TW200919740A - Method of fast hydrogen passivation to solar cells made of crystalline silicon - Google Patents

Method of fast hydrogen passivation to solar cells made of crystalline silicon Download PDF

Info

Publication number
TW200919740A
TW200919740A TW096138846A TW96138846A TW200919740A TW 200919740 A TW200919740 A TW 200919740A TW 096138846 A TW096138846 A TW 096138846A TW 96138846 A TW96138846 A TW 96138846A TW 200919740 A TW200919740 A TW 200919740A
Authority
TW
Taiwan
Prior art keywords
solar cell
hydrogen
solar cells
passivation
wafer
Prior art date
Application number
TW096138846A
Other languages
Chinese (zh)
Inventor
Wen-Ching Sun
Chien-Hsun Chen
Jon-Yiew Gan
Jenn-Chang Hwang
Chwung-Shan Kou
Chih Wei Wang
Juan You Lin
Original Assignee
Ind Tech Res Inst
Nat Univ Tsing Hua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst, Nat Univ Tsing Hua filed Critical Ind Tech Res Inst
Priority to TW096138846A priority Critical patent/TW200919740A/en
Publication of TW200919740A publication Critical patent/TW200919740A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A method to quickly improve the performance of solar cells made of crystalline silicon, including monocrystalline, multicrystalline and polycrystalline silicons. The method comprises of steps applying a negative pulse to solar cells at a predetermined voltage, a predetermined frequency, and a predetermined pulse width while immersing the solar cells in a hydrogen plasma. Hydrogen ions are attracted and quickly implanted into solar cells. Thus, the passivation of the crystal defects in solar cells can be realized in a short period. Meanwhile, the properties of the antireflection layer can not be damaged as the proper operating conditions are used. Consequently, both the short-circuit and the open-circuit voltage can be increased. Meanwhile, the serious resistance can be significantly reduced and the filling factor increases as a result. The efficiency can be improved.

Description

200919740 25204twf.doc/n 九、發明說明: 【發明所屬之技術領域】 本發明是一種石夕基底的氫化(hydrogenation)方法。特別 是一種快速氳化製程用以純化結晶石夕(crystalline silicon, c-Si)太陽能電池中之矽結晶缺陷。前述結晶矽包含單晶 (monocrystalline,m-Si)、多晶石夕(muiticrystalline, mc-Si)及 多晶秒薄膜(polycrystalline thin film, poly_Si thin film)。 【先前技術】 太陽能電池是一種非常有前景的乾淨能源,其可直接 從陽光產生電能。不過目前必須要有效地降低太陽能電池 的生產成本,才能被廣泛接受而成為主要電力來源。研究 指出矽晶圓已佔結晶矽太陽能電池模組總成本的三分之一 強。因此為了降低成本,利用多晶矽(mc_Si)或多晶矽薄膜 (poly-Si thin film)製作太陽能電池,已成為重要發展方向。 但是,mc-Si和p〇ly-Si在晶體内都含有缺陷,包括晶界 (grain boundary)、晶體間差排(intmgrain 此1〇恤〇11)。這些 缺點會降低太陽能電池的轉換效率(c〇nversi〇n efficiency)。此外,即使在單晶太陽電能池的情況下,電荷 ^子在晶格表_再結合(細mbinatiQn) — #會不利於太 能電池的轉換效率。 現有技術已知藉由將氫原子加入石夕晶圓中,可使晶體 缺陷的影響降低,稱為“氣錦化,,制^ 辽純化策私。如此結晶矽太陽能 ^也的效率將被大幅改善一般觀點,這些效率的改善與 氫原子在在Ba格缺1^上形成鍵翻而降低電荷載子在晶格 200919740 1 v? 25204twf.doc/π 缺陷上的再結合損失非常相關◦目前在太陽能電池製程技 術上,利用氫鈍化以減輕晶格缺陷之有害效應的方法包含: (1) 在氫氣氛中做加熱處理: P. Sana, A. Rohatgi, J. p. Kalejs, and R. O. Bell, Appl. Phys. Lett· 64, 97 (1994)。 美國專利US 5,169,791。 (2) 以氫氣電漿進行擴散處理:200919740 25204twf.doc/n IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention is a hydrogenation method for a Shixia substrate. In particular, a rapid deuteration process for purifying germanium crystal defects in crystalline silicon (c-Si) solar cells. The crystalline ruthenium includes monocrystalline (m-Si), muiticrystalline (mc-Si), and polycrystalline thin film (poly_Si thin film). [Prior Art] Solar cells are a very promising clean energy source that can generate electricity directly from sunlight. However, it is now necessary to effectively reduce the production cost of solar cells in order to be widely accepted as the main source of electricity. Research indicates that germanium wafers account for more than one-third of the total cost of crystalline solar modules. Therefore, in order to reduce costs, the production of solar cells using polycrystalline germanium (mc_Si) or poly-Si thin films has become an important development direction. However, both mc-Si and p〇ly-Si contain defects in the crystal, including the grain boundary and the inter-crystal difference (intmgrain). These shortcomings reduce the conversion efficiency of solar cells (c〇nversi〇n efficiency). In addition, even in the case of a single crystal solar cell, the charge ^ in the lattice table _ recombination (fine mbinatiQn) - # will be detrimental to the conversion efficiency of the battery. It is known in the prior art that by adding a hydrogen atom to a Shi Xi wafer, the influence of crystal defects can be reduced, which is called "gas Jinhua," and the efficiency of the crystallization is high. To improve the general view, these improvements in efficiency are closely related to the hydrogen bond's recombination loss on the lattice 200919740 1 v? 25204twf.doc/π defect in the formation of a bond flip on the Ba lattice. In solar cell process technology, methods using hydrogen passivation to mitigate the deleterious effects of lattice defects include: (1) Heat treatment in a hydrogen atmosphere: P. Sana, A. Rohatgi, J. p. Kalejs, and RO Bell, Appl. Phys. Lett 64, 97 (1994). US Patent US 5,169,791. (2) Diffusion treatment with hydrogen plasma:

W. Schmidt, K.D. Rasch, and K. Roy, 16 IEEE c;W. Schmidt, K.D. Rasch, and K. Roy, 16 IEEE c;

Photovoltaic Specialist Conference, San Diego, 1982, pages 537-542 。 美國專利 U. S. 4,835,006 與 U. S. 4,343,830。 ⑶藉由電漿化學氣相沉積(piasina enhanced chemical vapor deposition ’縮寫為PECVD)沉積之富含氫的SiNx : H薄膜層: R. Hezel and R. Schroner, J. Appl. Phys.,52(4),3076 (1981) 〇Photovoltaic Specialist Conference, San Diego, 1982, pages 537-542. U.S. Patent No. 4,835,006 and U.S. 4,343,830. (3) Hydrogen-rich SiNx: H thin film deposited by piasina enhanced chemical vapor deposition (PECVD): R. Hezel and R. Schroner, J. Appl. Phys., 52 (4) ), 3076 (1981) 〇

Ci (4)離子化氫原子(ionized hydrogen atom)的植入: 美國專利 U. S. 5,304, 509。 J. E. Johnson, J. I. Hano Ka, and J. A. Gregory, 18 IEEE Photovoltaic Specialists Conference, Las Vegas 1985, pages 1112-1115 。 在氫鈍化的製程中,必須提供足夠的氫原子以達成在 多數的晶格缺陷上形成鍵結。然而因為氫原子通過晶圓表 面的擴散速率很慢,在(1)至(3)方法中的氫鈍化製程往往需 200919740 -----------25204twf.doc/n 要數小時之久。雖然在(4)方法中,使用傳統的考夫曼 (Kaufman)寬離子束源將氫離子植入晶圓,製程時間會降 低。但在實際工業應用時,太陽能電池的大量生產需要數 、、且大面積的離子束源才能達到。如此規格之離子束源設備 是昂貴且複雜的系統。此外,在製程中Kaufman離子束源 内的加速電極會被離子轟擊。而被藏射出來的金屬顆粒會 變成污染源可能導致太陽能電池之效能變差。 ^ 在太陽能電池結構中含氫的非晶氮化矽(a-SiNx : H) 薄膜已成為一個重要的應用。這種薄膜是用電漿化學氣相 >儿積的方式成長於矽晶圓上。a_SiNx : H薄膜之應用第一 是作為抗反射層(antireflection coating)。再者,它可以提供 表面鈍化作用(surface passivation effect),以降低太陽能電 池中電荷載子在矽晶圓表面上再結合。此外,a_SiNx^ = 薄膜中的氫原子可擴散至⑦晶圓中並鈍化晶格的缺陷。為 達上述目的,需要熱處理(thermalpr〇cess)來提升太陽能電 池的溫度,以增加氫原子的擴散達到理想的鈍化。操作溫 度是在350°C左右,製程需費時1到2小時。 然而在一些太陽能電池生產中,電極製作是在抗反射 層完成後進行。因為電極製作往往需進行高溫加熱烘烤的 步驟,但氫與矽的鍵結在40(rc以上將分解致使氫原子脫 離晶圓,故前段所述之氫鈍化效果將被破壞。 表丁、合以上所述,結晶矽太陽能電池的生產需要一種快 速的氫鈍化製程,以大幅降低製程時間。特別是這種製程 可在結晶矽太陽能電池製造完成之後實行。換言之,Implantation of Ci (4) ionized hydrogen atom: U.S. Patent 5,304,509. J. E. Johnson, J. I. Hano Ka, and J. A. Gregory, 18 IEEE Photovoltaic Specialists Conference, Las Vegas 1985, pages 1112-1115. In the hydrogen passivation process, sufficient hydrogen atoms must be provided to form bonds on most of the lattice defects. However, because the diffusion rate of hydrogen atoms through the surface of the wafer is very slow, the hydrogen passivation process in the methods (1) to (3) often requires 200919740 -----------25204twf.doc/n hours as long as. Although in the (4) method, the conventional Kaufman wide ion beam source is used to implant hydrogen ions into the wafer, the process time is reduced. However, in practical industrial applications, the mass production of solar cells requires a large number of ion beam sources to be achieved. An ion beam source device of this size is an expensive and complicated system. In addition, the accelerating electrodes in the Kaufman ion beam source are bombarded by ions during the process. The metal particles that are trapped and become a source of pollution may cause the performance of the solar cell to deteriorate. ^ Amorphous tantalum nitride (a-SiNx: H) films containing hydrogen in solar cell structures have become an important application. The film is grown on a tantalum wafer using plasma chemical vaporization. The first application of a_SiNx: H film is as an antireflection coating. Furthermore, it can provide a surface passivation effect to reduce the recombination of charge carriers on the surface of the germanium wafer in the solar cell. In addition, a_SiNx^ = hydrogen atoms in the film can diffuse into the 7 wafers and passivate the defects of the crystal lattice. To achieve the above objectives, thermalpr〇cess is required to increase the temperature of the solar cell to increase the diffusion of hydrogen atoms to achieve the desired passivation. The operating temperature is around 350 ° C and the process takes 1 to 2 hours. However, in some solar cell production, electrode fabrication is performed after the antireflection layer is completed. Because the electrode fabrication often requires a high-temperature heating and baking step, the bonding of hydrogen and helium is at 40 (the above rc will decompose and cause the hydrogen atoms to leave the wafer, so the hydrogen passivation effect described in the previous paragraph will be destroyed. As described above, the production of a crystalline germanium solar cell requires a rapid hydrogen passivation process to drastically reduce the process time. In particular, this process can be performed after the fabrication of the crystalline germanium solar cell is completed. In other words,

200919740 ........--.. 25204twf.doc/n 已完成沉積抗反射層及製作電極之後依财以實行的快速 氳純化製程。而且’和用Kauf_寬束離子_傳統離子 法的設裝備必須簡單且適合太陽能 電池的大置生產製程。 【發明内容】 、本發明提供-種結晶石夕太陽能電池的氣純化之方法, 以改善結’太陽能電池之效能。這種方法可以實現快速 氫純化(hydrogen passivation)製程,以減輕石夕晶體中因 的有害效應。而且,這種方法必須不會造成抗反 射層之損害(如a-SiNx,。此外,本發明所提出的結晶石夕 太陽能電池的氫鈍化方法可改善已經完全製作好的太陽能 電池之效能。 本發明提出-種結晶石夕太陽能電池的氣純化之方法, 包括以下步驟: (a) 將一個結晶矽太陽能電池置入一個真空腔體中,其 中結晶發太陽能電池之表面具有電極及—層抗反射層/、 (b) 供應氫氣流到真空腔體至一預定壓力。 ⑷傳送射頻或微波功率到真空腔體内產生氫氣電聚。 (d)藉由-個脈衝產生器提供一預定的電社小、脈衝 頻率與脈衝時間寬度的貞輯偏制結晶教陽能電池晶 圓,並於-預定齡H足量的氫離子聽㈣太陽能電 池晶圓内’其中前述負脈衝電壓被控制在定範圍内, 以免破壞抗反射層。 本發明提出結晶石夕太陽能電池的氫鈍化之方法是先將 200919740 25204twf.doc/n 結晶石夕太陽能電池晶圓置入一個真空腔體中,太陽能電池 已具有抗反射層及電極。隨後,再供應氫氣流到真空腔體 至-預定壓力。接著,藉由傳送射頻或微波功率源到真介 腔體内來產生氫氣。隨後,提供一負偏壓脈衝至^ 月色電池晶圓,以使氫離子被吸引植入其中。 在此方法中,高密度電襞可提供一個高的氫離子劑量 率(dose rate)。因此與現行技術相較,製程時間將可被大幅 、缩減。另一方面,相較於傳統離子束方法,本方法中使用 !的設備較為簡單及經濟故適用於大量生產。同時,負偏壓 脈衝結束期間,電漿中的電子會被吸引至太陽能電池晶圓 以中和原先植入的累積正電荷。所以,藉由控制脈衝寬度 可以消除電荷累積所導致的損壞問題。而且,利用選擇一 個適當的脈衝電壓可避免離子的轟擊而造成抗反射塗戶 可能的劣化。 θ 【實施方式】 圖1是一種典型的太陽能電池10,其中包括—個結晶 (j 石夕晶圓100 ’且已形成ρη接合(pn junction) 104。結晶石夕晶 圓1 〇〇表面具有隨機角錐結構(random pyramid texture)102,並利用熱製程成長的以〇2薄層用來作為表面 鈍化層(surface passivation layer)106。然後,利用 pECVD 方法沉積一層a-SiNx : Η薄膜之抗反射層膜1〇8。而在結 晶石夕晶圓100的前面l〇〇a和背面l〇〇b上分別製作電極 和114。此外,電極114通常是形成在沉積於結晶矽晶圓 100的背面100b的一層介電層116中。 200919740 25204twf.doc/n 圖2則是顯示結晶矽太陽能電池晶圓2〇〇施行氫鈍化 之示思圖。首先將結晶石夕太陽能電池晶圓2〇〇置入在真空 腔體202中的晶圓托盤(h〇lder)204上,並且降低真空腔體 202之氣壓至大概1(Τ6Τοιτ。然後,氣體供應裝置2〇6供應 氫氣流到真空腔體202至一預定壓力,約M〇mT〇n_接 著,藉由一個微波或射頻功率產生器2〇8提供之微波 頻功率傳送到真空腔體202内產生氫氣電漿。一般而言, ( 電漿在、度應該大於10 IG cm-3,以達成有效率的製程。 當激發氫氣電漿後,由一個脈衝產生器(pUlse generator) 212提供一預定的電壓大小、脈衝頻率與脈衝時 間寬度的負脈衝電壓至晶圓托盤204,以施加偏壓至結晶 矽太陽能電池晶圓200。前述負脈衝電壓之脈衝頻率範圍 為100Hz到20kHz ’電壓範圍是從_5〇〇v到_5]^,以便確 保結晶矽太陽能電池晶圓200中的抗反射層(如圖j之1〇8) 在氫鈍化期間不被破壞。而供應負脈衝電壓的時間(pulse duration)是從lpSec至20MSec。然後,電漿源21〇中的氡 離子會被負電壓加速並且植入結晶矽太陽能電池晶圓 中。而製程的處理時間為1〜10分鐘之間。此外,在上述 氫離子植入期間,可加熱結晶矽太陽能電池晶圓2〇〇至大 約300°C〜35(TC的溫度。 以下實例將描述本發明所提出之氫鈍化製程的效果。 實例一 片在這個例子中,真空腔體的底壓為1〇-6T〇rr,而後輸 入氫氣作為工作氣體並昇壓力至2 mT〇rr。電漿通過一個電 200919740 252〇4twf.doc/n 感耦合天線以射頻功率(13 56 MHz)激發。功率為2〇〇 w。 電漿密度是約lWm.3。並且使mv的脈衝電壓來加偏 壓至太陽能電池。而脈衝寬度是l(^sec以及脈衝頻率是 200Hz。本實驗並不提供電源加熱太陽能電池,但因為電 漿離子植入時會使樣本的溫度提高至1〇(rc左右。全部製 程時間是1 〇分鐘。 太陽能電池是用P型、滲雜硼至lxl02〇cm-3的多晶矽 晶圓^C-Si wafbr)製作的。他們的平均晶粒大小(mean grain size)疋大概5 mm。在晶圓的表面上已經製作一個角椎構 造。N P接合則是在850°C使用POCL3之擴散20分鐘製作 的。接著’用熱氧化製程形成一層2〇mn的Si〇2層。然後, 在溫度為350°C時以電容耦合式射頻電漿反應器沉積一層 大約90麵的a-SiNx:H薄膜用來抗反射,其中使用 和NH3作為前驅物(precursor)。至於金屬電極則使用金屬 印刷法並加750°C的燒結製作的。 圖3則顯示太陽能電池在氫鈍化製程前後的電流-電 U 壓特性的比較。結果清楚顯示串聯電阻大幅降低,填充因 子(filling factor)從 76.99 % 增加至 81.25 %。而且短路 (short-circuit)電流增加。這些改良將使轉換效率從12 33 % 增加至13.39 %。 ° 實例二 在這個例子中,製作一個單晶矽太陽能電池。製作的 結構與製程與實例一相同。此外,電漿條件與處理條件也 200919740 25204twf.doc/n 都樣。圖4為太能電池在氫鈍化製程前後的電流_電壓 特性的比較,結果顯示填充因數結果從75 〇〇%增加至 80·77 X»同日守’短路電流從0.23 A增加至0.25 A ’且開路 電壓也從0.59 V增加至〇.6 v。這些改良使得轉換效率從 14_25% 增加至 17.06%。 綜合以上所述,本發明與現有技術相比能大幅降低氫 鈍化製程的時間與成本,有效提升結晶矽太陽能電池效 率。而且使用的設備較為簡單經濟適用於大量生產。本發 明可應用在不同類型的結晶矽太陽能電池上。尤其是針對 生^中效率未能達要求的太陽能電池進行氫鈍化,使其效 =提尚,增加生產良率。除此之外,本發明無須改變太陽 能電池現有其他生產方法,為獨立製程,整合性高。 雖然本發明已以實施例揭露如上,然其並非用以限定 本發明,任何所屬技術領域中具有通常知識者,在不脫離 本發明之精神和範圍内,當可作些許之更動與潤飾,因此 本發明之保護範圍當視後附之申請專利範圍所界定者為 〇 準。 【圖式簡單說明】 圖1是一種典型太陽能電池之正視剖面圖。 圖2是圖說本發明之結晶矽太陽能電池的氫鈍化製程 的示意圖。 曰疋圖1所示之一種多晶矽(multicrystalline silicon) 太1¼此電池於氫鈍化製程前後在模昭 ⑴―)下的電性㈣曲線圖。 .…、 12 25204twf.doc/n 200919740 圖4是圖1所示之一種單晶石夕(monocrystalline silicon) 太陽能電池於氫鈍化製程前後在模擬ΑΜ1·5照度下的電 性(I-V)曲線圖。 【主要元件符號說明】 10:太陽能電池 100 .結晶珍晶圓 102 :隨機角錐構造 104 : ρη接合 106 :表面純化層 108 :抗反射層 112、114 :電極 116 :介電層 200 .太1¼能電池晶圓 202 :真空腔體 204 :晶圓托盤 206 :氣體供應裝置 208 :微波或射頻功率產生器 210 :電漿源 212:脈衝產生器 13200919740 ........--.. 25204twf.doc/n The rapid purification process after depositing the anti-reflective layer and making the electrode has been completed. Moreover, the equipment equipped with the Kauf_wide beam ion_conventional ion method must be simple and suitable for the large-scale production process of solar cells. SUMMARY OF THE INVENTION The present invention provides a method for purifying a gas of a crystalline solar cell to improve the performance of a solar cell. This method allows for a rapid hydrogen passivation process to mitigate the deleterious effects of the crystal. Moreover, this method must not cause damage to the antireflection layer (e.g., a-SiNx). In addition, the hydrogen passivation method of the crystal solar cell of the present invention can improve the performance of a solar cell that has been completely fabricated. The invention provides a method for purifying a gas of a crystalline solar cell, comprising the steps of: (a) placing a crystalline germanium solar cell into a vacuum chamber, wherein the surface of the crystallized solar cell has an electrode and a layer of anti-reflection Layer/, (b) supply hydrogen gas to the vacuum chamber to a predetermined pressure. (4) Transmitting radio frequency or microwave power into the vacuum chamber to generate hydrogen electropolymerization. (d) Providing a predetermined electric company by using a pulse generator The small, pulse frequency and pulse time width of the partial crystallization of the cation solar cell wafer, and - in the pre-determined age H full amount of hydrogen ion listening (four) solar cell wafer 'where the aforementioned negative pulse voltage is controlled in a fixed range In order to avoid damage to the anti-reflection layer. The invention proposes that the method of hydrogen passivation of the crystalline Shi Xi solar cell is to firstly process the 200919740 25204twf.doc/n crystal solar solar cell wafer. Placed in a vacuum chamber, the solar cell already has an anti-reflection layer and an electrode. Then, hydrogen gas is supplied to the vacuum chamber to a predetermined pressure. Then, by transmitting a radio frequency or microwave power source to the real cavity, Hydrogen. Subsequently, a negative bias pulse is provided to the Moonlight cell wafer to allow hydrogen ions to be implanted therein. In this method, the high density electrode provides a high hydrogen ion dose rate. Therefore, compared with the current technology, the process time can be greatly reduced and reduced. On the other hand, compared with the conventional ion beam method, the device used in the method is simple and economical, and is suitable for mass production. At the end of the bias pulse, electrons in the plasma are attracted to the solar cell wafer to neutralize the accumulated positive charge originally implanted. Therefore, by controlling the pulse width, the damage caused by charge accumulation can be eliminated. Selecting an appropriate pulse voltage can avoid ion bombardment and cause possible degradation of anti-reflective coating. θ [Embodiment] Figure 1 is a typical solar power 10, which includes a crystal (j 夕 wafer 100 ' and has formed a pn junction pn junction 104. The surface of the crystallization wafer 1 has a random pyramid texture 102 and utilizes a thermal process The thin layer of 〇 2 grown is used as a surface passivation layer 106. Then, a layer of a-SiNx: anti-reflective layer film of Η film is deposited by pECVD method. Electrodes and 114 are formed on the front side l〇〇a and the back side l〇〇b, respectively. Further, the electrode 114 is typically formed in a dielectric layer 116 deposited on the back side 100b of the crystalline germanium wafer 100. 200919740 25204twf.doc/n Figure 2 is a diagram showing the hydrogen passivation of a crystalline germanium solar cell wafer. First, the crystal solar cell wafer 2 is placed on a wafer tray 204 in the vacuum chamber 202, and the pressure of the vacuum chamber 202 is lowered to about 1 (Τ6Τοιτ. Then, the gas supply The device 2〇6 supplies hydrogen gas to the vacuum chamber 202 to a predetermined pressure, approximately M〇mT〇n_. Next, the microwave frequency power supplied by a microwave or RF power generator 2〇8 is transmitted to the vacuum chamber 202. Hydrogen plasma is produced. In general, (the plasma should be greater than 10 IG cm-3 to achieve an efficient process. When the hydrogen plasma is excited, a pulse generator (pUlse generator) 212 provides a predetermined schedule. The voltage pulse, pulse frequency and pulse time width of the negative pulse voltage are applied to the wafer tray 204 to apply a bias voltage to the crystallization solar cell wafer 200. The aforementioned negative pulse voltage has a pulse frequency ranging from 100 Hz to 20 kHz. _5〇〇v to _5]^ to ensure that the anti-reflection layer in the crystalline solar cell wafer 200 (Fig. 1) is not destroyed during hydrogen passivation. The time for supplying a negative pulse voltage ( Pulse duration) is from lp Sec to 20MSec. Then, the cesium ions in the plasma source 21〇 are accelerated by the negative voltage and implanted in the crystallization solar cell wafer, and the processing time of the process is between 1 and 10 minutes. During implantation, the crystallization solar cell wafer can be heated from 2 Torr to about 300 ° C to 35 (temperature of TC. The following example will describe the effect of the hydrogen passivation process proposed by the present invention. Example One Piece In this Example, Vacuum The bottom pressure of the cavity is 1〇-6T〇rr, and then hydrogen is input as the working gas and the pressure is raised to 2 mT〇rr. The plasma is passed through an electric 200919740 252〇4twf.doc/n inductively coupled antenna with RF power (13 56 MHz) excitation. The power is 2 〇〇w. The plasma density is about 1 Wm.3, and the pulse voltage of mv is biased to the solar cell. The pulse width is l (^sec and the pulse frequency is 200 Hz. It does not provide power to heat the solar cell, but because the plasma ion implantation will increase the temperature of the sample to 1 〇 (rc). The total process time is 1 〇 minutes. The solar cell uses P type, boring boron to lxl02〇 Polycrystalline germanium of cm-3 Made by circle ^C-Si wafbr. Their average grain size is about 5 mm. An angular structure has been fabricated on the surface of the wafer. NP bonding is used at 850 °C. Diffusion was made for 20 minutes. Then a layer of 2〇mn Si〇2 was formed by thermal oxidation process. Then, a 90-sided a-SiNx was deposited by a capacitively coupled RF plasma reactor at a temperature of 350 °C. :H film is used for anti-reflection, in which NH3 is used as a precursor. As for the metal electrode, it was produced by a metal printing method and sintering at 750 °C. Figure 3 shows a comparison of current-electric U-voltage characteristics of solar cells before and after the hydrogen passivation process. The results clearly show that the series resistance is greatly reduced, and the filling factor is increased from 76.99% to 81.25%. Moreover, the short-circuit current increases. These improvements will increase conversion efficiency from 12 33 % to 13.39 %. ° Example 2 In this example, a single crystal germanium solar cell was fabricated. The structure and process of fabrication are the same as in Example 1. In addition, the plasma conditions and processing conditions are also the same as 200919740 25204twf.doc/n. Figure 4 shows the comparison of the current-voltage characteristics of the Taien battery before and after the hydrogen passivation process. The results show that the fill factor result increases from 75 〇〇% to 80·77 X»The same day, the short-circuit current increases from 0.23 A to 0.25 A'. The open circuit voltage also increased from 0.59 V to 〇.6 v. These improvements have increased conversion efficiency from 14_25% to 17.06%. In summary, the present invention can greatly reduce the time and cost of the hydrogen passivation process and effectively improve the efficiency of the crystallization solar cell compared with the prior art. Moreover, the equipment used is relatively simple and economical for mass production. The invention can be applied to different types of crystalline germanium solar cells. In particular, hydrogen passivation is carried out for solar cells in which the efficiency cannot meet the requirements, so that the efficiency is improved and the production yield is increased. In addition, the present invention does not need to change other existing production methods of solar cells, and is a stand-alone process with high integration. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of protection of the present invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a front cross-sectional view of a typical solar cell. Fig. 2 is a schematic view showing a hydrogen passivation process of the crystalline germanium solar cell of the present invention. A multi-crystalline silicon as shown in Fig. 1 is a graph of the electrical (four) curve of the battery under the die-cut (1)-) before and after the hydrogen passivation process. ...., 12 25204twf.doc/n 200919740 Fig. 4 is a graph showing the electrical (I-V) curve of a single crystal silicon solar cell shown in Fig. 1 under simulated ΑΜ1·5 illuminance before and after the hydrogen passivation process. [Main component symbol description] 10: Solar cell 100. Crystalline wafer 102: Random pyramid structure 104: ρη bonding 106: Surface purification layer 108: Antireflection layer 112, 114: Electrode 116: Dielectric layer 200. Too 11⁄4 can Battery wafer 202: vacuum chamber 204: wafer tray 206: gas supply device 208: microwave or radio frequency power generator 210: plasma source 212: pulse generator 13

Claims (1)

200919740 25204tw f.doc/] 十、申請專利範圍: 種化之方法* …曰曰電ΐ晶圓之表面具有電極及—抗反射層; 流到該真空腔體至―預定壓力; 漿;以及l、销微波功率顺真⑽體内產生氫氣電 O 韻韋*彳α脈衝產生a提供—預定的電壓大小、脈衝 =脈t時間寬度的一負脈衝電壓到該結晶石夕太陽能電 t Li於—處理時間植μ量的氫離子到該結晶石夕太 ”内’其中該負脈衝電壓被控制在一設定範圍 内,以免破壞該抗反射層。 -科^如中♦專利範圍第1項所述之結晶梦太陽能電池的 虱鈍化之方法,其中該負脈衝電壓是在-5GG V和·5 kV之 間。 # 3·如申請專補圍第1項所述之結砂太陽能電池的 虱鈍化之方法’其中供應該負脈衝電壓的時間是在1 〇 與20psec之間。 · ^ 4.如申凊專利範圍第1項所述之結晶矽太陽能電池的 氫鈍化之方法,其中該脈衝頻率是在100 Hz與20 kHz之 間。 "5.如申請專利範圍第1項所述之結晶矽太陽能電池的 氫鈍化之方法,其t該處理時間是在1分鐘與10分鐘之間。 ^ 6.如申請專利範圍第1項所述之結晶矽太陽能電池的 ff*化之方法,其中在步驟d期間,包括加熱該結晶矽太 陽能電池晶圓至3〇〇t:〜350。(:的溫度。 14200919740 25204tw f.doc/] X. Patent application scope: Method of seeding* ... The surface of the wafer has an electrode and an anti-reflection layer; flows to the vacuum chamber to a predetermined pressure; slurry; , pin microwave power is smooth (10) in the body to produce hydrogen electricity O rhyme * 彳 α pulse generation a provides - a predetermined voltage magnitude, pulse = pulse t time width of a negative pulse voltage to the crystalline stone solar energy t Li - Processing time to implant a quantity of hydrogen ions into the crystallized stone, wherein the negative pulse voltage is controlled within a set range so as not to damage the anti-reflection layer. - Section ♦ Patent No. 1 The method of 虱 passivation of a solar cell of a solar cell, wherein the negative pulse voltage is between -5 GG V and · 5 kV. #3·If the application is to supplement the passivation of the sand-binding solar cell described in Item 1. The method of supplying the negative pulse voltage is between 1 20 and 20 psec. The method of hydrogen passivation of the crystalline germanium solar cell according to claim 1, wherein the pulse frequency is Between 100 Hz and 20 kHz <5. The method of hydrogen passivation of a crystalline germanium solar cell according to claim 1, wherein the processing time is between 1 minute and 10 minutes. ^ 6. If the patent application scope is the first item The method for crystallization of a crystalline germanium solar cell, wherein during step d, heating the crystalline germanium solar cell wafer to 3 〇〇t: 〜350. (: temperature. 14
TW096138846A 2007-10-17 2007-10-17 Method of fast hydrogen passivation to solar cells made of crystalline silicon TW200919740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096138846A TW200919740A (en) 2007-10-17 2007-10-17 Method of fast hydrogen passivation to solar cells made of crystalline silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096138846A TW200919740A (en) 2007-10-17 2007-10-17 Method of fast hydrogen passivation to solar cells made of crystalline silicon

Publications (1)

Publication Number Publication Date
TW200919740A true TW200919740A (en) 2009-05-01

Family

ID=44727206

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096138846A TW200919740A (en) 2007-10-17 2007-10-17 Method of fast hydrogen passivation to solar cells made of crystalline silicon

Country Status (1)

Country Link
TW (1) TW200919740A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8338217B2 (en) 2010-12-29 2012-12-25 Au Optronics Corporation Method of fabricating a solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8338217B2 (en) 2010-12-29 2012-12-25 Au Optronics Corporation Method of fabricating a solar cell

Similar Documents

Publication Publication Date Title
JP4829211B2 (en) Method for fast hydrogen passivation to solar cells made of crystalline silicon
US8021910B2 (en) Method for producing single crystal silicon solar cell and single crystal silicon solar cell
Gall et al. Polycrystalline silicon thin-film solar cells on glass
US8129612B2 (en) Method for manufacturing single-crystal silicon solar cell and single-crystal silicon solar cell
JP2023017839A (en) Solar battery manufacturing
JPWO2003085746A1 (en) Manufacturing method of tandem type thin film photoelectric conversion device
WO2007131343A1 (en) Low-temperature doping processes for silicon wafer devices
KR20090113227A (en) Method for manufacturing photoelectric conversion device
US8518724B2 (en) Method to form a device by constructing a support element on a thin semiconductor lamina
CN102648533A (en) Method for cleaning the surface of a silicon substrate
US8101451B1 (en) Method to form a device including an annealed lamina and having amorphous silicon on opposing faces
TWI390755B (en) Method of fabricating solar cells
JP2004289058A (en) Method for manufacturing photovoltaic device
Bai et al. 16.6% efficient Silicon-Film/sup TM/polycrystalline silicon solar cells
Bearda et al. Thin epitaxial silicon foils using porous-silicon-based lift-off for photovoltaic application
TW201349526A (en) Solar cells and methods of fabrication thereof
Libal et al. N-type multicrystalline silicon solar cells with BBr/sub 3/-diffused front junction
JP2011243855A (en) Solar cell element and method of manufacturing the same and solar cell module
US20120258561A1 (en) Low-Temperature Method for Forming Amorphous Semiconductor Layers
TW200919740A (en) Method of fast hydrogen passivation to solar cells made of crystalline silicon
US8148189B2 (en) Formed ceramic receiver element adhered to a semiconductor lamina
Sergeev et al. Doped microcrystalline silicon as front surface field layer in bifacial silicon heterojunction solar cells
TW201201396A (en) Method for manufacturing a solar panel
CN111312859A (en) Preparation method of heavily doped silicon-based film, film obtained by preparation method and application of film
KR101379221B1 (en) Fabrication method of SiCx Passivation layer and Solar cell usint the same