玖、發明說明: L發明所屬技術領域3 發明領域 本發明係一種使用一配適裝置之探針裝置。 發明背景 積體電路元件的測試可分辨出有瑕疵的元件,亦可提 供有關製程中之良率或問題的資訊。最好能在製程中儘早 地進行測試,以避免不良元件的浪費處理,並能在一可修 正的問題影響多數批次之前來辨認出製程的問題。晶圓檢 測尤其犯谷δ午各積體電路元件在由一晶圓分開之前先行電 測試該各元件。被認為有瑕疵或不良的元件可在封裝之前 被剔除。又,對其製程的修正或調整亦能馬上進行而不會 有更多的延誤,此係若該等元件僅在被封裝之後才來測試 時將會造成者。 第1圖示出一習知的測試設備丨00可供測試被製成在一 晶圓110上的積體電路元件112。該晶圓110係為一半導體晶 圓而包含有許多的元件112。欲測試時,一探針或其它的定 位系統(未示出)會移動該晶圓11〇或一測試頭13〇,以使一測 試板120對準當時所要測試的元件112。該測試板12〇上列設 計多銷針124等匹配於各元件112上的電端子114之圖案。當 該測試板120適當地對準所擇元件112時,銷針124和端子 114會連接來提供該元件112與測試板12〇之間的電連接。該 等銷針124、測試板120,及測試頭13〇等將可導通該元件112 200425374 與測試裝置140之間的電訊號。 測試設備1 〇 〇 —般會被設計成可避免或儘量減少對該 等元件112的損害,尤其是在銷針124接觸端子114處。於第 1圖中,各銷針124會被懸設來提供可撓性,以限制其施加 5 於端子114上之力。某些其它類似的設備會使用彈壓銷針的 設計,俾當測試時能緩衝或限制施加於該等元件112上的 力。 該等銷針124可撓曲之一缺點係容易對準失誤。例如, 當一鎖針124在清潔或使用時被曲彎,則該銷針124將會時 10 常不能與目標端子114形成良好的電接觸,而致使測試失 敗。又,該晶圓110與測試板120或銷針124的熱性質差異, 亦會使銷針124能精準匹配該等端子114圖案的溫度範圍受 限。尤其是,該等銷針124相對於該元件112的尺寸較長, 故當溫度變化時其長度亦會成正比地改變。 15 該測試在端子I14上造成的損害或磨損即使當該等銷 針124能夠順應匹配時亦會是一個問題,尤其當該元件112 之設计係用於倒裝晶片封裝時,該等損害更是一大問題。 第2圖不出一倒裝晶片封裝體2〇〇,其包含一晶粒及一互 接基板220。該晶粒21〇含有一元件112係已由一例如第工圖 20的晶圓110分開。倒裝晶片的封裝會將金屬凸體(其乃形成 兀件112上的高凸電端子114)固接於基板220上的接墊 2 ^互接基板220則會提供晶粒210和外部端子222之間 的電連接。 在封衣製私之4,接觸端子114的尖銳測試銷針124等 6 :將凹痕2丨6留在蠕子2丨4上,特別是當該等端子的接觸 部份係為較軟的金屬例如焊劑時。該等凹痕216會滞陷污染 物,氧化物或助焊劑,其會弱化端子114與接墊214之間的 接點,而造成較不可靠的封裝體。 h在倒裝晶片封裝體中之另一潛在的問題係由端子的不 句性所產生者。具言之,為能將端子114牢靠地固接於接 藝214 ’則该等端子114與接墊214的頂部應要平齊於一對應 讀封裝基板的平面上。第2圖示出一問題,即有一端子114, 並未延伸至或與-對應接墊2M形成可靠的連接。該等端子 114的製程-般係為該異常端子114,的成因,但鎖針124在 測試時亦會磨損所擇的端子114,而進一步地破壞其平面 性,故將使可靠的封裝更為困難。 C 明内 3 發明概要 依據本發明之 恶樣,一檢測系統會使用一種半導 探針裝置,其係使用某些與受測元件相同的製程和材料來 製成者。具言之,該半導體探針裝置可包含_半導體 及接觸塾⑽使用與在受測元件上形成接觸墊之蝴曰阻罩 來製設在該晶粒上。該等接觸塾可作為探針梢,或 晶圓凸體製程亦可在該半導體探針裝置上來製成探二°。、 對該等探針梢的電接點可使用導電線路,、線結法,帶。 或其它用來製造半導體科的習知技術而來形成:^ 或設計改Μ,姉針梢圖射破為料铸體=所 需的尺寸,因為用來形成受.件的半導體製程亦可用來 二二/木::衣置’包括該等探針梢。使用含有相同或類似 :=:=針裝置,將—針裝 产㈣。 可容其測試涵蓋-較大的溫 蛛h ’疋貫施例係為用來測試-元件的檢測系 r針/檢測系統中的探針包含—半導體晶粒,其上設有 7牵料探針梢可被電連接於—測試器,且會被排列 ΐ體=:於該元件上的端子圖案。在該探針中的半 件二1 受測元件相同的材料來製成,俾使該元 探針_配°_試器對探針梢的電連接能經由 :晶粒頂面上的線路來達成,或藉貫穿該晶粒的導電 〉孔而來完成。該探針可選擇地包含—基板或印刷電路 ’、口衣4半導體晶粒’且在—構態巾’該探針總成 可匕括%设有或未附設基板的半導體晶粒,而套入一探 針卡的插麵。此可容該探針在受損或要測試-不同類型 的元件時能被卸除及更換。 本發明之另-實施例係為用來電測試—元件的探針 幻木針卡包含-第一基板可用來安裝在測試設備上; 夕座13又在第基板上,及一探針裝在該插座中。該探針 係可卸除地裝該插座内,而具有探針梢等設在—半導體晶 的頂面上’並排到成—圖案匹配於該元件上的端子圖案。 本發明的又另-實施例係為一種用來電測試一半導體 凡件的製造方法。該方法包含:在—半導體晶粒上製成探 針梢並使之形成-圖案匹配於該半導體元件上的端子圖 案 接結構以使該等探針梢電連接於測試設 備。衣成料探針梢的步驟包括錢铸體 觸:等’然後蝴接觸塾的表面上形成導二體:該互 接結構可被製成將該等探針梢設在該半導體晶粒的頂面 上,或將導電通孔㈣轉體晶粒的71面貫通 圖式簡單說明 一 第1圖不出用來檢測晶圓的習知測試設備。 第2圖示出一習知的倒奘曰Η 词衣曰曰片封裝體,其具有瑕疵是由 於測試和不均一的焊接凸體所造成者。 第3圖不出本發明之一實施例的晶圓檢測設備 第4Α圖示出一組金屬凸體在晶圓檢測之前的狀態。 第4B、4C、4D圖示出第从圖中的金屬凸體在使用本發 明各變化實施例的探針梢來作晶圓檢測之後的狀態。 第5A及沾圖示出在本發明—實施例的 之前及之後,受測元件的凸體高度分佈圖。 圓檢測程序 第6A與6B圖為本發明—實施例之探針卡的立體圖,其 具有整合的金屬設在接墊探針上。 第7A、7B及7C圖示出本發明—實施例之探針卡的立體 圖,其中探針梢係設在可更換的探針總成上。 第8A及8B圖示出-探針卡可在—溫度範圍内保持對 準一受測元件。 第9A、9B、9C、9D、9E圖係示出使用本發明各變化 實施例之半導體探針裝置的檢測系統。 在各圖中之相同標號係指相同或類似的構件。 C實冷式3 較佳實施例之詳細說明 依據本發明之一態樣,一種用來電測試製設在一晶圓 上之元件的晶圓檢測方法亦會調修該元件上的端子,以改 '^亥等端子r%度的均—性。故良好的元件在由該晶圓分開 4會王較佳的狀態,而能在一倒裝晶片封裝體中可靠地連 接於一互接基板,或當該晶片被組裝於一“ ’’(晶片設於板上)的裝置中時,能固接於一電路板。該晶圓 探針可使用一探針卡,其係大致類似於該元件所要附設之 卩刷笔路板或互接基板的全部或一部份。或者,該晶圓 探針能使用一半導體探針裝置,其係類似於該受測元件。 在該探針卡或裝置上的探針梢可為扁平的接觸墊或凸體 專,其係為该互接基板的正常電接觸結構物。或者,具有 所需形狀與尺寸的探針梢亦可被設在該探針卡或裝置上, 以使該等元件上的金屬凸體能造成所需的變形。 第3圖係為本發明一實施例之測試系統3〇〇的方塊圖。 該測試系統300包含一自動測試設備(ATE)3l〇,一測試頭 320, 一探針卡wo含有墊上金屬(M〇p)的探針梢34〇等,一 曰曰圓盤3 50,及一檢測枱360。該糸統300會電測試被製設在 一晶圓110的各元件112,且在過程中亦會調整各元件112的 端子,來改善各端子114的平面性。 該等元件112可為任何類型的元件,包括但不限於記憶 體&制器、處理器、特定用途的積體電路(Aye),或任 何其它種類的ic或個別的元件。至於端子114,該等元件可 具有金屬凸體等以—高度凸出於晶HUH)的頂面上,該高度 係足夠用來倒I晶片封裝或固接於—印刷電路板。針對目 前的倒裝晶片封裝製程,該等端子m-般會有約60至 700μιη之間的平均高度,而典型的平均高度約為 ΙΟΟμηι〇 該 各端子114可例如為一焊球,或一複合結構而含有多數金屬 層,譬如堆疊的焊球,包覆-焊劑層,-焊球,-金層, -金柄的銅或其它金屬柱。或者,該端子u4亦可為接塾, 而旎使用線結或某些其它封裝技術來被電連接。 當要進行電測試在晶圓! 1〇上之一選定元件i 12的檢測 操作時,一探針卡330會被裝在測試頭32〇上,該探針卡設 有MOP棟針340等會形成一圖案而匹配於一元件丨12上的端 子114圖案。MOP探針340可為金屬探針而直接設在探針卡 330上,或設在一附接於探針卡33〇之分開的印刷電路板或 互接基板上,或設在一電連接於探針卡33〇的半導體探針裝 置上。該晶圓110典型係由矽(Si)或其它半導體材料製成, 將會被放在該晶圓盤350上。檢測枱360會操作來定位及定 向ό亥0S圓盤3 5 0,俾使所擇元件1 1 2的端子能對準]yj〇p探針 340 〇 僅為舉例,以下將說明一元件112在其端子114含有金 屬凸體而需要調整來改善平坦性時的測試過程。如專業人 士所知,多個元件者有需要亦可同時地測試,且可在該等 元件上以其它類型的端子或不改變端子來進行測試。在該 測試例過程中,檢測枱360會將晶圓盤350驅動升高,直到 被對準元件112上的端子114與MOP探針340電接觸,且該等 200425374 MOP探針340開始非彈性地變形該等端子114為止。嗣ate 310會經由測試頭320和探針卡330將電輸入訊號送至端子 114,並測量由所擇元件112產生的輸出訊號,來判斷該元 件112疋否可操作並具有所需的功能。 5 ATE 310和檢測枱360係為標準的測試設備,而可由各 供應商來購付’包括AgilentTechnologies公司,Teradyne公 司,及LTX公司等。ate 310通常會依據元件112的類型來 以習知方式進行元件1丨2的電測試。可控制該晶圓丨⑺相對 於MOP探針340之定位的檢測枱36〇,最好係能夠測量該晶 10圓110頂面與探針卡330之間的距離,或能精確地控制該晶 圓110最初與探針卡330接觸之後向上的移動量。或者,該 探針卡330能被移動來控制該晶圓u〇的相對位置。當測試 時該晶圓110頂面與MOP探針340之間的理想距離,將取決 於該晶圓110表面上之端子114的高度,如後所詳述。 15 依據本發明之一態樣,在探針卡330上的MOP探針340 僅賦具有限的順應性而在檢測時能促進端子114的變形。該 探針卡330可例如為一具有或不具有凸體的互接基板,其可 適用於一含有一被封裴元件112的倒裝晶片封裝體中。該互 接基板典型係由一有機材料製成,例如聚醯胺或其它絕緣 2〇材料,並包含導電線路能將該互接基板一面上的凸體或接 觸墊電連接於該基板相反面上的接觸墊及/或球柵陣列 (BGA)。或者,MOP探針340亦可被設在一電連接於探針卡 330的印刷電路板、互接基板、或半導體探針裝置上。M〇p 棟針340會接觸受電測試之元件112的端子114,且能施加足 12 200425374 夠的壓力來提供良好的電連接,並進一步造成端子114的變 形。 如上所述的探針卡330與MOP探針340可為一同質/整 合的結構或為可分開的元件。測試頭為一般的標準裝置, 5且探針卡330的基部可依據適當的標準來設計再固接於測 忒頭320。但’在本發明的所示實施例中,該等M〇p探針34〇 可被設在一個別的基板、裝置或總成上,而被附設如該探 針卡330之一可卸除部份。此乃可使用設有不同M〇p探針 340的採針卡330來測試不同的元件。一具有可更換之Mop 1〇探針340的探針卡330會具有能夠迅速更換損壞之探針梢的 優點,因此ATE 310的停俥時間會減至最少。 該探針卡330能被剛性或彈性地安裝在測試頭32〇,俾 使該探針卡330整體賦具一有限的順變性。其順變量的範圍 可由無順變或剛性絲的〇至一彈性安裝的大約15mils或更 15多。當檢測時,該等元件端子114的所需變形或平面化,如 後所述,大致係為一固定或順變安裝,或一順變安裝的最 大移行距離,或在一順變安裝中位於測試頭32〇與探針卡 330間之彈簣或可壓縮構件的數目,及該等可壓縮構件之彈 性常數或模數等之控制選擇。 20 該等M0P探針340係可使用印刷電路板技術或元件凸 點法來製成,而具有一優點係可容易構製來匹配一特定元 件或多個元件以便平行測試。相反地,一具有懸桿或彈壓 探針的探針卡典型必須大於該元件,以容納該等探針的尺 寸,而要安排該等探針匹配於一或多個元件將會較複雜。 13 200425374 硬實而無順變性MOP探針340的另一優點係,當相較於 使用在習知檢測設備中的針式、彈簧式或懸桿式探針時, 它們會較為耐用。故MOP探針340能保持正確的對準,而不 需要調整,亦無撓曲之虞。MOP探針340亦能例如以一刷子 5或其它機械式清潔技術來清理,而不會損壞該等探針或使 其對準失誤。 MOP探針340亦能具有較大的平坦接觸區,乃如後所詳 述。該等平坦接觸區除了在使用與清潔時較不會受損之 外,亦不會具有突出物或尖銳點等來夾帶微粒。因此, 10探針340在測試時即使長久使用之後且未經清理時,亦能對 5亥元件、纟k績提供低接觸阻抗。 第4A圖示出一被製設在一基板41〇上之元件伽的一部 份。該元件400包含凸體42〇及422等,其可為焊球或盆它如 同電端子的導電結構物。最理想是,所有的凸體42〇師2 15皆能在基材410表面上凸出相同的高度H,但凸體420和422 I能會遭受製造變異,而使某些凸體奶與標準高度Η產生 :是㈣。若有任何凸體似的差距ζι太大,則當倒轉晶片 :、接% ’將會產生—脆弱或不良的接點,如前於第2圖中所 20 弟圆不出_呈 , 吳有尖銳且硬質的探針梢440之探針卡 430田吳π件上的凸體和422形成接觸時 凹該等凸體420。具言之,當-探針胸運行一足夠的; f來電接觸—較小的凸體422時,其它的探針梢_會馨入 較大的凸細中’而造成細窄的凹痕奶。如此形成於較 14 200425374 ίο 15 第4C圖示出―系統包含—本發明之實施例的探針卡 432 ’其具有平坦的探針梢442。平探針梢術最好具有一寬 度至少為凸體420與422直徑的一半。在本發明之一實施例 卜該探針卡432係為-印刷電路板,而探針梢442係為在 該印刷電路板之-表面上的接觸墊或金屬線路。在本發明 的另-實_中,料探針梢442係為—半導體探針裝置上 的接觸墊而形成-圖案匹配於受測試树上的凸體物與 422的圖案。該探針梢442應由當施加可使元件端子物與 422等非彈性雙形之力時,其能避免非彈性變形的金屬來製 f。當該元件端子與422包含—可延展材料例如焊料 時,則一諸如銅的材料即可適用於該等探針梢442。 20 大凸體420中的凹痕425將會帶陷污染物,而弱化對較大凸 體420的電連接。此外’該等尖銳的探針梢似幾乎不能改 善該等凸體420與422的高度不一致性, 一 门厌个双性,因此該等凸體420與 422之原本局度差異仍會在^__倒骄曰μ |, W曰在倒衣日日片封裝體或固設於印 刷電路板的晶粒中,造成弱化或不良的電接觸。 第4C圖中示出該等探針梢442係與探針卡432的表面平 齊’但探針梢442亦可凸出探針卡432的表面,或甚至相對 凹入探針卡432的表面。但,探針卡432應要可使探針梢⑷ 的底4此達到與晶圓4〇〇頂面所需的間隔。 當使用探針卡432來進行檢測操作時,一檢測枱首先會 驅動晶圓410及/或探針卡432,而使探針梢构的底部接觸 至少某些對應的凸體420,而晶圓410的頂面會與探針梢糾2 的底部有Η的距離。該檢測枱會進一步驅動晶圓41〇及/或 15 探針卡432—超移距離Z2,使兩者更為靠近 。此過程將會壓 平高度為Η或較高的凸體420,及至少高度在H2(H2 = H_z2) 的凸體422等。如此形成的變形凸體似和426等會更一致地 成為相同的高度H2。故該等凸體似與物的頂部會比原來 5的凸體42G與422具有更佳的平面性,而此較㈣平面性將 能加強在一倒裝晶片封裝體或-含有該探針裝置之晶片設 在板上構件的互接點整體牢固性。 在本發明之-貫施例中,該探針卡432可如同一互接基 板(如第2圖中的互接基板22〇),其在測試後會被使用於該元 〇件的倒I晶片封裝體。而探針梢442則可如同接觸墊而會被 焊接於凸體424與4料,例如,#在將該元件 電連接於一 倒衣曰曰片封裝體之互接基板的習知重流操作時。或者,該 才木針卡432可包含-半導體探針裝置,其係相同於該受測元 件,或其至少具有一接觸塾圖案匹配於受測元件者。 15〗該超行輯22通常必須至少充分足夠來在各端子似 ’、26形成低接觸阻抗,以供該元件的電測試。即使一很 =的,移距離Z2(例如供電測試所需之最小超移)通常亦會 w成取大凸體的平坦化,而改善該等凸體的整體平面性, 匕4于月bi曰進所造成之倒裝晶片封裝體各互接點的牢固 20性。而較大量的超移可提供更大的平面性改善,直到該超 移距離Z2能令所有的凸體與422等皆達成某些平坦化為 ^。在該各凸體42〇與422至少部份平坦化時,料凸體似 與426之平面性的改變乃取決於探針梢442之平面性和順應 性的變異。 、〜 16 200425374 第5A圖示出该等凸體高度在檢測之前和檢驗之後的分 佈圖510和520。於本例中,其製程所造成的凸體額定高度 和寬度皆約為90μηι,但會有一些差異而使少數凸體高至 105μηι或低於75μιη。在本例的檢測過程中,將會驅近該晶 5圓與探針卡,而使晶圓與探針梢底部的平均間距成為約 80μηι。當該探針卡被抽出時,該分佈曲線52〇會包含較高 及較短於80μιη的凸體,因為其有容差,且較短的端子422 僅會作彈性變形。 第5B圖示出另一例的凸體高度在檢測前及檢測後的分 10佈曲線530與540。在檢測操作之前,該等凸體的平均高度 接近88μΠ1,而最短的凸體高度約為82μιη。在第5B圖之例 中’該檢測操作會驅動該晶圓與探針卡,直到該晶圓與探 針梢底部之間的平均間距小於檢測前的最短凸體高度為 止。結果,當該探針卡被抽出時,所有的凸體之高度皆會 15短如檢測珂之分佈曲線530的最小凸體高度,或比它更短。 故分佈曲線540會包含更短的凸體高度,但其會比分佈 曲線530更乍甚多’此顯示在檢測之後,該等凸體會具有改 善的平面性。 在檢測時所用的超移距離Ζ2亦需要限制以免損壞該元 2〇件’因為㈣猶與422等之I缩會在其面下的元件41〇部份 上造成破壞應力。所造成的應力之量通常係取決於超移距 離Ζ2及凸體42G的結構。凸體物與422係由可延展材料製 成,例如錯類或易炫焊劑,其能非彈性變形而不會造成應 力來損壞下層之典型半導體元件結構。含有較低延展性的 17 在造成損壞 、的超移距離 ; 或較硬質的結構物例如鋼柱之凸體, =層結構的風險變得太大之前,僅能容許較d 5量因素俜;/平坦化操作來選擇超移距離Z2之另-考 所、^亥寻凸體的所需變形廓型。比能形成良好電接觸 平!化超移距離,會在凸體424與426的頂面上提供更 上時,大的平坦面積。要將該元件固接於-互接基板 的接舖ί坏劑凸體頂部的平坦區域會被移來與互接基板上 10焊南! 3戈凸體接觸。蜗一重流程序會至少部份地液化該 球i以ί各平坦化的焊料凸體會傾向於將其本身變形成一 過程Γΐ量減少表面張力。故該等平坦化的焊球在該重流 " 會自然地朝向互接的晶圓延伸。 扭4丨、、凸粗420與422頂部在檢測時的調整並不僅限於平 15等凸體的頂面。該等凸體42G與422亦可被印鑄成任 1可所需 ^ 444 ^ 。弟4D圖乃示出一例,該探針卡434具有探針梢 押伸凸出操針卡434的表面上,且小於凸體420的直 /探針梢444可例如為約5〇μηιι,而凸體42〇的直徑約 有Ομιη。该等探針梢州可使用_财凸體的互接基板或 半導體元件作為該探針卡434而來形成。 §在檢測過程時,探針梢444會在較小的凸體426上造 成一平坦化的頂面,而該凸體426之平坦化區域係小於探針 梢444的面積。但該探針梢444會在較大的凸體428上造成四 fe的頂面。當所造成的凹穴不會太窄或太深而足以滯納污 染物例如氧化物或焊接助劑時,該等凹陷表面是可以接受 18 其x等凹在封裝製程中有助於該元件與-凸體互接 :反的對準。㈣由較佳的鮮及在重流過程中該等 焊球的,財焊魏結的牢隨將能增強。/ 如前所述,在第3圖的測試設備3⑻中,_具有本 之棟針梢的探針卡係可為-含有該等探針梢的單-整體結 構’或為-複合結構其巾包含該#探針梢的—部份能被 易地卸除及更換。 弟6A圖不出本發明一實施例的一體探針卡_。該探針 卡_包含一基板610,導電線路62〇,及探針梢63〇等。兮 1〇基板610可為一印刷電路板,係由一絕緣材料所製成,& 貫設該等導電線路620。如圖所示,該等導電線路62〇會將 $針梢㈣電連減觀_,其會導至錄板⑽連結於一 抓針頭之-面上的電觸點(未示出)。該等探針梢㈣如第紐 圖所洋不,可被小心地製設成在導電線路62〇之接塾部上的 、,頁至屬凸體或短柱。或者’該等導電線路㈣的接墊部份 亦可幵/成如上所述的楝針梢。在任一情況下,該等探針梢 白會提供平坦的非順變表面,其在當晶圓檢測時能被用來 改吾該等元件端子的平面性。 該—體的探針卡600會有一優點,即受測元件與探針頭 2〇 (例如探針梢630、導電線路620、通孔640等)之間的連接可 破取佳化來提供最少的阻抗,此對RF電路或高頻測試甚為 重要。但,被固定於基板610上的探針梢63〇僅能被用來測 試一具有與探針梢630之圖案匹配的端子之元件。當該測試 設備開始要測試另一種元件或若探針梢63〇損壞時,則該整 19 200425374 個探針卡600即需被更換。 第7A圖示出本發明一實施例的探針卡7〇〇,其能快速地 更換探針梢來儘量減少測試設備的停俥時間。該探針卡7〇〇 包含一第一基板710, 一插座750,及一第二基板76〇。該基 5板760可套入插座750中,並具有固定的探針梢730。插座750 係設在基板710上,而當基板76〇套入插座75〇内時,在基板 710中的導電線路720等會將基板76〇電連接於通孔74Q,其 會導至測試頭的電接點(未示出)。因此,探針梢73〇會經由 基板760、插座750、導電線路72〇、通孔74〇,及該基板71〇 10背面上的電接點(未示出)而電連接於該測試設備。 省各基板710與760可使用傳統的印刷電路技術來製 成且在本發明之一貫施例中,該基板76〇係類同於一使用 在文測7G件之倒裝晶片封裝體内的互接基板。該插座75〇可 為任何類型的插座,而能容裝或提供對基板760的電接點。 15在第7B圖所示之例中,該插座75〇在各導電線路72〇的端部 皆含有接墊725,其會匹配並電連接於基板760底面上的端 子(未示出)。一樞轉夾會將該基板760固持於定位。 第7C圖示出另一變化實施例的基板765可被夾固於插 座75〇中。該基板765不同於基板76〇之處在於該基板%含 2〇有一半導體裝置770,其上設有探針梢73〇。該半導體裝置 7%則又被設在-印刷電路板谓上,其可套入插座75〇内, I具有端子(未不出)會觸接各線路72〇末端的接墊。 此探針卡7_優點係、利用它則基板76(3或765將能被 更換而基板710則可保持固裝於測試設備上。基板鳩或 20 200425374 765可例如被釋放再由插座750中取出,而不需要除炻或任 何複雜的拆解,故基板760或765在當測試設備要改成測二式 具有不同端子圖案(例如晶粒縮小)的元件時,或去俨針梢 730損壞時,將能夠迅速地更換一新基板。 5 10 15 20 一晶圓在極端溫度的電檢測和測試有時會需要被用來 辨認及消除不可靠的元件。俾雜能或規格標準來收= 分類各元件,或來區分特定操作溫度或使用條件的元件^ 不用懸桿或彈簧銷而具有硬實探針梢的探針卡之一優點係 月b改善其純定性。溫度的變化,例如定溫測試之加熱:、 會使習知的測_ 案造成大變化’因為匈針會隨著 ㈣的溫度而可觀地膨脹。相對地,該等探針梢圖案會隨 著相對較小之互接基板或半導體晶粒的收縮或膨脹來二收 ,或膨脹。且’當該等探針梢設在—半導體晶粒上,而該 曰曰粒包含與受測元件相同或類似的材料時,則該探針圖案 的熱膨脹將會匹配於就件上之接觸端子«的_脹Γ w若該等探針梢設在與受測元件不同的材料上,則該等 抵針梢可被設計成能在—特定贼溫度來機械式地匹配該 :件的端子。此等設計將會納入對該元件之物理性質的考 里’例如-石夕晶圓的熱脹係數(CTE),該探針卡的CTE,及 :試溫度等。但是,在-溫度(如室溫)能匹配-元件的探針 :未錢在另-不同⑽權溫度(例12代或更高)來充分地 配違凡件。因此’使用與受測元件不同的材料可能在該 ^的溫度會形成較高的接觸阻抗,或在極端的情況下會 2開放性接觸。因此’一第二種探針梢可被設計來在該 旱乂兩溫度時匹配該元件。 21 25 10 15 -依據本發明的另一態樣,即使一探針並未包含與受測 ^件相同的材料’但在該探針上之探針梢的圖案和尺寸亦 可被製成能在-寬廣的溫度範圍内來與一元件的端子妥當 也接觸第8A與8B圖不出-探針81〇具有探針梢811、812、 8士13等由該探針_的中央隨著距離來增大尺寸。當要檢測 時^該探針810的中心會對準件㈣的中心。第8A圖示 出。亥元件820的端子822等如何在一第一溫度(如$溫)對準 各探針梢811、812、813。一“定溫,,m式會在-較高溫度 c)來進行。結果,该元件82〇的熱膨脹可能與該探針 81〇的膨脹不同,因奸們的各咖有所差異(例% 一石夕晶圓 與:印刷電路板的CTE會有+同)。通常,f亥元件82〇的膨脹 差/、可相對於對應的探針梢811、812、或813來移動各端子 822,且其移*量係正比於該端子奶與該元件no中心的距 離。為補償該等膨脹差異,各梢塾811、犯、川的尺寸會 被衣成延伸超過對應端子822的定位範圍,因此即使在較高 溫度時,該等梢墊81卜812、813亦能保持對準各端子822。 20 s该等探針梢被設在一半導體探針裝置上,而該裝置 具有與受測元件相同的CTE時,則熱膨脹差異的問題將能 被減〉、或/肖除。第9A圖示出一探針900的平面圖,其包含一 半導體晶粒910最好是由與受測元件相同的材料所製成。在 °亥半‘也日日粒910上的接觸塾具有一圖案相同於受測元件 接觸墊圖案。或者,该晶粒91 〇更可包含附加的接觸墊 或線路922來電連接於一探針卡的其餘部份(未示於 弟9 A圖 中)在本發明之一貫施例中,接觸墊920等會使用一罩幕 22 200425374 及/或-製程,其係相同於用以製造受測元件上的接觸墊 者,來製设在該晶粒91〇上。該晶粒91〇甚至 心、一 件相同類型的元件。蜗若有需要,則附加的線路或接塾奶 等’可使用在另—製程步驟製成的-或多個附加圖案層來 加設於晶粒910上。或者,接觸墊92〇與線路922等亦可^同 一圖案化層或互接結構的一部份。 棟針梢930係設在接觸墊92〇上。該等探針梢可用傳 統的凸體技術來製成,該技術係習知用來製造凸體或短柱 以供倒裝晶片連結者。或者,該等接墊92〇亦可作為探針 10梢,而各凸體93〇則可省略。如前所述,該等探針梢最好係 由例如銅等材料來製成,其會比受測元件之端子上的頂面 材料更具彈性。一打光製程,化學機械拋光(CMp),或任何 其它精密處理,皆可將該等探針梢(不論是否凸出)平坦化至 一南精峰度(例如在1 μπι以内)。 15 該探針係可拆卸地安裝在一探針卡上,如第9Β圖所 示。在第9Β圖中,該探針卡950上設有一插座940具有電觸 點942專,其在晶粒91〇被固定於插座91〇内等將會接觸各接 墊922。該插座940最好能被打開或拆卸來移除及裝入晶粒 910。當要測試時,該晶粒91〇上的探針梢93〇會透過接墊92〇 20和922而電連接於各觸點942,並由該等觸點942經由插座 940來電連接於探針卡950。該探針卡95〇則可藉前於第3圖 所述的方式來連接於測試設備。 第9C圖示出一變化結構,其令晶粒91〇係設在一PCB或 互接基板960的頂面上,且一探針總成包含晶粒910和基板 23 200425374 等係可卸除地裝在—插座9辦。於所示實施财,連 將❹9_面上_墊«於互接基板_ 上之各接塾962 〇或者,·《«:、志1 ▼連接或說性電路連接亦可同樣地、 用來將接墊942等電連接於基板_。在該基板96时的線路 (未示出)會將接墊962等電連接於基板_底面上的端子 964 ’且端子934會雷谨垃产 电連接在一徐針卡952上的接墊或線路 ίο (未不出),而完成探針梢93〇至探針卡952的電連接。第% 圖的實施例之-優點係,該插座942並不需要電接點,而尺 寸係可容納互接基板96〇其典型會大於半導體晶粒91〇。此 外,基板960會將探針裝置91〇置於-比探針卡952更高之 處。這些結構特徵將會使該插座942比第9b圖中的插座_ 更容易製造。 第9D圖示出本發明的另一實施例,其包含一半導體探 針裝置915。該探針裝置915與第9A圖中之探針裝置差異 15在於以木針1置915的電端子934係設在該探針裝置915的 底面上。更洋言之,該探針裝置915含有接觸墊92〇和探針 梢930等設在頂面上。導電通孔934等會連接於接觸塾㈣, 並牙過該半導體晶粒而將該等接觸墊92〇電連接於該探針 卡915底面上之各接觸墊926。 2〇 種用來製造該探針裝置915的方法係進行雷射鑽 孔,定向蝕刻例如深離子蝕刻,或任何高縱橫比的蝕刻法, 來在各接墊920的區域造成孔洞貫穿該半導體晶粒。該等貫 穿嗣會被填滿一種導電填充材料 ,例如紹、銅、鐫或導電 樹脂等。或者通孔934亦可藉深離子植入法或其它摻雜製法 24 2004253 74 來形成。接觸墊920與探針梢93〇等嗣可被製設在導電通孔 934頂上,然後接觸墊926及端子936等則可被製設在導電通 孔934底下。接觸墊920通常會具有與接觸墊926及受測元件 上之接觸墊等相同的圖案。同樣地,探針梢93〇和端子936 5亦可使用相同的凸體製程來製成。 一插座944會將該探針裝置915固持定位,而使各端子 936接觸一探針卡954上匹配的接觸墊(未示出)。最好是,該 插座944係被製成可使該半導體探針裝置915在損壞時,或 當要重整測試設備來測試一不同類型的元件時,能夠被卸 10 除及更換。 第9E圖示出本發明之一實施例,其中該探針裝置915 係連接於一印刷電路板或一互接基板%6,而不直接來接觸 針卡952。在本例中,端子936最好包含桿劑或其它材 料,其能被使用於-焊劑重流製程,而將該探針裝置915固 15接於基板966。該插座942可被設成能可卸地固持該基板 966。由於在探針裝置915上的端子936典型會與受測元件上 的觸點具有相同的圖案,故該基板966乃可完全相同於用來 供受測元件作倒裝晶片封裝的基板。 雖本發明已參照特定實施例來說明如上,惟所述僅為 20本發明的用途之例,而不應被作為限制。所揭實施例之各 種特敛的調變和組合皆包含於以下申請專利範圍所界定之 本發明的範疇内。 【圖式簡單說明】 第1圖示出用來檢測晶圓的習知測試設備。 25 200425374 第2圖示出一習知的倒裝晶片封裝體,其具有瑕疵是由 於測試和不均一的焊接凸體所造成者。 第3圖示出本發明之一實施例的晶圓檢測設備。 第4A圖示出一組金屬凸體在晶圓檢測之前的狀態。 5 第4B、4C、4D圖示出第4A圖中的金屬凸體在使用本發 明各變化實施例的探針梢來作晶圓檢測之後的狀態。 第5A及5B圖示出在本發明一實施例的晶圓檢測程序 之前及之後,受測元件的凸體高度分佈圖。 第6A與6B圖為本發明一實施例之探針卡的立體圖,其 10 具有整合的金屬設在接墊探針上。 第7A、7B及7C圖示出本發明一實施例之探針卡的立體 圖,其中探針梢係設在可更換的探針總成上。 第8A及8B圖示出一探針卡可在一溫度範圍内保持對 準一受測元件。 15 第9A、9B、9C、9D、9E圖係示出使用本發明各變化 實施例之半導體探針裝置的檢測系統。 【圖式之主要元件代表符號表】 100…測試設備 110···晶圓 112…受測元件,積體電路元件 114,822,932,964···端子 120…測試板 124···銷針 130···測試頭 26 200425374 140···測試裝置 200···倒裝晶片封裝體 210,910···晶粒 216,425···凹痕 220,960,966…互接基材板 222···外部端子 224,725,920,926,962···接墊 300···測試系統 310···自動測試設備(ATE) 320···測試頭 330,430,432,434,600,700,950,952,954···探針卡 340,440,442,444,630,730,811,812,813,930···探針梢 350···晶圓盤 360···檢測枱 400,820···元件 410,610,710,760,765·.·基板 420,422···凸體 424,426···變形凸體 510,530···凸體高度分佈曲線(測試前) 520,540···凸體高度分佈曲線(測試後) 620,720,922…導電線路 640,740,934···通孔 750,940,942,944···插座 770…半導體裝置 27 200425374 780···印刷電路板 810,900,915…探針 924…連結線 942···電觸點(Ii) Description of the invention: Technical field to which the invention belongs 3. Field of the invention The present invention is a probe device using an adaptive device. BACKGROUND OF THE INVENTION Testing of integrated circuit components can identify defective components and also provide information about yields or problems in the process. It is best to test early in the process to avoid wasteful handling of bad components and to identify process issues before a correctable problem affects most batches. Wafer inspection, in particular, is performed on each integrated circuit element before being separated by a wafer. Components that are considered defective or defective can be removed before packaging. In addition, the process can be modified or adjusted immediately without further delay, which would be caused if these components were tested only after they were packaged. Fig. 1 shows a conventional test equipment 00 for testing integrated circuit elements 112 formed on a wafer 110. The wafer 110 is a semiconductor wafer and contains a number of components 112. When testing, a probe or other positioning system (not shown) moves the wafer 11 or a test head 13 to align a test board 120 with the component 112 to be tested at the time. The test board 120 is provided with a multi-pin pin 124 and the like to match the pattern of the electrical terminals 114 on each element 112. When the test board 120 is properly aligned with the selected component 112, pins 124 and terminals 114 are connected to provide an electrical connection between the component 112 and the test board 120. The pins 124, the test board 120, and the test head 130 can conduct electrical signals between the element 112 200425374 and the test device 140. The test equipment 100 is generally designed to avoid or minimize damage to these components 112, especially where the pins 124 contact the terminals 114. In FIG. 1, each pin 124 is suspended to provide flexibility to limit the force exerted on the terminal 114. Some other similar devices use a spring pin design that buffers or limits the force applied to these elements 112 during testing. One of the disadvantages of the pin 124's flexibility is that it is prone to misalignment. For example, when a locking pin 124 is bent while being cleaned or used, the pin 124 will often fail to make good electrical contact with the target terminal 114, resulting in a test failure. In addition, the difference in thermal properties between the wafer 110 and the test board 120 or the pin 124 also limits the temperature range in which the pin 124 can accurately match the patterns of the terminals 114. In particular, the size of the pins 124 relative to the element 112 is longer, so their length will change proportionally when the temperature changes. 15 The damage or abrasion caused by the test on terminal I14 can be a problem even when the pins 124 can be matched, especially when the component 112 is designed for flip chip packaging. Is a big problem. FIG. 2 does not show a flip chip package 200, which includes a die and an interconnect substrate 220. The die 21, which contains an element 112, has been separated by a wafer 110 such as that shown in FIG. Flip-chip packaging will fix metal bumps (which form the high-convex electrical terminals 114 on the element 112) to the pads on the substrate 220. ^ Interconnecting the substrate 220 will provide the die 210 and external terminals 222 Electrical connection between. In the case of private clothing manufacturing, the sharp test pins 124 and 6 of the contact terminals 114: leave the dents 2 丨 6 on the worms 2 丨 4, especially when the contact parts of the terminals are relatively soft For metals such as solder. The dents 216 can trap contaminants, oxides, or fluxes, which can weaken the contact between the terminal 114 and the pad 214, resulting in a less reliable package. h Another potential problem in flip chip packages is caused by the irregularity of the terminals. In other words, in order to securely fix the terminals 114 to the process 214 ′, the tops of the terminals 114 and the pads 214 should be flush with a plane corresponding to the read package substrate. FIG. 2 illustrates a problem that a terminal 114 does not extend to or form a reliable connection with the corresponding mat 2M. The manufacturing process of these terminals 114 is generally the cause of the abnormal terminal 114, but the lock pin 124 will also wear the selected terminal 114 during the test, further destroying its planarity, so the reliable package will be more reliable. difficult. C Ming Nai 3 Summary of the Invention According to the evil aspect of the present invention, a detection system uses a semi-conductive probe device, which is manufactured using some of the same processes and materials as the component under test. In other words, the semiconductor probe device may include a semiconductor and a contact, which are fabricated on the die using a butterfly mask formed with a contact pad on the device under test. These contacts can be used as probe tips, or wafer bumps can also be probed on the semiconductor probe device. For the electrical contacts of these probe tips, conductive lines, wire junction methods, and bands can be used. Or other conventional techniques used to manufacture semiconductors are formed: ^ Or design changes M, sister pin diagram shot into the material casting = the required size, because used to form the subject. Semiconductor processes can also be used : The garment set 'includes such probe tips. Use the same or similar: =: = Needle device, Will-needle set to produce puppet. The test coverage of the larger temperature spider can be tolerated. The embodiment is used to test the detection system of the element. The probe in the needle / detection system contains semiconductor chips. It is equipped with 7 feeding probe tips which can be electrically connected to the tester, And will be aligned Carcass =: A terminal pattern on the device. The half of the probe in this probe is made of the same material 俾 Enable the electrical connection of the probe to the probe tip through: On the top surface of the die, Or it can be done by conducting through the holes of the grain. The probe may optionally include a substrate or a printed circuit. Mouthpiece 4 semiconductor die 'and in-configuration towel' The probe assembly can be used for semiconductor die with or without a substrate, Instead, insert the socket of a probe card. This allows the probe to be removed and replaced if it is damaged or to be tested-different types of components. Another embodiment of the present invention is a probe for electrical testing of components. The magic wood pin card includes a first substrate that can be used for mounting on a testing device. Evening seat 13 is on the first substrate, And a probe is installed in the socket. The probe is removably installed in the socket, On the other hand, a probe tip or the like is provided on the top surface of the semiconductor crystal and is arranged side by side to form a pattern matching the terminal pattern on the element. Yet another embodiment of the present invention is a manufacturing method for electrically testing a semiconductor device. The method contains: A probe tip is made on a semiconductor die and formed into a pattern matching the terminal pattern on the semiconductor element so that the probe tips are electrically connected to the test equipment. The steps for arranging the probe tip of a garment include the money casting contact: Wait ’and then the butterfly contacts the tadpole to form a dimer: The interconnect structure can be made by disposing the probe tips on the top surface of the semiconductor die, Or pass through the 71 side of the conductive via and the rotating die. The diagram is briefly explained. The conventional test equipment used to inspect the wafer is not shown in Figure 1. Figure 2 shows a conventional inverted package. The flaws are caused by testing and uneven solder bumps. FIG. 3 shows a wafer inspection apparatus according to an embodiment of the present invention. FIG. 4A shows a state of a group of metal protrusions before wafer inspection. Section 4B, 4C, 4D shows the state of the metal protrusions in the second figure after wafer inspection using the probe tips of various modified embodiments of the present invention. FIG. 5A and FIG. 5B show before and after the present invention-embodiment, Convex height distribution of the device under test. Circle detection procedure Figures 6A and 6B are perspective views of a probe card of an embodiment of the present invention. It has integrated metal on the pad probe. Section 7A, 7B and 7C are perspective views of a probe card according to an embodiment of the present invention. The probe tip is arranged on the replaceable probe assembly. Figures 8A and 8B show that the probe card can be aligned to a device under test in the temperature range. Section 9A, 9B, 9C, 9D, Fig. 9E shows a detection system using a semiconductor probe device according to various embodiments of the present invention. The same reference numbers in the drawings refer to the same or similar components. C Detailed description of the preferred embodiment of the solid cooling type 3 According to one aspect of the present invention, A wafer inspection method used to electrically test a component fabricated on a wafer also adjusts the terminals on the component. In order to change the homogeneity of the terminal's r% degree. Therefore, good components are in a better state when separated by the wafer. And can be reliably connected to an interconnection substrate in a flip chip package, Or when the wafer is assembled in a "'" (wafer on a board) device, Can be fixed to a circuit board. The wafer probe can use a probe card, It is roughly similar to the whole or part of the brush pen circuit board or interconnecting board to which the component is attached. or, The wafer probe can use a semiconductor probe device, It is similar to the device under test. The probe tip on the probe card or device can be a flat contact pad or a convex body. It is a normal electrical contact structure of the interconnection substrate. or, A probe tip having a desired shape and size can also be provided on the probe card or device. So that the metal protrusions on these elements can cause the required deformation. FIG. 3 is a block diagram of a test system 300 according to an embodiment of the present invention. The test system 300 includes an automatic test equipment (ATE) 310. A test head 320, A probe card wo contains a metal tip (Moop) probe tip 34o, etc. One said disk 3 50, And a test station 360. The system 300 will electrically test each component 112 fabricated on a wafer 110, And the terminals of each component 112 will also be adjusted during the process. To improve the flatness of each terminal 114. The elements 112 may be any type of element, Including but not limited to & Controller, processor, Special Purpose Integrated Circuit (Aye), Or any other kind of ic or individual element. As for terminal 114, These elements may have metal protrusions, etc., which are highly protruding from the top surface of the crystal, This height is sufficient for flip-chip packaging or mounting on a printed circuit board. For the current flip chip packaging process, The terminals m- generally have an average height between about 60 and 700 μιη, A typical average height is about 100 μηι. The terminals 114 may be a solder ball, for example. Or a composite structure containing most metal layers, Such as stacked solder balls, Cladding-flux layer, -Solder balls, -Gold layer, -Copper or other metal pillars with gold handles. or, The terminal u4 can also be connected. Rhenium is electrically connected using wire junctions or some other packaging technology. When to conduct electrical tests on wafers! During the detection operation of the selected component i 12 on the previous one, A probe card 330 will be installed on the test head 32. The probe card is provided with a MOP pin 340 and the like to form a pattern to match the pattern of the terminals 114 on a component 12. The MOP probe 340 may be a metal probe and directly set on the probe card 330. Or on a separate printed circuit board or interconnect substrate attached to the probe card 33o, Or it is provided on a semiconductor probe device electrically connected to the probe card 33. The wafer 110 is typically made of silicon (Si) or other semiconductor materials. Will be placed on the wafer tray 350. The inspection platform 360 will operate to locate and orientate the HaiS 0S disc 3 5 0, 俾 Make the terminals of the selected component 1 1 2 aligned] yj〇p probe 340 〇 is only an example, The test process of a component 112 when its terminals 114 contain metal bumps and need to be adjusted to improve flatness will be described below. As professionals know, Multiple components can be tested simultaneously if necessary. It can also be tested with other types of terminals or unchanged terminals on these components. During this test case, The inspection table 360 drives the wafer tray 350 up, Until the terminal 114 on the aligned element 112 is in electrical contact with the MOP probe 340, And the 200425374 MOP probe 340 starts to deform the terminals 114 inelastically. 嗣 ate 310 sends electrical input signals to terminal 114 via test head 320 and probe card 330. And measure the output signal generated by the selected component 112, To determine whether the element 112 is operable and has the required functions. 5 ATE 310 and 360 are standard test equipment. And can be purchased and paid by various suppliers ’, including Agilent Technologies, Teradyne, And LTX. The ate 310 usually performs the electrical test of the components 1 丨 2 in a conventional manner according to the type of the component 112. An inspection station 36 which can control the positioning of the wafer relative to the MOP probe 340, It is best to be able to measure the distance between the top surface of the crystal 10 circle 110 and the probe card 330. Or it is possible to precisely control the amount of upward movement of the wafer 110 after it initially contacts the probe card 330. or, The probe card 330 can be moved to control the relative position of the wafer u. The ideal distance between the top surface of the wafer 110 and the MOP probe 340 when testing, Will depend on the height of the terminal 114 on the surface of the wafer 110, As detailed later. 15 According to one aspect of the present invention, The MOP probe 340 on the probe card 330 only has limited compliance and can promote deformation of the terminal 114 during detection. The probe card 330 may be, for example, an interconnection substrate with or without a convex body. It can be applied to a flip chip package containing a sealed component 112. The interconnect substrate is typically made of an organic material. Such as polyamide or other insulating 20 materials, It also includes a conductive line capable of electrically connecting the bumps or contact pads on one side of the interconnection substrate to the contact pads and / or ball grid array (BGA) on the opposite side of the substrate. or, The MOP probe 340 may also be provided on a printed circuit board electrically connected to the probe card 330, Interconnect substrate, Or semiconductor probe device. The Mop pin 340 will contact the terminal 114 of the component 112 under power test, And can apply enough pressure to provide a good electrical connection. Further, the terminal 114 is deformed. The probe card 330 and the MOP probe 340 described above may be a homogeneous / integrated structure or may be separable components. The test head is a general standard device, 5 And the base of the probe card 330 can be designed and fixed to the test head 320 according to an appropriate standard. But 'In the illustrated embodiment of the invention, The Mop probes 34 can be placed on a different substrate, Device or assembly, A removable part such as one of the probe cards 330 is attached. This is to use different sampling pins 330 with different Mop probes 340 to test different components. A probe card 330 with a replaceable Mop 10 probe 340 will have the advantage of being able to quickly replace a damaged probe tip, Therefore, the downtime of the ATE 310 is minimized. The probe card 330 can be rigidly or elastically mounted on the test head 32. 俾 Give the probe card 330 a limited flexibility as a whole. The range of its parametric variable can range from 0 to about 15 mils or more for a flexible installation without parametric or rigid wires. When testing, Required deformation or planarization of the component terminals 114, As described later, It is roughly a fixed or progressive installation. Or the maximum travel distance of a progressive installation, Or the number of impeachments or compressible members between test head 32 and probe card 330 in a progressive installation, And the control options of the elastic constant or modulus of these compressible members. 20 These M0P probes 340 can be made using printed circuit board technology or component bump methods. An advantage is that it can be easily constructed to match a particular component or multiple components for parallel testing. Instead, A probe card with a cantilever or spring probe must typically be larger than this element, To accommodate the size of these probes, It will be more complicated to arrange these probes to match one or more components. 13 200425374 Another advantage of the rigid and non-modifying MOP probe 340 is that When compared to the needle type used in conventional testing equipment, For spring or suspension probes, They will be more durable. Therefore, the MOP probe 340 can maintain correct alignment, Without the need to adjust, There is no risk of deflection. The MOP probe 340 can also be cleaned, for example, with a brush 5 or other mechanical cleaning technology. Without damaging or misaligning the probes. The MOP probe 340 can also have a large flat contact area. As detailed later. In addition to these flat contact areas being less damaged during use and cleaning, There are no protrusions or sharp points to entrain particles. therefore, 10 Probe 340 during testing, even after prolonged use and when not cleaned, Can also be used for 5H components, 纟 k provides low contact impedance. Fig. 4A shows a part of a component gamma which is fabricated on a substrate 41o. The element 400 includes convex bodies 42 and 422, etc., It can be a solder ball or a basin, such as a conductive structure with electrical terminals. Ideally, All the convex bodies 420, 215, and 152 can project the same height H on the surface of the substrate 410. But convex bodies 420 and 422 I can suffer manufacturing variations, And make some convex milk with standard height Η: Yeah. If any convex-like gap ζι is too large, When reversing the chip: , % ’Will produce — fragile or bad contacts, As previously shown in Figure 2 Wu has a sharp and hard probe tip 440. Probe card 430 Tian Wu π The convex body on the π part and the 422 contact the concave body 420 when they come into contact. In other words, When-the probe chest runs a sufficient; f Incoming call—for smaller convex body 422, The other probe tips will be fragrant into the larger protrusions and thinner dents. Thus formed in FIG. 14 200425374 is shown in FIG. 4C. The system includes a probe card 432 according to an embodiment of the present invention, which has a flat probe tip 442. The flat probe tip technique preferably has a width that is at least half the diameter of the convex bodies 420 and 422. In one embodiment of the present invention, the probe card 432 is a printed circuit board. The probe tip 442 is a contact pad or a metal line on the surface of the printed circuit board. In another aspect of the present invention, The material probe tip 442 is formed for the contact pads on the semiconductor probe device-the pattern matches the pattern of the protrusions and 422 on the tree under test. The probe tip 442 should be formed when a force is applied that can cause the component terminal object to inelastic double shape such as 422. It can avoid making non-elastic deformation metal f. When the component terminals and 422 contain—a ductile material such as solder, A material such as copper is suitable for the probe tips 442. The dents 425 in the large convex body 420 will trap the contaminants, Instead, the electrical connection to the larger convex body 420 is weakened. In addition, the sharp probe tips seem to be unable to improve the height inconsistency of the convex bodies 420 and 422. One hates both sexes, Therefore, the difference between the original positions of these convex bodies 420 and 422 will still be ^ __ 倒 ridesay μ |, W said that in the flip chip package or the die fixed on the printed circuit board, Cause weakening or poor electrical contact. FIG. 4C shows that the probe tips 442 are flush with the surface of the probe card 432. However, the probe tips 442 may also protrude from the surface of the probe card 432. Or even relatively recessed into the surface of the probe card 432. but, The probe card 432 should allow the bottom 4 of the probe tip to reach the required distance from the top surface of the wafer 400. When the probe card 432 is used for the detection operation, An inspection station first drives the wafer 410 and / or the probe card 432, And the bottom of the probe tip structure contacts at least some corresponding convex bodies 420, The top surface of the wafer 410 is at a distance from the bottom of the probe tip 2. This inspection table will further drive the wafer 4 10 and / or 15 probe card 432-the over-travel distance Z2, Bring the two closer together. This process will flatten the convex body 420 with a height of Η or higher, And a convex body 422 whose height is at least H2 (H2 = H_z2). The deformed convex body thus formed seems to have the same height H2 as 426 or the like. Therefore, the tops of these convex bodies seem to have better flatness than the original 5 convex bodies 42G and 422. And this relatively flatness will enhance the overall robustness of the interconnection points of a flip chip package or a board-on-board component containing the probe device. In one embodiment of the present invention, The probe card 432 may be the same interconnection substrate (such as the interconnection substrate 22 in FIG. 2), After the test, it will be used in the inverted I chip package of this component. The probe tip 442 can be welded to the protrusions 424 and 4 like a contact pad. E.g, #In the conventional reflow operation of electrically connecting the device to an interconnect substrate of a flip chip package. or, The pin card 432 may include a semiconductor probe device. It is the same as the component under test, Or it has at least one contact pattern matching the device under test. 15〗 The super line 22 must generally be at least sufficiently sufficient to 26 forms a low contact impedance, For electrical testing of the component. Even if one is very, The shift distance Z2 (such as the minimum over-shift required for power supply testing) will usually be flattened with a large convex body, And improve the overall planarity of these convex bodies, The firmness of the interconnection points of the flip-chip package caused by the dagger 4 in the month. While a larger amount of overshift can provide greater flatness improvement, Until this super-moving distance Z2 can make all the convex bodies and 422 etc. achieve some flattening to ^. When the convex bodies 42 and 422 are at least partially flattened, The change in the flatness of the material convex body and 426 depends on the variation of the flatness and compliance of the probe tip 442. , ~ 16 200425374 Figure 5A shows the distributions 510 and 520 of the height of the convex bodies before and after inspection. In this example, The rated height and width of the convex body caused by the process are both about 90 μηι, However, there are some differences that make a few convex bodies as high as 105 μηι or lower than 75 μιη. During the test in this example, Will drive the crystal circle and probe card, The average distance between the wafer and the bottom of the probe tip is about 80 μm. When the probe card is pulled out, The distribution curve 52 will include higher and shorter convex bodies, Because it has tolerance, And the shorter terminal 422 will only deform elastically. FIG. 5B shows the distribution curve 530 and 540 of the height of the convex body before and after detection in another example. Before the detection operation, The average height of these convex bodies is close to 88μΠ1, The shortest convex height is about 82 μm. In the example in FIG. 5B, the inspection operation drives the wafer and the probe card. Until the average distance between the wafer and the bottom of the probe tip is less than the shortest protrusion height before inspection. result, When the probe card is pulled out, The height of all the convex bodies will be 15 as short as the minimum convex body height of the distribution curve 530 of the detection panel. Or shorter than it. Therefore, the distribution curve 540 will include a shorter convex height, But it ’s more than the distribution curve 530 ’This shows that after detection, The convex bodies will have improved planarity. The over-travel distance Z2 used in the test also needs to be limited so as not to damage the 20 pieces of the element, because the shrinkage of the YI and 422, etc., will cause damaging stress on the component 40 of the element below it. The amount of stress caused usually depends on the structure of the overtravel distance Z2 and the convex body 42G. The convex body and 422 are made of extensible material. Such as wrong or dazzling solder, It can deform inelastically without causing stress to damage the underlying typical semiconductor device structure. Contains less ductility 17 causing damage, Overshift distance; Or harder structures such as the convexity of a steel pillar, = Before the risk of layer structure becomes too great, Can only tolerate d 5 quantity factors; / Flattening operation to choose another distance of Z2-research, ^ Desired deformation profile of Hai Xun convex body. Better than making good electrical contact Overshift distance, When the upper surfaces of the convex bodies 424 and 426 are provided, Large flat area. To fix the component to the interconnection substrate, the flat area on the top of the convex bump of the agent will be moved to the interconnection substrate. 3 Ge convex body contact. A snail-heavy flow procedure will at least partially liquefy the sphere i to flatten the solder bumps and will tend to deform itself into a process that reduces the surface tension. Therefore, the flattened solder balls are in the heavy flow " Will naturally extend towards interconnected wafers. Twist 4 丨, , The adjustment of the convex tops 420 and 422 at the time of detection is not limited to the top surface of convex bodies such as flat. The convex bodies 42G and 422 can also be printed into any desired ^ 444 ^. Brother 4D picture shows an example, The probe card 434 has a probe tip that protrudes from the surface of the manipulation card 434. And the straight / probe tip 444 smaller than the convex body 420 may be, for example, about 50 μm, The diameter of the convex body 42 is about 0 μm. These probe pins can be formed by using an interconnect substrate or a semiconductor element of the convex body as the probe card 434. § During the testing process, The probe tip 444 will form a flat top surface on the smaller convex body 426, The flattened area of the convex body 426 is smaller than the area of the probe tip 444. However, the probe tip 444 may cause a top surface of four fe on the larger convex body 428. When the cavities created are not too narrow or too deep to hold up contaminants such as oxides or welding aids, These recessed surfaces are acceptable 18, and their x-concavities help the component and -convex interconnect in the packaging process: Anti-alignment. ㈣The better the ball and the solder ball in the heavy flow process, Cai Jie Wei Jie's fastness will be strengthened. / As mentioned before, In the test equipment 3⑻ of Fig. 3, _The probe card system with the needle tip of this building can be-a single-integral structure containing these probe tips' or a composite structure, and the towel containing the #probe tip can be easily removed. And replacement. Brother 6A does not show the integrated probe card according to an embodiment of the present invention. The probe card includes a substrate 610, Conductive line 62〇, And probe tip 63. The substrate 610 may be a printed circuit board. Made of an insulating material, & These conductive lines 620 are provided throughout. as the picture shows, These conductive lines 62 will reduce the value of It leads to an electrical contact (not shown) attached to the face of a recording head 一 on a needle grip. These probe tips are not as good as those of Dinutu, It can be carefully made into , Pages are convex or short. Alternatively, the pad portion of these conductive lines may also be formed / formed into a needle tip as described above. In either case, These probe tips provide a flat, non-parallel surface, It can be used to modify the flatness of our component terminals during wafer inspection. The body probe card 600 has an advantage, That is, the component under test and the probe head 20 (such as the probe tip 630, Conductive line 620, (Via 640, etc.) connections can be optimized to provide minimal impedance, This is important for RF circuits or high-frequency testing. but, The probe tip 63, which is fixed to the substrate 610, can only be used to test a component having terminals that match the pattern of the probe tip 630. When the test equipment begins to test another component or if the probe tip 63 is damaged, Then the entire 19 200425374 probe cards 600 need to be replaced. FIG. 7A shows a probe card 700 according to an embodiment of the present invention. It can quickly change probe tips to minimize downtime of the test equipment. The probe card 700 includes a first substrate 710, One socket 750, And a second substrate 76o. The base plate 760 can be inserted into the socket 750. And has a fixed probe tip 730. The socket 750 is provided on the base plate 710. When the substrate 76 is inserted into the socket 75, The conductive lines 720 and the like in the substrate 710 will electrically connect the substrate 76 to the through hole 74Q, It leads to the electrical contacts (not shown) of the test head. therefore, The probe tip 73 ° passes through the substrate 760, Socket 750, Conductive line 72〇 、 Through hole 74〇, And electrical contacts (not shown) on the back surface of the substrate 7101 and 10 are electrically connected to the test equipment. Each of the substrates 710 and 760 can be made using conventional printed circuit technology and in one embodiment of the present invention, The substrate 76 is similar to an interconnect substrate used in a flip chip package of a 7G component of Wentest. The socket 75 can be any type of socket, Instead, an electrical contact to the substrate 760 can be contained or provided. 15 In the example shown in Figure 7B, The socket 75o includes pads 725 at the ends of the conductive lines 72o. It will be mated and electrically connected to a terminal (not shown) on the bottom surface of the substrate 760. A pivoting clip will hold the substrate 760 in position. FIG. 7C illustrates that the substrate 765 of another modified embodiment can be clamped in the socket 75o. The substrate 765 is different from the substrate 76. The substrate 765 contains a semiconductor device 770. A probe tip 73 is provided thereon. 7% of this semiconductor device is on the printed circuit board. It can be inserted into the socket 75. I have terminals (not shown) that will contact the pads at the end of each line 72. The advantages of this probe card 7_ With it, the substrate 76 (3 or 765) can be replaced and the substrate 710 can remain fixed to the test equipment. The substrate dove or 20 200425374 765 can be released and removed from the socket 750, for example, Without removing it or any complicated disassembly, Therefore, the substrate 760 or 765 is used when the test equipment is to be changed to a type 2 component with different terminal patterns (such as die reduction) Or when the needle tip 730 is damaged, It will be possible to quickly replace a new substrate. 5 10 15 20 Electrical inspection and testing of a wafer at extreme temperatures sometimes needs to be used to identify and eliminate unreliable components. Miscellaneous energy or specification standards to receive = classification of various components, Or to distinguish components with specific operating temperature or conditions of use ^ One of the advantages of a probe card with a solid probe tip without a suspension rod or spring pin is to improve its pure character. Changes in temperature, For example, heating at a constant temperature test: , Will make a big change in the conventional test case, because the Hungarian needle will expand considerably with the temperature of the tadpole. relatively, These probe tip patterns will shrink with the shrinkage or expansion of the relatively small interconnect substrate or semiconductor die, Or swell. And ’when these probe tips are placed on—semiconductor die, When the particle contains the same or similar material as the component under test, Then the thermal expansion of the probe pattern will match the expansion of the contact terminal «on the part. If these probe tips are provided on a different material from the component under test, Then the abutting tips can be designed to mechanically match this at a specific thief temperature: Pieces of terminals. These designs will be taken into consideration of the physical properties of the device ’, such as the coefficient of thermal expansion (CTE) of Shixi wafers, CTE of the probe card, And: Test temperature and so on. but, Probes that can match-elements at-temperature (such as room temperature): The money is at another-different rights temperature (eg 12th generation or higher) to fully match the offending parts. Therefore, using a material different from the component under test may form a higher contact resistance at this temperature, Or in extreme cases will be 2 open contacts. Therefore, a 'second probe tip can be designed to match the element at both temperatures in the drought. 21 25 10 15-According to another aspect of the invention, Even if a probe does not contain the same material as the device under test, the pattern and size of the probe tip on the probe can be made to fit a component's terminals over a wide temperature range It is also not shown in Figures 8A and 8B-the probe 81 has a probe tip 811, 812, 8 ± 13, etc., increase in size with the distance of the center of the probe. When the test is to be performed, the center of the probe 810 will be aligned with the center of the member ㈣. Figure 8A is shown. How do the terminals 822, etc. of the Hai element 820 align with each probe tip 811, 812, 813. A "constant temperature, , The m-form will be performed at-higher temperature c). result, The thermal expansion of the element 820 may differ from the expansion of the probe 810. Each of the coffees varies according to the adulterer (for example,% of a stone evening wafer with: The CTE of the printed circuit board will be + the same). usually, The expansion difference of the fhai element 82, Relative to the corresponding probe tip 811, 812, Or 813 to move each terminal 822, And its displacement * is proportional to the distance between the terminal milk and the center of the element no. To compensate for these differences in inflation, Each tip 811, Commit, Chuan's size will be tailored to extend beyond the positioning range of the corresponding terminal 822, So even at higher temperatures, These tip pads 81, 812, 813 can also remain aligned with each terminal 822. 20 s These probe tips are set on a semiconductor probe device, When the device has the same CTE as the component under test, Then the problem of thermal expansion difference can be reduced>, Or / Xiao division. FIG. 9A shows a plan view of a probe 900, It contains a semiconductor die 910 preferably made of the same material as the device under test. The contact pads on 亥 半 ‘日 ri 910 have a pattern identical to that of the contact pad of the device under test. or, The die 91 may further include an additional contact pad or a line 922 to be electrically connected to the rest of a probe card (not shown in Figure 9A). In one embodiment of the present invention, Contact pads 920, etc. will use a curtain 22 200425374 and / or-the process, It is the same as that used to make contact pads on the component under test, Manufactured on the crystal grain 91 °. The grain 91〇 even the heart, A component of the same type. If necessary, Then, an additional circuit or a milk connection can be used on the die 910 by using an additional pattern layer or multiple additional pattern layers made in another process step. or, The contact pad 92 and the circuit 922 may also be part of the same patterned layer or interconnection structure. The needle tip 930 is provided on the contact pad 92. These probe tips can be made using traditional convex technology, This technique is conventionally used to make bumps or stubs for flip chip bonding. or, These pads 92 can also be used as probes 10 tips, Each convex body 93 may be omitted. As mentioned before, The probe tips are preferably made of a material such as copper, It will be more flexible than the top material on the terminals of the component under test. One light process, Chemical mechanical polishing (CMp), Or any other precision processing, These probe tips (whether protruding or not) can be flattened to a southern precision (for example, within 1 μm). 15 The probe is removably mounted on a probe card, This is shown in Figure 9B. In Figure 9B, The probe card 950 is provided with a socket 940 having electrical contacts 942, It will contact each pad 922 when the die 910 is fixed in the socket 910 or the like. The socket 940 can preferably be opened or removed to remove and fit the die 910. When it comes to testing, The probe tip 93 on the die 91 is electrically connected to each contact 942 through the pads 92 and 20 and 922. The contacts 942 are electrically connected to the probe card 950 via the socket 940. The probe card 95 can be connected to the test equipment in the manner described in Figure 3 previously. Fig. 9C shows a variation structure, The die 91 is set on the top surface of a PCB or an interconnect substrate 960. And a probe assembly including the die 910 and the substrate 23 200425374 is removably mounted in the socket 9 office. Implementing wealth as shown, Connect each connector 962 on the 9_side_pad «on the interconnect substrate_ 962 or · "«: , Chi 1 ▼ Connections or sex circuit connections can be similarly, It is used to electrically connect the pad 942 and the like to the substrate. The circuit (not shown) at the time of the substrate 96 will electrically connect the pad 962 and the like to the terminal 964 ′ on the bottom surface of the substrate and the terminal 934 will produce electrical connection to the pad or a Xu pin 952 Line ίο (not out), The electrical connection between the probe tip 930 and the probe card 952 is completed. The advantage of the embodiment of FIG. The socket 942 does not require electrical contacts. The size can accommodate the interconnect substrate 96, which is typically larger than the semiconductor die 91. In addition, The base plate 960 places the probe device 910 higher than the probe card 952. These structural features will make the socket 942 easier to manufacture than the socket in Figure 9b. FIG. 9D illustrates another embodiment of the present invention. It includes a semiconductor probe device 915. The difference between the probe device 915 and the probe device in Fig. 9A is that an electrical terminal 934 with a wooden needle 1 915 is provided on the bottom surface of the probe device 915. In other words, The probe device 915 includes a contact pad 92 and a probe tip 930, and the like is provided on the top surface. The conductive vias 934, etc. will be connected to the contact 塾 ㈣, The contact pads 92 are passed through the semiconductor die and electrically connected to the contact pads 926 on the bottom surface of the probe card 915. 20 methods for manufacturing the probe device 915 are laser drilling, Directional etching such as deep ion etching, Or any high aspect ratio etching method, A hole is formed in the region of each pad 920 to penetrate the semiconductor die. The continuous punchthrough will be filled with a conductive filler material, For example, copper, 镌 or conductive resin. Alternatively, the through hole 934 can be formed by deep ion implantation or other doping methods. The contact pad 920 and the probe tip 93 and the like can be made on top of the conductive via 934. Then, the contact pads 926 and the terminals 936 can be made under the conductive vias 934. The contact pad 920 usually has the same pattern as the contact pad 926 and the contact pad on the device under test. Similarly, The probe tip 93 and the terminal 936 5 can also be made using the same convex process. A socket 944 will hold the probe device 915 in place, Instead, each terminal 936 contacts a matching contact pad (not shown) on a probe card 954. Preferably, The socket 944 is made so that when the semiconductor probe device 915 is damaged, Or when the test equipment is being reformed to test a different type of component, Can be removed and replaced. FIG. 9E illustrates an embodiment of the present invention. The probe device 915 is connected to a printed circuit board or an interconnection substrate% 6, Instead of directly touching the pin card 952. In this example, The terminal 936 preferably contains a rod or other material, It can be used in the flux reflow process, The probe device 915 is fixedly connected to the substrate 966. The socket 942 may be configured to detachably hold the substrate 966. Since the terminals 936 on the probe device 915 typically have the same pattern as the contacts on the device under test, Therefore, the substrate 966 can be exactly the same as the substrate used for flip chip packaging of the device under test. Although the invention has been described above with reference to specific embodiments, However, the described are only examples of the uses of the present invention, It should not be used as a limitation. Various specific modulations and combinations of the disclosed embodiments are included in the scope of the invention as defined by the scope of the following patent applications. [Brief Description of the Drawings] FIG. 1 shows a conventional test equipment for inspecting a wafer. 25 200425374 Figure 2 shows a conventional flip chip package. The flaws are caused by testing and uneven solder bumps. FIG. 3 illustrates a wafer inspection apparatus according to an embodiment of the present invention. FIG. 4A shows the state of a group of metal bumps before wafer inspection. 5 Section 4B, 4C, 4D shows the state of the metal protrusions in FIG. 4A after wafer probes are performed using the probe tips of various modified embodiments of the present invention. 5A and 5B illustrate before and after a wafer inspection procedure according to an embodiment of the present invention, Convex height distribution of the device under test. 6A and 6B are perspective views of a probe card according to an embodiment of the present invention. Its 10 has integrated metal on the pad probe. Section 7A, 7B and 7C are perspective views of a probe card according to an embodiment of the present invention. The probe tip is arranged on the replaceable probe assembly. Figures 8A and 8B show that a probe card can maintain alignment with a device under test over a temperature range. 15 Section 9A, 9B, 9C, 9D, Fig. 9E shows a detection system using a semiconductor probe device according to various embodiments of the present invention. [Representative symbol table of main components of the drawing] 100 ... test equipment 110 ... wafer 112 ... tested component, Integrated circuit element 114, 822, 932, 964 ... Terminal 120 ... Test board 124 ... Pin 130 ... Test head 26 200425374 140 ... Test device 200 ... Flip-chip package 210, 910 ... grain 216, 425 ... dents 220, 960, 966 ... interconnected substrate board 222 ... external terminals 224, 725, 920, 926, 962 ··· pad 300 ··· test system 310 ·· automatic test equipment (ATE) 320 ··· test head 330, 430, 432, 434, 600, 700, 950, 952, 954 ... probe card 340, 440, 442, 444, 630, 730, 811, 812, 813, 930 ... Probe tip 350 ... Wafer tray 360 ... Inspection station 400, 820 ... element 410, 610, 710, 760, 765 ·. · Substrate 420,422 ·· Convex body 424,426 ·· Deformed convex body 510,530 ·· Convex body height distribution curve (before test) 520,540 ··· Convex body height distribution curve (after test) 620 , 720, 922 ... conductive lines 640, 740, 934 ... through-holes 750, 940, 942, 944 ... socket 770 ... semiconductor devices 27 200425374 780 ... printed circuit boards 810, 900, 915 ... probe 924 … Connecting wire 942 ... electric contacts