 【發明内容】 種熱發射電子器件,其包括:一絕緣基底,該絕緣 200935485 基底具有複數個等大且等間隔設置的凹槽;複數個行電極 -引線與列電極引線分別平行且等間隔設置於絕緣基底上, •該複數個行電極引線與複數個列電極引線相互交又設置, 每兩個相鄰的行電極引線與每兩個相鄰的列電極引線形成 一個網格,且行電極引線與列電極引線之間電絕緣;複數 個熱電子發射單元’每個熱電子發射單元包括一第—電 極、一第二電極和一熱電子發射體,該第一電極盥第二電 〇極間隔設置於所述的每個網格中,並分別與所糾電極引 線和^電極引線電連接,所述熱電子發射體與所述第—電 極和第二電極電連接。其中,所述絕緣基底的每個凹槽: 別對應於所述每個網格設置。 .與先前技術相比較,所述熱發射電子器件具有以下$ 點.其一,所述熱發射電子器件中熱電子發射體通過所沒 絕緣基底的凹槽與該絕緣基底間隔設置,絕緣基底不會系 加熱所述熱電子發射體而產生的熱量傳導進大氣中,具 ©優異的熱電子發射性能;其二,所述熱發射電子器件^ 括複數個㈣分佈的熱電子發射料,具有優異的熱電3 生能;其三’所述熱電子發射體為奈米碳管薄膜結構 …丁、未碳管薄膜結構電阻率低,在較低的熱功率下即可實 降低了所述熱發射電子器件在加熱時發 _. 的功耗,可用于高清晰度和高亮度的平板顯 不和邏輯電路等複數個領域。 伋貝 【實施方式】 以下將結合附圖詳細說明本技術方案熱發射電子器件 200935485 及其製備方法。 - 請參閱圖1,本技術方案實施例提供一種熱發射電子 , 器件200,包括一絕緣基底202,該絕緣基底202具有複數 個等大且等間隔設置的凹槽203。複數個熱電子發射單元 220設置於該絕緣基底202上,及複數個行電極引線204 與複數個列電極引線206設置於該絕緣基底202上。所述 複數個行電極引線204與列電極引線206分別平行且等間 _隔設置於絕緣基底202上。所述複數個行電極引線204與 〇 複數個列電極引線206相互交叉設置,而且,在行電極引 線204與列電極引線206交叉處設置有一介質絕緣層 216,該介質絕緣層216將行電極引線204與列電極引線 206電隔離,以防止短路。每兩個相鄰的行電極引線204 與兩個相鄰的列電極引線206形成一網格214,且每個網 格214定位一個熱電子發射單元220。其中,所述複數個 凹槽203分別對應所述每個網格214並設置於所述絕緣基 ❹底202上。 所述複數個熱電子發射單元220對應設置於上述網格 214中,且每個網格214中設置一個熱電子發射單元220。 每個熱電子發射單元220包括一第一電極210,一第二電 極212,及一熱電子發射體208。所述熱電子發射體208 為一薄膜結構或者至少一根長線。每一行的網格214中的 第一電極210與同一行電極引線204電連接,每一列的網 格中214的第二電極212與同一列電極引線206電連接。 本實施例中,同一行的熱電子發射單元220中的第一電極 10 200935485 210與同-行電極引線2〇4電連接’同-列的熱電子發射 .單元22"的第二電極212與同—列電極引線寫電連 .接。所述第-電極21〇與第二電極212間隔設置於每個網 格214中,與所述熱電子發射體2〇8電連接並將所述熱電 子發射體208固定於所述絕緣基底2〇2。所述熱電子發= 體208至少部分通過所述第一電極210與第二電極212與 所述絕緣基底202間隔設置。可以理解,所述熱電子發射 ❹體208還可以通過一導電膠固定於所述絕緣基底。 所述熱電子發射體208可以為一奈米碳管薄膜結構。 所述奈米碳管薄膜結構包括一奈米碳管薄膜或者至少兩個 重疊設置的奈来碳管薄膜。該奈米碳管薄膜中奈米碳管沿 同一方向擇優取向排列。所述單層奈米碳管薄膜中奈米碳 管沿從所述第一電極21〇向所述第二電極212延伸的向 排列所述重®设置的奈米碳管薄膜中相鄰的兩個奈米碳 管薄膜中奈米碳管排列方向具有一交又角度α, ❿0%〇^90°。所述奈米碳管薄膜包括複數個首尾相連且擇優 取向排列的奈米碳管束,相鄰的奈米碳管束之間通過凡德 瓦爾力連接。該奈米碳管束包括複數個長度相等且相互平 行排列的奈米碳管,相鄰奈米碳管之間通過凡德瓦爾力連 接0 本技術方案實施例中,由於採用化學氣相沈積法在4 英寸的基底上生長超順排奈米碳管陣列,並進行進一步地 處理侍到一奈米碳管薄臈,故該奈米碳管薄膜的寬度為 0.01厘米〜10厘米,厚度為1〇奈米〜100微米。所述奈米 11 200935485 石反t!!膜可根據實際需要切割成具有預定尺寸和形狀的奈 米反:,專膜。可以理解,當採用較大的基底生長超順排奈 •米石陣列時,可以得到更寬的奈米碳管薄膜。上述奈米 碳管薄膜中的奈米碳管為單壁奈米碳管、雙壁奈米碳管或 者多壁奈米碳管。當奈米碳管薄膜中的奈米碳管為單壁奈 米石厌官呀,該單壁奈米碳管的直徑為〇 5奈米〜5〇奈米。 當奈米碳管薄膜中的奈米碳管為雙壁奈米碳管時,該雙壁 ❹奈米碳管的直徑為ho奈米〜50奈米。當奈米碳管薄膜中 的奈米碳官為多壁奈米碳管時,該多壁奈米碳管的直徑為 1.5奈米〜50奈米。 所述熱電子發射體208可以為至少一根奈米碳管長 線。所述奈米碳管長線包括複數個平行的首尾相連的奈米 碳管束組成的束狀結構或由複數個首尾相連的奈米碳管束 組成的絞線結構。該相鄰的奈米碳管束之間通過凡德瓦爾 力緊後結合’該奈米碳管束包括複數個首尾相連且定向排 〇列的奈米碳官。所述奈米碳管長線的直徑為0.5奈米〜1〇〇 微米。 所述的絕緣基底202為一絕緣絕緣基底,如陶莞絕緣 基底、玻璃絕緣基底、樹脂絕緣基底、石英絕緣基底等。 絕緣基底202大小與厚度不限,本領域技術人員可以根據 實際需要選擇。所述的複數個凹槽203等大且等間隔地分 佈於所述絕緣基底202表面。所述奈米碳管薄膜結構通過 所述絕緣基底202表面的凹槽203與所述絕緣基底2〇2間 隔設置。所述凹槽2〇3的形狀和高度不限。本實施例中, 12 200935485 所述絕緣基底202優選為一玻璃絕緣基底,其厚度為大於 1毫米,邊長大於1厘米。所述凹槽2〇3為長方體形,長 度為200微米〜500微米,寬度為1〇〇微米〜3〇〇微米,^ 度為50微米〜1〇〇微米。 门 所述複數個行電極引線204與複數個列電極引線2〇6 為-導電體’如金屬層等。本實施例中’該複數個行電極 引線204與複數個列電極引線2〇6優選為採用導電漿料印 ❹刷的平面導電體’且該複數個行電極引線施與複數個列 電極引線20 6的行距和列距為3 〇 〇微来〜5 〇 〇微米。該行電 極引線204與列電極引線206的寬度為30微米〜100微米, 厚度為10微米〜50微米。本實施例中,該行電極引線· 與列電極^線206的交叉角度為1〇度到9〇度,優選為% 度本實知例中,通過絲網印刷法將導電聚料印刷於 基底202上製備行電極引線204與列電極引線2〇6。、該導 電聚料的成分包括金屬粉、低熔點玻璃粉和粘結劑。盆;, ”金::優選為銀粉,該枯結劑優選為松油醇或乙基纖維 “以冷電漿料中,金屬粉的重量比為5〇〜9〇%,低熔點 破璃私的重量比為2〜1()%,枯結劑的重量比為⑺〜。 屬声電極210與第二電極212為一導電體,如金 —二、本μ施例中,該第—電極21G與第二電極212為 電極:導電體’其尺寸依據網格214的尺寸決^。該卜 ^ 〇和第二電極212直接與上述電極引缘 實頦雷* )丨深運接’從而 5〇微所述第一電極210與第二電極212的長度為 放未,微米,寬度為30微米〜60微米,厚度為⑺微 13 200935485 米~50微米。所述第一電極210與第二電極212之間的間 . 隔距離為150微米〜450微米。本實施例中,所述第一電極 、210與第二電極212的長度優選為60微米,寬度優選為40 微米,厚度優選為20微米。本實施例中,所述第一電極 210與第二電極212的材料為導電漿.料,通過絲網印刷法 印刷於絕緣基底202上。該導電漿料的成分與上述電極引 線所用的導電漿料的成分相同。所述第一電極210和第二 電極212與奈米碳管薄膜結構的電連接方式可以為通過一 ®導電膠電連接,也可以通過分子間力或者其他方式實現。 請參閱圖2,本技術方案實施例提供一種上述熱發射 電子器件200的製備方法,具體包括以下步驟: 步驟一:提供一絕緣基底202,在該絕緣基底202表 面形成複數個等大且等間隔設置的凹槽203。 本技術方案實施例的絕緣基底202為一玻璃絕緣基 底,在該玻璃絕緣基底上刻蝕形成複數個等大且等間隔設 φ置的凹槽203。 步驟二:在該絕緣基底202上製備複數個平行且等間 隔設置的行電極引線204與列電極引線206,該行電極引 線204與列電極引線206交叉設置,且每兩個相鄰的行電 極引線204與每兩個相鄰的列電極引線206相互交叉形成 一網格214。 可以理解,也可以在所述絕緣基底202上形成複數個 網格214後再通過刻蝕在所述絕緣基底202表面形成複數 個等大且等間隔設置的凹槽。該複數個凹槽分別與複數個 14 200935485200935485 IX. Description of the invention: * [Technical field to which the invention pertains] The present invention relates to an electron-emitting device, and more particularly to a carbon-emitting electron-emitting device based on carbon nanotubes. [Prior Art] k In 1991, when the scientist iijima first discovered the carbon nanotubes (see Helical microtubules of graphitic carbon, Nature, ❹Sumio Iijima, vol 354' p56 (1991)), Nye represented by carbon nanotubes. : The material has attracted great attention due to its unique structure and properties. In recent years, Big 1 has been reported on its application in the fields of electron-emitting devices, sensors, new optical materials, and soft ferromagnetic materials. The prior electron-emitting devices may be based on the principle of electron emission, and may be an electronic device and a thermal-emitting electronic device. The field in the prior art includes an insulating substrate, and a plurality of electron-emitting units are disposed on the insulating substrate. Wherein, the plurality of lines and the plurality of column electrode leads are respectively on the flat wood. 丁. 〜. and the search & is not placed on the insulating substrate, and the butyl electrode lead and the plurality of column electrode leads are mutually intersected The electrode lead is intersected with the column electrode y, and the human layer is isolated to prevent short circuit. Each two adjacent adjacent insulated column electrode arch lines form a grid, and the ^ line and the mother two emitting units Each electron-emitting unit package: electric=bit-electron-electron emitter is disposed on the row electrode and column electrode 2 poles: column electrode and electrode corresponding and spaced apart. Violation electrode and column 7 200935485 electron ί = intraoperative The thermal electron-emitting device generally comprises a plurality of individual thermal emitters and two electrodes. The thermal electron emitter is set to === and is in electrical contact with the two electrodes. Usually metal or collar materials are used or The emulsion material is used as a thermal electron emitter material, and the metal is added with a ribbon or a very fine (four), a material such as a material to the two solid electrodes, or a mortar made of a collar material or an oxide material. The material is coated directly or electrically on the heating element; the heater is fixed between the two electrodes by welding or the like. However, due to the limitation of the preparation process and the thermal electron emitter material, it is difficult to A single germanium electron-emitting element is integrated into a thermal-emitting electronic device, and it is not possible to achieve uniform emission characteristics and a plurality of thermal electron-emitting units in the form of a germanium area array. Thermal electron emitters made of materials or alkaline earth metal hair sulphate materials are difficult to achieve in small size, thus limiting their use in micro devices. Due to the inclusion of metals, depleted materials or soiled metal carbonate materials The coating has a relatively high electrical resistivity. The heat generated by the prepared thermoelectron emission unit when heated and emitted is relatively large, which limits its response to fast switching. Therefore, it is not suitable for high-definition and high-brightness applications. In view of this, a plurality of fields, such as flat panel display and logic circuits, which have excellent thermal emission performance and can be used for β-degree of clarity and the same redundancy are provided. The invention relates to a thermal emission electronic device, which comprises: an insulating substrate, the insulating 200935485 substrate has a plurality of equally large and equally spaced grooves; a plurality of row electrode-lead and The column electrode leads are respectively disposed in parallel and equally spaced on the insulating substrate, and the plurality of row electrode leads and the plurality of column electrode leads are disposed to overlap each other, and each of the two adjacent row electrode leads and each two adjacent column electrodes The leads form a grid, and the row electrode leads are electrically insulated from the column electrode leads; the plurality of thermionic emission units each include a first electrode, a second electrode and a thermal electron emitter, the first An electrode 盥 second electric 〇 is spaced apart in each of the grids, and is electrically connected to the corrected electrode lead and the ^ electrode lead respectively, the thermoelectric And the second emitter - electrode and the second electrode are electrically connected. Wherein each groove of the insulating substrate: does not correspond to each of the grid settings. Compared with the prior art, the heat-emitting electronic device has the following points. First, the thermal electron emitter in the heat-emitting electronic device is spaced apart from the insulating substrate by a recess of the insulating substrate, and the insulating substrate is not The heat generated by heating the thermal electron emitter is conducted into the atmosphere, and has excellent thermal electron emission performance. Second, the thermal emission electron device includes a plurality of (four) distributed thermal electron emission materials, which are excellent. The thermoelectric 3 energy; the third 'the thermal electron emitter is a carbon nanotube film structure... The butyl, uncarbonized film structure has a low resistivity, and the thermal emission can be reduced at a lower thermal power. The power consumption of the electronic device when heated can be used in a variety of fields such as high-definition and high-brightness flat panel display and logic circuits. Mussels [Embodiment] Hereinafter, the thermal emission electronic device 200935485 of the present technical solution and a preparation method thereof will be described in detail with reference to the accompanying drawings. Referring to FIG. 1, an embodiment of the present technical solution provides a thermally-emitting electron device 200 comprising an insulating substrate 202 having a plurality of equally large and equally spaced grooves 203. A plurality of the thermal electron emission units 220 are disposed on the insulating substrate 202, and a plurality of row electrode leads 204 and a plurality of column electrode leads 206 are disposed on the insulating substrate 202. The plurality of row electrode leads 204 and the column electrode leads 206 are respectively parallel and equally spaced apart from the insulating substrate 202. The plurality of row electrode leads 204 and the plurality of column electrode leads 206 are disposed to cross each other, and a dielectric insulating layer 216 is disposed at a intersection of the row electrode leads 204 and the column electrode leads 206, and the dielectric insulating layer 216 is provided with row electrode leads 204 is electrically isolated from column electrode leads 206 to prevent short circuits. Each two adjacent row electrode leads 204 and two adjacent column electrode leads 206 form a grid 214, and each grid 214 positions a thermal electron emission unit 220. The plurality of grooves 203 respectively correspond to the each mesh 214 and are disposed on the insulating base 202. The plurality of thermal electron emission units 220 are correspondingly disposed in the mesh 214, and one thermal electron emission unit 220 is disposed in each of the grids 214. Each of the thermal electron emission units 220 includes a first electrode 210, a second electrode 212, and a thermal electron emitter 208. The thermal electron emitter 208 is a thin film structure or at least one long line. The first electrode 210 in the grid 214 of each row is electrically coupled to the same row of electrode leads 204, and the second electrode 212 of the grid 214 of each column is electrically coupled to the same column of electrode leads 206. In this embodiment, the first electrode 10 200935485 210 in the same row of the thermal electron emission unit 220 is electrically connected to the same-row electrode lead 2〇4, and the second electrode 212 of the same-column thermal electron emission unit 22" The same-column electrode lead writes the electrical connection. The first electrode 21 is spaced apart from the second electrode 212 in each of the grids 214, electrically connected to the thermionic emitters 2〇8, and the thermoelectron emitter 208 is fixed to the insulating substrate 2. 〇 2. The thermal electron emitter 208 is spaced apart from the insulating substrate 202 at least in part by the first electrode 210 and the second electrode 212. It is to be understood that the thermoelectron emitting body 208 can also be fixed to the insulating substrate by a conductive paste. The thermal electron emitter 208 can be a carbon nanotube film structure. The carbon nanotube film structure comprises a carbon nanotube film or at least two carbon nanotube films stacked one on top of the other. The carbon nanotube tubes in the carbon nanotube film are arranged in a preferred orientation along the same direction. The carbon nanotubes in the single-layer carbon nanotube film are adjacent to two adjacent carbon nanotube films arranged in the direction of the first electrode 21 to the second electrode 212 The arrangement of the carbon nanotubes in the carbon nanotube film has an intersection angle α, ❿0% 〇^90°. The carbon nanotube film comprises a plurality of carbon nanotube bundles arranged end to end and arranged in a preferred orientation, and adjacent carbon nanotube bundles are connected by van der Waals force. The carbon nanotube bundle comprises a plurality of carbon nanotubes of equal length and arranged in parallel with each other, and the adjacent carbon nanotubes are connected by van der Waals force. In the embodiment of the technical solution, the chemical vapor deposition method is used. A super-sequential carbon nanotube array is grown on a 4-inch substrate and further processed to serve a nano-carbon tube, so the carbon nanotube film has a width of 0.01 cm to 10 cm and a thickness of 1 〇. Nano ~ 100 microns. The nano 11 200935485 stone counter t!! The film can be cut into a nanometer having a predetermined size and shape according to actual needs: a special film. It will be appreciated that a wider carbon nanotube film can be obtained when a larger substrate is used to grow the super-sequential nano-millimeter array. The carbon nanotubes in the above carbon nanotube film are single-walled carbon nanotubes, double-walled carbon nanotubes or multi-walled carbon nanotubes. When the carbon nanotube in the carbon nanotube film is a single-walled nano-stone, the diameter of the single-walled carbon nanotube is 〇 5 nm to 5 〇 nanometer. When the carbon nanotube in the carbon nanotube film is a double-walled carbon nanotube, the diameter of the double-walled carbon nanotube is ho nanometer ~ 50 nm. When the carbon carbon in the carbon nanotube film is a multi-walled carbon nanotube, the diameter of the multi-walled carbon nanotube is from 1.5 nm to 50 nm. The hot electron emitter 208 can be at least one carbon nanotube long line. The long carbon nanotube line comprises a plurality of parallel bundles of end-to-end connected carbon nanotube bundles or a strand structure consisting of a plurality of end-to-end connected carbon nanotube bundles. The adjacent carbon nanotube bundles are joined by van der Waals force. The carbon nanotube bundle comprises a plurality of nanocarbons connected end to end and oriented. The long diameter of the carbon nanotubes is from 0.5 nm to 1 μm. The insulating substrate 202 is an insulating insulating substrate, such as a ceramic insulating substrate, a glass insulating substrate, a resin insulating substrate, a quartz insulating substrate, or the like. The size and thickness of the insulating substrate 202 are not limited, and those skilled in the art can select according to actual needs. The plurality of grooves 203 are equally large and equally spaced on the surface of the insulating substrate 202. The carbon nanotube film structure is disposed apart from the insulating substrate 2〇2 by a groove 203 on the surface of the insulating substrate 202. The shape and height of the groove 2〇3 are not limited. In this embodiment, the insulating substrate 202 of 12 200935485 is preferably a glass insulating substrate having a thickness of more than 1 mm and a side length of more than 1 cm. The groove 2〇3 has a rectangular parallelepiped shape with a length of 200 μm to 500 μm, a width of 1 μm to 3 μm, and a degree of 50 μm to 1 μm. The plurality of row electrode leads 204 and the plurality of column electrode leads 2〇6 are -conductors such as metal layers or the like. In the embodiment, the plurality of row electrode leads 204 and the plurality of column electrode leads 2〇6 are preferably planar conductors using conductive paste stamps and the plurality of row electrode leads are applied to the plurality of column electrode leads 20 The line spacing and column spacing of 6 are 3 〇〇 micro ~ 5 〇〇 micron. The row electrode lead 204 and the column electrode lead 206 have a width of 30 μm to 100 μm and a thickness of 10 μm to 50 μm. In this embodiment, the intersection angle of the row electrode lead and the column electrode line 206 is 1 to 9 degrees, preferably %. In the practical example, the conductive polymer is printed on the substrate by screen printing. The row electrode lead 204 and the column electrode lead 2〇6 are prepared on 202. The components of the conductive polymer include metal powder, low melting glass powder and a binder. Potted;, "Gold:: preferably silver powder, the dry agent is preferably terpineol or ethyl fiber" in the cold electric slurry, the weight ratio of the metal powder is 5〇~9〇%, and the low melting point is broken. The weight ratio is 2 to 1 ()%, and the weight ratio of the deadting agent is (7)~. The acoustic electrode 210 and the second electrode 212 are a conductor, such as the gold-two, in the present embodiment, the first electrode 21G and the second electrode 212 are electrodes: the size of the conductor 'determines according to the size of the grid 214 ^. The first electrode 210 and the second electrode 212 are directly connected to the electrode lead edge, so that the lengths of the first electrode 210 and the second electrode 212 are five, and the width is 30 microns to 60 microns, thickness (7) micro 13 200935485 m ~ 50 microns. The distance between the first electrode 210 and the second electrode 212 is between 150 micrometers and 450 micrometers. In this embodiment, the first electrode 210 and the second electrode 212 preferably have a length of 60 μm, a width of preferably 40 μm, and a thickness of preferably 20 μm. In this embodiment, the material of the first electrode 210 and the second electrode 212 is a conductive paste, which is printed on the insulating substrate 202 by screen printing. The composition of the conductive paste is the same as that of the conductive paste used for the above electrode lead. The electrical connection between the first electrode 210 and the second electrode 212 and the carbon nanotube film structure may be electrically connected through a ® conductive paste, or may be achieved by intermolecular force or other means. Referring to FIG. 2, the embodiment of the present invention provides a method for fabricating the above-described thermal emission electronic device 200, which specifically includes the following steps: Step 1: providing an insulating substrate 202, and forming a plurality of equal and equal intervals on the surface of the insulating substrate 202. A groove 203 is provided. The insulating substrate 202 of the embodiment of the present invention is a glass insulating substrate on which a plurality of equal-sized and equally spaced grooves 203 are formed. Step 2: preparing a plurality of parallel and equally spaced row electrode leads 204 and column electrode leads 206 on the insulating substrate 202, the row electrode leads 204 and the column electrode leads 206 intersecting each other, and each two adjacent row electrodes Lead 204 and each two adjacent column electrode leads 206 intersect each other to form a grid 214. It can be understood that a plurality of equal-sized grids 214 may be formed on the insulating substrate 202, and then a plurality of equally large and equally spaced grooves may be formed on the surface of the insulating substrate 202 by etching. The plurality of grooves are respectively associated with a plurality of 14 200935485

首先,採用絲網印刷法在絕緣基底 平行且等間隔設置的行電極引線204。 首先, 緣基底202上。 射法等方法製備複數個行電 線206。本實施例中,採用 引線204與複數個列電極引 202上印刷複數個 ©一 _其久,採用絲網印刷法在行電極引線204與待形忐沾First, row electrode leads 204 which are arranged in parallel and at equal intervals on the insulating substrate by screen printing are used. First, the edge substrate 202 is on. A plurality of row lines 206 are prepared by a method such as shooting. In this embodiment, a plurality of leads 204 are printed on the plurality of column electrodes 202, and a plurality of column electrodes 202 are used for printing.

々可以理解,本實施例中,也可以先印刷複數個平行且 等間隔設置的列電極引線2〇6,再印刷複數個介質絕緣層 216,最後印刷複數個平行且等間隔設置的行電極引線 204,且複數個行電極引線2〇4與複數個列電極引線 相互父叉形成複數個網格214。 步驟三:形成一熱電子發射體2〇8覆蓋上述含有電極 引線的絕緣基底202。 本技術方案實施例的熱電子發射體208優選為奈米碳 管薄膜結構。該奈米碳管薄膜結構的製備方法包括以下步 驟: (1)製備至少一奈米碳管薄膜。 15 200935485 首先’提供一奈米碳管陣列,優選地,該陣列為超順 * 排奈米碳管陣列。 、 本實施例中’奈米碳管陣列的製備方法採用化學氣相 沈積法’其具體步驟包括:(a)提供一平整基底,該基底 可選用P型或N型矽基底,或選用形成有氧化層的矽基 底,本實施例優選為採用4英寸的矽基底;(b )在基底表 面均勻形成一催化劑層,該催化劑層材料可選用鐵(Fe )、 ❹鈷(Co )、鎳(Ni )或其任意組合的合金之一;(c )將上 述形成有催化劑層的基底在7〇(rc〜9〇〇〇c的空氣中退火約 30分鐘〜90分鐘;(d )將處理過的基底置於反應爐中,在 保護氣體環境下加熱到50(rc〜74(rc,然後通入碳源氣體 反應約5分鐘〜30分鐘,生長得到奈米碳管陣列,其高度 大於100微米。該奈米碳管陣列為複數個彼此平行且垂直 於基底生長的奈米碳管形成的純奈米碳管陣列。該奈米碳 官陣列的面積與上述基底面積基本相同。通過上述控制生 ©長條件,該超順排奈米碳管陣列中基本不含有雜質,如無 定型碳或殘留的催化劑金屬顆粒等。 、上述碳源氣可選用乙炔、乙烯、曱烷等化學性質較活 潑的化合物,本實施例優選的碳源氣為乙块;保護氣 體為,氣或惰性氣體,本實施例優選的保護氣體為氮氣。 刹可以理解,本實施例提供的奈米碳管陣列不限於上述 衣備方法也可為石墨電極恒流電弧放電沈積法、鐳射蒸 發沈積法等。 ”' 其次,採用一拉伸工具從奈米碳管陣列中拉取獲得一 16 200935485 奈米碳管薄膜。 • 該奈米碳管薄膜的製備具體包括以下步驟:(a)從上 、述奈米碳管陣列中選定一定寬度的複數個奈米碳管片斷, 本實施例優選為採用具有一定寬度的膠帶接觸奈米碳管陣 列以選定一定寬度的複數個奈米碳管束;(b)以一定速度 =基本垂直于奈米碳管陣列生長方向拉伸複數個該奈米ς 管束,以形成一連續的奈米碳管薄膜。 〇 在上述拉伸過程中,該複數個奈米碳管束在拉力作用 下沿拉伸方向逐漸脫離基底的同時,由於凡德瓦爾力作 用,該選定的複數個奈米碳管束片斷分別與其他奈米碳管 束片斷首尾相連地連續地被拉出,從而形成一奈米碳管薄 膜。該奈求碳管薄膜包括複數個首尾相連且定向排列的奈 米碳官束,且複數個首尾相連且定向排列的奈米碳管束形 成米碳管線。該奈米碳管束包括複數個平行排列的奈 米碳管,且奈米碳管的排列方向基本平行于奈米碳管薄膜 ❿的拉伸方向。 ' 再次,將上述至少一奈米碳管薄膜鋪設於上述含有電 極引線的絕緣基底202上形成一奈米碳管薄膜結構。 所述將至少一奈米碳管薄膜鋪設於所述含有電極引線 的絕緣基底202的方法包括以下步驟:將一奈米碳管薄膜 或者至少兩個奈米碳管薄膜平行且無間隙沿從所述第一電 極210向所述第二電極212延伸的方向直接鋪設在所述含 有電極引線的絕緣基底202的表面。進一步還可將至少兩 個奈米碳管薄膜依據奈米碳管的排列方向以—交又角度以 17 200935485 重疊鋪設在所述含有電極引線的絕緣基底搬 〇°<α<90° 〇 Ο 可以理解,所述將至少一奈米碳管薄膜鋪設於所述含 ^電極引線的絕緣基底2G2的方法還可以包括以下步驟: 提供-支撐體,將至少兩個奈米碳管薄膜平行且無間隙沿 從所述第-電極21〇向所述第二電極212延伸的方向直接 舖設於支撐體表面,得到一奈米碳管薄膜結構;去除支擇 體外多餘的奈米碳管薄膜;採用有機溶劑處理該奈米碳管 溥膜結構;將使用有機溶劑處理後的奈米碳管薄膜結構從 2述支樓體上取下,形成—自支稽的奈米碳管薄膜結構; 广該不米石厌官薄膜結構鋪設於所述含有電極引線的絕緣基 :202的表面。進一步還可將至少兩個奈米碳管薄膜依據 '丁:米碳管的排列方向以一交叉角度α重疊鋪設在所述支撐 总 且〇 $α$90。由於本實施例提供的超順排奈米碳 列中的奈米碳f非常純淨,且由於奈米碳管本身的比 表面積非常大,故該奈米碳管薄膜本身具有較強的點性, 該奈米=管薄膜可利用其本身的钻性直接枯附於支樓體。 6 j K軛例中,上述支樓體的大小可依據實際需求確 疋。虽支撐體的寬度大於上述奈米碳管薄膜的寬度時,可 以將至J兩個奈米碳管薄膜平行且無間隙或/和重疊鋪設 於所述支撐體上,形成一自支撑的奈米碳管薄膜結構”。 本實%例中,由於本實施例提供的超順排奈来碳管陣 歹J中=奈米&官非常純淨,且由於奈米碟管本身的比表面 積非系大,故該奈米碳管薄膜結構本身具有較強的枯性。 18 200935485 该奈米碳管薄膜可利用其本身的粘性直接粘附於所述含有 *電極引線的絕緣基底202的表面。或者在所述所述含有電 '極引線的絕緣基底202的表面塗敷一層導電膠;將至少一 奈米碳管薄膜覆蓋於整個含有電極引線的絕緣基底2〇2 上,使所述至少一奈米碳管薄膜與所述含有電極引線的絕 緣基底202的表面電連接;將大於絕緣基底2〇2面積的奈 米碳管薄膜剪去。 、’ 〇 另卜,本實施例還可進一步在將奈米碳管薄膜直接鋪 。又於所述含有電極引線的絕緣基底形成一奈米碳管薄膜結 構的步驟之後採用有機溶劑處理該奈米碳管薄膜結構。、具 體的,可通過試管將有機溶劑滴落在所述奈米碳管薄膜結 構,面浸潤整個奈米碳管薄膜結構。或者,也可將奈米、石: 管薄膜結構整個浸入盛有有機溶劑的容器中浸潤。該有機 溶劑為揮發性有機溶劑,如乙醇、甲醇、丙_、二氯乙烧 2氯仿,本實施例中優選採用乙醇。該奈米碳管薄膜經有 〇機洛劑浸潤處理後,在揮發性有機溶劑的表面張力的作用 二膜結構中的平行的奈米碳管片斷會部分聚 枯性降低,且具有良好的機;;=吕溥膜表面體積比小, 處理後的太乎η '機械強度及韌性,應用有機溶劑 處理後的不水奴官薄膜性能更加優異。 步驟四:在所述熱電子 個第一電極與複數個第08的表面上製備複數 设數個第—電極212, * 母制格 214 制规、. 蚀⑶與—弟二電極212。 製備所述第一電極21〇盥― -、弟一電極212可以通過絲網 19 200935485 印刷法或濺射法等方法實現。本實施例_,採用絲網印刷 •法製備在每一行的網格214中行電極引線2〇4對應的奈米 .妷官薄膜結構表面上製備一第一電極21〇,該第一電極21〇 與同一行電極引線204形成電連接;通過絲網印刷法或濺 f,在每一列的網格214中列電極引線206對應的奈米碳 官薄臈結構表面上製備一第二電極212,該第二電極212 :、同列電極引線206形成電連接。所述第一電極21〇與 ❹第一電極212之間保持一間距,用於設置奈米碳管薄膜結 構。所述第-電極210與第二電極212的厚度大於行電極 引線204與列電極引線2〇6的厚度,以利於後續步驟中設 置奈米碳管薄膜結構。可以理解,本實施例中,也可以將 所印:的第-電極21〇與對應的列電極引線2〇6直接接 =攸而實現電連接’第二電極212與對應的行電極引線 〇4直接接觸,從而實現電連接。 步驟五:切割並去除多餘的熱電子發射體2〇8,保尝 格214中覆蓋所述第—電極210與第二電極加^ 面的熱電子發射體208,從而得到一熱發射電子器件2〇〇 構的中,所述㈣並去除多餘的奈米碳管薄膜舍 ==録射燒独法或電子束掃描法。本實施例 料⑽㈣料^碳W構,具體包者 204 第一 I ’採用-定寬度的雷射光束沿著每個行電極引 電:!步驟的目的係去除不同行的電極(包 10與第二電極212)之間的奈米碳管薄膜結相 20 200935485 =中,所述雷射光束的寬度等於位於不同行的兩個相鄰的 ,第二電極212之間的行間距離,為1〇〇微米〜5〇〇微米。 * 其次,採用-定寬度的雷射光束沿著每個列電極引線 206進行掃描,去除不同列的電極(包括第一電極2忉與 第二電極212)之間的奈米碳管薄膜結構。從而保留每個 網格214中覆蓋所述第一電極21〇與第二電極212的夺米 石炭管薄膜結構。其中,所述雷射光束的寬度等於位於不同 〇列的兩個相鄰的第一電極21〇之間的行間距離,為_微 米〜500微求。 本實施例中,上述方法可以在大氣環境或其他含氧的 壞境下進行。採用鐳射燒㈣去除多餘的奈米碳管,所用 的鐘射功率為1〇瓦〜5〇瓦,掃描速度為1〇毫米,分鐘〜⑽〇 毫米/分鐘。本實施例中’優選地’鐳射功率為3〇瓦,掃 描速度為1〇〇毫米/分鐘。 與先前技術相比較,所述的熱發射電子器件具有以_ ©優點:其―’採用奈米碳管薄膜作為熱電子發射體,該) 米碳管薄財奈米碳管均句分佈,所製備的熱發射電^ 可以發射均句而駭的熱電子流;其二,奈米碳管薄月 ^巴緣基底間隔⑨置,絕緣基底不會將加熱所述奈米碳1 3而產生的熱量傳導進大氣中,故所製備的熱發射電」 播的熱電子發射性能優異,其二’所述奈米碳管薄膜; =的尺寸小可直接輔設於所述電極,實現熱發射電子以 宁熱電子發射單元的微型化,從而可用 度的平板顯示和邏輯電路等複數個領域。““和… 21 200935485 綜上所述,本發明確已符合發明專利之要件,遂依法 提出專利申請。惟,以上所述者僅為本發明之較佳實施例, 自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝 之人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内 【圖式簡單說明】 圖1係本技術方案實施例的熱發射電子器件的結構示 意圖。 圖2係本技術方案實施例的熱發射電子器件的製備方 法的流程示意圖。 【主要元件符號說明】 熱發射電子器件 200 絕緣基底 202 行電極引線 204 列電極引線 206 熱電子發射體 208 第一電極 210 第二電極 212 網格 214 介質絕緣層 216 熱電子發射單元 220 22々 It can be understood that, in this embodiment, a plurality of parallel and equally spaced column electrode leads 2〇6 may be printed first, then a plurality of dielectric insulating layers 216 are printed, and finally a plurality of parallel and equally spaced row electrode leads are printed. 204, and the plurality of row electrode leads 2〇4 and the plurality of column electrode leads are mutually parented to form a plurality of grids 214. Step 3: Forming a thermal electron emitter 2〇8 covers the above-mentioned insulating substrate 202 containing electrode leads. The thermal electron emitter 208 of the embodiment of the present technical solution is preferably a carbon nanotube film structure. The preparation method of the carbon nanotube film structure comprises the following steps: (1) preparing at least one carbon nanotube film. 15 200935485 First, an array of carbon nanotubes is provided, preferably the array is a super-seven row of carbon nanotube arrays. In the present embodiment, the method for preparing a carbon nanotube array adopts a chemical vapor deposition method, and the specific steps thereof include: (a) providing a flat substrate, the substrate may be selected from a P-type or N-type germanium substrate, or may be formed with The ruthenium substrate of the oxide layer is preferably a 4-inch ruthenium substrate in this embodiment; (b) a catalyst layer is uniformly formed on the surface of the substrate, and the catalyst layer material may be selected from iron (Fe), samarium cobalt (Co), and nickel (Ni). Or one of the alloys of any combination thereof; (c) annealing the substrate on which the catalyst layer is formed in an air of 7 Torr (rc~9 〇〇〇c for about 30 minutes to 90 minutes; (d) treating the substrate The substrate is placed in a reaction furnace and heated to 50 (rc~74 (rc) in a protective gas atmosphere, and then reacted with a carbon source gas for about 5 minutes to 30 minutes to grow to obtain a carbon nanotube array having a height greater than 100 μm. The carbon nanotube array is a plurality of pure carbon nanotube arrays formed by carbon nanotubes that are parallel to each other and perpendicular to the substrate. The area of the nanocarbon array is substantially the same as the area of the substrate. Long condition, the super-shunned nano The tube array contains substantially no impurities, such as amorphous carbon or residual catalyst metal particles, etc. The above carbon source gas may be selected from chemically active compounds such as acetylene, ethylene, and decane. The preferred carbon source gas in this embodiment is The protective gas is a gas or an inert gas. The preferred shielding gas in this embodiment is nitrogen. It is understood that the carbon nanotube array provided in this embodiment is not limited to the above-mentioned clothing method and may be a graphite electrode constant current arc. Discharge deposition method, laser evaporation deposition method, etc. "' Next, a 16th 200935485 carbon nanotube film is obtained by pulling a sample from a carbon nanotube array using a stretching tool. • The preparation of the carbon nanotube film specifically includes the following Step: (a) selecting a plurality of carbon nanotube segments of a certain width from the array of upper and lower carbon nanotubes. In this embodiment, it is preferred to contact the carbon nanotube array with a tape having a certain width to select a plurality of widths. a bundle of carbon nanotubes; (b) stretching a plurality of the nanotube bundles at a constant speed = substantially perpendicular to the growth direction of the carbon nanotube array to form a continuous nanometer Tube film. In the above stretching process, the plurality of carbon nanotube bundles are gradually separated from the substrate in the stretching direction under the tensile force, and the selected plurality of carbon nanotube bundle segments are respectively separated by the van der Waals force It is continuously drawn out from the other end of the carbon nanotube bundle segment to form a carbon nanotube film. The carbon nanotube film comprises a plurality of end-to-end aligned carbon nanobeams, and a plurality of head and tails. The connected and aligned carbon nanotube bundles form a rice carbon pipeline. The carbon nanotube bundle comprises a plurality of parallel arranged carbon nanotubes, and the arrangement of the carbon nanotubes is substantially parallel to the stretching of the carbon nanotube membrane Direction. Again, the at least one carbon nanotube film is laid on the insulating substrate 202 containing the electrode lead to form a carbon nanotube film structure. The method for laying at least one carbon nanotube film on the insulating substrate 202 containing the electrode lead comprises the steps of: paralleling a carbon nanotube film or at least two carbon nanotube films in parallel and without gaps The direction in which the first electrode 210 extends toward the second electrode 212 is directly laid on the surface of the insulating substrate 202 including the electrode lead. Further, at least two carbon nanotube films may be laminated on the insulating substrate with electrode leads at an angle of 17 200935485 according to the arrangement direction of the carbon nanotubes. <α <90° 〇Ο It can be understood that the method of laying at least one carbon nanotube film on the insulating substrate 2G2 including the electrode lead may further include the following steps: providing a support body, parallelizing at least two carbon nanotube films and not The gap is directly laid on the surface of the support along the direction from the first electrode 21 〇 to the second electrode 212 to obtain a carbon nanotube film structure; the excess carbon nanotube film is removed from the outside of the body; Solvent treatment of the carbon nanotube membrane structure; the carbon nanotube film structure treated with the organic solvent is removed from the two supporting structures to form a self-supporting carbon nanotube film structure; The smectite film structure is laid on the surface of the insulating substrate: 202 containing electrode leads. Further, at least two carbon nanotube films may be laminated on the support total and 〇 $α$90 in accordance with the arrangement direction of the 'dot:meter carbon tubes' at an intersection angle α. Since the nano carbon f in the super-sequential nanocarbon column provided by the embodiment is very pure, and since the specific surface area of the carbon nanotube itself is very large, the carbon nanotube film itself has strong dotness. The nano-tube film can be directly attached to the branch body by its own drillability. In the case of 6 j K yoke, the size of the above-mentioned branch body can be confirmed according to actual needs. Although the width of the support body is larger than the width of the carbon nanotube film, the two carbon nanotube films of J can be laid in parallel and without gaps or/and overlaps on the support to form a self-supporting nanometer. Carbon tube film structure". In this example, the super-shun Nile carbon nanotube array J provided in this embodiment is very pure, and because the specific surface area of the nano-disc itself is not Large, so the carbon nanotube film structure itself has strong dryness. 18 200935485 The carbon nanotube film can be directly adhered to the surface of the insulating substrate 202 containing the * electrode lead by its own viscosity. Applying a layer of conductive paste on the surface of the insulating substrate 202 containing the electric pole lead; covering at least one carbon nanotube film on the entire insulating substrate 2〇2 containing the electrode lead, so that the at least one nano The carbon nanotube film is electrically connected to the surface of the insulating substrate 202 containing the electrode lead; the carbon nanotube film larger than the area of the insulating substrate 2 〇 2 is cut off, ' 〇 , ,, this embodiment can be further Nano carbon tube film directly The step of forming a carbon nanotube film structure on the insulating substrate containing the electrode lead, and then treating the carbon nanotube film structure with an organic solvent. Specifically, the organic solvent may be dropped through the test tube. The carbon nanotube film structure has a surface impregnated with the entire carbon nanotube film structure, or the nano-film structure of the nano tube can be immersed in a container containing an organic solvent, which is a volatile organic solvent. For example, ethanol, methanol, propane-, dichloroethane-burning 2 chloroform, ethanol is preferably used in this embodiment. The surface tension of the volatile organic solvent is affected by the infiltration of the nano-carbon tube film with the sputum agent. The parallel carbon nanotube fragments in the membrane structure will partially reduce the dryness and have a good machine;; = the surface volume ratio of the ruthenium film is small, and the η 'mechanical strength and toughness after treatment are treated with organic solvent. The performance of the non-water slave film is more excellent. Step 4: preparing a plurality of first electrodes 212 on the surface of the hot electron first electrode and the plurality of 08th layers, * mother cell 21 4, Eclipse (3) and 221 electrodes 212. The preparation of the first electrode 21 - - -, the electrode 212 can be achieved by the screen 19 200935485 printing method or sputtering method, etc. This embodiment _ Preparing a first electrode 21〇 on the surface of the nano-structured film structure corresponding to the row electrode lead 2〇4 in the grid 214 of each row by a screen printing method, the first electrode 21〇 and the same row electrode The leads 204 are electrically connected; a second electrode 212 is prepared on the surface of the nano-carbon thin-film structure corresponding to the column electrode 206 in the grid 214 of each column by screen printing or sputtering f, the second electrode 212 : The same electrode lead 206 is electrically connected. The first electrode 21 〇 and the first electrode 212 are spaced apart to provide a carbon nanotube film structure. The thickness of the first electrode 210 and the second electrode 212 is greater than the thickness of the row electrode lead 204 and the column electrode lead 2〇6 to facilitate the arrangement of the carbon nanotube film structure in the subsequent step. It can be understood that, in this embodiment, the printed first electrode 21 〇 and the corresponding column electrode lead 2 〇 6 can be directly connected to 攸 to realize electrical connection 'the second electrode 212 and the corresponding row electrode lead 〇 4 Direct contact to achieve electrical connection. Step 5: cutting and removing the excess thermal electron emitter 2〇8, and protecting the thermal electron emitter 208 covering the first electrode 210 and the second electrode plus the 214, thereby obtaining a thermal emission device 2 In the structure of the structure, the (4) and the excess carbon nanotube film are removed == recording or burning method or electron beam scanning method. The present embodiment (10) (4) material ^ carbon W structure, the specific package 204 first I ' uses a fixed width laser beam along each row electrode:! The purpose of the step is to remove the phase of the carbon nanotube film between the electrodes of the different rows (package 10 and second electrode 212) 20 200935485 = the width of the laser beam is equal to two adjacent ones located in different rows The distance between the rows of the second electrodes 212 is 1 〇〇 micrometer to 5 〇〇 micrometers. * Next, a laser beam of a constant width is scanned along each column electrode lead 206 to remove the carbon nanotube film structure between the electrodes of the different columns (including the first electrode 2 and the second electrode 212). Thereby, the structure of the carbon nanotube film covering the first electrode 21A and the second electrode 212 in each of the grids 214 is retained. Wherein, the width of the laser beam is equal to the distance between rows of two adjacent first electrodes 21A located in different arrays, ranging from _micrometers to 500 microseconds. In this embodiment, the above method can be carried out in an atmospheric environment or other oxygen-containing environment. The laser is used to remove excess carbon nanotubes. The clock power is 1 watt to 5 watts, the scanning speed is 1 〇 mm, and the minutes are ~10 〇 mm/min. In the present embodiment, the 'preferably' laser power is 3 watts, and the scanning speed is 1 〇〇 mm/min. Compared with the prior art, the heat-emitting electronic device has a _ _ advantage: it uses a carbon nanotube film as a thermal electron emitter, and the carbon nanotube thin carbon nanotubes are uniformly distributed. The prepared thermal emission electrons can emit a uniform flow of hot electrons; secondly, the carbon nanotubes of the thin carbon nanotubes are spaced apart from each other, and the insulating substrate does not heat the nanocarbon 13 The heat is conducted into the atmosphere, so the prepared thermal emission electricity has excellent thermal electron emission performance, and the second carbon nanotube film has a small size, which can be directly attached to the electrode to realize thermal emission electrons. The miniaturization of Ning hot electron emission units, thus the availability of flat panel displays and logic circuits and other fields. ““ and... 21 200935485 In summary, the present invention has indeed met the requirements of the invention patent and has filed a patent application in accordance with the law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application in this case. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the present invention are intended to be included in the scope of the following claims. FIG. 1 is a structure of a heat-emitting electronic device according to an embodiment of the present technical solution. schematic diagram. FIG. 2 is a schematic flow chart of a method for preparing a thermal emission electronic device according to an embodiment of the present technical solution. [Main component symbol description] Thermal emission electronic device 200 Insulation substrate 202 Row electrode lead 204 Column electrode lead 206 Thermal electron emitter 208 First electrode 210 Second electrode 212 Grid 214 Dielectric insulating layer 216 Thermal electron emission unit 220 22

Claims (1)

200935485 十、申請專利範圍 1. 一種熱發射電子器件,其包括: 一絕緣基底; 複數個行電極引線與列電極引線分別平行且 設置於絕緣基底上,續適封m …… 仃電極引線與複數個列200935485 X. Patent application scope 1. A thermal emission electronic device comprising: an insulating substrate; a plurality of row electrode leads and column electrode leads are respectively parallel and arranged on the insulating substrate, and a suitable sealing m ...... 仃 electrode lead and plural Column 電極引線相互交叉設置,每兩個相鄰的行電極引線盘 母兩個相鄰的列電極引線形成—個網格,且行電則 線與列電極引線之間電絕緣; 包括一第一電極、一第二電極和 複數個熱電子發射單元’每個熱電子發射單元對庫一 伽細格設κ 一 ^,- 〜 敎 » 電子發射體’該第一電極盥第’、’、 电个一弟一電極間隔設置於所述 對應的網格t,並分別與所述行電㈣線和列電極引 線電連接,所述熱電子發射體與所述電極和第一 電極電連接; 米一 其Μ在於,所述祕基底具有複數個凹槽,所 ❹個凹槽對應一個網格並設置於所述絕緣基底表面。 2·如申請專利顧第i項料的熱發射電子器件,其 中,所述每個熱電子發射體與相應網格内的凹槽 應並設置於所述絕緣基底表面。 3.如申請專利範圍第i項所述的熱發射電子器件,並 中,所述複數個凹槽等大且等間隔設置於所述絕緣基 底的表面,所述熱電子發射體至少部分通過所述凹= 與所述絕緣基底間隔設置。 3 4U請專利範圍帛i項所述的熱發射電子器件,其 23 200935485 電極I ^、轉按陣列排列,每—行的網格中的第— 第二電極盘n 每—列的網格中的 一冋—列電極引線電連接。 5. =申請專㈣圍第1項所述的熱發射電子器件,Α 微米所:電極和第二電極的厚度為10微米〜⑽ 述第一電極和第二電極之間的間隔距離為 150微米〜450微米。 ❹ ❹ 6. t中請專利範圍第1項所述的熱發射電子器件,其 長線所述熱電子發射體為—薄膜結構或者至少一根 7. Ϊ申請專利範圍第6項所述的熱發射電子器件,其 S 述熱電子發射體為—奈米碳管薄臈結構。 圍第7項所述㈣發射電子器件,其 ,所述奈米碳管薄膜結構包括至少—奈 膜,該奈米碳管薄膜中的夺 ' S , 取向排列。 的不未碳吕同-方向擇優 ^申明專利⑬S!第8項所述的熱發射電子器件,其 ’所述奈求碳管薄膜結構包括 :、 該奈姆薄膜中的奈㈣管沿從所述第IS向 所述第一電極延伸的方向排列。 ° 10·=申。月專利犯圍第8項所述的熱發射電子器件,並 中,所述奈米碳管薄臈結構包括至少兩個 置 的奈米碳管薄臈’該重疊設置的奈米碳管薄膜;: 鄰兩個奈米碳管薄膜中的奈米碳管排列方向具有— 24 200935485 交叉角度α,且〇γα^9()。。 1 1 ·如申請專利範圍第8 Ji张、+. AA Jtx ^ 項所述的熱發射電子器件,i 中,所述奈米碳管薄膜的f声 ” * J見没為〇.〇1厘米〜10厘米, 厚度為10奈米〜100微米。 12·如申請專利範圍第8項所述的熱發射電子器件,盆 中’所述奈㈣管薄膜包括複數財尾相連且擇優 取向排列的奈米碳管束,相鄰的奈米石炭管束之間通 過凡德瓦爾力連接。 13. 如申明專利範圍第6項所述的熱發射電子器件,其 中,所述熱電子發射體為至少一根奈米碳管長線。 14. 如申請專利範圍第13項所述的熱發射電子器件,其 中,所述的奈米碳管長線的直徑為〇·5奈米〜1〇〇微 米。 15. 如申請專利範圍第13項所述的熱發射電子器件,其 中,所述奈米碳管長線包括由複數個平行的首尾相 〇 連的奈米碳管束組成的束狀結構或由複數個首尾相 連的奈米碳管束組成的絞線結構,相鄰的奈米碳管 束之間通過凡德瓦爾力連接。 16. 如申請專利範圍第12項或第15項所述的熱發射電 子器件’其中,所述奈米碳管束包括複數個長度相 等且相互平行排列的奈米碳管,相鄰的奈米碳管之 間通過凡德瓦爾力連接。 25The electrode leads are arranged to intersect each other, and two adjacent column electrode pads of the two adjacent row electrode lead plates form a grid, and the row and the column electrode leads are electrically insulated; comprising a first electrode, a second electrode and a plurality of thermal electron emission units each of the thermoelectron emission units are provided with a gamma-gamma, a gamma-electron emitter, the first electrode, the first electrode, the first electrode An electrode is disposed at the corresponding grid t and electrically connected to the row (four) line and the column electrode lead, respectively, the thermo electron emitter is electrically connected to the electrode and the first electrode; The trick is that the secret substrate has a plurality of grooves corresponding to a grid and disposed on the surface of the insulating substrate. 2. A thermal electron-emitting device as claimed in claim 1, wherein each of the thermal electron emitters and the recess in the corresponding grid are disposed on the surface of the insulating substrate. 3. The heat-emitting electronic device of claim i, wherein the plurality of grooves are equal and equally spaced on a surface of the insulating substrate, the thermal electron emitter at least partially passing through Sag = is spaced from the insulating substrate. 3 4U Please refer to the thermal emission electronic device described in the patent scope 帛i, 23 23, 2009, 485 electrodes I ^, in the array according to the array, in the grid of each - row of the second electrode disk n per column - in the grid One 冋—the column electrode leads are electrically connected. 5. = Application for the thermal emission electronic device described in item (4), Α Micron: the thickness of the electrode and the second electrode is 10 μm~(10) The distance between the first electrode and the second electrode is 150 μm. ~450 microns.热 ❹ 6. The heat-emitting electronic device according to Item 1, wherein the long-side thermal electron emitter is a thin film structure or at least one of the thermal emission described in claim 6. The electronic device, wherein the thermal electron emitter is a thin carbon nanotube structure. According to Item (4) of claim 7, the carbon nanotube film structure comprises at least a film, wherein the carbon nanotube film has an orientation of S'. The heat-emitting electronic device described in Item 8 of the above-mentioned item is the same as the heat-emitting electronic device described in Item 8. The structure of the carbon nanotube film includes: the nai (four) tube in the nano film The IS is arranged in a direction in which the first electrodes extend. ° 10·=申. The invention discloses the heat-emitting electronic device according to Item 8, wherein the carbon nanotube thin crucible structure comprises at least two disposed carbon nanotubes 臈 'the overlapping carbon nanotube film; : The arrangement of the carbon nanotubes in the adjacent two carbon nanotube films has a cross angle α of 242009α, and 〇γα^9(). . 1 1 · As in the thermal emission electronic device described in the 8th Ji, +. AA Jtx ^ section of the patent application, i, the sound of the carbon nanotube film is not 〇.〇1 cm 〜10厘米, the thickness is from 10 nanometers to 100 micrometers. 12. The heat-emitting electronic device according to claim 8 of the patent application, wherein the na[beta] tube film comprises a plurality of tails connected in a terminal manner and arranged in a preferred orientation. A carbon-emitting tube bundle, which is connected by a van der Waals force between adjacent bundles of carbon nanotubes. The heat-emitting electronic device according to claim 6, wherein the thermal electron emitter is at least one nano The heat-emitting electronic device of claim 13, wherein the long diameter of the carbon nanotube is 〇·5 nm to 1 μm. The heat-emitting electronic device of claim 13, wherein the long carbon nanotube line comprises a bundle structure consisting of a plurality of parallel carbon nanotube bundles connected end to end or a plurality of end-to-end nai Stranded wire structure consisting of carbon nanotube bundles, adjacent nano The carbon tube bundle is connected by a van der Waals force. The heat-emitting electronic device of claim 12, wherein the carbon nanotube bundle comprises a plurality of equal lengths and arranged in parallel with each other. The carbon nanotubes are connected between adjacent carbon nanotubes by van der Waals force.
TW97105425A 2008-02-15 2008-02-15 Thermionic emission device TWI330858B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97105425A TWI330858B (en) 2008-02-15 2008-02-15 Thermionic emission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97105425A TWI330858B (en) 2008-02-15 2008-02-15 Thermionic emission device

Publications (2)

Publication Number Publication Date
TW200935485A true TW200935485A (en) 2009-08-16
TWI330858B TWI330858B (en) 2010-09-21

Family

ID=44866597

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97105425A TWI330858B (en) 2008-02-15 2008-02-15 Thermionic emission device

Country Status (1)

Country Link
TW (1) TWI330858B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI391323B (en) * 2009-09-09 2013-04-01 Hon Hai Prec Ind Co Ltd Mehtod for manufacturing carbon nanotube linear structure
US8444947B2 (en) 2009-08-28 2013-05-21 Tsinghua University Method for making carbon nanotube wire structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8444947B2 (en) 2009-08-28 2013-05-21 Tsinghua University Method for making carbon nanotube wire structure
TWI391323B (en) * 2009-09-09 2013-04-01 Hon Hai Prec Ind Co Ltd Mehtod for manufacturing carbon nanotube linear structure

Also Published As

Publication number Publication date
TWI330858B (en) 2010-09-21

Similar Documents

Publication Publication Date Title
JP4976368B2 (en) Thermionic emission device
JP5015906B2 (en) THERMOELECTRON EMITTING DEVICE AND METHOD FOR MANUFACTURING THE SAME
JP5199052B2 (en) Method for manufacturing thermionic emission device
JP4976367B2 (en) Thermionic emission device
JP5209659B2 (en) Incandescent light source display device
JP5491035B2 (en) Manufacturing method of field emission electron source
JP5015969B2 (en) Method for manufacturing thermionic emission device
JP5491036B2 (en) Field emission electron source and manufacturing method thereof
JP5102193B2 (en) Thermionic emission device
TW200935485A (en) Thermionic emission device
TWI352369B (en) Thermionic emission device and method for making t
JP5144775B2 (en) Field emission device
TWI352371B (en) Method for making field emission electron device
TWI360831B (en) Field emission electron device
TW200929314A (en) Method for making thermionic electron source
TW200932665A (en) Thermionic emission device
TW200933686A (en) Thermionic source
TW200937485A (en) Electron emission device
TW201227791A (en) Field emission electronic device