TW200837547A - Microprocessor capable of dynamically reducing its power consumption in response to varying operating temperature - Google Patents
Microprocessor capable of dynamically reducing its power consumption in response to varying operating temperature Download PDFInfo
- Publication number
- TW200837547A TW200837547A TW097106819A TW97106819A TW200837547A TW 200837547 A TW200837547 A TW 200837547A TW 097106819 A TW097106819 A TW 097106819A TW 97106819 A TW97106819 A TW 97106819A TW 200837547 A TW200837547 A TW 200837547A
- Authority
- TW
- Taiwan
- Prior art keywords
- operating
- microprocessor
- temperature
- voltage
- frequency
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Power Sources (AREA)
- Microcomputers (AREA)
Abstract
Description
200837547 - ' 九、發明說明: 【發明所屬之技術領域】 本發明涉及微型電腦中功率損耗與性能的相互影響問 題,尤其是可根據微型電腦的工作溫度變化來減少功率損 耗和提南性能。 【先前技#f】 對移動PC、筆記本電腦、桌上型電腦和工作站等不同 類型的電腦系統來說,功率損耗的管理都是非常的重要的 問題。比如,對大部分的筆記本電腦用戶來說,電池的壽 命問題至關重要。而據報導,在很多資料中心,運行伺服 器所需要消耗的能源比購買伺服器本身更加昂貴。因此, 才會有對“綠色“電腦的需求。在電腦系統中,大部分的功 率損耗是被微處理器消耗的。所以,減少電腦系統功率損 耗的關鍵在於減少微處理器的功率損耗。 在已有的微處理器設計中,微處理器的性能,比方說 在給定時間内微處理器所能處理的指令數,主要由時脈主 頻來決定。許多系統對微處理器的性能有一定的要求,而 且這個要求在時間上會隨著系統工作狀態的不同而有所變 化。比如,許多現代的微處理器中的一些系統軟體,例如 BIOS或者作業系統具有透過調整微處理器的工作頻率來 動態的調整其性能指標的能力。 微處理器的動態功率損耗是與時脈主頻和與工作電壓 的平方成正比的。然而,對大部分的現代微處理器來說,200837547 - ' IX. INSTRUCTIONS: TECHNICAL FIELD OF THE INVENTION The present invention relates to the interaction of power loss and performance in a microcomputer, and in particular, it is possible to reduce power loss and performance in accordance with changes in the operating temperature of the microcomputer. [Previous Technique #f] Power loss management is a very important issue for different types of computer systems such as mobile PCs, notebook computers, desktop computers and workstations. For example, for most laptop users, battery life issues are critical. It has been reported that in many data centers, running the server consumes more energy than buying the server itself. Therefore, there will be a demand for "green" computers. In computer systems, most of the power loss is consumed by the microprocessor. Therefore, the key to reducing the power loss of a computer system is to reduce the power loss of the microprocessor. In existing microprocessor designs, the performance of the microprocessor, such as the number of instructions the microprocessor can handle at a given time, is primarily determined by the clock frequency. Many systems have certain requirements for the performance of the microprocessor, and this requirement will vary in time depending on the operating state of the system. For example, some of the system software in many modern microprocessors, such as BIOS or operating systems, have the ability to dynamically adjust their performance specifications by adjusting the operating frequency of the microprocessor. The dynamic power loss of the microprocessor is proportional to the clock frequency and the square of the operating voltage. However, for most modern microprocessors,
Client’s Docket No.:CNTR2308I00_TW TT,s Docket No:0608-A41635-TW/Final /Joanne 8 200837547 Μ 在每一個工作頻率下,都有一個相對應的工作電壓最小 值,當電壓小於這個幅值時,微處理器將不能正常工作。 因此,我們需要透過降低一定性能或是一定頻率下的工作 電壓來降低微處理器的功率損耗。 此外,用戶對處理器的性能是有一定要求的。而由上 面的討論可知,在其他參數相同的情況下,微處理器工作 的頻率越高,其性能越好。因此,一個很常用的提高微處 理器性能的方法是超頻。在傳統方法中,電腦透過增加前 / 端匯流排的頻率來進行超頻,這使得微處理器和其他連接 到前端匯流排的電路工作在一個較高的時脈頻率下。超頻 本身也是有一些缺點的。首先,系統超頻總是要求電腦製 造商要提高標準製冷系統的性能或者用具有更高製冷能力 的製冷系統來替代原來的標準製冷系統,比如採用轉速更 高的風扇,更多的散熱片,液態冷卻液,相變製冷甚至是 液氮製冷。第二,超頻可能導致微處理器運行的不穩定, 潛在的影響是資料的丟失或者損壞,以及對微處理器甚至 、 是整個系統的損害。這時因為超頻一般是超過了製造商的 產品規格的,製造商可能並沒有測試在超頻頻率下微處理 器的運行狀況,因此不能保證在此頻率下微處理器能正常 工作。第三,在將前端匯流排超頻時,其餘的設備可能也 與前端匯流排相連,比方說記憶體,晶片組,顯示卡等, 這些設備也可能會工作在一個較高的頻率下,這也就存在 了上文中提到的需要附加的製冷系統和性能不穩定的問 題。因此,需要找到一個改進的方法,可以在增加微處理Client's Docket No.: CNTR2308I00_TW TT, s Docket No: 0608-A41635-TW/Final /Joanne 8 200837547 Μ At each operating frequency, there is a corresponding minimum operating voltage. When the voltage is less than this amplitude, The microprocessor will not work properly. Therefore, we need to reduce the power loss of the microprocessor by reducing the operating voltage at a certain performance or a certain frequency. In addition, the user has certain requirements for the performance of the processor. As can be seen from the above discussion, the higher the frequency at which the microprocessor operates, the better the performance when the other parameters are the same. Therefore, a very common method of improving the performance of microprocessors is overclocking. In the conventional approach, the computer overclocks by increasing the frequency of the front/end bus, which allows the microprocessor and other circuits connected to the front-end bus to operate at a higher clock frequency. Overclocking itself has some drawbacks. First, system overclocking always requires computer manufacturers to improve the performance of standard refrigeration systems or to replace the original standard refrigeration system with a refrigeration system with higher refrigeration capacity, such as a higher speed fan, more heat sinks, liquid Coolant, phase change refrigeration or even liquid nitrogen refrigeration. Second, overclocking can cause instability in the operation of the microprocessor. The potential impact is loss or damage to the data, as well as damage to the microprocessor and even the entire system. At this time, because overclocking generally exceeds the manufacturer's product specifications, the manufacturer may not test the operation of the microprocessor at the overclocking frequency, so there is no guarantee that the microprocessor will work properly at this frequency. Third, when overclocking the front-end bus, the remaining devices may also be connected to the front-end bus, such as memory, chipset, display card, etc. These devices may also work at a higher frequency, which also There are problems with the need for additional refrigeration systems and performance instability mentioned above. Therefore, you need to find an improved method that can increase the micro processing.
Client’s Docket No.:CNTR2308I00-TW TT’s Docket No:0608-A41635-TW/Final /Joanne 9 200837547 器頻率的同時避免傳統的超頻所帶來的問題。 此外,如前文所述’一些微處理器為―些系統軟體, 例如BIOS或者作業系統提供了改變微處理器的工作頻率 的能力。例如’在高級配置和電源介面(Α(ΐν&η_Client’s Docket No.: CNTR2308I00-TW TT’s Docket No: 0608-A41635-TW/Final /Joanne 9 200837547 The frequency of the device avoids the problems caused by traditional overclocking. Moreover, as mentioned earlier, some microprocessors provide the ability to change the operating frequency of the microprocessor for some system software, such as a BIOS or operating system. For example 'in advanced configuration and power interface (Α(ΐν&η_
Configuration and Power Interface,ACPI)規範 3 〇 版本中 依照CPU的工作主頻規定了 P狀態,並且為系 了一種使微處理器轉換到指定的P狀態的方法。在頻率增 加的情況下,根據微處理器的物理特性,微處理器必須^ 〃過增加其工作電壓來適應頻率的增加。完成電壓轉換所需 要的時間可能會很長,這取決於所需增加的電壓的幅度: 如第4圖和前文所述,傳統的微處理器增加電壓到預定要 求並且簡單地將頻率從現有頻率值增加到所要求達到的頻 率值。根據傳統的從現在的p狀態轉換到新的p狀態的方 法,微處理器在整個P狀態轉換期間工作在一個較低的頻 率,此時性能比較差。因此,需要找到一種改進方法來提 高在P狀態轉換期間微處理器的性能。 I 最後,一些微處理器包含熱監控和保護裝置。例如, 如第1圖所示,不同的Intel的處理器都具有增強節電功 能,其包含了熱監控(Thermal Monitor 2,TM2 )自動熱 保護裝置。TM2被應用於Pentium Μ的處理器,也被包含 進了 Pentium 4家族的新模型中。英代爾的Pentiuin 4處理 器具有2MB的二級緩存和533MHZ的前端資料匯流排, 其2005年7月的晶片手冊中寫道:“當内建感測器監剩到 核心溫度過高時,微處理器能夠根據軟體可編程的特別模Configuration and Power Interface (ACPI) Specification 3 〇 The P state is specified in accordance with the CPU's operating frequency and is a method for switching the microprocessor to the specified P state. In the case of increased frequency, depending on the physical characteristics of the microprocessor, the microprocessor must increase its operating voltage to accommodate the increase in frequency. The time required to complete the voltage conversion can be very long, depending on the magnitude of the voltage that needs to be increased: As shown in Figure 4 and earlier, conventional microprocessors add voltage to predetermined requirements and simply pass the frequency from the existing frequency. The value is increased to the desired frequency value. According to the conventional method of switching from the current p state to the new p state, the microprocessor operates at a lower frequency during the entire P state transition, and the performance is poor. Therefore, there is a need to find an improved way to improve the performance of the microprocessor during P-state transitions. I Finally, some microprocessors contain thermal monitoring and protection. For example, as shown in Figure 1, different Intel processors have enhanced power savings, including thermal monitoring (Thermal Monitor 2, TM2) automatic thermal protection. The TM2 was applied to the Pentium® processor and was included in the new Pentium 4 family model. Intel's Pentiuin 4 processor has 2MB of L2 cache and 533MHZ of front-end data bus, which was written in the July 2005 chip handbook: "When the built-in sensor monitors the core temperature is too high, Microprocessor can be programmed according to software
Clienfs Docket No.:CNTR2308I00-TW TT,s Docket No:0608-A41635-TW/Final /Joanne 200837547 組暫存器(Model Specific Registers,MSR)自翻沾紅 個較低頻率或是較低電壓。料—段固定換到一 核心溫度降低到可接受值,微處理器的 彳,如果 提高到原來的幅值,,。第U圖為此操作的例&。4將被 微處理器採用的·自動熱保護裝置僅依 點,即内定工作點和系統軟體指定的工作點來 2 缺陷的。特別是,如果這兩個工作點之間距越大,:: 於工作量和環境的综合影響,微處理器可能不能= :射員=下。從另一方面來說,兩個工作點的間距 越小’在工作1大和尚溫架境下,熱保護裝置所能 熱保護能力越小。此外,如果轉換的時間太長 、、 小頻率和電壓下的微處理器的性能將受影響。因=作=較 的是一個高性能的熱監測和保護裝置。 而要 【發明内容】 本發明的目的在於提供-種可以根據其工作溫度 化來動態改變功率損耗的微處理器,此微處理哭包括一 核心邏輯電路,根據一工作核心時脈工作以執程式指 令,一溫度感測益,用來監測核心邏輯電路的工作浪产. :時脈產生電路,用於產生卫作核心時鐘以提供給=邏 輯電路;以及-控制電路,連接於溫度感測器以監測核心 邏,電路的工作溫度,並包含了微處理器可以穩定工作在 —第-溫度的多個第-工作點’每—個第—卫作點都有其 各自對應的讀電壓和讀頻率:難制電路使核心邏輯 電路在多個第一工作點間轉換運行。Clienfs Docket No.: CNTR2308I00-TW TT, s Docket No: 0608-A41635-TW/Final /Joanne 200837547 Model Specific Registers (MSR) self-tap red lower frequencies or lower voltages. Material-segment fixed to a core temperature reduced to an acceptable value, if the microprocessor's 彳, increased to the original amplitude, . Figure U is an example of this operation & 4 The automatic thermal protection device to be used by the microprocessor is only dependent on the point, that is, the working point specified by the internal working point and the system software. In particular, if the distance between the two working points is larger, :: The combined effect of workload and environment, the microprocessor may not be able to =: shooter = down. On the other hand, the smaller the distance between the two working points, the smaller the thermal protection capability of the thermal protection device in the work of the 1st and the warmer. In addition, if the conversion time is too long, the performance of the microprocessor at small frequencies and voltages will be affected. Because == is a high performance thermal monitoring and protection device. However, it is an object of the present invention to provide a microprocessor that can dynamically change power loss according to its operating temperature. The microprocessor handles a core logic circuit that operates according to a working core clock. The command, a sense of temperature sense, is used to monitor the working wave of the core logic circuit: a clock generation circuit for generating a core clock for providing a logic circuit; and a control circuit connected to the temperature sensor In order to monitor the core logic, the operating temperature of the circuit, and the microprocessor can be stably operated at the first - working point of the -th temperature - each - the first - the operating point has its own corresponding read voltage and read Frequency: The difficult circuit allows the core logic to switch between multiple first operating points.
Clients Docket No.:CNTR2308I00-TW TT s Docket No:0608-A41635-TW/Final /Joanne 11 200837547 本發明的另一目的在於提供一種根據工作溫度的變化 來動悲改變微處理器功率損耗的方法,該方法包括··選擇 一第一溫度值;依據第一溫度值確定多個第一工作點,每 一個工作點都有其各自對應的工作電壓和工作頻率;監測 微處理器運行時的工作溫度;以及控制微處理器於多個第 一工作點間轉換工作,以使被監測的微處理器運行時的工 作溫度能保持在第一溫度值内。 本發明所述的根據工作溫度的變化來動態改變功率損 耗的微處理器及方法,可根據微型電腦的工作溫度變化來 減少功率損耗和提高性能。 為讓本發明之上述和其他目的、特徵、和優點能更明 顯易懂,下文特舉出較佳實施例,並配合所附圖式,作 細說明如下: ϋ 【實施方式】 1. 弟1圖疋本發明電腦系統的模組示意圖。電腦系統1 〇〇 包含了一個連接於微處理器102的穩壓器模組〇 regulator module,VRM) 108。穩壓器模組 108 a§e 入端用以接收來自微處理器1〇2的電壓識別信號’ identifier,VID) 144,一輸出端用以提供電壓鎖定 (Vlock) 156給微處理器1〇2,以及一輸出端 °竣 源電壓輸出信號(Vdd) 142給微處理器102。微處理哭、电 輸出電壓識別信號144以控制穩壓器模組1〇8輪出 電源電壓輸出信號142來作為微處理器102的 、疋的 J电减。當私Clients Docket No.: CNTR2308I00-TW TT s Docket No: 0608-A41635-TW/Final /Joanne 11 200837547 Another object of the present invention is to provide a method for dynamically changing the power loss of a microprocessor according to a change in operating temperature. The method includes: selecting a first temperature value; determining a plurality of first operating points according to the first temperature value, each working point having its corresponding working voltage and operating frequency; monitoring the operating temperature of the microprocessor during operation And controlling the microprocessor to switch between the plurality of first operating points to maintain the operating temperature of the monitored microprocessor during operation within the first temperature value. The microprocessor and method for dynamically changing power loss according to changes in operating temperature according to the present invention can reduce power loss and improve performance according to changes in operating temperature of the microcomputer. The above and other objects, features and advantages of the present invention will become more <RTIgt; A schematic diagram of a module of a computer system of the present invention. The computer system 1 包含 includes a voltage regulator module 〇 regulator module (VRM) 108 connected to the microprocessor 102. The voltage regulator module 108 a§e receives the voltage identification signal 'identifier' (VID) 144 from the microprocessor 1〇2, and an output terminal provides a voltage lock (Vlock) 156 to the microprocessor 1〇. 2, and an output terminal 竣 source voltage output signal (Vdd) 142 to the microprocessor 102. The micro-processing crying and electrical output voltage identification signal 144 controls the voltage regulator module 1 8 to output the power supply voltage output signal 142 as the power reduction of the microprocessor 102. Private
Client’s Docket No.:CNTR2308I00-TW TT,s Docket No:0608-A41635-TW/Final /Joanne 入的電壓識別信號144的幅值改變時,穩壓器模組 為殂丨〇8遂 12 200837547 二步調整電源電壓輸出信號142以達到預期的幅值,此時, 穩壓器模組108輸出一個穩壓器模組的電壓鎖定信號156 以表明電源電壓輸出信號M2的幅值已經穩定。在一個實 施例中,當電壓識別k號144的輪入值改變時,穩壓器模 組108大約需要15微秒才能達到穩定。在另一個實施例 中,電壓識別信號144的幅值每增加一次,穩壓器模組1〇8 將電源電壓輸出信號142的幅值增加16mV。 微處理器102中包含了核心邏輯電路1〇6,溫度感測 器132,電壓及頻率控制電路104,兩個平行工作的鎖相迴 路(PLL) 112A和112B以及選擇器114。電壓及頻率控制 電路104包含了 一個倍頻控制(ci〇ck rati〇 c〇ntr〇i)電路 128,一個電壓識別(voltage identification ; VID)控制電 路126,一個偏壓設定值(bias bit)124以及一個記憶體用來 儲存工作點數據122。電壓識別控制電路126產生電壓識 別信號144給穩壓器模組1〇8,並且從穩壓器模組1〇8中 接收電壓鎖定信號156。偏壓設定值124表明了微處理器 〜 102是否有低功率損耗或者是高性能的選擇。在一個實施 例中,偏壓設定值124是被系統軟體(如系統的m〇s或者 是作業系統)進行編程的。 溫度感測器13 2監測微處理器1 〇2的溫度並且輸出工 作溫度134給電壓及頻率控制電路1〇4。在一個實施例中, 度感測器13 2包含了多個溫度感測器,它們監測微處理 态102不同元件的溫度值,並且提供一個最高工作溫度134 給電壓及頻率控制電路104。在一個實施例中,溫度感測Client's Docket No.: CNTR2308I00-TW TT, s Docket No: 0608-A41635-TW/Final /Joanne When the amplitude of the voltage identification signal 144 changes, the regulator module is 殂丨〇8遂12 200837547 two steps The supply voltage output signal 142 is adjusted to achieve the desired amplitude. At this point, the voltage regulator module 108 outputs a voltage lock signal 156 of the regulator module to indicate that the magnitude of the supply voltage output signal M2 has stabilized. In one embodiment, the regulator module 108 takes approximately 15 microseconds to stabilize when the wheel identification value of the voltage identification k number 144 changes. In another embodiment, the regulator module 1 增加 8 increases the magnitude of the supply voltage output signal 142 by 16 mV for each additional increase in the magnitude of the voltage identification signal 144. The microprocessor 102 includes a core logic circuit 1-6, a temperature sensor 132, a voltage and frequency control circuit 104, two parallel-operated phase-locked loops (PLL) 112A and 112B, and a selector 114. The voltage and frequency control circuit 104 includes a frequency doubling control circuit 128, a voltage identification (VID) control circuit 126, and a bias bias value 124. And a memory for storing the work point data 122. The voltage identification control circuit 126 generates a voltage identification signal 144 to the voltage regulator module 1A8 and receives a voltage lock signal 156 from the voltage regulator module 1A8. The bias setting 124 indicates whether the microprocessors ~ 102 have low power loss or are a high performance option. In one embodiment, the bias setting 124 is programmed by the system software (e.g., m系统s of the system or the operating system). Temperature sensor 13 2 monitors the temperature of microprocessor 1 〇 2 and outputs operating temperature 134 to voltage and frequency control circuit 1 〇 4. In one embodiment, the degree sensor 13 2 includes a plurality of temperature sensors that monitor the temperature values of the different components of the microprocessor state 102 and provide a maximum operating temperature 134 to the voltage and frequency control circuit 104. In one embodiment, temperature sensing
Clients Docket No.:CNTR2308I00-TW TTJs Docket No:0608-A41635-TW/Final /Joanne 13 200837547 器132 -般位於微處理制 位置上。 °。中衣&商所知的工作溫度最高的 鎖相迴路112A彳 舰和咖來作為路112B分別輸出時脈信號 路㈣供鎖相迴路選輸,信號。倍頻控制電 器114的輸入選擇< LL select )118 ’作為選擇 的值,選擇器輪人的鎖相迴路選擇信號118Clients Docket No.: CNTR2308I00-TW TTJs Docket No: 0608-A41635-TW/Final /Joanne 13 200837547 The device 132 is generally located in the micro processing position. °. The lock-up circuit 112A, which has the highest operating temperature, is known as the slewing circuit. The ship and the coffee come as the road 112B to output the clock signal (4) for the phase-locked loop to select the signal. The input of the multiplier control unit 114 selects < LL select ) 118 ' as the selected value, and the selector wheel's phase-locked loop selection signal 118
中的時脈信號152A、t相迴路112A或者鎖相迴路U2B 116〇〇i#iir 士 或者來作為工作核心時脈传_ 116。工作核心時脈作 了胍1 口就 號。鎖相迴路112/和销6疋核心邏輯電路106的時脈信 信請,此匯迴路U2B接收一個匯她 匯流排接收進來的二148/微處理器收從外部 統100產生的號148是由電腦系 驗和1娜邮128減生了 _倍數信號 ° 彳°號分別提供給了鎖相迴路4 鎖相迴路112B。鎖相迪敗…“ 12八和 峰㈣rwn 和鎖相迴路112B分別產 ‘旒152A和152B。時脈信號152八和152b 號148具有倍數關係。此倍數關係的改變過程 Θ斤不。鎖相迴路112AAU2B將各自所接收的户 =46Α和146B來作為係數與匯流排時脈信號148/目 乘田輸入的倍數信號146的值改變時,鎖相迴路山八 和鎖=迴路112B逐漸改變輸出的時脈信號15从和152B 直到能夠達到要求的幅值’此時,鎖相迴路112A或鎖相 迴路⑽輸出-個倍頻控制電路的頻率鎖定信號㈤ 154A或154B ’以表示時脈信號152A或時脈信i咖已 ab.enfs Docket No.:CNTR2308I00-TW TT’s Docket No:〇6〇8-A41635-TW/Final /J0anne 14 200837547 ,: 經被鎖定在了預定的頻率上。根據已知的鎖相迴路的運 行,輸出的時脈信號152A及152B是鎖相迴路112A及112B 的回授信號,以使工作核心時脈信號116與匯流排時脈信 號148的頻率同步。在一個實施例中,當輸入的倍數信號 H6A或U6B改變,鎖相迴路112A或112B大約需要1〇 微秒的時間來鎖存信號。在另一個實施例中,鎖相迴路 112A及Π2Β可以與匯流排時脈信號148的頻率相乘的系 數值範圍是整數2到12。 核心邏輯電路106主要用來提取和執行指令以及資 料。比如,核心邏輯電路106 —般包含了快取記憶體,取 指令和發佈指令的邏輯,結構性的和非結構性的暫存器 檔,分支預測單元,位址生成單元,結果寫回邏輯,匯流 排介面單元,以及一些執行單元,例如算術單元,整數單 元,浮點單元,單指令單元等已知的微處理器結構設計。 在一個實施例中,核心邏輯電路106包含了 Χ86結構的微 處理器。 Λ 1 核心邏輯電路106 一般包含了多個不同的可編程暫存 器,包括可編程暫存器158,系統軟體可對其進行編程以 使微處理器102工作在一個新的工作點,新的工作溫度範 圍或者是其他條件下。工作點是電壓和頻率的數對(pMr) 組合,在此條件下,微處理器102可以穩定工作在一個預 定的溫度下。比如,在一個實施例中,微處理器1〇2在攝 氏100°時,可穩定工作在工作點頻率為10GHz和工作點 %壓為0.75V。對U處理态102不同工作點的資料描述儲The clock signal 152A, the t-phase loop 112A, or the phase-locked loop U2B 116〇〇i#iirs are either used as the working core clock _116. At the core of the work, I made a number. The phase-locked loop 112/ and the pin 6疋 core logic circuit 106 have a clock signal, and the sink circuit U2B receives a second bus 148/microprocessor received from the busbar. The number 148 generated by the external system 100 is determined by The computer system test and 1 Na postal 128 reduction _ multiplier signal ° 彳 ° number is provided to the phase-locked loop 4 phase-locked loop 112B. Phase-locked deficient... "12 eight-peak (four) rwn and phase-locked loop 112B produce '旒152A and 152B respectively. Clock signal 152 eight and 152b number 148 have a multiple relationship. The change of this multiple relationship does not matter. Phase-locked loop 112AAU2B changes the output of each of the received households = 46 Α and 146 B as the coefficient and the value of the multiple signal 146 of the bus line clock signal 148 / 目田田田 input, the phase lock loop mountain and lock = loop 112B gradually change the output The pulse signal 15 is from 152B until the desired amplitude can be reached. At this time, the phase locked loop 112A or the phase locked loop (10) outputs the frequency lock signal (5) 154A or 154B' of the multiplier control circuit to indicate the clock signal 152A or time. Pulse letter i coffee has ab.enfs Docket No.: CNTR2308I00-TW TT's Docket No: 〇6〇8-A41635-TW/Final /J0anne 14 200837547 ,: is locked at the predetermined frequency. According to the known lock The operation of the phase loop, the output clock signals 152A and 152B are feedback signals of the phase locked loops 112A and 112B to synchronize the operating core clock signal 116 with the frequency of the bus clock signal 148. In one embodiment, When input multiple signal H 6A or U6B changes, the phase locked loop 112A or 112B takes approximately 1 microsecond to latch the signal. In another embodiment, the phase locked loops 112A and Π2Β can be multiplied by the frequency of the bus clock signal 148. The range of coefficient values is an integer from 2 to 12. The core logic circuit 106 is mainly used to extract and execute instructions and data. For example, the core logic circuit 106 generally includes a cache memory, a logic for fetching instructions and issuing instructions, and a structural sum. Unstructured scratchpad file, branch prediction unit, address generation unit, result writeback logic, bus interface unit, and some execution units, such as arithmetic unit, integer unit, floating point unit, single instruction unit, etc. Microprocessor architecture design. In one embodiment, core logic circuit 106 includes a microprocessor of the Χ86 architecture. Λ 1 Core logic circuit 106 typically includes a plurality of different programmable registers, including programmable scratchpads. The system software 158 can be programmed to operate the microprocessor 102 at a new operating point, a new operating temperature range, or other conditions. The point of operation is a combination of voltage and frequency pairs (pMr), under which the microprocessor 102 can operate stably at a predetermined temperature. For example, in one embodiment, the microprocessor 1〇2 is at 100 Celsius. ° °, can work stably at the operating point frequency of 10 GHz and the operating point % pressure is 0.75 V. The data description of the different working points of the U processing state 102
Clienfs Docket No.:CNTR2308I00-TW TT^ Docket No:0608-A41635-TW/Final /Joanne 200837547 wt* - 鬌 二存在工作點數據122中,它的用途將在下文中做進一步的 闡述。在另一個實施例中,系統軟體由按照高級配置和電 原笞理;I面(ACPI)規範的3·〇版本定義的p狀態值對可 編耘暫存斋158編程。ACP][規範按照cpu的工作頻率制 了 狀心雖然ACPI的P狀態並沒有指明一個工作電 藍的值但根據ACPI規範,在每一個支援的p狀態下, CP^報告一個微處理器消耗的典型功率損耗值。可編程暫 存器158輸出預先確定的電壓識別信號136和預先確定的 L頻(requested ratio)信號138予電壓及頻率控制電路 04可、、扁私暫存态158也可以將工作溫度範圍作為編程的 依據可編耘暫存器158透過信號162將溫度範圍傳送到 私壓及頻率控制電路1〇4,這將在下文的第9圖和第圖 有更j細的闡述。根據預先碟定的電壓識別信號,預 先確疋的以及溫度範圍信號ία的值,電壓 識別控制電路126和倍頻控制電路128生成了電壓識別信 號144,倍數彳§號146和鎖相迴路選擇信號I”。 ”作2數據122包含有相對每—個卫作溫度下微處理 102可以%定卫作的卫作點設定值(比如電壓和頻率的 數對、、且口)。第13圖疋一個實施例中確定工作資料的流程 圖。在-個實施例中,工作點數據122包含了一個在每一 個工作溫度下所對應的工作點的表格。表格中的每個條目 包含了微處理器可穩^作在預定的電壓識別信號144和 預定的工作溫度下,鎖相迴路112的最大頻率倍數值。在 -個實施例中,此表格包含了穩壓器模組⑽能輸出的所Clienfs Docket No.: CNTR2308I00-TW TT^ Docket No: 0608-A41635-TW/Final /Joanne 200837547 wt* - 鬌 There is work point data 122, its use will be further explained below. In another embodiment, the system software is programmed by the p-state value pair editable temporary cache 158 defined in accordance with the Advanced Configuration and Power Logic; I-side (ACPI) specification. ACP] [Specifications are based on the operating frequency of the CPU. Although the P state of ACPI does not indicate the value of a working blue, but according to the ACPI specification, in each supported p state, CP^ reports the consumption of a microprocessor. Typical power loss value. The programmable register 158 outputs a predetermined voltage identification signal 136 and a predetermined L frequency (requested ratio) signal 138 to the voltage and frequency control circuit 04, and the flat private state 158 can also be used to program the operating temperature range. The basis of the editable register 158 transmits the temperature range to the private voltage and frequency control circuit 1 through the signal 162, which will be explained in more detail in FIG. 9 and FIG. The voltage identification control circuit 126 and the frequency multiplication control circuit 128 generate a voltage identification signal 144, a multiple 彳§ 146, and a phase locked loop selection signal based on the pre-set voltage identification signal, the value of the pre-determined and temperature range signal ία. I". The 2 data 122 contains the setpoint values of the guard points (such as the pair of voltage and frequency, and the port) that can be fixed by the microprocessor 102 at a temperature of each guard. Figure 13 is a flow chart for determining work data in an embodiment. In one embodiment, the work point data 122 contains a table of work points corresponding to each operating temperature. Each entry in the table contains a maximum frequency multiple of the phase locked loop 112 that the microprocessor can steadily operate at a predetermined voltage identification signal 144 and a predetermined operating temperature. In one embodiment, this table contains the output of the voltage regulator module (10).
Client’s Docket No.:CNTR2308I00-TW TT5s Docket No:0608-A41635-TW/Final /Joanne 16 200837547 有電源電壓輸出信號142的幅值以及相對應的工作溫度與 頻率倍數值。在一個實施例中,工作點數據122包含的頻 率倍數只對應到部分可能的電源電壓輸出信號142的幅 值,這時微處理器102透過工作點數據包含的資料來 計异其他可能的電源電壓輸出信號142的幅值的相對應的 頻率倍數值。在另一個實施例中,透過推斷電源電壓輸出 信號142的最大幅值和最小幅值,微處理器1〇2計算出其 他可能的電源電壓輸出信號142的幅值的相對應的頻率倍 數。在另一個實施例中,根據預先儲存在微處理器1〇2中 的多項式,微處理器102計算出其他可能的電源電壓輸出 信號142的幅值的相對應的頻率倍數。 在一個實施例中,製造商在製造過程中,將工作點數 據122儲存在微處理器1〇2中,比方說在微處理器1〇2的 硬體邏輯中。相應地,在微處理器1〇2的製造過程中,比 方说在/則试微處理器1〇2的各元件後,生產微處理器架構 時,或者是透過微處理器運行時的一些系統軟體,工作點 的資吼被編程進微處理器102的可編程的熔絲,可編程的 邏輯,或者非揮發性的記憶體中。 第2圖是本發明將第1圖中的微處理器丨〇2用一種性 月b優化的方法,從現在的p狀態或者是工作點,轉換到一 個新的P狀態或者是工作點的流程圖。 在步驟202中,微處理器102從系統軟體接收一個從 當前P狀態轉換到一個新的p狀態的請求信號。在一個實 施例中,系統軟體用一個改變到新的P狀態的請求信號給Client's Docket No.: CNTR2308I00-TW TT5s Docket No: 0608-A41635-TW/Final /Joanne 16 200837547 There is the magnitude of the supply voltage output signal 142 and the corresponding operating temperature and frequency multiples. In one embodiment, the operating point data 122 includes a frequency multiple that only corresponds to the magnitude of a portion of the possible supply voltage output signals 142, at which time the microprocessor 102 meters other possible supply voltage outputs through the data contained in the operating point data. The corresponding frequency multiple of the magnitude of signal 142. In another embodiment, by inferring the maximum amplitude and minimum amplitude of the supply voltage output signal 142, the microprocessor 1 计算 2 calculates a corresponding frequency multiple of the magnitude of the other possible supply voltage output signals 142. In another embodiment, microprocessor 102 calculates a corresponding frequency multiple of the magnitude of other possible supply voltage output signals 142 based on the polynomials previously stored in microprocessor 1〇2. In one embodiment, the manufacturer stores the work point data 122 in the microprocessor 1 在 2 during manufacture, such as in the hardware logic of the microprocessor 〇2. Correspondingly, in the manufacturing process of the microprocessor 1〇2, for example, after the components of the microprocessor 1〇2 are tested, the microprocessor architecture is produced, or some systems are operated through the microprocessor. The software, the point of operation of the program is programmed into the programmable fuse of the microprocessor 102, programmable logic, or non-volatile memory. Figure 2 is a flow chart of the present invention for converting the microprocessor 丨〇2 in Fig. 1 from a current p state or a working point to a new P state or a working point by a method of optimizing the monthly b. Figure. In step 202, microprocessor 102 receives a request signal from the system software that transitions from the current P state to a new p state. In one embodiment, the system software uses a request signal to change to the new P state.
Client’s Docket No·:CNTR2308I00_TW TT^ Docket No:0608-A41635-TW/Final /Joanne 17 200837547 第1圖中的可編程暫存器158編程。因此,預先確定的電 壓識別信號136和預先確定的核心倍頻信號138被傳送給 第1圖中的電壓及頻率控制電路104。在另一個實施例中, 只有預先確定的核心倍頻信號138被傳送給電壓及頻率控 制電路104,新的電源電壓輸出信號142的值是由工作點 數據122確疋的。在另外的實施例中,電壓及頻率控制電 路104透過工作點的資訊來預先確定溫度,比如最高工作 溫度,以便確定微處理器102可穩定工作在預先確定的核 心倍頻信號138時的最小電源電壓輸出信號的值。 在步驟204 ’第1圖中的電壓及頻率控制電路1〇4判 斷在步驟202中新的P狀態給定的工作頻率是否比現在的 工作頻率高。若否,則流程進入步驟226,若是,則流程 進入步驟206。 在步驟206,電壓識別控制電路126增加電壓識別信 號144的值以使穩壓器模組1〇8開始增加電源電壓輸出信 號142的值。也就是說,電壓識別控制電路126輸出一個 比當前的電壓識別信號144的值高的電壓值。並且,穩壓 器模組108能夠用一種平穩的方法逐漸增加電源電壓輸出 信號的值到一個新的幅值,因此,微處理器1〇2能夠在電 源電壓輸出#號轉換期間正常運行。也就是說,在穩壓器 模組108改變電源電壓輸出信號142的過程中,微處理器 102的運行不需要中斷。流程進入到步驟2〇8。 在步驟208,如果工作電壓電源電壓輪出信號142被 升高到了臨近的比較高的電壓識別信號144,電壓及頻率Client's Docket No: CNTR2308I00_TW TT^ Docket No: 0608-A41635-TW/Final /Joanne 17 200837547 The programmable register 158 in Figure 1 is programmed. Therefore, the predetermined voltage identification signal 136 and the predetermined core multiplying signal 138 are transmitted to the voltage and frequency control circuit 104 in Fig. 1. In another embodiment, only the predetermined core multiplier signal 138 is transmitted to the voltage and frequency control circuit 104, and the value of the new supply voltage output signal 142 is determined by the operating point data 122. In other embodiments, the voltage and frequency control circuit 104 pre-determines the temperature, such as the highest operating temperature, through the information of the operating point to determine the minimum power supply that the microprocessor 102 can stably operate at the predetermined core multiplier signal 138. The value of the voltage output signal. The voltage and frequency control circuit 1〇4 in Fig. 204' Fig. 1 determines whether the operating frequency given by the new P state in step 202 is higher than the current operating frequency. If not, the flow proceeds to step 226, and if so, the flow proceeds to step 206. At step 206, voltage identification control circuit 126 increments the value of voltage identification signal 144 to cause regulator module 1 开始 8 to begin increasing the value of supply voltage output signal 142. That is, the voltage identification control circuit 126 outputs a voltage value higher than the value of the current voltage identification signal 144. Moreover, the voltage regulator module 108 can gradually increase the value of the power supply voltage output signal to a new amplitude in a smooth manner, so that the microprocessor 1 2 can operate normally during the power source voltage output # number conversion. That is, during operation of the regulator module 108 to change the supply voltage output signal 142, the operation of the microprocessor 102 need not be interrupted. The flow proceeds to step 2〇8. At step 208, if the operating voltage supply voltage turn-off signal 142 is raised to an adjacent relatively high voltage identification signal 144, voltage and frequency
Client’s Docket No.:CNTR2308I00-TW TT,s Docket No:0608-A41635-TW/Final /Joanne 18 200837547Client’s Docket No.: CNTR2308I00-TW TT,s Docket No:0608-A41635-TW/Final /Joanne 18 200837547
控制電路104從工作點數據122及相關的工作溫度最高工 作溫度來判斷疋否能夠增加工作核心時脈信號116的頰 率。如果能夠增加工作核心時脈信號116的頻率,流裎進 入步驟216 ’否則,流程進入步驟212。 在步驟2丨2 ’電壓識別控制電路U6等待穩壓器模飯 的電壓鎖定㈣156,此信號表明電源電壓輸出信號已叙 增加到了步驟206中的联值。流程進入到步驟214。二 在步驟214,電壓及頻率控制電路判斷是否已给 了步驟搬中新的?狀態。如果沒有進入,流程返回到牛 驟206中以繼續增加電壓電源電壓輸出信號142,如果二 要的話,還將增加工作核心時脈信號叫,直到能夠進: 步驟202中新的P狀能;否刖、六如彳此幻運入 外 ^狀心,否則,流程返回到步驟202,等The control circuit 104 determines from the operating point data 122 and the associated operating temperature maximum operating temperature whether the buoyancy of the working core clock signal 116 can be increased. If the frequency of the working core clock signal 116 can be increased, the flow proceeds to step 216' otherwise, the flow proceeds to step 212. At step 2 丨 2 ' voltage identification control circuit U6 waits for the voltage lock of the regulator die (4) 156, which indicates that the supply voltage output signal has been added to the value in step 206. The flow proceeds to step 214. 2. At step 214, the voltage and frequency control circuit determines if the step has been given a new one. status. If not, the flow returns to the bobbin 206 to continue to increase the voltage supply voltage output signal 142, and if so, the working core clock signal will be added until it can proceed: the new P-like energy in step 202;刖, 六如彳 幻 运 入 , , , , , otherwise, the process returns to step 202, etc.
待下一個P狀悲轉換請求。 寺 及146B給尚未運行的鎖相迴路^數㈣146A 相迴路112A及112B鎖存下1 ,⑽動鎖 古位鉍伯a ,個匯肌排4脈信號148的最 4數值’而不疋根據當前的卫作核心日 = 前的工作核心時脈信號116是透過即將二:6’虽 出信號™定的,此電_二::=: 與步驟206輸出的電壓識別信號144相對應〜的,應 ;未運行的鎖相迴路112A及咖的新頻;件數二 刖運行中的鎖相迴路112a&112b的頻 虎比虽 級。然而’如果卫作點曲線的斜率很大大二, 當前倍數的大兩等級甚錢多#級 /數可能是Wait for the next P-shaped sad conversion request. Temple and 146B give the phase-locked loops that have not been operated yet. (4) 146A phase loops 112A and 112B are latched under 1, (10) the ancient position of the dynamic lock is ab, and the maximum value of the four-pulse signal 148 of the episode muscles is not based on the current The core of the work core = the previous work core clock signal 116 is determined by the forthcoming two: 6' signal, which corresponds to the voltage identification signal 144 outputted in step 206, Should not; the operating phase of the phase-locked loop 112A and the new frequency of the coffee; the number of the phase-locked loops 112a & 112b in the second operation is the same. However, if the slope of the curve of the Weigong point is very large and large, the current two-level multiple is more than two levels.
Clienfs Docket No.:CNTR2308I00-TW TT^ Docket No:0608-A41635-TW/Final /JoaClienfs Docket No.: CNTR2308I00-TW TT^ Docket No:0608-A41635-TW/Final /Joa
果鎖相迴路112APhase-locked loop 112A
Clienfs Docket Nn 19 200837547 信號咖被選擇器114選為卫作核心時脈π =’那麼鎖相迴路112Α處於運行狀態,鎖相迴路二 摆”L或者鎖相迴路⑽的輸出時脈信號152Β被選 =f為工作核心時脈信號116,那麼鎖相迴路it 處於運讀態,鎖相迴路n2A並未運行 進入到步驟218。 & >;,L^ 在步驟218’電壓識別控制電路126等壓 的電壓鎖定錢156,此信號表明電源電壓輸出信 已經增加㈣了預定的幅值。流程進入到步驟222虎142 在步驟222,等待鎖相迴路U2A及U2 定信號Μ及⑽。這表示時脈信號152Α及^員= 被鎖定在新的頻率要求上。隸進人到㈣224。、、二 在ν驟224 ’倍數號146切換鎖 i 未運Β來作為工作核心時脈信號116 ’這使原來 ^運灯的鎖相迴路mA或112Β進人運行狀態而原來運= +的鎖相迴路H2B或112Α進入未運行狀態。當鎖相迴路 的倍頻改變時’鎖相迴路112Α及⑽的輸出信號不能被 使用,直到鎖相迴路被鎖存在一個新的頻率下。更進一 + 說,由於微處理器撤包含兩個鎖相迴路即鎖相迴路二: 和鎖相迴路U2B,因此它們可以交替運行在卫作狀能和未 工作狀態,讀核^時脈信號116能夠有效地快速進行改 變,在本文以及美國專利申請i 0/8 i 6〇〇4 (CNTR 22丨6),申 凊曰為4/1/2004卷中都有闡述。在一個實施例中,工作核Clienfs Docket Nn 19 200837547 The signal coffee is selected by the selector 114 as the core clock π = ' then the phase locked loop 112 Α is in the running state, the phase locked loop two swings L or the output clock signal 152 锁 of the phase locked loop (10) is selected =f is the working core clock signal 116, then the phase locked loop it is in the operational state, the phase locked loop n2A is not running to step 218. &>;, L^ In step 218' voltage identification control circuit 126, etc. The voltage of the voltage locks the money 156. This signal indicates that the power supply voltage output signal has been increased (4) by a predetermined amplitude. The flow proceeds to step 222. The tiger 142 waits for the phase-locked loops U2A and U2 to signal and (10). The pulse signal 152Α and ^ member = are locked in the new frequency requirement. The person is in (4) 224., and the second is in the 224 224 'multiplier 146 switch lock i is not shipped as the working core clock signal 116 'this makes The phase-locked loop mA or 112 of the original traffic light has entered the human running state and the phase-locked loop H2B or 112Α of the original transmission = + has entered the non-operating state. When the frequency multiplication of the phase-locked loop changes, the output of the phase-locked loop 112Α and (10) Signal cannot be used, straight The phase-locked loop is latched at a new frequency. Further into the +, said that because the microprocessor is removed from the two phase-locked loops, that is, the phase-locked loop two: and the phase-locked loop U2B, they can alternately operate in the Guardian And the inactive state, the read core clock signal 116 can be effectively and quickly changed, as described herein and in U.S. Patent Application No. 0/8 i 6〇〇4 (CNTR 22丨6), application 4/1/2004 Illustrated in the volume. In one embodiment, the working core
Clienfs Docket No.:CNTR2308I00-TW TT5s Docket No:0608-A41635-TW/Final /Joanne 20 200837547 的^因广116在處理器匯流排轉換期間是不發生變化 電路128奋在^換鎖相迴路選擇信號118 Μ前,倍頻控制 : ㈢做個辅助的監測並等待匯流排轉換階段的完 206 ^ 224 ^ ,月匕°巾運订就是因為電壓識別信號144的增加量非常 Μ ^二有16mV的增加。但是,在其他實施例中,電 ^識虎144的預計增加量可能會相當大,在此情況 彳返回到216和218以便在啟動未運行的鎖相迴路 或112Β並將其鎖定在一個較高倍數以前,穩壓器模 組1〇8能夠錢定運行。錢流程進人到步驟214。、 、在步驟226,電壓及頻率控制電路1〇4判斷是否已經 進入ν驟202中的ρ狀態,如果已經進人了 ρ狀態,流程 進:到步驟202以等待下一個"大態請求信號的到來;如 果/又有進入,流程進入到步驟228。Clienfs Docket No.: CNTR2308I00-TW TT5s Docket No: 0608-A41635-TW/Final /Joanne 20 200837547 The ^ 广 116 is not changing during the processor bus conversion circuit 128 is in the ^ phase-locked loop selection signal 118 Μ, the frequency multiplication control: (3) to do an auxiliary monitoring and wait for the end of the bus conversion phase of 206 ^ 224 ^, the monthly 匕 ° towel shipment is because the increase of the voltage identification signal 144 is very Μ ^ two has an increase of 16mV . However, in other embodiments, the expected increase in the electric tiger 144 may be quite large, in which case 彳 return to 216 and 218 to activate the non-operating phase-locked loop or 112 Β and lock it at a higher Prior to multiples, the regulator module 1〇8 was able to run. The money flow proceeds to step 214. At step 226, the voltage and frequency control circuit 1-4 determines whether the ρ state has been entered in step 202. If the ρ state has been entered, the flow proceeds to step 202 to wait for the next "large state request signal. The arrival of the flow; if there is an entry, the flow proceeds to step 228.
在步驟228,當電源電壓輸出信號142將要降低到最 低的電壓識別>[sf虎144時,電壓及頻率控制電路1〇4由工 作點數據122以及最高工作溫度來判斷工作核心時脈信號 116的頻率是否需要降低。如果不需要降低頻率,流程進 入到步驟238,否則,流程進入到步驟232。 在步驟232,倍頻控制電路128輸出一個新的倍數信 號146給未運行的鎖相迴路n2A或112B以啟動未運行的 鎖相迴路112A或112B並鎖存在下一個匯流排時脈信號 M8的最低倍數值上,而不是鎖存在當前的核心時脈信號 116的頻率上,這是由即將更新的電源電壓輸出信號142At step 228, when the supply voltage output signal 142 is to be reduced to the lowest voltage identification > [sf tiger 144, the voltage and frequency control circuit 110 determines the working core clock signal 116 from the operating point data 122 and the highest operating temperature. Whether the frequency needs to be reduced. If there is no need to reduce the frequency, the flow proceeds to step 238, otherwise, the flow proceeds to step 232. At step 232, the frequency multiplying control circuit 128 outputs a new multiple signal 146 to the non-operating phase-locked loop n2A or 112B to activate the non-operating phase-locked loop 112A or 112B and to latch the lowest of the next bus clock signal M8. In multiples, instead of being latched at the frequency of the current core clock signal 116, this is due to the upcoming supply voltage output signal 142.
Client’s Docket No.:CNTR2308I00-TW TT5s Docket No:0608-A41635-TW/Final /Joanne 21 200837547 所要求的,電源電壓輸出信號142與步驟238輪出3 識別信號144的值相對應。—般說來,未運行曰电壓 或112B的倍數信號咐A或漏的新幅值比告$ 行的鎖相迴路112Β或112A的倍數信號的幅值小—^運 然而’如果工作點曲線的斜率很大,新的倍數幅 當前幅值小兩等級甚至更多。流程進入到步驟234。犯 —在步驟234 ’等待鎖相迴路112人及U2B輪出頻率 疋佗唬154A及154B。這表示時脈信號152人及152b麫 j定在新的頻率要求上。在—個實施例中,在步驟20^ 中等待接收-個向新p狀態改變的請求信號時,未運行的 鎖相=112A或112B被預鎖存在了下—個倍數最低值 上e、k疋一種優化,因為當轉換到一個更高的p狀態時, ,壓=率控制電路刚必須等待—個很長的時間,以使 穂壓器模组108完成增加電源電壓輸出信號142幅值的轉 換’這個轉換時間比將未運行的鎖相迴路mA及112B鎖 存在下一個最高倍數的時間要長;然而,當轉換到一個較 低的p狀%時’電壓及頻率控制電路104能夠立刻降低倍 數’而不用等待穩壓器模組⑽完成降低電源電壓輸出信 號142幅值的轉換。流程進入到步驟236。 在步驟236,倍數信號146切換鎖相迴路選擇信號 ^8,以選擇未運行的鎖相迴路112A或112B輸出時脈信 號152A或152B來作為工作核心時脈信號116,這使原來 未運行的鎖相迴路112A或112B進入運行狀態而原來運行 中的鎖相迴路112B或U2a進人未運行狀態。流程進入到 ^ D°Ck=N°°6〇SSS /JC 22 200837547 步驟238。 在步驟238,電壓識別抑 號144的值以使穩壓器模組工兒路126減少電壓識別信 號142的值。也就是說 8開始降低電源電壓輸出信 新的電壓識別信號144的值1識別控制電路126輸出一個 值比現在的幅值少一等級。、’,此新的電壓識別信號144的 -種平穩的方法降低電源電=穩壓器模組108能夠用 微處理器102能夠在電源雷二仏號142的值,因此, 作。流程進人到步驟242。Μ出的幅值轉換期間正常工 在步驟242,電壓識別# 108的電壓鎖定信號156,:二路126等待穩壓器模組 142已經增加到了預定的幅值、,表明私源電壓輸出信號 參照第3圖,這是。圖。;到步驟226。 圖中的實施例進行Ρ狀態轉理器搬根據第2 數是以微秒為單位的時間量以、以、11。圖巾橫軸的引 電源電壓輸出信號142。時間的特為單位的工作電壓 它與電麈識別信號144增加電源,375 同-座標轴表示,對應的電源H出W 142的量用 0.7V到❿每-次電厂_,;7^輸出信號W範圍是 圖中縱轴的引數是以GHz為單;^ 44的增加量是16mV° 干的工作核心時脈作垆U6 的頻率。如第3圖所示,匯流排時脈頻率*2^ 流排時脈倍數的範圍是從2倍至10倍,這使得對應的核心 時脈頻率範圍是從400MHz到2GHz。第3圖是依據第2 圖的流程所示的從最低的400MHz ( 2倍),相應的電源電Client's Docket No.: CNTR2308I00-TW TT5s Docket No: 0608-A41635-TW/Final /Joanne 21 200837547 The supply voltage output signal 142 corresponds to the value of the step 238 rounding 3 identification signal 144. In general, the 幅 voltage or the multiple signal of 112B 咐A or the new amplitude of the leakage is smaller than the amplitude of the multiple signal of the phase-locked loop 112Β or 112A of the line--but if the operating point curve The slope is large, and the new multiple is currently two orders of magnitude smaller or more. The flow proceeds to step 234. Off - At step 234', wait for the phase-locked loop 112 and U2B to rotate the frequencies 疋佗唬 154A and 154B. This means that the clock signal 152 and 152b麫 are set at the new frequency requirement. In an embodiment, when waiting for a request signal to change to a new p state in step 20^, the non-operating phase lock=112A or 112B is pre-latched to the next lowest value e, k An optimization, because when switching to a higher p state, the voltage=rate control circuit has to wait for a long time to allow the voltage regulator module 108 to increase the magnitude of the supply voltage output signal 142. The conversion 'this conversion time is longer than the time when the non-operating phase-locked loops mA and 112B are latched at the next highest multiple; however, the voltage and frequency control circuit 104 can be immediately reduced when switching to a lower p-like % The multiple 'does not wait for the regulator module (10) to complete the conversion of the magnitude of the supply voltage output signal 142. The flow proceeds to step 236. At step 236, the multiple signal 146 switches the phase locked loop select signal ^8 to select the non-operating phase locked loop 112A or 112B to output the clock signal 152A or 152B as the working core clock signal 116, which causes the lock that was not originally operated. The phase loop 112A or 112B enters an operating state and the originally operating phase-locked loop 112B or U2a enters an inoperative state. The flow proceeds to ^ D°Ck=N°°6〇SSS /JC 22 200837547 Step 238. At step 238, the value of voltage identification 144 is such that regulator mode worker path 126 reduces the value of voltage identification signal 142. That is, 8 begins to lower the supply voltage output signal. The value 1 of the new voltage identification signal 144 identifies that the control circuit 126 outputs a value that is one level less than the current amplitude. , 'This new voltage identification signal 144' is a smooth method to reduce the power supply = the voltage regulator module 108 can be used by the microprocessor 102 to be at the value of the power supply Lei 仏 142, therefore,. The flow proceeds to step 242. During the amplitude conversion period of the output, in step 242, the voltage lock signal 156 of the voltage identification #108, the two channels 126 wait for the voltage regulator module 142 to increase to a predetermined amplitude, indicating that the private source voltage output signal is referenced. Figure 3, this is. Figure. ; to step 226. In the embodiment shown in the figure, the state of the 转 state shifter is based on the second number in the order of microseconds. The lead voltage output signal 142 of the horizontal axis of the towel. The time is the unit of the working voltage. It increases the power with the electric 麈 identification signal 144. The 375 co-coordinate axis indicates that the corresponding power supply H out W 142 is measured by 0.7V to ❿ per-power plant _,; The signal W range is that the argument of the vertical axis in the figure is GHz; the increase of ^ 44 is 16mV ° The frequency of the working core clock is 垆U6. As shown in Figure 3, the bus clock frequency *2^ stream pulse multiplier ranges from 2x to 10x, which makes the corresponding core clock frequency range from 400MHz to 2GHz. Figure 3 shows the corresponding power supply from the lowest 400MHz (2 times) according to the flow shown in Figure 2.
Client’s Docket No.:CNTR2308I00-TW TT’s Docket No:0608-A41635-TW/Final /Joanne 200837547 壓輸出信號142為0·7ν時的P狀態 倍),相應的電源電壓輸出信號142為Γ、細心0 的轉換圖。在整個的375微秒狀態轉 :、Ρ狀悲32 ^生肥疋在讀_換期間内核心時脈的個數 第3圖中從最低p狀態31到最高P狀能3 Y疋 方聆的而社〆乂 心32的曲線下的長 ==長方形是工作核心時脈信號116的頻率 二= ’ _電_壓輸出信號m幅值的 知加和工作如時脈信號116㈣率增加,這些長方形面 積亦,加。第3圖的實施例是根據第2圖的流程圖進 仃狀悲轉換,狀態轉換期間的微處理器性能大約是娜,_ 個核心時脈週期。 ’ 另外,在全部約375微秒内,從最低p狀態3丨至最高 P狀態32的P狀態轉換需要25次電壓識別信號的改變, 其中每次電壓識別信號的改變量是16mV,並需要大約15 微秒的時間。 ' 第3圖所做的是從一個P狀態到一個更高的p狀態的 轉變,它根據第2圖的流程以優化狀態轉換期間的性能。 如第2圖所示,此流程也可以被用作是從一個p狀態到一 個更低的P狀態的轉變,以優化狀態轉換期間的性能。然 而,在實際情況中,是當轉換到一個更低的p狀態時,運 行將被優化以降低功率損耗’也就是’當電壓值被轉換到 指定的幅值時,立刻轉換到較低的P狀態以降低工作頻率 並保持在較低P狀態的工作頻率下。 參照弟4圖’這是微處理器在傳統方法下進行p狀熊Client's Docket No.: CNTR2308I00-TW TT's Docket No: 0608-A41635-TW/Final /Joanne 200837547 The voltage output signal 142 is P state multiplier when 0·7ν), and the corresponding power supply voltage output signal 142 is Γ, careful 0 Conversion chart. In the whole 375 microsecond state turn:, Ρ 悲 32 32 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ The length under the curve of the social heart 32 == rectangle is the frequency of the working core clock signal 116 = ' _ electric _ pressure output signal m amplitude of the sum and work such as the clock signal 116 (four) rate increase, these rectangular area Also, plus. The embodiment of Fig. 3 is based on the flow chart of Fig. 2, and the performance of the microprocessor during state transition is approximately _ core clock cycles. In addition, in all about 375 microseconds, the P state transition from the lowest p state 3 丨 to the highest P state 32 requires 25 changes in the voltage identification signal, wherein the amount of change of the voltage identification signal is 16 mV each time, and requires approximately 15 microseconds. What Figure 3 does is a transition from a P state to a higher p state, which is optimized according to the flow of Figure 2 to optimize performance during state transitions. As shown in Figure 2, this flow can also be used as a transition from a p-state to a lower P-state to optimize performance during state transitions. However, in the real world, when switching to a lower p state, the operation will be optimized to reduce the power loss 'that is,' when the voltage value is converted to the specified amplitude, immediately switch to the lower P. The state is to lower the operating frequency and maintain the operating frequency at the lower P state. Referring to the brother 4 map 'This is the microprocessor to carry out the p-bear under the traditional method
Client’s Docket No.:CNTR2308I00_TW TT’s Docket No:0608-A41635_TW/Final /Joanne 24 200837547 轉換時的圖像。第 壓逐漸升高到最ί p =與第3圖大體相同’但是在供給電 作在40_Hz頻率態時的H以前’微處理器-直工 脈頻率直接上升到:,倍)下,直到達到L1V時,核心時 示的實例,性能大約〇〇GHZ (1〇倍)。因此’如第4圖所 從第3圖和第、4有15〇,〇〇()個核心時脈週期。 p狀態所需的時間可圖J知’從當前的P狀態到另外-個 量級。第1圖中的料:"*相當的長,—般在幾百個微秒的數 其優點是依據雙;1 處理器102根據第2圖中的流程運行, 狀態轉換時,不=Γ112Α及112B的設計,在進行? 工作核心時脈信號核心邏輯電路電路106的 瞬間轉換變的可^。也2工作核心時脈信號116的 能夠完成工作點倍乘的HM 106執行程式指令。 :=邏輯電路 微處理器來說’它必須至少在單鎖:不同’對傳統的 率期間停止運行,例如 n = 112鎖存新的頻 透過比較第3圖和第是10微秒。另外, 口?弟4圖可知,微處理器102中的枋、、 輯電路雇依照第2圖中的流程運行時 轉= ::’它比傳統的方法可獲得3倍的執行指令的= 數,這可能是幾百微秒。這兩種性能優化是相當大的,= 別是在溫度變化比較大的環境m ^ 轉換比較頻繁。 μ p狀悲 由第2圖中,從步驟施到步驟224或者是從步驟 到步驟242 #流程中可以看出,隨著電堡識別信號144的Client’s Docket No.: CNTR2308I00_TW TT’s Docket No: 0608-A41635_TW/Final /Joanne 24 200837547 Image at the time of conversion. The first pressure gradually rises to the highest ί p = is substantially the same as in Figure 3, but before the supply of electricity in the 40_Hz frequency state, the 'microprocessor-straight pulse frequency rises directly to:, times) until it reaches At L1V, the core example shows performance of approximately 〇〇GHZ (1〇). Therefore, as shown in Fig. 4, from Fig. 3 and Fig. 4, there are 15〇, 〇〇() core clock cycles. The time required for the p state can be seen from the current P state to another - magnitude. The material in Figure 1: "* is quite long, generally in the hundreds of microseconds, the advantage is based on double; 1 processor 102 runs according to the flow in Figure 2, when the state transitions, not = Γ 112Α And the design of 112B is in progress? The instantaneous conversion of the core clock circuit 106 of the working core clock signal can be changed. Also, the HM 106 execution program instruction of the working core clock signal 116 capable of completing the multiplication of the operating point. := Logic The microprocessor says that it must stop at least during a single lock: different 'for the traditional rate, for example n = 112 to latch the new frequency by comparing Figure 3 with the 10th microsecond. In addition, mouth? As shown in Figure 4, the circuit in the microprocessor 102 is operated according to the flow in Figure 2 =: 'It is 3 times more than the conventional method to obtain the number of execution instructions, which may be A few hundred microseconds. These two performance optimizations are quite large, = not in the environment where the temperature changes are relatively large, the m ^ conversion is more frequent. μ p-like sorrow is shown in Figure 2, from step to step 224 or from step to step 242 #flow, as the electric castle identification signal 144
Client’s Docket No.:CNTR2308I00-TW TT5s Docket No:0608-A41635-TW/Final /Joanne 25 200837547 _ Λ m r' 增加或者減少,電壓及頻率控制電路104可能不會進行相 應的么數的增加或者減少,而反之亦然。這取決於電壓識 別信號144的每次的改變量,比如16mV,取決於倍數變 化時的頻率改變量,比如2〇〇mHz,取決於儲存在工作點 數據122中的有效工作點數值或者是從工作點數據122中 計算得到的有效工作點數值。因此,比如假設在轉換到一 個更南的P狀態期間,微處理器102當前工作在1.2GHz (6倍)和〇·9ν。電壓及頻率控制電路104將運行步驟206 : 以增加電源電壓輸出信號142到0.916V。如果工作點數據 122表明在〇·9ΐ6ν時,微處理器1〇2能穩定工作在i 2GHz (6倍),但不能穩定工作在1.4GHz (7倍),那麼電壓及 頻率控制電路104放棄運行步驟216到步驟224並且繼續 工作在1.2GHz直到電源電壓輸出信號達到一個工作點數 據表月可以%定工作在1.4gHz時的新幅值,此時,電壓 及頻率控制電路104反覆運行步驟216到步驟224。在第3 圖所示的實例中,電壓及頻率控制電路1〇4發生了 25次電 -壓識別信號⑷的改變和8次工作核心時脈信號116倍數 的改變,因此,大約每3次電壓識字信號144的改變後, 電C及頻率控制電路1〇4進行!次工作核心時脈信號 倍數的改變。 如第3圖所示的實例中,假定了一條單一的最高工作 溫度的曲線。然而,第2圖中的步驟將被第5圖的實例所 用,以實現一個包含了多個工作溫度時的工作點的轉換。 參照弟5圖,這是當微處理器1〇2的工作溫度低於某Client's Docket No.: CNTR2308I00-TW TT5s Docket No: 0608-A41635-TW/Final /Joanne 25 200837547 _ Λ mr' Increase or decrease, the voltage and frequency control circuit 104 may not increase or decrease the corresponding number, And vice versa. This depends on the amount of change of the voltage identification signal 144 each time, such as 16 mV, depending on the amount of frequency change when the multiple changes, such as 2 〇〇 mHz, depending on the value of the effective operating point stored in the operating point data 122 or from The effective working point value calculated in the work point data 122. Thus, for example, assume that during a transition to a more south P state, the microprocessor 102 currently operates at 1.2 GHz (6 times) and 〇·9 ν. The voltage and frequency control circuit 104 will operate step 206: to increase the supply voltage output signal 142 to 0.916V. If the operating point data 122 indicates that the microprocessor 1〇2 is stable at i 2 GHz (6 times) at 〇·9ΐ6ν, but cannot operate stably at 1.4 GHz (7 times), the voltage and frequency control circuit 104 abandons operation. Step 216 to step 224 and continue to operate at 1.2 GHz until the power supply voltage output signal reaches a working point. The data table can be set to operate at a new amplitude of 1.4 gHz. At this time, the voltage and frequency control circuit 104 repeatedly operates step 216 to Step 224. In the example shown in Fig. 3, the voltage and frequency control circuit 1〇4 has changed 25 times of the electro-voltage identification signal (4) and the 8 times of the working core clock signal 116, and therefore, about every 3 times of voltage After the change of the literacy signal 144, the electric C and the frequency control circuit 1〇4 are performed! Sub-work core clock signal multiples change. As in the example shown in Figure 3, a single curve of the highest operating temperature is assumed. However, the steps in Figure 2 will be used by the example of Figure 5 to achieve a conversion of the operating point when multiple operating temperatures are involved. Referring to the brother 5, this is when the operating temperature of the microprocessor 1〇2 is lower than a certain
Client’s Docket No.:CNTR2308I00-TW TT,s Docket No:0608-A41635-TW/Final /Joanne 26 200837547 一溫度幅值,根據本發明,為了節省功率損耗,第1圖中 的微處理器102減少工作電壓時的流程圖。流程開始於步 驟 502。 在步驟502,微處理器1〇2的製造商選擇一個最高工 作溫度(Tmax),使用者將微處理器1〇2工作在此溫度下, 並將最南工作溫度的值儲存在工作點數據122中。最高工 作溫度是由裝置的技術規格,客戶的要求,由電腦製造商 提供的製冷系統以及其他一些因素決定的。在一個實施例 中,選擇的最高工作溫度是攝氏1〇〇。,雖然其他的值可 能也可以被選擇。在另一個實施例中,製造商根據市場的 需求選擇最高工作溫度。而有時,製造商為了保證用戶可 以穩定運行微處理器102而選擇最高工作溫度,在此溫度 下’微處理器終生可以穩定運行。在另外的實例中,製造 商提供一個10年的保證’雖然其他的值也可以被選擇。在 另一個實施例中,製造商根據微處理器的加速壽命測試法 來確定最高工作溫度。在一個實例中,最高工作溫度的值 I 被編程進了微處理器102的可編程溶絲(programmable fuse) 中。流程進入到步驟504。 在步驟504中,微處理器1〇2的製造商為微處理器1〇2 至少選擇一個可替換的工作溫度(Talt),它比最高工作溫 度的值要低,並且要將可替換工作溫度包含進工作點數據 122中。在一個實施例中,微處理器1〇2的生產製造商可 能會選擇多個可替換工作溫度的值以便確定在步驟506中 以及第14和15圖中所涉及到的工作點的資訊。在另一個Client's Docket No.: CNTR2308I00-TW TT, s Docket No: 0608-A41635-TW/Final /Joanne 26 200837547 A temperature amplitude, according to the present invention, in order to save power loss, the microprocessor 102 in Figure 1 reduces the work Flow chart at voltage. The flow begins in step 502. At step 502, the manufacturer of microprocessor 1 选择 2 selects a maximum operating temperature (Tmax), the user operates microprocessor 1 〇 2 at this temperature, and stores the value of the southernmost operating temperature at the operating point data. 122. The maximum operating temperature is determined by the technical specifications of the unit, the customer's requirements, the refrigeration system provided by the computer manufacturer, and other factors. In one embodiment, the selected maximum operating temperature is 1 Torr. , although other values may be selected. In another embodiment, the manufacturer selects the highest operating temperature based on market demand. In some cases, the manufacturer selects the maximum operating temperature in order to ensure that the user can operate the microprocessor 102 stably, at which temperature the microprocessor can operate stably for a lifetime. In another example, the manufacturer provides a 10-year warranty' although other values may be selected. In another embodiment, the manufacturer determines the maximum operating temperature based on the accelerated life test of the microprocessor. In one example, the value I of the highest operating temperature is programmed into the programmable fuse of the microprocessor 102. The flow proceeds to step 504. In step 504, the manufacturer of microprocessor 1〇2 selects at least one replaceable operating temperature (Talt) for microprocessor 1〇2, which is lower than the maximum operating temperature and has a replaceable operating temperature. Included in the work point data 122. In one embodiment, the manufacturer of microprocessor 1 2 may select a plurality of values for the alternate operating temperature to determine the information of the operating points involved in step 506 and in Figures 14 and 15. In another
Client’s Docket No.:CNTR2308I00-TW TT’s Docket No:0608-A41635-TW/Final /Joanne 27 200837547 -_ 只加例中’微處理器102可能工作在一個内定的可替換工 作溫度下’此時,系統軟體將透過程式替換另一個最高工 作溫度的值到電壓及頻率控制電路1〇4所使用的暫存器 中。在另外的實施例中,内定的可替換工作溫度的值被編 程進了微處理器102的可編程熔絲中。流程進入步驟5〇6。 在步驟506,微處理器1〇2的製造商為每一個最高工 作溫度和可替換工作溫度確定其工作點資訊。(例如,每一 工作頻率的電壓值表,或至少兩個頻率的電壓值,其中可 f 從這兩個頻率的電壓值計算出其他頻率中間電壓值。)在 一個實施例中,最高工作溫度和可替換工作溫度的工作點 資§fL疋由第13圖流程所決定的。流程進入到步驟jog。 在步驟508,當微處理器102工作在一個預定的工作 頻率時,微處理器102的工作溫度將被監測。也就是說, 溫度感測器132監測當前的工作溫度134並將此溫度傳送 給第1圖中的電壓及頻率控制電路104。在一 駭的工作解是,岐值,它只是_贿處==02 、能夠工作的頻率。在另-個實施例中,系統軟體使微處理 器工作在一個指定的工作頻率下’比如,系統軟體可能是 系統的BIOS或者是作業系統。在另外的實施例中,系統 軟體透過將性能狀態〇>狀態)的值編程進微處理器^犯 中來使微處理為工作在一個指定的工作頻率下。在另一個 貫加例中’ P狀悲的值遵寸向級配置和電源管理介面 (ACPI)規範,比方說ACPI的3·〇規範。流程進入到步 驟 512。Client's Docket No.: CNTR2308I00-TW TT's Docket No: 0608-A41635-TW/Final /Joanne 27 200837547 -_ Only in the case of 'Microprocessor 102 may work at a default replacement operating temperature' at this time, the system The software will replace the value of the other highest operating temperature with the program into the register used by the voltage and frequency control circuit 1〇4. In other embodiments, the value of the default alternate operating temperature is programmed into the programmable fuse of microprocessor 102. The flow proceeds to step 5〇6. At step 506, the manufacturer of microprocessor 1 确定 2 determines its operating point information for each of the highest operating temperature and the alternate operating temperature. (eg, a voltage value table for each operating frequency, or a voltage value of at least two frequencies, wherein f can calculate other intermediate frequency voltage values from the voltage values of the two frequencies.) In one embodiment, the highest operating temperature The working point of the replaceable working temperature §fL疋 is determined by the process of Figure 13. The process goes to step jog. At step 508, when microprocessor 102 is operating at a predetermined operating frequency, the operating temperature of microprocessor 102 will be monitored. That is, temperature sensor 132 monitors current operating temperature 134 and communicates this temperature to voltage and frequency control circuit 104 in FIG. The solution to the work in the first place is devaluation, which is just the frequency of _ bribe = =0, able to work. In another embodiment, the system software causes the microprocessor to operate at a specified operating frequency. For example, the system software may be the system's BIOS or operating system. In a further embodiment, the system software programs the microprocessor to operate at a specified operating frequency by programming the value of the performance state > state. In another example, the value of 'P-sorrow' is compliant with the configuration and power management interface (ACPI) specifications, such as ACPI's 3. The flow proceeds to step 512.
Client’s Docket No.:CNTR2308I00-TW TT^s Docket No:0608-A41635-TW/Final /Joanne 28 200837547 乂 衫驟512 ’電壓及頻率控制電路H)4判斷當前溫度 是否比可替換m㈣㈣低。由於各制因,當前溫 度可能會比可替換工作溫度的幅值低,比如,由於執行程 式而導致㈣處㈣工作量減少’或者是運行環境的改 變,例如,機房空調開啟或者拿走了微處理器102附近阻 礙空氣流通的障礙物。更進-步說,如第5圖所示,電壓 及頻率控制電路104透過減少電源電壓輸出信號142來減 少工作溫度m’以便減少微處理器的功率損耗。另外, ,由於微處理1 1〇2工作在較低電壓下時,消耗的功率比較 小,它的工作溫度m便能夠-直低於可替換工作溫度的 值’因此’更有利於長時間的工作在較低溫度下以節省功 率損耗。如果當前的工作溫度m不低於可替換工作溫度 的值,流程進入到步驟522,否則,流程進入到步驟514。 在步驟514,電壓及頻率控制電路1〇4透過微處理器 102工作在當前頻率和可替換工作溫度時的工作點資訊來 確定轉換電壓的值。電壓及頻率控制電路104可能從一個 v 表中查詢電壓值或者是透過儲存在工作點資訊122中的工 作點數據來確定電壓值。流程進入到步驟516。 在步驟516,電壓及頻率控制電路1〇4判斷微處理器 102當如是否工作在步驟514中確定的工作電壓下。如果 是,流程返回到步驟508,否則,流程進入到步驟518。 在步驟518,電壓及頻率控制電路1〇4減少工作電壓 到步驟514中確定的電壓幅值,也就是輸出合適的電壓識 別信號144的值給第1圖中的穩壓器模組1〇8,這相應地Client's Docket No.: CNTR2308I00-TW TT^s Docket No: 0608-A41635-TW/Final /Joanne 28 200837547 乂 骤 512 ’ Voltage and frequency control circuit H) 4 determines whether the current temperature is lower than the replaceable m (four) (four). Due to various factors, the current temperature may be lower than the magnitude of the replaceable operating temperature. For example, due to the execution of the program, (4) (4) the workload is reduced 'or the operating environment changes, for example, the computer room air conditioner is turned on or taken away. An obstacle that blocks air circulation near the processor 102. Further, as shown in Fig. 5, the voltage and frequency control circuit 104 reduces the operating temperature m' by reducing the supply voltage output signal 142 to reduce the power loss of the microprocessor. In addition, since the micro-processing 1 1 〇 2 operates at a lower voltage, the power consumed is relatively small, and its operating temperature m can be - directly lower than the value of the replaceable operating temperature - so 'more favorable for a long time Work at lower temperatures to save power loss. If the current operating temperature m is not lower than the value of the replaceable operating temperature, the flow proceeds to step 522, otherwise, the flow proceeds to step 514. At step 514, the voltage and frequency control circuit 110 determines the value of the converted voltage by operating point information at which the microprocessor 102 operates at the current frequency and the alternate operating temperature. The voltage and frequency control circuit 104 may query the voltage value from a v-table or determine the voltage value from the operating point data stored in the operating point information 122. The flow proceeds to step 516. At step 516, voltage and frequency control circuit 104 determines if microprocessor 102 is operating at the operating voltage determined in step 514. If so, the flow returns to step 508, otherwise, the flow proceeds to step 518. At step 518, the voltage and frequency control circuit 〇4 reduces the operating voltage to the voltage amplitude determined in step 514, that is, outputs the value of the appropriate voltage identification signal 144 to the voltage regulator module 1 第 8 in FIG. This corresponds accordingly
Client’s Docket No.:CNTR2308I00-TW TT^ Docket No:0608-A41635-TW/Final /Joanne 29 200837547 ,.提供了一個降低的電源電壓輸出信號142的值給微處理器 102。在實施例中,電壓及頻率控制電路1〇4透過相當小的 幅度來減少電源電壓輸出信號142,例如幅度為i6mV,直 到其達到步驟514中所减定的幅值。流程進入步驟508。 在步驟522,電壓及頻率控制電路1〇4判斷微處理界 102是否工作在當前頻率的最高電壓下,例如,當前頻率 在最高工作溫度下的電壓值。如果是,流程進入到步驟 508,否則,流程進入到步驟524。 i 在步驟524,電壓及頻率控制電路1〇4提高工作電壓 到最大值。在一個實施例中,電壓及頻率控制電路1〇4透 過相當小的幅度來增加工作電壓電源電壓輸出信號142, 例如幅度為16mV,直到其達到最大值。流程返回到步驟 508 ° 根據第14和15圖所示的另一個實施例,微處理器1〇2 的製造商確定了多個替換溫度,而不僅是只有一個替換溫 度,並儲存了對應於多個替換溫度的工作點資訊。在此實 1 施例中,隨著由於工作量和工作環境的不同而引起的溫度 的變化,微處理器102的運行電壓可能在最高溫度的電壓 和多個替換溫度的電壓中轉換。因此,要根據所要求的頻 率或者性能來使微處理器運行在較低的功率損耗下,比 如,可能由作業系統或者其他的軟體來確定頻率和性能要 求。 參照第6圖,這是與第5圖的實例相對應的微處理器 的運行圖像。圖中橫軸的引數是以伏特為單位的電源電壓Client's Docket No.: CNTR2308I00-TW TT^ Docket No: 0608-A41635-TW/Final /Joanne 29 200837547, provides a reduced value of the supply voltage output signal 142 to the microprocessor 102. In an embodiment, the voltage and frequency control circuit 〇4 reduces the supply voltage output signal 142 by a relatively small amplitude, e.g., at an amplitude of i6 mV, until it reaches the amplitude reduced in step 514. The flow proceeds to step 508. At step 522, voltage and frequency control circuit 110 determines whether microprocessor interface 102 is operating at the highest voltage of the current frequency, e.g., the voltage value of the current frequency at the highest operating temperature. If so, the flow proceeds to step 508, otherwise, the flow proceeds to step 524. i At step 524, the voltage and frequency control circuit 1〇4 increases the operating voltage to a maximum value. In one embodiment, the voltage and frequency control circuit 110 increases the operating voltage supply voltage output signal 142 by a relatively small amplitude, for example, an amplitude of 16 mV until it reaches a maximum. The flow returns to step 508 °. According to another embodiment shown in Figures 14 and 15, the manufacturer of the microprocessor 1〇2 determines a plurality of replacement temperatures, and not only has only one replacement temperature, and stores a corresponding number of Work point information for replacing temperature. In this embodiment, the operating voltage of the microprocessor 102 may be switched between the voltage of the highest temperature and the voltage of the plurality of replacement temperatures with a change in temperature due to the difference in workload and working environment. Therefore, the microprocessor is operated at a lower power loss depending on the required frequency or performance, for example, the operating system or other software may determine the frequency and performance requirements. Referring to Fig. 6, this is an operational image of the microprocessor corresponding to the example of Fig. 5. The horizontal axis of the graph is the power supply voltage in volts.
Client’s Docket No.:CNTR2308I00-TW TT5s Docket No:0608-A41635-TW/Final /Joanne 30 200837547 c-" 輸出信號142。圖中縱軸的引數是以GHz為單位的工作核 心時脈彳§號116。如第6圖所示,匯流排時脈頻率是 200MHz ’匯流排時脈倍數的範圍是從2倍到倍,這使 得對應的工作核心時脈信號116範圍是從400MHz (2倍) 到2GHz (1〇倍)。圖像中有兩條電壓及頻率曲線,一條是 最南工作溫度下的,在此實例中為攝氏100。,一條是可 替換工作溫度下的,在此實例中為攝氏60。。如第6圖所 示的實例,1.1V的工作點對應的在最高工作溫度下的工作 頻率為2.0GHz,0.972V的工作點對應的在可替換工作溫度 下的工作頻率為2·〇GHz。因此,在第6圖所示的實例中, 當工作在2.0GHz時,如果電壓及頻率控制電路104判斷 工作溫度134低於60攝氏度,電壓及頻率控制電路1〇4 可能會將電源電壓輸出信號142的值從ι·ιν降低到 0.972V。如第6圖所示,如果工作溫度134低於可替換工 作溫度的值,電源電壓輸出信號142可能會根據每一個工 作核心時脈信號116的值而降低到一個比較低的幅值,此 夂 時所能節省的微處理器102的功率損耗比工作在電源電壓 輸出信號142的最高值和工作核心時脈信號H6時所能節 省的功率損耗要多。 由第5圖和第6圖可知,此實例可以在所要求的性能 水平下,降低微處理器102消耗的功率。下面的例子將做 進一步的闡述。假定電腦系統100只被用來看DVD,則作 業糸統相應地判斷只需要一個較低的性能要求和能夠降低 功率損耗。因此,作業系統可以透過編程使微處理器1〇2Client's Docket No.: CNTR2308I00-TW TT5s Docket No: 0608-A41635-TW/Final /Joanne 30 200837547 c-" Output signal 142. The argument on the vertical axis in the figure is the working core clock § § 116 in GHz. As shown in Figure 6, the bus clock frequency is 200MHz. The bus multiplier range is from 2x to double, which makes the corresponding working core clock signal 116 range from 400MHz (2x) to 2GHz ( 1〇). There are two voltage and frequency curves in the image, one at the southernmost operating temperature, in this example 100 Celsius. One is at a replaceable operating temperature, in this example 60 Celsius. . As shown in Figure 6, the operating point of 1.1V corresponds to an operating frequency of 2.0 GHz at the highest operating temperature, and the operating point of 0.972V corresponds to an operating frequency of 2·〇 GHz at an alternate operating temperature. Therefore, in the example shown in FIG. 6, when operating at 2.0 GHz, if the voltage and frequency control circuit 104 determines that the operating temperature 134 is lower than 60 degrees Celsius, the voltage and frequency control circuit 1〇4 may output a power supply voltage signal. The value of 142 was reduced from ι·ιν to 0.972V. As shown in FIG. 6, if the operating temperature 134 is lower than the value of the replaceable operating temperature, the supply voltage output signal 142 may be reduced to a lower amplitude based on the value of each of the operating core clock signals 116. The power loss of the microprocessor 102 that can be saved is greater than the power loss that can be saved when operating at the highest value of the supply voltage output signal 142 and the operating core clock signal H6. As can be seen from Figures 5 and 6, this example can reduce the power consumed by the microprocessor 102 at the required level of performance. The following examples will be further elaborated. Assuming that computer system 100 is only used to view a DVD, the operating system accordingly determines that only a lower performance requirement is required and power loss can be reduced. Therefore, the operating system can be programmed to make the microprocessor 1〇2
Client’s Docket NO..CNTR2308I00-TW TT5s Docket No:0608-A41635-TW/Final /Joanne 31 200837547 工作在1.2GHz的時脈頻率上。假定微處理器i()2的工作 /皿度134低於可替換工作溫度的幅值6〇攝氏度,則電壓及 頻率控制電路104降低電源電麗輪出信號142到一個較低 的幅值上,以進一步減少微處理器1〇2的功率損耗。 第5圖和第6圖所示的實例的另一個優點並不僅僅是 潛在地降低了微處理器1〇2的動態功率損耗,而是潛在地 降低了微處理器102的靜態功率損耗。靜態功率損耗的主 要是因為即使沒有狀態轉換時,電晶體中也會有相當大的 漏電。漏電與工作電壓成正比。因此,根據第5圖和第6 圖的實例來降低電源電壓輸出信號142也可以減少靜態功 率損耗。更進一步說,即使是電源電壓輸出信號142的值 減小的幅度很小,都能節省相當大的功率損耗。 參照第7圖,這是根據本發明,當微處理器1〇2的工 作溫度低於某一幅值時,第1圖中的微處理器102增加其 性能的流程圖。第7圖中所提到的方法在這裏被稱作“超 載”或者是“超載態”以區別於傳統的超頻。在傳統的超頻 I 中,其微處理器102並不監測其工作溫度並根據工作溫度 而在最高倍數和超載倍數間調整其工作頻率的倍數值。流 程進入到步驟704。 在步驟704,製造商挑選出一個最高工作溫度,在此 工作溫度下,微處理器102可正常工作,此溫度被稱為是 最高工作溫度並被包含進了工作點數據122中。最高工作 溫度是由裝置的技術規格,客戶的要求,由電腦製造商提 供的製冷系統以及其他一些因素決定的。在一個實施例Client’s Docket NO..CNTR2308I00-TW TT5s Docket No:0608-A41635-TW/Final /Joanne 31 200837547 Works at 1.2GHz clock frequency. Assuming that the operation/drainage 134 of the microprocessor i() 2 is lower than the magnitude of the replaceable operating temperature by 6 〇 Celsius, the voltage and frequency control circuit 104 lowers the power supply turn-on signal 142 to a lower amplitude. To further reduce the power loss of the microprocessor 1〇2. Another advantage of the examples shown in Figures 5 and 6 is not only a potential reduction in the dynamic power loss of the microprocessor 1.2, but a potential reduction in the static power loss of the microprocessor 102. The main cause of static power loss is that there is considerable leakage in the transistor even when there is no state transition. Leakage is proportional to the operating voltage. Therefore, reducing the supply voltage output signal 142 according to the examples of Figures 5 and 6 can also reduce static power loss. Furthermore, even if the magnitude of the decrease in the value of the power supply voltage output signal 142 is small, considerable power loss can be saved. Referring to Fig. 7, this is a flow chart in which the microprocessor 102 of Fig. 1 increases its performance when the operating temperature of the microprocessor 1 〇 2 is below a certain level in accordance with the present invention. The method referred to in Figure 7 is referred to herein as "overload" or "overloaded" to distinguish it from conventional overclocking. In conventional overclocking I, its microprocessor 102 does not monitor its operating temperature and adjusts the multiple of its operating frequency between the highest multiple and the overload multiple depending on the operating temperature. The process proceeds to step 704. At step 704, the manufacturer selects a maximum operating temperature at which the microprocessor 102 can operate normally. This temperature is referred to as the highest operating temperature and is included in the operating point data 122. The maximum operating temperature is determined by the technical specifications of the unit, the customer's requirements, the refrigeration system provided by the computer manufacturer, and other factors. In one embodiment
Client’s Docket No.:CNTR2308I00-TW TT5s Docket No:0608-A41635-TW/Final /Joanne 32 200837547 中,選擇的最高工作溫度是攝氏100。,雖然其他的值可 能也可以被選擇。在另一個實施例中,製造商根據市場的 需求選擇最高工作溫度。而有時,製造商為了保證用戶可 以穩定運行微處理器102而選擇最高工作溫度,在此溫度 下,微處理器終生可以穩定運行。在另外的實例中,製造 商提供一個10年的保證,雖然其他的值也可以被選擇。在 另外的例子中,製造商根據微處理器的加速壽命測試法來 確定最高工作溫度。在一個實例中,最高工作溫度的值被 編程進了微處理器102的可編程嫁絲中。流程進入到步驟 706 〇 在步驟706中,製造商確定一個最高工作頻率 (Fmax),在此頻率下,微處理器102可穩定工作在最高 工作溫度下。製造商還會確定一個最高工作電壓(Vmax ), 這是微處理器102在最高工作頻率和最高工作溫度下工作 時的電壓。在此實施例中,最高工作溫度的工作點數據是 由第13圖的實例確定的。在第8圖所示的實例中,最高工 I 作電壓和最高工作頻率的值分別為1.1V和2.0GHz ( 10 倍)。流程進入到步驟708。 在步驟708,製造商挑選出,個超載時的工作溫度 (Τον)並被包含進了工作點數據122中。超載工作溫度的 值比最高工作溫度的值要低。超載工作溫度也是由裝置的 技術規格,客戶的要求,由電腦製造商提供的製冷系統以 及其他-些因素決定的。在〆個實施例中,如第8圖所示, 選擇的超載工作溫度是攝氏75° ’ Μ其他的值可能也可Client's Docket No.: CNTR2308I00-TW TT5s Docket No: 0608-A41635-TW/Final /Joanne 32 In 200837547, the highest operating temperature selected is 100 Celsius. , although other values may be selected. In another embodiment, the manufacturer selects the highest operating temperature based on market demand. In some cases, the manufacturer selects the maximum operating temperature in order to ensure that the user can operate the microprocessor 102 stably, at which temperature the microprocessor can operate stably for a lifetime. In another example, the manufacturer provides a 10-year warranty, although other values can be selected. In another example, the manufacturer determines the maximum operating temperature based on the accelerated life test of the microprocessor. In one example, the value of the highest operating temperature is programmed into the programmable mating wire of microprocessor 102. Flow proceeds to step 706. 〇 In step 706, the manufacturer determines a maximum operating frequency (Fmax) at which the microprocessor 102 can operate stably at the highest operating temperature. The manufacturer also determines a maximum operating voltage (Vmax), which is the voltage at which microprocessor 102 operates at its highest operating frequency and maximum operating temperature. In this embodiment, the operating point data of the highest operating temperature is determined by the example of Fig. 13. In the example shown in Figure 8, the highest voltage and the highest operating frequency are 1.1V and 2.0GHz (10 times), respectively. The flow proceeds to step 708. At step 708, the manufacturer picks up the operating temperature (Τον) at the time of the overload and is included in the operating point data 122. The value of the overload operating temperature is lower than the value of the highest operating temperature. The overload operating temperature is also determined by the technical specifications of the unit, the customer's requirements, the refrigeration system provided by the computer manufacturer, and other factors. In one embodiment, as shown in Figure 8, the selected overload operating temperature is 75° ’ Μ Μ other values may also be
Client’s Docket No.:CNTR2308I00-TW TT^ Docket No:0608-A41635-TW/Final /Joanne 33 200837547 I- ' 以被選擇。流程進入到步驟712。 在步驟712中,製造商確定最高超載工作頻率(F〇v), 在此頻率下,微處理器102可穩定工作在超載工作溫度 下。製造商還會確定一個最高超載工作電壓(γ〇ν),這是 微處理器102在最高超載工作頻率和超載工作溫度下工作 時的電壓。在此實施例中,超载工作溫度的工作點數據是 由苐13圖的實例確定的。在第8圖所示的實例中,最高超 載工作電壓和最局超載工作頻率的值分別為1 · 132v和 、 2.4GHz ( 12倍)。不同的幅值要求使微處理器1〇2工作在 超載狀態,而最高工作溫度、超載工作溫度、最高工作頻 率、袁南超載工作頻率、隶南工作電壓、最高超載工作電 壓等資料值被儲存進微處理器102並被當作是第1圖中工 作點數據122的一部分。流程進入到步驟714。 在步驟714,監測微處理器1〇2的工作溫度。也就是 說,溫度感測器132監測微處理器1〇2當前的工作溫度, , 並把工作溫度13 4傳送給弟1圖中的電壓及頻率控制電路 104。開始時,微處理裔102工作在最高工作電壓和最高工 作頻率。在一個實施例中,系統軟體透過編程微處理器1〇2 而控制微處理器102可以或者不可以工作在超載狀態下。 流程進入到步驟716。 在步驟716,電壓及頻率控制電路1〇4判斷當前工作 溫度134是否比步驟708中確定的超載工作溫度的幅值 低。由於各種原因,當前溫度可能會比超載工作溫度的幅 值低,比如,由於執行程式而導致的微處理器工作量減少,Client’s Docket No.: CNTR2308I00-TW TT^ Docket No: 0608-A41635-TW/Final /Joanne 33 200837547 I- ' To be selected. The flow proceeds to step 712. In step 712, the manufacturer determines the highest overload operating frequency (F〇v) at which the microprocessor 102 can operate stably at the overload operating temperature. The manufacturer also determines a maximum overload operating voltage (γ〇ν), which is the voltage at which the microprocessor 102 operates at the highest overload operating frequency and overload operating temperature. In this embodiment, the operating point data for the overload operating temperature is determined by the example of Figure 13. In the example shown in Figure 8, the values of the highest overload operating voltage and the most overloaded operating frequency are 1 · 132v and 2.4GHz (12 times), respectively. Different amplitude requirements make the microprocessor 1〇2 work in the overload state, and the maximum working temperature, overload working temperature, maximum working frequency, Yuannan overload working frequency, Linan working voltage, highest overload working voltage and other data values are stored. The microprocessor 102 is entered as part of the operating point data 122 in FIG. The flow proceeds to step 714. At step 714, the operating temperature of microprocessor 1 〇 2 is monitored. That is, the temperature sensor 132 monitors the current operating temperature of the microprocessor 1 〇 2 and transmits the operating temperature 13 4 to the voltage and frequency control circuit 104 in the Figure 1. Initially, the microprocessor 102 operates at the highest working voltage and highest operating frequency. In one embodiment, the system software controls the microprocessor 102 to or may not operate in an overload state by programming the microprocessor 1〇2. The flow proceeds to step 716. At step 716, voltage and frequency control circuit 104 determines if current operating temperature 134 is lower than the magnitude of the overload operating temperature determined in step 708. For various reasons, the current temperature may be lower than the magnitude of the overload operating temperature, for example, due to the reduced workload of the microprocessor due to execution of the program,
Client’s Docket No.:CNTR2308I00-TW TT^ Docket No:0608-A41635-TW/Final /Joanne 34 200837547 Η- ' ,·.或者是運行環境,或是製冷系統的改變。更進一步說,如 第7圖所示,電壓及頻率控制電路1〇4透過減少工作核心 時脈信號116以減少當前的工作溫度134,以便減少微處 理器1〇2的功率祕。如果當前的工作溫度m不低於超 載工作溫度的值,流程進入到步驟724,否則,流程進入 到步驟718。 在步驟718,電壓及頻率控制電路1〇4判斷工作核心 日夺脈信號U6是否已經達到了最高超載工作頻率。如果達 、 到了’流程返回到步驟714以、_監測環境溫度:否則, 流程進入到步驟722。 在步驟722,如第8圖所示,電壓及頻率控制電路刚 控制穩壓器模組108和鎖相迴路112人及n2B以使微處理 器1〇2工作在最高超載工作頻率和最高超載工作電壓下。 亚且,在运裏所描述的電壓及頻率控制電路1〇4使微處理 器在最高超載工作頻率和最高超載工作電壓下轉換的方法 【 與帛2圖中從步驟206到步驟以的轉換過程相類似,依 據超載工作溫度曲線,微處理器1〇2能夠穩定工作在超載 工作溫度下。流程返回到步驟714以繼續監測當前的工作 溫度134。 在步驟724,電壓及頻率控制電路1〇4判斷工作核,、、 時脈信號116是否已經達到了最高工作頻率。如果達^ 了,流程返回到步驟714以繼續監測環境溫度;否則,流 程進入到步驟726。在此,第9圖中的TM3裝置可能與第 7圖中的超載裝置結合使用,因此,流程也可能從步驟7^4Client’s Docket No.: CNTR2308I00-TW TT^ Docket No: 0608-A41635-TW/Final /Joanne 34 200837547 Η- ' , ·. Or the operating environment, or the change of the refrigeration system. Furthermore, as shown in FIG. 7, the voltage and frequency control circuit 110 reduces the current operating temperature 134 by reducing the operating core clock signal 116 to reduce the power of the microprocessor 1〇2. If the current operating temperature m is not lower than the value of the overload operating temperature, the flow proceeds to step 724, otherwise, the flow proceeds to step 718. At step 718, the voltage and frequency control circuit 1-4 determines whether the working core day pulse signal U6 has reached the highest overload operating frequency. If the process reaches, the process returns to step 714 to monitor the ambient temperature: otherwise, the flow proceeds to step 722. At step 722, as shown in FIG. 8, the voltage and frequency control circuit just controls the voltage regulator module 108 and the phase-locked loop 112 and n2B to operate the microprocessor 1 〇 2 at the highest overload operating frequency and the highest overload operation. Under voltage. Yahe, the voltage and frequency control circuit 1〇4 described in the operation causes the microprocessor to convert at the highest overload operating frequency and the highest overload operating voltage [and the conversion process from step 206 to step 帛2) Similarly, according to the overload operating temperature curve, the microprocessor 1〇2 can work stably at the overload operating temperature. Flow returns to step 714 to continue monitoring the current operating temperature 134. At step 724, the voltage and frequency control circuit 1-4 determines the operating core, and whether the clock signal 116 has reached the highest operating frequency. If so, the flow returns to step 714 to continue monitoring the ambient temperature; otherwise, the flow proceeds to step 726. Here, the TM3 device in Fig. 9 may be used in combination with the overload device in Fig. 7, and therefore, the flow may also be from step 7^4.
Client’s Docket No. :CNTR2308I00-TW TT5s Docket No:0608-A41635-TW/Final /Joanne 35 200837547 進入到第9圖中的步驟918。 r 在步驟726,如第8圖所示,電壓及頻率控制電路1〇4 ,制穩壓器模組108和鎖相迴路112人及U2b以使微處理 β 102工作在最高工作頻率和最高工作電壓下。並且,在 這裏所描述的電壓及頻率控制電路1〇4使微處理界在最高 工作頻率和最高玉作電壓下轉換的方法與第2㈣從步= 226到步驟242的轉換過程相類似,依據最高工作溫度曲 線,微處理器102能夠穩定工作在溫度最高的工作严产 下。由於步驟716中所提及的各種原因,當前溫度可能 比超載工作溫度的幅值高,比如,微處理器⑽工作量的 增加,或者是運行環境的改變。更進一步說,根據步驟724 到頂,電壓及頻率控制電路在需要的情況下,可能合透 == 工作溫度134的增加和降低工作核心時脈信號 以避免微處理器102的溫度過高,在可能的情況下, 他時間啟動微處理器1〇2以工作在超载狀態。流 私返回到步驟714以繼續監測當前的工作溫度134。 圖中^實^ 8圖’ ^疋第1圖中的微處理器102根據第7 :3以伕:例而工作在超載狀態時的圖像。圖中橫軸的引 出;電源電壓輸出信號142。電源電塵輸 GH;5:-圍是從⑽到MV。圖中縱軸的引數是以 2位的工作核心時脈信號116。如第8圖所示,匯 ^ ^頻率是删腿,匯流排時脈倍數的範圍是從2 ^使得對應的核心、時脈頻率範圍是從40麵z 第8圖是對應於第7圖的流程的,從工作點數據Client's Docket No. : CNTR2308I00-TW TT5s Docket No: 0608-A41635-TW/Final /Joanne 35 200837547 Proceed to step 918 in Figure 9. r In step 726, as shown in FIG. 8, the voltage and frequency control circuit 1〇4, the voltage regulator module 108 and the phase-locked loop 112 and U2b are used to operate the microprocessor β 102 at the highest operating frequency and highest operation. Under voltage. Moreover, the voltage and frequency control circuit 1〇4 described herein causes the micro-processing boundary to convert the highest operating frequency and the highest jade voltage to be similar to the conversion process of the second (fourth) step = 226 to step 242, according to the highest The operating temperature curve, the microprocessor 102 can work stably under the highest temperature work. Due to various reasons mentioned in step 716, the current temperature may be higher than the magnitude of the overload operating temperature, such as an increase in the workload of the microprocessor (10) or a change in the operating environment. Furthermore, according to step 724 to the top, the voltage and frequency control circuit may be transparent if necessary == increase in operating temperature 134 and lower the working core clock signal to avoid excessive temperature of the microprocessor 102, possibly In the case, he starts the microprocessor 1〇2 to work in the overload state. The flow returns to step 714 to continue monitoring the current operating temperature 134. In the figure, the microprocessor 102 in Fig. 1 operates on the image in the overload state according to the example of the seventh embodiment. The output of the horizontal axis in the figure; the power supply voltage output signal 142. Power supply dust transmission GH; 5: - circumference is from (10) to MV. The argument on the vertical axis is the 2-bit working core clock signal 116. As shown in Fig. 8, the frequency of the ^^ is the leg deletion, and the range of the clock multiplier of the bus is from 2^ such that the corresponding core and clock frequency range is from 40 faces. FIG. 8 corresponds to FIG. Process data from work points
Client ?s Docket No.:CNTR2308I00-TW TTJs Docket No:0608-A41635-TW/Final /JoaniK 36 200837547 為,Z工作電壓和最高王作頻率即1.1V和2.0GHz,溫产 為隶高工作溫度即攝 . 服又 爭古# # ^攝氏ι〇0轉換到超载工作點,也就是 取冋超载工作電壓和最高超載工 :广溫度為超載工作溫度即75攝氏度時的轉換曲線 採。11 2狀I下運仃的—個優點是可以在傳統的包含微處 =02的電腦系、统刚所提供的製冷系統下工作。超載 使微處理H 1G2動態運行在超载頻率下或者是低 於超載頻率下’這主要取決於王作量和運行環境的不同。-,此’傳統的製冷系統對於微處理器102來說,製冷性能 是足夠的。相反的’傳統的超頻方法沒有監測微處理器102 的工作溫度以便自動動態調整頻率。也就是說,頻率被固 定在了超頻上,或者是最好情況下,可以由用戶透過BI0S 來調整頻率’這並不能確保微處理器的穩定運行。超載狀 態與超頻相比,提供了一個相似的優點’那就是可以將一 些電子觸點連接到微處理器的週邊以便啟動匯流排頻率倍 數,比如由一些AMD Athlon元件提供。超载的另一個優 點是連接到前端匯流排的其他元件不需要工作在一個較高 的時脈頻率下,因此’不會產生傳統的製冷系統不能^ 要求以及性能不穩定的問題。超載的另外的優點是由於頻 率的變化是在微處理器102内部的,因此在頻率變化時, 不需要中斷外部的處理器匯流排。超載的優點還包括由於 超載方法能夠使微處理器102製造商測試在超載狀離時的 工作狀況’因此可以保證微處理器在超載工作點下穩定工Client ?s Docket No.: CNTR2308I00-TW TTJs Docket No: 0608-A41635-TW/Final /JoaniK 36 200837547 For Z, the working voltage and the highest king frequency are 1.1V and 2.0GHz, and the temperature is the operating temperature. Photo. Service and fight for the ancient # # ^光氏 〇 〇 0 conversion to the overload working point, that is, take the overload working voltage and the highest overload: wide temperature for the overload operating temperature, that is, 75 degrees Celsius when the conversion curve. 11 The advantage of running under 2 I-I is that it can work under the traditional refrigeration system provided by the computer system with the micro-zero = 02. Overloading allows the microprocessor H 1G2 to operate dynamically at overload frequencies or below the overload frequency. This depends primarily on the difference between the amount of operation and the operating environment. - This conventional refrigeration system is sufficient for the microprocessor 102 to have cooling performance. The opposite 'conventional overclocking method does not monitor the operating temperature of the microprocessor 102 to automatically dynamically adjust the frequency. That is to say, the frequency is fixed on the overclock, or in the best case, the frequency can be adjusted by the user through BI0S. This does not ensure the stable operation of the microprocessor. The overload state provides a similar advantage over overclocking' that is the ability to connect some electrical contacts to the periphery of the microprocessor to initiate the bus frequency multiple, such as provided by some AMD Athlon components. Another advantage of overloading is that the other components connected to the front-end busbar do not need to operate at a higher clock frequency, so there is no problem that conventional refrigeration systems cannot be required and performance is unstable. An additional advantage of overloading is that since the frequency variation is internal to the microprocessor 102, there is no need to interrupt the external processor bus when the frequency changes. The advantages of overloading also include the fact that the overload method enables the microprocessor 102 manufacturer to test the operating conditions in the event of overloading, thus ensuring that the microprocessor is stable under overloaded operating points.
Client’s Docket No. :CNTR2308I00-TW TT^ Docket No:0608-A41635-TW/Final /Joanne 37 200837547 作,這是傳統的超頻方法不能實現的。 參照第9圖,根據本發明,一種可以使第1圖中的微 處理器在一個特定的溫度範圍内動態工作在最高性能或者 最高性能左右的方法。第9圖中的方法被稱作是“TM3”, 因為它是對Intel的“TM2”的改進。流程從步驟902開始。 在步驟902,選擇了 一個工作溫度的範圍。這個工作 範圍是微處理器102可以在最高性能下運行的範圍。工作 範圍是由最低工作溫度(Tmin)和最高工作溫度(Tmax) 、 確定、。在一個實施例中,最低工作溫度和最南工作溫度可 能是只給定最低工作溫度或者最高工作溫度其中一個溫度 和一個增量,或者是一個範圍,或者是最低工作溫度和最 高工作溫度的值。在一個實施例中,系統軟體將此範圍編 程進了可編程暫存器158。在另一個實施例中,可編程值 可能是由用戶來選擇的。溫度範圍162被提供給第1圖中 的電壓及頻率控制電路104。在另外的實施例中,溫度範 圍162由微處理器102的製造商決定。在一個實施例中, 1 預先指定的工作範圍是内定溫度範圍,可以被可編程暫存 器158改變。而在另一個實施例中,最高工作溫度的值由 微處理器102的製造商預先指定而最低工作溫度的值是由 系統軟體編程確定。在另外的實施例中,TM3的特性由系 統軟體來決定是否應用。流程進入到步驟904。 在步驟904,監測微處理器102的工作溫度。也就是 說,溫度感測器132監測微處理器102當前的工作溫度134 並將此溫度傳送給第1圖中的電壓及頻率控制電路104。Client’s Docket No. :CNTR2308I00-TW TT^ Docket No:0608-A41635-TW/Final /Joanne 37 200837547 This is something that traditional overclocking methods cannot achieve. Referring to Fig. 9, a method for dynamically operating the microprocessor of Fig. 1 to the highest performance or the highest performance in a specific temperature range according to the present invention. The method in Figure 9 is called "TM3" because it is an improvement to Intel's "TM2". The flow begins in step 902. At step 902, a range of operating temperatures is selected. This range of operation is the range in which the microprocessor 102 can operate at maximum performance. The working range is determined by the minimum operating temperature (Tmin) and the maximum operating temperature (Tmax). In one embodiment, the minimum operating temperature and the southernmost operating temperature may be one of a minimum operating temperature or a maximum operating temperature, or a range, or a range, or a minimum operating temperature and a maximum operating temperature. . In one embodiment, the system software programs this range into programmable register 158. In another embodiment, the programmable value may be selected by the user. The temperature range 162 is supplied to the voltage and frequency control circuit 104 in Fig. 1. In other embodiments, temperature range 162 is determined by the manufacturer of microprocessor 102. In one embodiment, a pre-specified operating range is a default temperature range that can be changed by programmable register 158. In yet another embodiment, the value of the highest operating temperature is pre-specified by the manufacturer of microprocessor 102 and the value of the minimum operating temperature is determined by system software programming. In other embodiments, the characteristics of TM3 are determined by the system software whether or not to apply. The flow proceeds to step 904. At step 904, the operating temperature of the microprocessor 102 is monitored. That is, temperature sensor 132 monitors microprocessor 102's current operating temperature 134 and communicates this temperature to voltage and frequency control circuit 104 in FIG.
Client’s Docket No.:CNTR2308I00-TW TT,s Docket No:0608-A41635-TW/Final /Joanne 38 200837547 ‘ · _,微處理謂工作在内定的工作核心時脈传號ιΐ6 與電源電壓輸出信號142工作點。然而,過一段時間後, 隨著工作溫度134的變化,電壓及頻率控制電路1〇4 多不同的工作點間轉換。許多原因例如工作量,外部環境 以及製冷系統的變化,都會導致工作溫度134的不同。流 程進入到步驟906。 在步驟906,電壓及頻率控制電路1〇4判斷當前溫度 , 是否比步驟902中確定的最高工作溫度高。如果不高的 話’流程進入步驟918,否則,流程進入步驟9〇8。 在步驟908,電壓及頻率控制電路1〇4判斷電源電壓 輸出信號142是否已經是由穩壓器模組1〇8提供的最低的 電壓識別信號144。如第10圖所示,電源電壓輸出信號142 在0.7V時是由穩壓器模組108提供的最低電壓。如果電源 電壓輸出信號142已經是最低的電壓識別信號144,流程返 回到步驟904以繼續監測微處理器溫度,否則,流程進入 步驟912。 ( 在步驟,電壓及頻率控制電路1〇4從工作點數據 122判斷當工作電壓電源電壓輸出信號142降低到步驟916 中的下一個最低電壓識別信號144時,是否工作核心時脈 信號116的頻率需要被降低。如果不需要,流程進入到步 驟916 ;否則,流程進入到步驟914. 在步驟914,倍頻控制電路128使工作核心時脈信號 116的頻率轉換到比當前工作核心時脈信號116的頻率低 的下一個匯流排時脈信號148的最低倍數,這是由將在步Client's Docket No.:CNTR2308I00-TW TT,s Docket No:0608-A41635-TW/Final /Joanne 38 200837547 ' · _, micro processing is working on the internal working core clock ιΐ6 and the power supply voltage output signal 142 point. However, after a period of time, as the operating temperature 134 changes, the voltage and frequency control circuit 〇4 switches between different operating points. Many reasons, such as workload, external environment, and changes in the cooling system, can result in differences in operating temperature 134. The process proceeds to step 906. At step 906, the voltage and frequency control circuit 1-4 determines whether the current temperature is higher than the highest operating temperature determined in step 902. If not high, the flow proceeds to step 918, otherwise, the flow proceeds to step 9-8. At step 908, voltage and frequency control circuit 104 determines if supply voltage output signal 142 is already the lowest voltage identification signal 144 provided by regulator module 1A8. As shown in FIG. 10, the supply voltage output signal 142 is the lowest voltage provided by the regulator module 108 at 0.7V. If the power supply voltage output signal 142 is already the lowest voltage identification signal 144, the flow returns to step 904 to continue monitoring the microprocessor temperature, otherwise, the flow proceeds to step 912. (At step, the voltage and frequency control circuit 111 determines from the operating point data 122 whether the frequency of the core clock signal 116 is operating when the operating voltage supply voltage output signal 142 falls to the next lowest voltage identification signal 144 in step 916. The process needs to be reduced. If not, the flow proceeds to step 916; otherwise, the flow proceeds to step 914. At step 914, the frequency multiplication control circuit 128 converts the frequency of the working core clock signal 116 to a current operating core clock signal 116. The frequency is lower than the lowest multiple of the next bus clock signal 148, which is
Client’s Docket No.:CNTR2308I〇〇-TW TT’s Docket No:0608-A41635-TW/Final /Joanne 39 200837547 驟9!6輸_新的電mm難號i4 說,這表的轉換由第2圖中的 要求的。更進-步 此,避免了傳統方法t在等待鎖相 ❹。也就是說,由時 無損地有效地進行工作點轉換,例如,:,1〇2能夠 透過雙鎖相迴路有效執 錢理器搬可以 瞬間轉換,也能二 號142的幅值的μ Z ^ 改變電源電屋輸出信 说142 =值的過程中繼續穩定工作 路104能夠在必要的你 i汉领手控制電 办丨‘,舍 下進行相當頻繁的工作點轉換。 :1頻繁地改變時,使微處理器102工作在步 驟902 U的溫度範圍162裏。流程進人到步驟916。 在步驟916,電壓識別控制電路126減少電墨識別作 號144的值以使穩壓器模、板⑽轉換到下一個輸出的最低 電源電壓輸出信號142的值上。並且,這裏的轉換由第2 圖中的=226到242來實現’避免了性能的降低,因為 在穩壓器模組108改變電源電壓輸出信號142的幅值的過 程中,微處理器102能夠繼續穩定工作。因此,當需要使 微處理裔102工作在步驟902所確定的溫度範圍中時,電 壓及頻率控制電路104能夠實現頻繁地工作點的轉換。流 程返回到步驟904以繼續監測溫度134。 在步驟918,電壓及頻率控制電路1〇4判斷當前溫度 134是否比步驟902中確定的最低工作溫度小。如果不低 的話,流程返回到步驟904以繼續監測當前的工作溫度 134,否則,流程進入步驟922。Client's Docket No.: CNTR2308I〇〇-TW TT's Docket No:0608-A41635-TW/Final /Joanne 39 200837547 Step 9!6 Lost _ new electric mm difficult number i4 said that the conversion of this table is shown in Figure 2 required. Further, this avoids the traditional method t waiting for phase lock. That is to say, the work point conversion is effectively performed without loss by time, for example,: 1〇2 can be instantaneously converted through the double-locked loop effective carrying device, and can also be the amplitude of the second 142 μ Z ^ Change the power supply house output letter saying 142 = value in the process of continuing to work stably 104 can be used in the necessary control of your home, and carry out quite frequent work point conversion. When 1 is changed frequently, the microprocessor 102 is operated in the temperature range 162 of step 902 U. The flow proceeds to step 916. At step 916, voltage identification control circuit 126 reduces the value of ink identification number 144 to cause the regulator mode, board (10) to transition to the value of the lowest output voltage output signal 142 of the next output. Moreover, the conversion here is implemented by =226 to 242 in FIG. 2 'avoiding performance degradation because the microprocessor 102 can be in the process of changing the amplitude of the power supply voltage output signal 142 by the voltage regulator module 108. Continue to work steadily. Thus, when it is desired to operate the microprocessor 102 in the temperature range determined in step 902, the voltage and frequency control circuit 104 can effect frequent switching of the operating point. The process returns to step 904 to continue monitoring temperature 134. At step 918, voltage and frequency control circuit 110 determines if current temperature 134 is less than the minimum operating temperature determined in step 902. If not, the flow returns to step 904 to continue monitoring the current operating temperature 134, otherwise the flow proceeds to step 922.
Client’s Docket No..CNTR2308I00-TW TT9s Docket No:0608-A41635-TW/Final /Joanne 200837547 在步驟922 ’電壓及頻率控制電路14韻工作核心時 脈#唬116是否達到了鎖相迴 率。在第10圖所示的實例中,工作斤供的取向工作頻 e L ^ ^解卫作頻率2.GGHZ (10伴) 是由微處理器102提供的最高工作 '仏) _ , b ^ ^ 1卜頭率。然而’由於第9 圖疋與t圖相互關聯的,因此,微處理器搬所提供的 取局工作點是超載時的工作點,比如 载 作點是在2.4GHz (12倍”口〜 工 信號110已經在最高工作頻率^日寸脈 f 11=7貝千机秩返回到步驟904 W爐 續監測當前的工作溫度134,否則,& 、、k J /瓜私進入步驟924 〇 在步驟924,電壓識別控制電路126增加電壓 號14 4的值以使穩壓器模組簡轉換到下 ^ : 的電源電壓輪出信號142值上。並,取向 又且’延裏的轉換由笛1 圖中的步驟206到224來實現。流程進人步驟咖。 在步驟926,電壓及頻率控制電路m ° 122 142 -個最面電壓識別信號144時,是否卫作核心時脈 = 的頻率需要被升高。如果不需要,流程如 ^ 繼續監測當前的工作溫度134,否則,冷 驟〇4以 J 机私進入步驟的δ 在步驟928,倍頻控制電路128使工作核 ^ 116的頻率轉換到比當前工作核心時脈信號 的下一個匯流排時脈信號148的最高倍數,、t B 手阿 :驟,的新的電_信號144戶;要求:是== 說,這晨的轉換由第2圖中的步驟2〇6到224 h ^ 此,避免了傳統方法中在等待鎖相迴路鎖存時;二二、,Client's Docket No..CNTR2308I00-TW TT9s Docket No:0608-A41635-TW/Final /Joanne 200837547 In step 922', the voltage and frequency control circuit 14 operates at the core clock #唬116 whether the phase-locked response rate is reached. In the example shown in Fig. 10, the working frequency of the working load e L ^ ^ the defending frequency 2. GGHZ (10 companion) is the highest working '仏' provided by the microprocessor 102 _ , b ^ ^ 1 head rate. However, since the figure 9 is related to the t picture, the work point provided by the microprocessor is the operating point when overloading, for example, the load point is at 2.4 GHz (12 times) port ~ work signal 110 has already returned to step 904 in the highest working frequency ^ day 脉 pulse f 11 = 7 千千机 rank to monitor the current working temperature 134, otherwise, &,, k J / melon into step 924 〇 in step 924 The voltage identification control circuit 126 increases the value of the voltage number 14 4 to cause the voltage regulator module to be simply converted to the lower power supply voltage of the signal 142. And, the orientation and the delay of the conversion by the flute 1 Steps 206 to 224 are implemented. The flow enters the step coffee. In step 926, when the voltage and frequency control circuit m ° 122 142 - the most surface voltage identification signal 144, whether the frequency of the core clock = needs to be raised If not, the process continues to monitor the current operating temperature 134, otherwise, the cold step 4 enters the step δ in steps J. In step 928, the frequency multiplication control circuit 128 converts the frequency of the working core 116 to the ratio. The next bus of the current working core clock signal The highest multiple of the pulse signal 148, t B hand: a new electric_signal 144 household; request: yes == said that this morning conversion is from step 2〇6 to 224 h ^ in the second figure , avoiding the traditional method of waiting for the phase-locked loop to latch; 22,
Client’s Docket No. :CNTR2308I00-TW TT^ Docket No:0608-A41635-TW/Final /Jo; 200837547Client’s Docket No. :CNTR2308I00-TW TT^ Docket No:0608-A41635-TW/Final /Jo; 200837547
f %f %
=引:的性能降低。流程返回到步驟9 〇 4以繼續監測當 丽的工作溫度134。 同由1G圖’這是第1圖中的微處理器1G2根據第9 圖二^施例而動“作在最優化性能及指定的溫度範圍 =圖像。圖中橫軸的引數是以伏特為單位的電源電壓輸 出#旒142。電源電壓輸出信號142範圍是從〇·7ν到 1.1V。圖中縱軸的引數是以GHz為單位的工作核心時脈信 號116如第10圖所示,匯流排時脈頻率是2〇〇MHz,匯 1排時脈倍數的範圍是從2倍至]10倍,這使得對應的核心 時^頻率範圍是從400MHz到2GHz。根據第9圖,第10 圖是在最高工作點1020和最低工作點1〇1〇間的多個中間 工作點中轉換的示意圖。在一個實施例中,製造商測定微 處理為在某一溫度和最高工作頻率下的最高工作電壓,由 此:確定最高工作點,製造商還測定微處理器在同一溫度 和最低工作頻率下的最低工作電壓,由此可確定最低工作 點,而透過最高工作電壓和最低工作電壓可計算得到多個 中間電壓,由此可確定多個中間工作點。如第丨〇圖所示, 在不中辦工作核心時脈信號116以保持工作溫度在一個指 定範圍内的情況下,電壓及頻率控制電路1〇4不斷地監測 工作溫度134並且在不同的鄰近工作點間轉換。因此,第 9圖中的實施例可以使微處理器1〇2在給定的時間内,在 一定的工作量,一定的外部環境和製冷系統的狀態下,工 作性能接近最高性能要求。 第10圖中,A標示當工作溫度下降低於Tmin時,在= cited: performance is reduced. The process returns to step 9 〇 4 to continue monitoring the operating temperature 134 of the MN. The same as the 1G diagram 'This is the microprocessor 1G2 in Figure 1 according to the ninth embodiment of the second embodiment of the "actual optimization performance and specified temperature range = image. The horizontal axis of the diagram is based on The power supply voltage output in volts is #旒142. The power supply voltage output signal 142 ranges from 〇·7ν to 1.1V. The vertical axis of the figure is the working core clock signal 116 in GHz, as shown in Figure 10. The bus frequency of the bus is 2 〇〇 MHz, and the range of the clock multiplex of the first row is from 2 times to 10 times, which makes the corresponding core frequency range from 400 MHz to 2 GHz. According to Figure 9, Figure 10 is a schematic diagram of the transitions in a plurality of intermediate operating points between the highest operating point 1020 and the lowest operating point 1〇1. In one embodiment, the manufacturer determines the microprocessing to be at a certain temperature and maximum operating frequency. The highest operating voltage, thus: to determine the highest operating point, the manufacturer also determines the minimum operating voltage of the microprocessor at the same temperature and the lowest operating frequency, thereby determining the minimum operating point, while passing the highest operating voltage and the lowest operating voltage Multiple intermediate voltages can be calculated, This can determine a plurality of intermediate operating points. As shown in the figure, when the working core clock signal 116 is not in operation to keep the operating temperature within a specified range, the voltage and frequency control circuit 〇4 constantly The operating temperature 134 is monitored and switched between different adjacent operating points. Thus, the embodiment of Figure 9 allows the microprocessor 1 to be in a given amount of time, a certain amount of external environment and cooling for a given period of time. In the state of the system, the performance is close to the highest performance requirement. In Figure 10, A indicates that when the operating temperature drops below Tmin,
Client’s Docket No.:CNTR2308I00-TW TT^ Docket No:0608-A41635-TW/Final /Joanne 42 200837547 工賴之間向上轉換,相溫度下降至Tmi =作點為止。B標示當工作溫度上升超過π二達 在作‘,、占之間向下轉換,直到溫度上升至τ 達到最低工作點為止。 上或 2第11®’此圖是TM2熱監控 的工作圖。在Intel的朗文财,TM ^、㈣衣置 分接近最後的位置提到的。第 徂仃K在背景部 並不能在特定的Intel處理器θ y工作點數據值 料只=來與第H)圖中的資料作比較的。1圖中提供的資 按如TM2方法,系統軟轉 符號mo所示)編程到與的高點數據(如 、土 ΛΑ - J作點數據編程到位置更 :::將=數據中’TM2裝置按照時脈週期 术將會浪費大I的性能,因為,产口 3 遠的二作點間的轉換。隨著狀態‘ 能間隔)和_能力做-個平衡。相反地,透 以及比較第10圖和第u圖可以得到,ΤΜ3裝置不會錢 糸統軟體做這樣的性能和熱保護的平衡,ΤΜ3 |置能 供的^捕獲較小間隔的工作點數據間轉換的性能和—個 較大範圍的工作點數據錢在工作量崎Α或者是環境γ 度比較高的情況下提供必要的熱保護。隨著狀態轉換,二Client’s Docket No.: CNTR2308I00-TW TT^ Docket No: 0608-A41635-TW/Final /Joanne 42 200837547 The upside down between the work and the phase temperature drops to Tmi = point. B indicates that when the operating temperature rises above π, the conversion is made between ‘, and 占, until the temperature rises to τ to reach the minimum operating point. Up or 211®' This figure is a working diagram of TM2 thermal monitoring. In Intel's Longman Choi, TM ^, (4) clothing points are close to the last position mentioned. The first 徂仃K in the background section cannot be compared with the data in the H) figure in the specific Intel processor θ y working point data value. 1 The information provided in the figure is as shown in the TM2 method, the system soft-turn symbol mo) is programmed to the high-point data (for example, the bandit-J is programmed to the position data:::==data in the 'TM2 device According to the clock cycle, the performance of the large I will be wasted, because the transition between the two points of the production port is 3, and the state is balanced with the state. Conversely, by comparing and comparing Fig. 10 and Fig. u, it can be obtained that the ΤΜ3 device does not have the balance of performance and thermal protection of the 糸 软 software, ΤΜ3 | The performance of the conversion and a large range of work point data provide the necessary thermal protection in situations where the workload is rugged or the ambient gamma is relatively high. With state transition, two
Client’s Docket No.:CNTR2308I00-TW TT’s Docket No:0608-A41635-TW/Final /Joanne 43 200837547Client’s Docket No.: CNTR2308I00-TW TT’s Docket No: 0608-A41635-TW/Final /Joanne 43 200837547
L '旦™2達到其最高工作温度,它立刻轉換到低性能的工作 點數據’這是不必要的,因為-個到中間狀態點的轉換可 月b有效地降低工作溫度到最高溫度以下。與此相反, 裝置,夠透過只轉換到中間工作點來使工作溫度保持在給 定的範圍内,因此可以有效地獲取附加性能。 ΤΜ3與ΤΜ2相比的另一個優點是,它不需要像ΤΜ2 裝置那樣在轉換到一個較高的工作點以前,需要在較低的 ' 卫作^行一段固定的時間,這將花費一些潛在的功率損 耗:/JQ•度達到一個較低的範圍時,ΤΜ3装置將轉換到一 個較局的工作點。並且,微處理器1〇2包含一個被稱作是 ,鎖相迴路結構的時脈產生電路,這方便在不停止微處理 器運行的情況下,實現從當前工作頻率到一個新的工作頻 率的轉換,因此,可以避免由於工作量和運行環境所引起 的頻繁工作頻率轉換而帶來的對性能的負面影響。 TM3的另一個優點是當有一些不好的影響時,它可能 會為現有的熱裝置提供-些替代的方法。例二,當微處理 i H的工作溫度超過-定值時,—㈣統會提高具有多種風 速的風扇的轉速以降低工作溫度。一般地,風扇加速的不 良影響是增加嗓音。TM3更提供了一種選擇方法來在不增 加風扇噪音的情況下降低工作溫度。 此外,Intel的說明文檔中指出,溫度範圍是由TM2 的製造商決定的。與此相反的是,根據TM3的實施例,溫 度範圍疋由用戶來選擇的。因此,比如,需要透過降低電 池溫度來延長電池壽命時,會要求對微處理器產生的熱量L 'Dan TM2 reaches its maximum operating temperature, it immediately switches to low-performance operating point data' This is unnecessary because the transition to the intermediate state point can effectively lower the operating temperature below the maximum temperature. In contrast, the device is capable of maintaining the operating temperature within a given range by switching only to the intermediate operating point, so that additional performance can be efficiently obtained. Another advantage of ΤΜ3 compared to ΤΜ2 is that it does not need to be in a lower 'serving line for a fixed period of time before switching to a higher working point like the ΤΜ2 device, which will cost some potential Power loss: When the /JQ• degree reaches a lower range, the ΤΜ3 device will switch to a more active operating point. Moreover, the microprocessor 1 包含 2 includes a clock generation circuit called a phase-locked loop structure, which facilitates the realization of the current operating frequency to a new operating frequency without stopping the operation of the microprocessor. Conversion, therefore, can avoid the negative impact on performance due to frequent operating frequency conversion caused by workload and operating environment. Another advantage of TM3 is that it may provide alternative methods for existing thermal devices when there are some undesirable effects. In the second example, when the operating temperature of the microprocessor i H exceeds the set value, the (iv) system will increase the speed of the fan with multiple wind speeds to lower the operating temperature. In general, the adverse effect of fan acceleration is to increase the arpeggio. TM3 also offers a choice to reduce operating temperature without increasing fan noise. In addition, Intel's documentation states that the temperature range is determined by the manufacturer of the TM2. In contrast to this, according to the embodiment of TM3, the temperature range 疋 is selected by the user. Therefore, for example, when it is necessary to reduce the battery temperature to extend the battery life, the heat generated by the microprocessor is required.
Client’s Docket No.:CNTR2308I00-TW TT^ Docket No:0608-A41635-TW/Final /Joanne 44 200837547 進行比車父,此時,TM3的實施例可以用系統軟體將微處 理器編程在一個較低的溫度範圍以達到要求。 最後,本發明的發明人觀察到由於CM〇s半導體積體 電路的物理特性,在一塊生產好的元件上面,可能會有一 些元件疋不能工作在最高工作電壓和最低工作頻率下的。 當從一個高的工作點轉換到一個低的工作點時,TM2裝置 首先降低頻率,然後降低電壓。因為TM2裝置中電腦機制 的問題,較低的工作點可能被編程進了一個最低頻率,一 ί 些壞了的元件可能需要從產量中去除,因為他們不能在 ΤΜ2裝置下正常運行。因此,ΤΜ3的一個優點是產量將會 增加,因為頻率的增加是分段式的,所以微處理器1〇2在 工作在表咼電壓下時,並不是工作在最低頻率。 參照第12圖,這是將本發明的第5、7及9圖結合到 一起的實施例的圖像。也就是說,第12圖是將第9圖的 ΤΜ3技術,第7圖中的超載技術以及第5圖中降低功率損 耗的技術結合到一起以提高微處理器1〇2的性能同時降低 I 微處理态102的功率損耗。更進一步說,在可能的情況下, 為了改進微處理器102在工作點轉換期間的性能,可能會 用與第2圖相似的方法來進行不同的工作點間的轉換。 在第12圖的實例中,工作溫度升高到了第9和丨〇圖 中提到的最尚工作溫度。因此,當保持工作溫度在第8圖 和第10圖中的ΤΜ3技術中提到的最高工作溫度和最低工 作溫度之間時,電壓及頻率控制電路1〇4使微處理器工作 在介於最高工作點和最低工作點間的中間工作點,這個工Client's Docket No.: CNTR2308I00-TW TT^ Docket No: 0608-A41635-TW/Final /Joanne 44 200837547 Compared to the car master, at this time, the TM3 embodiment can use the system software to program the microprocessor at a lower level. The temperature range is up to the requirements. Finally, the inventors of the present invention have observed that due to the physical characteristics of the CM〇s semiconductor integrated circuit, there may be some components that cannot operate at the highest operating voltage and the lowest operating frequency on a manufactured component. When switching from a high operating point to a low operating point, the TM2 device first lowers the frequency and then lowers the voltage. Because of the computer mechanism in the TM2 device, lower operating points may be programmed to a minimum frequency, and some broken components may need to be removed from production because they cannot operate properly under the ΤΜ2 device. Therefore, one advantage of ΤΜ3 is that the output will increase because the increase in frequency is segmented, so the microprocessor 1〇2 does not operate at the lowest frequency when operating at the surface voltage. Referring to Fig. 12, this is an image of an embodiment in which the fifth, seventh and ninth diagrams of the present invention are combined. That is to say, Fig. 12 is a combination of the ΤΜ3 technique of Fig. 9, the overload technique of Fig. 7, and the technique for reducing power loss in Fig. 5 to improve the performance of the microprocessor 1 〇 2 while reducing I micro The power loss of state 102 is processed. Furthermore, where possible, in order to improve the performance of the microprocessor 102 during the transition of the operating point, a similar method to that of Figure 2 may be used to perform the conversion between different operating points. In the example of Fig. 12, the operating temperature rises to the most desirable operating temperature mentioned in the 9th and the 丨〇 diagram. Therefore, the voltage and frequency control circuit 1〇4 enables the microprocessor to operate at the highest level while maintaining the operating temperature between the highest operating temperature and the lowest operating temperature mentioned in the ΤΜ3 technique in FIGS. 8 and 10. Intermediate working point between the working point and the lowest working point, this work
Client’s Docket No. :CNTR2308I00-TW TT’s Docket No:0608-A41635-TW/Final /Joanne 45 200837547Client’s Docket No. :CNTR2308I00-TW TT’s Docket No:0608-A41635-TW/Final /Joanne 45 200837547
t點:tit里和環境溫度所能容許的最高工作性能戋者 此工作性能左右。夕依 此A有 度下降,職>1及_=作量或者玉作環境改變導致溫 相應地將微處理器電路刚會根據P圖的流程 _ _ ° 2轉換到第9圖所涉及的最高工作雷 壓/敢南工作頻率的工作點。 私 之後,工作Ii 里或者工作環境改變導致溫度下降 圖和第8圖中提到的初善 J的起载工作溫度以下,則電壓及頻率批 制電路a 104根據第7圖的流程相應地將微處理器1⑽轉 換到第7 ®的超载技術所涉及的最高超載卫作電壓/最高超 載工作頻率的工作點。 ° 之後,工作量或者工作環境改變導致溫度下降到第5 圖和第6圖中提到的可替換卫作溫度以下,則電壓及頻率 控制電路104會根據第5圖的流程相應地將微處理器1〇2 轉換到第5 ®的降低功率損耗技術所涉及的可替換工作電 壓/可替換工作頻率的工作點。 第12圖中,(1)表示溫度在Tmax與Tmin之間,因 此,工作在Tmax與Tmin之間最佳工作點;(2)表示溫度 下降,因此轉換工作在Vmax,Fmax ; ( 3 )表示溫度下降 至Τον以下,因此轉換工作在v〇v,F〇v ; (4)表示溫度下 降至Talt,因此轉換工作在Valt,Falt。 除了第12圖中將所有的技術特徵應用到同一個實施 例之外,也可以不將所有的技術特徵都應用到一起。例如, 在一個實施例中,第5圖中的流程和第7圖中的流程結合 到一起使用。也就是說,微處理器102可以首先工作在超t point: the highest working performance that can be tolerated in the tit and the ambient temperature. On the eve of this, A has a degree of decline, and the job >1 and _=measurement or jade environment change causes the temperature of the microprocessor circuit to be converted according to the flow of the P diagram _ _ ° 2 to the figure 9 The highest working thunder pressure / the working point of the South China working frequency. After the private operation, the work Ii or the working environment changes to cause the temperature drop diagram and the start-up operating temperature of the first good J mentioned in the figure 8, the voltage and frequency batch circuit a 104 correspondingly according to the flow of FIG. Microprocessor 1 (10) switches to the operating point of the highest overloaded servo voltage / highest overload operating frequency involved in the 7 ® overload technology. After the workload or working environment changes and the temperature drops below the replaceable temperature mentioned in Figures 5 and 6, the voltage and frequency control circuit 104 will correspondingly process the microprocessor according to the flow of Figure 5. The operation of the replaceable operating voltage/replaceable operating frequency involved in the 5 ®2 reduced power loss technique. In Fig. 12, (1) indicates that the temperature is between Tmax and Tmin, therefore, it works at the optimum operating point between Tmax and Tmin; (2) indicates that the temperature drops, so the conversion works at Vmax, Fmax; (3) The temperature drops below Τον, so the conversion works at v〇v, F〇v; (4) indicates that the temperature drops to Talt, so the conversion works at Valt, Falt. Except for all the technical features applied to the same embodiment in Fig. 12, all the technical features may not be applied together. For example, in one embodiment, the flow in Figure 5 and the flow in Figure 7 are used together. That is, the microprocessor 102 can work first in super
Client’s Docket No.:CNTR2308I00-TW TT?s Docket No:0608-A41635-TW/Final /Joanne 46 200837547 V, μ 載工作點,如果可替換工作溫度的溫度低於超載溫度並且 工作溫度達到了可替換工作溫度時,工作電壓將被從超載 電壓降低到可替換工作溫度的工作點電壓,以便在降低功 率損耗的同時可以享受到超載狀態下的功率損耗性能。在 另一個實施例中,第7圖中的流程和第9圖中的流程結合 到一起使用。也就是說,當微處理器1〇2工作在由最高工 作溫度和最低工作溫度的界定的可選擇溫度範圍時,如果 可替換工作溫度的溫度低於最低工作溫度的溫度並且工作 溫度達到了可替換工作溫度時,工作電壓將被從當前電壓 降低到可替換工作溫度的工作點電壓,以便在降低功率損 耗的同日守可以旱受到指定溫度範圍下的最優性能或者接近 最優性能。 參照第13圖,這是根據本發明,產生第丨圖中的微處 理器102所包含的工作點的流程圖。流程從步驟1開始。 在步驟1302,製造商選擇了 一個微處理器ι〇2可以穩 定工作的最高工作溫度,例如第5、7和9圖中所提到的最 I 高工作溫度。流程進入步驟1304。 在步驟1304 ’製造商結合穩壓器模組1 〇8的電源電壓 輸出信號142的範圍(比如電壓識別信號144)以及鎖相 迴路112的時脈頻率的範圍(比如倍數信號ι46)來測試 微處理102在各個可能的工作點的運行狀況。當維持運 行在已選擇的工作溫度下時,製造商將判斷微處理器1〇2 是否能夠在工作點和選擇的工作溫度下穩定工作。流程進 入步驟1306。Client's Docket No.: CNTR2308I00-TW TT?s Docket No: 0608-A41635-TW/Final /Joanne 46 200837547 V, μ load operating point, if the temperature of the replaceable operating temperature is lower than the overload temperature and the operating temperature is up to replace At operating temperature, the operating voltage is reduced from the overload voltage to the operating point voltage of the replaceable operating temperature to provide power loss performance under overload conditions while reducing power loss. In another embodiment, the flow in Figure 7 and the flow in Figure 9 are used together. That is, when the microprocessor 1 工作 2 operates at a selectable temperature range defined by the highest operating temperature and the lowest operating temperature, if the temperature of the replaceable operating temperature is lower than the temperature of the lowest operating temperature and the operating temperature is reached When the operating temperature is replaced, the operating voltage will be reduced from the current voltage to the operating point voltage of the replaceable operating temperature, so that the same performance or near-optimal performance can be achieved under the specified temperature range on the same day when the power loss is reduced. Referring to Fig. 13, this is a flow chart for generating the operating points contained in the microprocessor 102 in the second diagram in accordance with the present invention. The process begins with step 1. At step 1302, the manufacturer selects a microprocessor ι2 to stabilize the maximum operating temperature of operation, such as the highest I operating temperatures mentioned in Figures 5, 7, and 9. The flow proceeds to step 1304. In step 1304, the manufacturer combines the range of the supply voltage output signal 142 of the voltage regulator module 1 〇8 (such as the voltage identification signal 144) and the range of the clock frequency of the phase-locked loop 112 (such as the multiple signal ι46) to test the micro Process 102 is performed at various possible operating points. When operating at the selected operating temperature, the manufacturer will determine if the microprocessor 1〇2 is stable at the operating point and the selected operating temperature. The flow proceeds to step 1306.
Client’s Docket No.:CNTR2308I00-TW TT^ Docket No:0608-A41635-TW/Final /Joanne 47 200837547 v* r 在步驟1306,製造商為每一個電壓識別信號144選擇 一個最高頻率倍數信號146,在此頻率倍數下,微處理器 102可以正常工作。製造商可能會用選擇的工作點來為選 擇的工作溫度製作一條曲線。工作點曲線一般被稱作 “shmoo”曲線。第3、6、8、12以及15圖就是工作點曲線 的示例圖,在這些圖中,曲線都是直線。透過判斷工作點 數據122,製造商可以確定微處理器102是否可以穩定運 行在工作點曲線上或者是曲線以下。特別是,微處理器102 可以利用工作點數據122來管理功率損耗,比如第2圖中 的步驟208、228和第9圖中的步驟912以及926。另外, 製造商可能會利用步驟1304中的測試結果來將部件分類 到不同的市場要求類別中。流程進入到步驟1308。 在步驟1308,製造商判斷是否還有工作溫度需要來測 試運行的穩定性。如果是,流程進入到步驟1312,否則的 話,流程結束。 在步驟1312,微處理器102的製造商為每一個需要獲 i 得的工作點資訊選擇一個工作溫度。特別是,製造商可能 會選擇第5圖中可替換工作溫度的值,第7圖中超載工作 溫度的值以及第9圖中最低工作溫度的值。另外,製造商 可能會為執行步驟1304到1306而選擇一些不同的工作溫 度,也可能會在這些步驟的基礎上選擇超載工作溫度、可 替換工作溫度和最低工作溫度的值,而不是由以前的經驗 來選擇超載工作溫度、可替換工作溫度和最低工作溫度的 值。流程返回到步驟1304。Client's Docket No.: CNTR2308I00-TW TT^ Docket No: 0608-A41635-TW/Final /Joanne 47 200837547 v* r At step 1306, the manufacturer selects a highest frequency multiple signal 146 for each voltage identification signal 144, here At frequency multiples, the microprocessor 102 can operate normally. The manufacturer may use the selected operating point to create a curve for the selected operating temperature. The operating point curve is generally referred to as the "shmoo" curve. Figures 3, 6, 8, 12, and 15 are example diagrams of the operating point curves, in which the curves are straight lines. By judging the operating point data 122, the manufacturer can determine if the microprocessor 102 can be stably operated on the operating point curve or below the curve. In particular, microprocessor 102 can utilize power point data 122 to manage power loss, such as steps 208, 228 in Figure 2 and steps 912 and 926 in Figure 9. In addition, the manufacturer may use the test results in step 1304 to classify the components into different market demand categories. The flow proceeds to step 1308. At step 1308, the manufacturer determines if there is still a working temperature required to test the stability of the operation. If so, the flow proceeds to step 1312, otherwise the flow ends. At step 1312, the manufacturer of microprocessor 102 selects an operating temperature for each of the operating point information that needs to be obtained. In particular, the manufacturer may choose the value of the alternate operating temperature in Figure 5, the value of the overload operating temperature in Figure 7, and the value of the lowest operating temperature in Figure 9. In addition, the manufacturer may select some different operating temperatures for performing steps 1304 through 1306, or may select the values of overload operating temperature, replaceable operating temperature, and minimum operating temperature based on these steps instead of the previous Experience to choose values for overloaded operating temperature, replaceable operating temperature, and minimum operating temperature. The flow returns to step 1304.
Client’s Docket No.:CNTR2308I00-TW TT^ Docket No:0608-A41635-TW/Final /Joanne 48 200837547Client’s Docket No.: CNTR2308I00-TW TT^ Docket No:0608-A41635-TW/Final /Joanne 48 200837547
VV
參照第14圖,根據另一個實施例,這是第i圖中的微 處理裔102在工作溫度低於相應的低工作溫度閾值時,為 了節省功率損耗而降低工作電壓的流程圖。與第5圖中只 包含一個可替換的工作溫度值不同,第14圖中的實施例包 含了多個可替換的工作溫度值以便在更小溫度變化的範圍 内降低功率損耗。流程從步驟1402開始。 在步驟1402,製造商測試在給定頻率F和最高工作溫 度T[N]’也就是這裏提到的最高工作溫度下,微處理器1〇2 可以穩定工作的最小電壓V[N]。特別是,製造商確^在頻 率F和溫度T[N]下,微處理器ι〇2可以穩定工作的電壓識 別信號144的最高值。在這個實施例中,N是在頻率f下 的不同電壓識別信號i44值的個數,比如工作點的個數, 在這N個值下,電壓及控制電路104可能會使微處理器ι〇2 的工作溫度134低於N-1個不同的值。制% 士 & — 衣造商為每一個工 作核心時脈信號116的每一個可能的倍數 … 影3虎146確定一 個V[N]的值。流程進入到步驟1404。 在步驟剛’製造商測試在給F和可替換工作 溫度微處理n iomx穩定工作的最小電壓 v[l],其中,T[l]比T[N]的值要小。製生 商為每一個工作 核心時脈信號116確定一個V[l]的值。、+ 遇流程進入到步驟 1406。 在步驟1406 ’製造商在步驟1402和步驟剛所確定 的V_口 νπ]幅值之間選擇N_2個中間的電壓識別信號 M4的值中的-個。在-個實施例中,製造商計算v师口Referring to Figure 14, in accordance with another embodiment, this is a flow diagram of the microprocessor 102 in Figure ii to reduce the operating voltage to save power loss when the operating temperature is below a corresponding low operating temperature threshold. Unlike the Fig. 5 which contains only one alternative operating temperature value, the embodiment of Figure 14 includes a plurality of alternative operating temperature values to reduce power loss over a smaller temperature range. The flow begins in step 1402. At step 1402, the manufacturer tests the minimum voltage V[N] at which the microprocessor 1 可以 2 can operate stably at a given frequency F and the highest operating temperature T[N]', which is the highest operating temperature mentioned herein. In particular, the manufacturer does determine that the microprocessor ι 2 can stabilize the operating voltage to recognize the highest value of the signal 144 at the frequency F and the temperature T[N]. In this embodiment, N is the number of different voltage identification signals i44 at frequency f, such as the number of operating points, at which voltage and control circuitry 104 may cause the microprocessor to mute The operating temperature 134 of 2 is lower than N-1 different values. % 士 & - Each possible multiple of the core clock signal 116 for each of the working machines ... Shadow 3 146 determines a value of V[N]. The flow proceeds to step 1404. At the step just 'the manufacturer tests the minimum voltage v[l] for the stable operation of the F and the alternate operating temperature micro-processing n iomx, where T[l] is smaller than the value of T[N]. The manufacturer determines a value for V[l] for each of the working core clock signals 116. , + The process proceeds to step 1406. At step 1406' the manufacturer selects - one of the values of the N_2 intermediate voltage identification signals M4 between step 1402 and the V_port νπ] amplitude determined just after the step. In one embodiment, the manufacturer calculates the v teacher
Client’s Docket No.:CNTR2308I00-TW TT5s Docket No:0608-A41635-TW/Final /Joanne 49 200837547 t t V[l]的差值,並將其除以Ν·1以確定兩個相鄰中間電壓值 間的間距。在另一個實施例中,製造商選擇的中間的Ν-2 個電壓識別信號144的值之間甚至是沒有間隔的。在另外 的實施例中,所有的V[N]和V[l]間的電壓識別信號144 的值都被包含了。而對一些F值來說,V[N]和V[l]間的間 距可能不足以包含N個不同的電壓識別信號144的值。一 般情況下,對於不同的F來說,N的值是不同的。流程進 入到步驟1408。 在步驟1408,製造商確定中間的N-2個的可替換溫度 的值,在此溫度值下,微處理器可以穩定工作在頻率F,F 是與在步驟1406中確定的電壓識別信號144相對應的。在 一個實施例中,製造商計算相鄰的與T[N]和T[l]的值相對 應的可替換電壓的間隔’此間隔與其相對應的γ[Ν]和V[ 1 ] 間的間隔值成正比。在另外的實施例中,根據測試實驗, 溫度的間隔值並不是成比例的。在另一個實施例中,製造 商測試每一個中間替換溫度值來確定中間替換電壓,而不 I 是透過計算得到。流程進入到步驟1412. 在步驟1412’在步驟1402到14〇8確定的被稱作是^⑴ 和T[i]的電壓識別信號144及其對應的溫度值被包含進了 第1圖中的工作點數據122列表中。工作點數據122包含 了對應於母一個F值的表格。在這裏,索引是透過索引值“i,, 輸入進表格的,其中,當i=N時,表明了表格的入口為最 高工作溫度以及在步驟1402確定的與其對應的V[N]電壓 識別信號144;當i=l時,表明了表格的入口為在步驟14〇4Client's Docket No.: CNTR2308I00-TW TT5s Docket No: 0608-A41635-TW/Final /Joanne 49 200837547 tt V[l] difference and divide it by Ν·1 to determine between two adjacent intermediate voltage values Pitch. In another embodiment, the values of the intermediate Ν-2 voltage identification signals 144 selected by the manufacturer are even uninterrupted. In other embodiments, all of the values of voltage identification signal 144 between V[N] and V[l] are included. For some F values, the spacing between V[N] and V[l] may not be sufficient to contain the values of N different voltage identification signals 144. In general, the value of N is different for different Fs. The flow proceeds to step 1408. At step 1408, the manufacturer determines the value of the intermediate N-2 alternative temperatures at which the microprocessor can operate stably at frequency F, which is the voltage identification signal 144 determined in step 1406. corresponding. In one embodiment, the manufacturer calculates an interval of adjacent voltages corresponding to the values of T[N] and T[l] 'this interval is between its corresponding γ[Ν] and V[ 1 ] The interval value is proportional. In other embodiments, the temperature interval values are not proportional, according to test experiments. In another embodiment, the manufacturer tests each intermediate replacement temperature value to determine the intermediate replacement voltage, while I is calculated by calculation. The flow proceeds to step 1412. The voltage identification signals 144, referred to as ^(1) and T[i] determined at steps 1402 through 14〇8 at step 1412' and their corresponding temperature values are included in FIG. The work point data 122 is in the list. The work point data 122 contains a table corresponding to one F value of the parent. Here, the index is entered into the table by the index value "i,", where i=N, indicating that the entry of the table is the highest operating temperature and the corresponding V[N] voltage identification signal determined in step 1402. 144; when i=l, indicating that the entry of the form is in step 14〇4
Client’s Docket No.:CNTR2308I00-TW TT,s Docket No:0608-A41635-TW/Final /Joanne 50 200837547 ▲ 確定的值;當i在i到N之間時,表明了表格的入口為在 步驟1406和14〇8確定的中間值V[i]/T[i]。流程進入到步 驟 1414 。 在v驟1414,當微處理器1〇2重新啟動時,索引值被 初始化為N,因此,電壓及頻率控制電路104可以使微處 理為102工作在V[N]電壓下。流程進入到步驟1416。 在步驟1416,當工作在頻率F和電壓乂⑴時,微處理 為102監測當前的工作溫度134,而v⑴是在電壓識別控 、制電路126輸出一個電壓識別信號144後,第i圖中的穩 壓裔板組108相應輸出的電源電壓輸出信號142的值,電 壓識別信號144由在步驟1414初始化的索引值從工作點數 據122的表格中挑選出來的。流程進入到步驟1418。 在步驟1418,電壓及頻率控制電路1〇4判斷索引值是 否等於1。如果是等於1,流程進入到步驟1426,否則, 流程進入到步驟1422。 , 在步驟1422,電壓及頻率控制電路1〇4判斷當前溫度 V 134是否比索引值從工作點數據122的表格中挑選出來的 工作溫度Τ|>1]的值小。如果當前溫度134不比的值 小’流程進入到步驟1426 ;否則,流程進入到步驟1424。 在步驟1424,電壓及頻率控制電路輸出由索引值i減 1後從工作點數據122的表格中挑選出來的穩壓器模組1〇8 的電壓識別信號144的值,以降低電源電壓輸出信號142 到V[i-1]。同時,電壓及頻率控制電路1〇4將索引值丨減丄。 流程返回到步驟1416。Client's Docket No.: CNTR2308I00-TW TT,s Docket No:0608-A41635-TW/Final /Joanne 50 200837547 ▲ Determined value; when i is between i and N, the entry of the table is indicated in step 1406 and The intermediate value V[i]/T[i] determined by 14〇8. The flow proceeds to step 1414. At v1414, when microprocessor 1〇2 is restarted, the index value is initialized to N, so voltage and frequency control circuit 104 can cause microprocessing to operate at 102 at V[N] voltage. The flow proceeds to step 1416. At step 1416, when operating at frequency F and voltage 乂(1), micro-processing 102 monitors the current operating temperature 134, and v(1) is after voltage identification control circuit 126 outputs a voltage identification signal 144, in FIG. The voltage regulator output signal 142 is output from the table of the operating point data 122 by the index value initialized at step 1414. The flow proceeds to step 1418. At step 1418, the voltage and frequency control circuit 1-4 determines if the index value is equal to one. If it is equal to 1, the flow proceeds to step 1426, otherwise, the flow proceeds to step 1422. At step 1422, the voltage and frequency control circuit 1-4 determines whether the current temperature V 134 is smaller than the value of the operating temperature Τ|>1] from which the index value is selected from the table of the work point data 122. If the current temperature 134 is not smaller than the value, the flow proceeds to step 1426; otherwise, the flow proceeds to step 1424. At step 1424, the voltage and frequency control circuit outputs the value of the voltage identification signal 144 of the voltage regulator module 1 挑选 8 selected from the table of operating point data 122 after the index value i is decremented by one to reduce the power supply voltage output signal. 142 to V[i-1]. At the same time, the voltage and frequency control circuit 1〇4 reduces the index value by 丄. The flow returns to step 1416.
Client’s Docket No.:CNTR2308I00-TW TT^ Docket No:0608-A41635-TW/Final /Joanne 51 200837547 - 在步驟1426,電壓及頻率控制電路判斷索引值是否等 於N。如果是,流程返回到步驟1416 ;否則,流程進入到 步驟1428。 在步驟1428,電壓及頻率控制電路判斷當前溫度134 是否比索引值加1後從工作點數據122的表格中挑^出來 的工作溫度T[i+i]的值大。如果當前溫度134不比T[i+1] 的值大,流程返回到步驟1416 ;否則,流程進入到步驟 1432 〇 在步驟1432,電壓及頻率控制電路輸出由索引值加i 後從工作點數據122的表格中挑選出來的第1圖中的穩壓 器模組108的電壓識別信號144的值,以增加工作電壓電 源電壓輸出信號142到V[i+1]。同時,電壓及頻率控制電 路將索引值i加1。流程返回到步驟1416。 參照第15圖’這是微處理器1〇2根據第14圖中的實 施例而運行的圖像。圖中橫軸的引數是以伏特為單位的電 源電壓輸出信號142。圖中縱軸的引數是以GHz為單位的 工作核心時脈信號116。在第6圖的實施例中,匯流排時 脈頻率是200MHz,匯流排時脈倍數的範圍是從2倍到1〇 倍,這使得對應的核心時脈頻率範圍是從400MHz到 2.0GHz。而在第15圖中只有2.0GHz時的資料值。在第15 圖中有5個可能的工作點數值,即τ[1卜60QC、T[2]=70°C:、 T[3]—80 C、T[4]=90 C 以及 T[5]=l 00 C ’ 和與他們對應的 5 個工作電壓值 V[1]=0.972V、V[2]=1.004V、V[3]=1.036V、 V[4]=l.〇68V以及V[5]=l.l〇V。圖中有兩條電壓及頻率曲Client's Docket No.: CNTR2308I00-TW TT^ Docket No: 0608-A41635-TW/Final /Joanne 51 200837547 - At step 1426, the voltage and frequency control circuit determines if the index value is equal to N. If so, the flow returns to step 1416; otherwise, the flow proceeds to step 1428. At step 1428, the voltage and frequency control circuit determines whether the current temperature 134 is greater than the value of the operating temperature T[i+i] selected from the table of the operating point data 122 after the index value is incremented by one. If the current temperature 134 is not greater than the value of T[i+1], the flow returns to step 1416; otherwise, the flow proceeds to step 1432. In step 1432, the voltage and frequency control circuit outputs the index value plus i from the operating point data 122. The value of the voltage identification signal 144 of the voltage regulator module 108 in the first picture selected in the table is increased to increase the operating voltage supply voltage output signal 142 to V[i+1]. At the same time, the voltage and frequency control circuit increments the index value i by one. The flow returns to step 1416. Referring to Fig. 15, this is an image in which the microprocessor 1〇2 operates according to the embodiment in Fig. 14. The derivative of the horizontal axis in the figure is the power supply voltage output signal 142 in volts. The argument on the vertical axis is the working core clock signal 116 in GHz. In the embodiment of Fig. 6, the bus clock frequency is 200 MHz, and the bus multiplier range is from 2 times to 1 倍, which makes the corresponding core clock frequency range from 400 MHz to 2.0 GHz. In Fig. 15, there is only the data value at 2.0 GHz. In Figure 15, there are five possible operating point values, namely τ[1 BU 60QC, T[2]=70°C:, T[3]—80 C, T[4]=90 C and T[5 ]=l 00 C ' and their corresponding five operating voltage values V[1]=0.972V, V[2]=1.004V, V[3]=1.036V, V[4]=l.〇68V and V[5]=ll〇V. There are two voltage and frequency curves in the picture.
Client’s Docket No.:CNTR2308I00-TW TT^ Docket No:0608-A41635-TW/Final /Joanne 52 200837547 V ^ 線,一條是相應於最高工作溫度的,另外一條是相應於最 低工作溫度的。在第15圖的實施例中,當工作在2〇GHz, 1·IV時,如果電壓及頻率控制電路判斷工作溫度134低於 90°C,則電壓及頻率控制電路1〇4將電源電壓輸出信號142 的值彳之1.1V降低到ι·〇68ν;如果工作溫度134低於80°C, 則電壓及頻率控制電路104將電源電壓輸出信號142的值 降低到1.036V ;如果工作溫度134低於7〇〇c,則電壓及頻 $ 率控制電路104將電源電壓輸出信號142的值降低到 1.004V,如果工作溫度134低於6〇°c,則電壓及頻率控制 電路104將電源電壓輸出信號142的值降低到〇·972ν。相 反的’當工作在2.0GHz,0.972V時,如果電壓及頻率控制 電路104判斷工作溫度134高於7(rc,則電壓及頻率控制 電路104將電源電壓輸出信號142的值升高到1〇〇4v ;如 果工作溫度134高於80°C,則電壓及頻率控制電路1〇4將 電源電壓輸出信號142的值升高到1〇36v ;如果工作溫度 『 134尚於90°C,則電壓及頻率控制電路1〇4將電源電壓輸 出“號142的值升咼到ι·〇68ν;如果工作溫度134高於1〇〇 C,則電壓及頻率控制電路1〇4將電源電壓輸出信號142 的值升高到1.10V。如第15圖所示,根據第14圖的實施 例而運行的微處理器102其優點與第5圖實施例的優點相 類似。另外,第14圖的實施例與第5圖的實施例相比,當 工作溫度134低於T[i]的值,特別是工作在第5圖中的可 替換工作溫度不能達到的值時,此實施例可以透過提供在 較小範圍内向低一點的電源電壓輸出信號142的轉換而節Client's Docket No.: CNTR2308I00-TW TT^ Docket No: 0608-A41635-TW/Final /Joanne 52 200837547 V ^ line, one corresponding to the highest operating temperature and the other corresponding to the lowest operating temperature. In the embodiment of Fig. 15, when operating at 2 GHz, 1 · IV, if the voltage and frequency control circuit determines that the operating temperature 134 is lower than 90 ° C, the voltage and frequency control circuit 1 〇 4 outputs the power supply voltage. The signal 142 has a value of V1.1V reduced to ι·〇68ν; if the operating temperature 134 is lower than 80°C, the voltage and frequency control circuit 104 reduces the value of the supply voltage output signal 142 to 1.036V; if the operating temperature 134 is low At 7〇〇c, the voltage and frequency rate control circuit 104 reduces the value of the power supply voltage output signal 142 to 1.004V. If the operating temperature 134 is lower than 6〇°c, the voltage and frequency control circuit 104 outputs the power supply voltage. The value of signal 142 is reduced to 〇·972ν. Conversely, when operating at 2.0 GHz, 0.972 V, if the voltage and frequency control circuit 104 determines that the operating temperature 134 is higher than 7 (rc, the voltage and frequency control circuit 104 raises the value of the power supply voltage output signal 142 to 1 〇. 〇4v; if the operating temperature 134 is higher than 80 °C, the voltage and frequency control circuit 1〇4 raises the value of the power supply voltage output signal 142 to 1〇36v; if the operating temperature 134 is still at 90°C, the voltage And the frequency control circuit 1〇4 boosts the value of the power supply voltage output “No. 142 to ι·〇68ν; if the operating temperature 134 is higher than 1〇〇C, the voltage and frequency control circuit 1〇4 outputs the power supply voltage signal 142. The value is raised to 1.10 V. As shown in Fig. 15, the microprocessor 102 operating according to the embodiment of Fig. 14 has advantages similar to those of the embodiment of Fig. 5. In addition, the embodiment of Fig. 14 Compared with the embodiment of FIG. 5, when the operating temperature 134 is lower than the value of T[i], particularly the value that cannot be achieved by the alternative operating temperature in FIG. 5, this embodiment can be provided by Conversion to the lower power supply voltage output signal 142 in a small range
Client’s Docket No.:CNTR2308I00-TW TT5s Docket No:0608-A41635-TW/Final /Joanne 53 200837547 省附加的功率消耗。更進一步說,微處理器102的雙鎖相 迴路112的設計使得第14圖的實施例在相當頻繁的工作點 間轉換時,也不會有多餘的性能消耗,因為在轉換期間, 核心邏輯電路106的工作核心時脈信號116並不需要停止。 雖然本發明以及其物件、特徵和優點都已經做了詳細 的闡述,但是,本發明並不局限於這些實施例。例如,這 些實施例是從不同的工作頻率、電壓及工作溫度來說明 的’其他的實施例可能會使用一些不同的值。 雖然在本發明中有許多的實施例,但他們只是本發明 的方法的一些例子,並沒有局限性。任何本領域的普通技 術人員,在不脫離本發明的精神和範圍内,當可作些許的 更動與潤飾。例如,除了用硬體實現,如在cpu中&連接 與CPU ’微處理器’微控制器,數位信號處理器,核心處 理器,單晶片(SOC)系統或者是其他的設備,也可以用 軟體實現,比如電腦的可讀程式,可編程代碼,或者是任 意形式的指令’比如源、物件或者是機器語言,例如,儲 存於軟體的可用(如可讀)介質。這樣的軟體可以應用於, 比如是功能,構造,模型,類比,描述或者是對裝置或者 方法的測試。例如這種方法可以由—般的程式語言如C, C++,硬體描述語言(HDL)包括Veril〇g HDL,VHDL等, 或者是其他的可程式來實現。這樣的軟體能夠被配置 任何的已知電腦可用介質,如半導體,磁片,或者是光碟, 如CD-ROM,DVD-ROM。這些軟體也可以被當作電腦資 料信號配置在電腦可移動介質中,例如,載波或者是其他Client’s Docket No.: CNTR2308I00-TW TT5s Docket No: 0608-A41635-TW/Final /Joanne 53 200837547 Additional power consumption. Furthermore, the design of the dual phase-locked loop 112 of the microprocessor 102 is such that the embodiment of Figure 14 does not have excess performance overhead when switching between relatively frequent operating points because during the conversion, the core logic circuit The working core clock signal 116 of 106 does not need to be stopped. Although the invention and its objects, features and advantages have been described in detail, the invention is not limited to the embodiments. For example, these embodiments are illustrated from different operating frequencies, voltages, and operating temperatures. Other embodiments may use a number of different values. Although there are many embodiments in the present invention, they are only some examples of the method of the present invention and are not limited. Any person skilled in the art can make some changes and refinements without departing from the spirit and scope of the invention. For example, in addition to hardware implementation, such as in the cpu & connection with the CPU 'microprocessor' microcontroller, digital signal processor, core processor, single-chip (SOC) system or other equipment, can also be used Software implementations, such as computer readable programs, programmable code, or any form of instructions such as source, object, or machine language, such as available (eg, readable) media stored in software. Such software can be applied, for example, to functions, constructions, models, analogies, descriptions, or tests of devices or methods. For example, this method can be implemented by a general programming language such as C, C++, Hard Description Language (HDL) including Veril〇g HDL, VHDL, etc., or other programmable programs. Such software can be configured with any known computer usable medium such as a semiconductor, a magnetic sheet, or a compact disc such as a CD-ROM or a DVD-ROM. These softwares can also be configured as computer data signals on computer removable media, such as carrier waves or other
Client’s Docket No.:CNTR2308I00-TW TT^ Docket No:0608-A41635-TW/Final /Joanne 54 200837547 Λ' 的介質,包括數位的,光學的以及類比的介質。本發明的 實施例包含了一種方法,此方法是提供一個微處理器,透 過軟體來對微處理器的設計進行編程,然後將軟體當作是 一個電腦信號來透過網路傳輸。這裏的裝置和方法可能都 包含了知識產權,比如核心微處理器和積體電路的硬體變 換。另外,本發明的裝置和方法可以透過軟體和硬體相結 合來實現。 雖然本發明已以較佳實施例揭露如上,然其並非用以 ^ 限定本發明,任何所屬技術領域中具有通常知識者,在不 脫離本發明之精神和範圍内,當可作些許之更動與潤飾, 因此本發明之保護範圍當視後附之申請專利範圍所界定者 為準。 【圖式簡單說明】 第1圖為本發明的包含微處理器的電腦系統模組示意 圖; 第2圖為本發明將第1圖中的微處理器102用一種性 能優化的方法,從現在的P狀態或者是工作點,轉換到一 個新的P狀態或者是工作點的流程圖; 第3圖為本發明將第1圖中的微處理器102根據第2 圖中的實施例進行P狀態轉換時的圖像; 第4圖是微處理器在傳統方法下進行P狀態轉換時的 圖像; 第5圖為根據本發明,當微處理器102的工作溫度低 於某一溫度幅值,為了節省功率損耗,第1圖中的微處理Client’s Docket No.: CNTR2308I00-TW TT^ Docket No: 0608-A41635-TW/Final /Joanne 54 200837547 Λ' medium, including digital, optical and analog media. Embodiments of the present invention include a method of providing a microprocessor that programs the design of the microprocessor through software and then transmits the software as a computer signal for transmission over the network. The devices and methods here may include intellectual property, such as hardware transformations of core microprocessors and integrated circuits. Additionally, the apparatus and method of the present invention can be implemented by combining a soft body and a hard body. While the invention has been described above by way of a preferred embodiment, the invention is not intended to be construed as limiting the scope of the invention. The scope of protection of the present invention is therefore defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a computer system module including a microprocessor according to the present invention; FIG. 2 is a method for optimizing the performance of the microprocessor 102 of FIG. 1 according to the present invention, from the present P state is a working point, a flow chart for switching to a new P state or working point; FIG. 3 is a P state transition of the microprocessor 102 of FIG. 1 according to the embodiment of FIG. 2 according to the present invention. Figure 4 is an image of the microprocessor when the P state is switched under the conventional method; Fig. 5 is a diagram showing the operating temperature of the microprocessor 102 being lower than a certain temperature amplitude according to the present invention, in order to Save power loss, microprocessing in Figure 1
Client’s Docket No.:CNTR2308I00-TW TT^ Docket No:0608-A41635-TW/Final /Joanne 55 200837547 •器ι〇2減少工作電壓時的流程圖; 第6圖是第1圖中的微處理器102根據第5圖中的實 施例而運行的圖像; 、 第7圖疋根據本發明,當微處理器102的工作溫产低 於某了幅值時’第1圖中的微處理器102增加其性能^流 二根據第7圖中的實 一第9圖為本發明的一種可以使第1圖中的微處理器在 -個較的溫度範_動以作在最高性能或者最高性能 左右的方法, 第10,是第1圖中的微處理器102根據第9圖中的實 施例而動悲工作在最優化性能及特定的溫度範圍時的圖 像; 第11圖是TM2熱監控和自動熱保護裝置的運行圖像; 第12圖疋將本發明的第5、7以及9圖結合到一起的 實施例的圖像; 第13圖是根據本發明,產生第i圖中的微處理器1〇2 所包含的工作點的流程圖; 第14圖為根據另一個實施例,第i圖中的微處理器 102在工作溫度低於相應的低工作溫度閾值時,為了節省 功率損耗而降低工作電壓的流程圖; 第15圖是第1圖中的微處理器1〇2根據第14圖中的 實施例而運行的圖像。Client's Docket No.: CNTR2308I00-TW TT^ Docket No: 0608-A41635-TW/Final /Joanne 55 200837547 • Flow chart when ι〇2 reduces operating voltage; Figure 6 is microprocessor 102 in Figure 1. An image that operates according to the embodiment of FIG. 5; FIG. 7 illustrates an increase in the microprocessor 102 of FIG. 1 when the operating temperature of the microprocessor 102 is below a certain magnitude in accordance with the present invention. The performance of the second flow according to the ninth figure in Fig. 7 is a kind of invention which can make the microprocessor in Fig. 1 move at a higher temperature or the highest performance. The method, the tenth, is an image in which the microprocessor 102 in FIG. 1 operates in an optimized performance and a specific temperature range according to the embodiment in FIG. 9; FIG. 11 is a TM2 thermal monitoring and automatic An operational image of the thermal protection device; FIG. 12 is an image of an embodiment in which the fifth, seventh and ninth embodiments of the present invention are combined; and FIG. 13 is a diagram showing the microprocessor of the first embodiment according to the present invention Flowchart of a work point included in 1〇2; Figure 14 is a micro-section in the i-th image according to another embodiment FIG. 15 is a flow chart of reducing the operating voltage in order to save power loss when the operating temperature is lower than the corresponding low operating temperature threshold; FIG. 15 is the microprocessor 1 in FIG. 1 according to the embodiment in FIG. And the image is running.
Clienfs Docket No.:CNTR2308I00-TW TT’s Docket No:0608-A41635-TW/Final /Joanne 56 200837547 ' 【主要元件符號說明】 100 電腦系統 102 微處理器 104 電壓及頻率控制電路 106 核心邏輯電路 108 穩壓器模組 112A、112B :鎖相迴路 114 選擇器 116 核心時脈信號 118 鎖相迴路選擇信號 122 工作點數據 124 偏壓設定值 126 電壓識別控制電路 128 倍頻控制電路 132 溫度感測器 134 工作溫度 136 預先確定的電壓識別信號 138 預先確定的倍頻信號 142 電源電壓輸出信號 144 電壓識別信號 146A :倍數信號 146B :倍數信號 148 :匯流排時脈信號 152A :時脈信號Clienfs Docket No.: CNTR2308I00-TW TT's Docket No:0608-A41635-TW/Final /Joanne 56 200837547 ' [Main component symbol description] 100 Computer system 102 Microprocessor 104 Voltage and frequency control circuit 106 Core logic circuit 108 Voltage regulation Module 112A, 112B: phase-locked loop 114 selector 116 core clock signal 118 phase-locked loop selection signal 122 operating point data 124 bias setting value 126 voltage identification control circuit 128 frequency multiplication control circuit 132 temperature sensor 134 operation Temperature 136 Predetermined voltage identification signal 138 Predetermined multiplication signal 142 Power supply voltage output signal 144 Voltage identification signal 146A: Multiple signal 146B: Multiple signal 148: Bus clock signal 152A: Clock signal
Clienfs Docket No.:CNTR2308I00-TW TT5s Docket No:0608-A41635-TW/Final /Joanne 57 200837547 152B :時脈信號 154A :倍數控制電路的頻率鎖定信號 154B :倍數控制電路的頻率鎖定信號 156 :穩壓器模組的電壓鎖定信號 158 :可編程暫存器 162 ·溫度範圍 1312、 202〜242、502〜524、704〜726、902〜928、1302 1402〜1432 :步驟。 r'Clienfs Docket No.: CNTR2308I00-TW TT5s Docket No: 0608-A41635-TW/Final /Joanne 57 200837547 152B: Clock signal 154A: Frequency lock signal of multiple control circuit 154B: Frequency lock signal of multiple control circuit 156: Voltage regulation Voltage lock signal 158 of the module: programmable register 162. Temperature range 1312, 202~242, 502~524, 704~726, 902~928, 1302 1402~1432: steps. r'
Client’s Docket No.:CNTR2308I00-TW TT,s Docket No:0608-A41635-TW/Final /Joanne 58Client’s Docket No.: CNTR2308I00-TW TT, s Docket No: 0608-A41635-TW/Final /Joanne 58
Claims (1)
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US89230007P | 2007-03-01 | 2007-03-01 | |
US89230307P | 2007-03-01 | 2007-03-01 | |
US89230607P | 2007-03-01 | 2007-03-01 | |
US89254807P | 2007-03-02 | 2007-03-02 | |
US11/761,044 US7698583B2 (en) | 2002-10-03 | 2007-06-11 | Microprocessor capable of dynamically reducing its power consumption in response to varying operating temperature |
US11/761,076 US7814350B2 (en) | 2002-10-03 | 2007-06-11 | Microprocessor with improved thermal monitoring and protection mechanism |
US11/761,096 US7774627B2 (en) | 2002-10-03 | 2007-06-11 | Microprocessor capable of dynamically increasing its performance in response to varying operating temperature |
US11/761,056 US7770042B2 (en) | 2002-10-03 | 2007-06-11 | Microprocessor with improved performance during P-state transitions |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200837547A true TW200837547A (en) | 2008-09-16 |
TWI388974B TWI388974B (en) | 2013-03-11 |
Family
ID=44820245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW097106819A TWI388974B (en) | 2007-03-01 | 2008-02-27 | Microprocessor capable of dynamically reducing its power consumption in response to varying operating temperature |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI388974B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI398757B (en) * | 2008-10-03 | 2013-06-11 | Hon Hai Prec Ind Co Ltd | Electronic device and power connection module thereof |
US9235243B2 (en) | 2012-07-04 | 2016-01-12 | Acer Incorporated | Thermal profile optimization techniques |
US9501135B2 (en) | 2011-03-11 | 2016-11-22 | Intel Corporation | Dynamic core selection for heterogeneous multi-core systems |
TWI619012B (en) * | 2012-01-04 | 2018-03-21 | 三星電子股份有限公司 | Temperature management circuit, system on chip including the same and method of managing temperature |
TWI628537B (en) * | 2011-03-21 | 2018-07-01 | 英特爾股份有限公司 | Managing power consumption in a multi-core processor |
-
2008
- 2008-02-27 TW TW097106819A patent/TWI388974B/en active
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI398757B (en) * | 2008-10-03 | 2013-06-11 | Hon Hai Prec Ind Co Ltd | Electronic device and power connection module thereof |
US9501135B2 (en) | 2011-03-11 | 2016-11-22 | Intel Corporation | Dynamic core selection for heterogeneous multi-core systems |
US10437319B2 (en) | 2011-03-11 | 2019-10-08 | Intel Corporation | Dynamic core selection for heterogeneous multi-core systems |
US10437318B2 (en) | 2011-03-11 | 2019-10-08 | Intel Corporation | Dynamic core selection for heterogeneous multi-core systems |
US10534424B2 (en) | 2011-03-11 | 2020-01-14 | Intel Corporation | Dynamic core selection for heterogeneous multi-core systems |
US11755099B2 (en) | 2011-03-11 | 2023-09-12 | Intel Corporation | Dynamic core selection for heterogeneous multi-core systems |
TWI628537B (en) * | 2011-03-21 | 2018-07-01 | 英特爾股份有限公司 | Managing power consumption in a multi-core processor |
TWI619012B (en) * | 2012-01-04 | 2018-03-21 | 三星電子股份有限公司 | Temperature management circuit, system on chip including the same and method of managing temperature |
US9235243B2 (en) | 2012-07-04 | 2016-01-12 | Acer Incorporated | Thermal profile optimization techniques |
Also Published As
Publication number | Publication date |
---|---|
TWI388974B (en) | 2013-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10775863B2 (en) | Methods and apparatuses for controlling the temperature of a data processing system | |
CN101241392B (en) | Microprocessor capable of dynamically reducing its power consumption in response to varying operating temperature and the method | |
US8578189B2 (en) | Methods and apparatuses for dynamic power control | |
US7529948B2 (en) | Methods and apparatuses for dynamic power estimation | |
Carter et al. | Designing energy-efficient servers and data centers | |
US8412962B2 (en) | Microprocessor with improved thermal monitoring and protection mechanism | |
US7698583B2 (en) | Microprocessor capable of dynamically reducing its power consumption in response to varying operating temperature | |
EP1965287B1 (en) | Microprocessor capable of dynamically increasing its performance in response to varying operating temperature | |
TWI420393B (en) | Methods, systems and apparatus to improve turbo performance for events handling | |
Barroso et al. | The case for energy-proportional computing | |
US8942932B2 (en) | Determining transistor leakage for an integrated circuit | |
US7770042B2 (en) | Microprocessor with improved performance during P-state transitions | |
CN101910975A (en) | The forced idle of data handling system | |
WO2009120932A2 (en) | Method and apparatus for dynamic power management control using parallel bus management protocols | |
TW200837547A (en) | Microprocessor capable of dynamically reducing its power consumption in response to varying operating temperature | |
TW202303331A (en) | Processor-based system employing configurable local frequency throttling management to manage power demand and consumption, and related methods | |
EP1965286B1 (en) | Microprocessor with improved thermal monitoring and protection mechanism |