SI21830A - Synchronous electromechanical transducer - Google Patents
Synchronous electromechanical transducer Download PDFInfo
- Publication number
- SI21830A SI21830A SI200400151A SI200400151A SI21830A SI 21830 A SI21830 A SI 21830A SI 200400151 A SI200400151 A SI 200400151A SI 200400151 A SI200400151 A SI 200400151A SI 21830 A SI21830 A SI 21830A
- Authority
- SI
- Slovenia
- Prior art keywords
- poles
- stator
- rotor
- magnetic
- converter according
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K29/00—Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
- H02K29/03—Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K16/00—Machines with more than one rotor or stator
- H02K16/04—Machines with one rotor and two stators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/12—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/12—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
- H02K21/22—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/12—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
- H02K21/24—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K41/00—Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
- H02K41/02—Linear motors; Sectional motors
- H02K41/03—Synchronous motors; Motors moving step by step; Reluctance motors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
Abstract
Description
SINHRONSKISYNCHRONOUS
ELEKTROMEHANSKI PRETVORNIKELECTROMECHANICAL CONVERTER
Predmet izuma je konstrukcija sinhronskega elektromehanskega pretvornika.The subject of the invention is the construction of a synchronous electromechanical converter.
Izum sodi po mednarodni klasifikaciji v H02K1/14, H02K 16/04, H02K 21/12 in H02K 26.The invention belongs to the international classification in H02K1 / 14, H02K 16/04, H02K 21/12 and H02K 26.
Tehnični problem, ki ga rešuje izum, je konstrukcija sinhronskega elektromehanskega pretvornika, ki omogoča doseganje velikega razmeija med navorom na rotor in maso trajnih magnetov, zelo majhen zastojni navor ter veliko toplotno prehodnost med statorskimi navitji in ohišjem. Hkrati omogoča sestavljanje statoijev iz posameznih statorskih polov.A technical problem solved by the invention is the construction of a synchronous electromechanical transducer, which allows a large gap between the torque per rotor and the mass of permanent magnets, very little stalling torque and high thermal transmittance between the stator windings and the housing. At the same time, it enables the assembly of statues from individual stator poles.
Znanih rešitev problema je veliko. Največja razmerja med navorom in maso magnetov je mogoče doseči pri konstrukcijah, pri katerih poli statorja vsebujejo magnetno permeabilna jedra. Te konstrukcije dosegajo bistveno večja razmerja od konstrukcij s poli brez permeabilnih jeder, pri katerih pa ni težav z zastojnim navorom. Zato se večina znanih rešitev ukvarja s tem, kako zmanjšati zastojni navor pri konstrukciji, ki vsebuje magnetno permeabilna jedra polov statorja. Večina jih temelji na razliki v številu polov rotorja in polov statoga.There are many known solutions to the problem. The highest torque-to-mass ratios of magnets can be achieved in structures where the poli stator contains magnetically permeable cores. These structures achieve significantly higher ratios than those with non-permeable core poly, which do not have stall torque problems. Therefore, most known solutions are concerned with how to reduce the congestion torque of a structure containing magnetically permeable cores of the stator poles. Most of them are based on the difference in the number of rotor poles and statog poles.
Po patentu JP 10234144 je problem rešen s trifazno konstrukcijo, pri kateri ima rotor deset izmenično namagnetenih polov, stator pa je sestavljen iz treh skupin s po tremi aktivnimi poli posamezne faze in dvema manjšima slepima poloma brez navitja na obeh robovih skupin. Slabost te rešitve je v tem, da se pri večjih navorih pojavi velika utripna sila na rotor.According to patent JP 10234144, the problem is solved by a three-phase construction, in which the rotor has ten alternately magnetized poles, and the stator consists of three groups of three active poles of each phase and two smaller blind poles without winding on both edges of the groups. The disadvantage of this solution is that at higher torques a large flashing force per rotor occurs.
Po patentu JP 2003088011 je problem rešen s trifazno konstrukcijo, ki jo sestavlja stator s celim večkratnikom dvanajstih neenakomerno razporejenih polov, ki so razdeljeni v šest skupin po dveh nasprotno navitih polov iste faze, in rotor z istim večkratnikom štirinajstih izmenično namagnetenih polov. Na obodu magnetne reže sosednji poli statoija prehajajo eden v drugega, kar še dodatno zmanjša zastojni navor, vendar na račun zmanjšanja navora zaradi delnega zaključevanja magnetnega pretoka preko povezave med sosednjimi poli. Nerodno je tudi to, da se pri statoijih z več kot dvanajstimi poli izmenjujejo le skupine po dveh polov iste faze, saj je potrebno za vsako skupino žrtvovati eno tretjino pola rotoija.According to JP 2003088011, the problem is solved by a three-phase structure consisting of a stator with a whole multiple of twelve irregularly spaced poles divided into six groups of two opposite winding poles of the same phase and a rotor with the same multiple of fourteen alternately magnetized poles. At the perimeter of the magnetic gap, the adjacent poles of the statue pass into each other, further reducing the stalling torque, but at the expense of reducing the torque due to the partial termination of the magnetic flux through the connection between adjacent poles. It is also embarrassing that in statues with more than twelve poles, only groups of two halves of the same phase are exchanged, since one third of the pole of the rotoi is sacrificed for each group.
Po patentih US 2002047432, US 2002074887 in podobnih, se ob različnem številu rotorskih in statorskih polov zmanjšanje zastojnega navora doseže še z neenakomerno razporeditvijo rotorskih polov, pri enakomerni razporeditvi statorskih.According to the patents US 2002047432, US 2002074887 and the like, with different numbers of rotor and stator poles, the reduction of the stalling torque is achieved by the uneven distribution of rotor poles, with an even distribution of stator poles.
Po patentu EP 0543625 imajo jedra statorskih polov v razširjenem delu v bližini magnetne reže proti rotorju praznine. S tem se zmanjša zastojni navor, hkrati pa se zmanjšajo tudi vrtinčni tokovi v razširjenem delu polovnega jedra.According to patent EP 0543625, the cores of the stator poles have a gap in the extended portion near the magnetic gap toward the void rotor. This reduces the congestion torque while also reducing the eddy currents in the expanded part of the half-core.
Po patentu JP 11018326 in podobnih se zmanjšanje zastojnega navora doseže z vdolbino na čelnem delu polovnega jedra, ki prehaja v magnetno režo proti rotorju. Posledica tega je tudi rahlo zmanjšanje magnetnega pretoka med rotorjem in statorskimi poli pri enaki minimalni širini magnetne reže, kar zmanjša navor pri istem toku skozi statorska navitja.According to patent JP 11018326 and the like, the reduction of the deadlock torque is achieved by a recess at the front of the half-core, which passes into the magnetic slot towards the rotor. This also results in a slight decrease in the magnetic flux between the rotor and the stator poles at the same minimum width of the magnetic gap, which reduces the torque at the same flow through the stator windings.
Podobne rešitve so tudi po patentu US 5523637 in podobnih, kjer imajo jedra statorskih polov na čelu razporejenih več vdolbin. Število, velikost in razporeditev vdolbin je odvisna od geometrije jeder in od velikosti reže med sosednjimi poli statorja. S tem se doseže zmanjšanje zastojnega navora, hkrati pa se zmanjša tudi dosegljiv navor pri enaki širini magnetne reže med rotorjem in statorskimi poli.Similar solutions are to US Patent No. 5523637 and the like, wherein the cores of the stator poles have several recesses arranged at the front. The number, size and arrangement of the wells depends on the geometry of the nuclei and the size of the gap between adjacent poles of the stator. This results in a reduction of the stalling torque, while also reducing the torque achievable at the same width of the magnetic gap between the rotor and the stator poles.
Po patentu JP 2003070189 je problem zmanjšanja zastojnega navora rešen tako, da se jedra sosednjih statorskih polov medsebojno prekrivajo. Zaradi tega se poveča magnetni pretok med sosednjimi statorskimi poli, kar ima za posledico zmanjšanje dosegljivega navora.According to the patent JP 2003070189, the problem of reducing the congestion torque is solved so that the nuclei of adjacent stator poles overlap. As a result, the magnetic flux between adjacent stator poles is increased, resulting in a decrease in torque achievable.
Po patentu JP 2003259573 je problem sklenitve magnetnega pretoka med sosednjimi poli, ki zmanjšuje dosegljiv navor, rešen s pomočjo oblike razširitve polovnega jedra. To je oblikovano tako, da se v smeri sosednjih polov zoži, kar ima za posledico zmanjšanje magnetnega pretoka med sosednjimi poli. Zaradi tega se nekoliko poveča dosegljiv navor pri enaki masi magnetov. Vendar se zaradi takšne oblike jedra poveča zastojni navor.According to patent JP 2003259573, the problem of contracting a magnetic flux between adjacent poles that reduces the torque attained is solved by using a form of half-core expansion. This is designed to narrow in the direction of adjacent poles, resulting in a decrease in the magnetic flux between adjacent poles. As a result, the torque at the same mass of magnets is slightly increased. However, this kind of kernel increases the deadlock torque.
Po patentu JP 2003153514 je problem rešen s pomočjo vejastih polovnih jeder in navitij, ki si medsebojno delijo posamezne veje sosednjih jeder. Glavna slabost rešitve je dokaj zapletena izdelava navitij. Neugodno je tudi, da vejasta struktura polovnih jeder zmanjša toplotno prehodnost med navitji in ohišjem.According to the patent JP 2003153514, the problem is solved by means of branching half-cores and windings that share the branches of adjacent cores with one another. The main disadvantage of the solution is the rather complicated winding design. It is also disadvantageous that the branching structure of the second cores reduces the thermal transmittance between the windings and the housing.
Po patentu US 5751089 je problem rešen z dvofazno konstrukcijo z dvema statoijema in rotoijem, z izmenično namagnetenimi poli. Stator in rotor vsebujeta enako število enakomerno razporejenih polov, pri čemer sta statorja zamaknjena eden glede na drugega za polovico pola. Na prvem je navito navitje prve faze, na drugem pa druge faze. Obe navitji sta naviti tako, da so smeri navijanja sosednjih polov obrnjene. Zaradi dveh statoijev omogoča konstrukcija veliko toplotno prehodnost med navitji in ohišjem. Slabost rešitve je dokaj velik zastojni navor, ki gaje mogoče nekoliko zmanjšati z obliko polovnih jeder.According to US patent 5751089, the problem is solved by a two-phase construction with two statues and a rotoi, with alternating magnetized poly. The stator and rotor contain an equal number of evenly spaced poles, with the stator offset relative to each other by half the pole. The first winding has the first phase winding and the second phase the second. Both windings are wound so that the winding directions of the adjacent poles are reversed. Due to the two statues, the construction enables a great thermal transfer between the windings and the housing. The disadvantage of the solution is a rather large stalling torque, which can be slightly reduced by the shape of the second cores.
V istem patentu je opisana tudi rešitev s poljubnim sodim številom faz, kjer si po obodu obeh statorjev sledijo skupine izmenoma orientiranih polov, ki pripadajo posameznim fazam, pri čemer sta fazi, katerih poli se na statorjih nahajajo nasproti eni drugim, električno zamaknjeni za 90°, ter kotno zamaknjeni za polovico pola. Skupine polov posameznih faz so razporejene tako, da je faza statorskih polov usklajena s fazo rotorskih polov. Pri večjem številu faz omogoča takšna konstrukcija zmanjšanje zastojnega navora zaradi več hkratnih različnih leg polov statoija glede na pole rotorja. Vendar je takšna rešitev nepraktična, saj uporaba štiri in večfaznih krmilnikov ni razširjena.The same patent also describes a solution with an arbitrary number of phases, where, along the circumference of the two stators, groups of alternately oriented poles belong to each phase, the phases whose poles are opposite each other on the stators, electrically offset by 90 °. , and angularly offset by half a pole. The sets of poles of the individual phases are arranged so that the phase of the stator poles is aligned with the phase of the rotor poles. With more phases, such construction allows the reduction of the congestion torque due to several simultaneous different positions of the statue poles relative to the rotor poles. However, such a solution is impractical since the use of four and multiphase controllers is not widespread.
Znane rešitve s prepletenimi navitji posameznih faz imajo zaradi načina navijanja daljša navitja v primerjavi z neprepletenimi navitji, kar ima za posledico večje uporovne izgube in povečanje mase pri enakih ali podobnih ostalih lastnostih.Known solutions with interlaced windings of individual phases have longer windings due to the winding mode compared to non-interlaced windings, which results in higher resistive losses and increase in mass for the same or similar other properties.
Po izumu je problem rešen s konstrukcijo, ki vsebuje rotor s sodim številom približno enakomerno razporejenih izmenično orientiranih magnetnih polov, prednostno trajnih magnetov, in vsaj en stator, kateri vsebuje enako število enako razporejenih polov vsake od vsaj dveh električnih faz, ki so razporejeni v strnjene skupine, na mejah med katerimi prihaja do uskladitve električne faze statoija z magnetno fazo rotorja. Navitja polov posamezne skupine statorskih polov pripadajo isti električni fazi, pri čemer so navitja sosednjih polov znotraj skupine navita v nasprotnih smereh. Konstrukcija bo podrobneje opisana s pomočjo primerov in slik, ki prikazujejo sl. 1 trifazni primer s statoijem, ki ima 24 polov, in notranjim rotorjem z 22 magneti sl. 2 različno oblikovana jedra polov statorja, ki ima več polov kot rotor sl. 3 trifazni primer s statorjem, ki ima 24, polov in zunanjim rotorjem z 22 magneti sl. 4 trifazni primer z dvema statorjema, ki imata po 24 polov, in rotorjem z 22 magneti sl. 5 dvofazni primer z dvema statorjema, ki imata po 24 polov, in rotorjem s 26 magneti sl. 6 različno oblikovana jedra polov statorja, ki ima manj polov kot rotor sl. 7 trifazni primer z dvema statorjema, ki imata po 24 neenakomerno razporejenih polov, in rotorjem s 26 magneti sl. 8a enostavni prehod statorja med odseki polov sl. 8b prehod statorja med odseki z vmesnim slepim polom sl. 8c prehod statorja med odseki z enim asimetričnim robnim polom sl. 8d prehod statorja med odseki z obema asimetričnima robnima poloma sl. 9a način sestave statorja iz posameznih polov sl. 9b sestavni deli posameznega pola in sestavljen pol, z navitjemAccording to the invention, the problem is solved by a construction comprising a rotor with an even number of approximately uniformly spaced alternately oriented magnetic poles, preferably permanent magnets, and at least one stator containing an equal number of equally spaced poles of each of at least two electrical phases arranged in a string groups at the boundaries between which the electrical phase of the statue is aligned with the magnetic phase of the rotor. The windings of the poles of each group of stator poles belong to the same electrical phase, the windings of adjacent poles within the group being wound in opposite directions. The construction will be described in more detail with the help of examples and figures showing FIG. 1 is a three-phase example with a statue having 24 poles and an internal rotor with 22 magnets. 2 shows differently shaped cores of the stator poles having more poles than the rotor of FIG. 3 is a three-phase example with a stator having 24 poles and an external rotor with 22 magnets. FIG. 4 is a three-phase example with two 24-pole stators and a 22-magnet rotor; 5 is a two-phase example with two 24-pole stators and a 26-magnet rotor; 6 shows differently shaped cores of the stator poles having fewer poles than the rotor of FIG. 7 is a three-phase example with two stators having 24 unevenly spaced poles and a 26 magnet magnet rotor; FIG. 8a is a simple transition of the stator between the pole sections of FIG. 8b is the passage of the stator between sections with an intermediate blind pole. 8c is the passage of the stator between sections with one asymmetric edge pole; FIG. 8d is the passage of the stator between sections with both asymmetric edge poles; FIG. 9a is a method of assembling the stator from the individual poles of FIG. 9b single pole components and compound pole, coiled
Sinhronski elektromehanski pretvornik, v nadaljevanju motor, lahko deluje kot motor ali generator. Motor prednostno uporablja električne večfazne sisteme, pri katerih je fazna razlika med sosednjimi psevdofazami enaka in znaša 180° deljeno s številom faz, med katere sodita tudi trifazni sistem z za 120° zamaknjenimi fazami in dvofazni sistem, z za 90° zamaknjenima fazama. Magnetni krog motorja se sestoji iz rotorja 1 in vsaj enega statorja 2, pri čemer je rotor nameščen tako, da se lahko vrti glede na statorje. Vsak stator je neposredno ali posredno povezan z ohišjem 3, oziroma je njegov sestavni del.The synchronous electromechanical converter, hereinafter referred to as the motor, may act as an engine or generator. The engine preferably uses electrical multiphase systems where the phase difference between adjacent pseudophases is equal to 180 ° divided by the number of phases, including a three-phase 120 ° phase shifted system and a two-phase 90 ° phase shifted system. The magnetic circuit of the motor consists of a rotor 1 and at least one stator 2, the rotor being arranged so that it can rotate relative to the stator. Each stator is directly or indirectly connected to the housing 3, or a component thereof.
Rotor vsebuje sodo število M=2m približno enakomerno razporejenih izmenično orientiranih magnetnih polov 4, prednostno trajnih magnetov, ki so orientirani približno vzporedno s smerjo pravokotno na ploskev, ki meji na magnetno režo s statorjem. Pri konstrukcijah z enim statorjem vsebuje rotor tudi enega ali več magnetno permeabihtih delov 5, preko katerih se sklene magnetni pretok med posameznimi poli na tisti strani polov, ki ne meji na magnetno režo s statoijem. Pri konstrukcijah z dvema statoijema rotor, z morebitno izjemo polov, prednostno ne vsebuje magnetno permeabilnih in električno prevodnih delov. Pri rotorjih s trajnimi magneti so magneti prednostno pravokotne oblike, lahko pa so tudi v obliki segmentov ali izdelani v enem ali več kosih, ki so večpolno namagneteni.The rotor contains an even number M = 2m of approximately uniformly spaced alternately oriented magnetic poles 4, preferably permanent magnets, oriented approximately parallel to the direction perpendicular to the surface adjacent to the magnetic slot with the stator. For single-stator structures, the rotor also includes one or more magnetically permeable components 5 through which the magnetic flux between the individual poles is contracted on the side of the poles not adjacent to the magnetic slot with the statue. For structures with two statues, the rotor, with the possible exception of poles, preferably does not contain magnetically permeable and electrically conductive parts. In the case of permanent magnet rotors, the magnets are preferably rectangular in shape, but may also be segmented or made in one or more multipolar magnetized pieces.
Vsak stator se sestoji iz polov 6, ki so usmerjeni proti rotorju, in enega ali več magnetno permeabilnih delov 7, preko katerih se sklene magnetni pretok med posameznimi poli na tisti strani, ki ne meji na magnetno režo z rotorjem. Statorske pole od polov rotoija ločuje magnetna reža, ki je ozka v primerjavi z razdaljo med sredinama dveh sosednjih polov rotorja, in je približno enaka pri vseh polih. Posamezen pol statorja vsebuje magnetno permeabilno jedro 8 in navitje 9. Jedra polov se običajno v bližini magnetne reže razširijo vsaj v eni smeri, ki je približno pravokotna na smer magnetnega polja v reži, prednostno v smeri, vzporedni s smerjo gibanja rotoija. S tem se doseže povečanje magnetnega pretoka skozi jedro pola, optimalnejši izkoristek materiala jedra in navitij, hkrati pa se zmanjšata razmagnetilna obremenitev in nihanje polja rotorskih polov. Razšiijeno jedro pola se sestoji iz glave 10 in stebla 11, okoli katerega je običajno navito navitje pola. Glave jeder sosednji polov se običajno ne stikajo, prednostno pa so ločene z režo, ki je primerljiva s širino magnetne reže med poli statorja in poli rotorja.Each stator consists of poles 6 that are directed toward the rotor and one or more magnetically permeable parts 7 through which the magnetic flux between the individual poles is contracted on the side adjacent to the magnetic slot with the rotor. The stator poles of the rotoi poles are separated by a magnetic gap, which is narrow compared to the distance between the centers of the two adjacent rotor poles and is approximately the same for all poles. Each pole of the stator contains a magnetic permeable core 8 and a winding 9. The cores of the poles typically extend in the vicinity of the magnetic slot in at least one direction approximately perpendicular to the magnetic field direction in the slot, preferably in a direction parallel to the direction of motion of the rotoi. This results in an increase in magnetic flux through the core of the pole, a better utilization of the core material and windings, while reducing the demagnetizing load and oscillation of the rotor pole field. The expanded core of the pole consists of a head 10 and a stem 11 around which is usually wound a winding pole. The core heads of adjacent poles are not normally contacted, but are preferably separated by a gap comparable to the width of the magnetic gap between the stator poles and the rotor poles.
Stator vsebuje enako število enako razporejenih polov vsake posamezne električne faze. Število polov vsake faze N je prednostno sodo število, kar omogoča takšno razporeditev posameznih polov, da je skupna sila na rotor minimalna. Skupno število polov vseh faz je vsaj za dva različno od števila polov rotorja, kar povzroči razhajanje med fazama rotorskih in statorskih polov. Poli statorja so zato razporejeni v strnjene skupine, znotraj katerih je razlika med prirastkom magnetne faze rotorja in električne faze statoija med dvema sosednjima poloma majhna, skupno razhajanje med magnetno in električno fazo na območju skupine pa je manjše od fazne razlike med dvema električnima psevdofazama. Navitja polov posamezne skupine pripadajo isti psevdofazi, zaradi izmenično orientiranih magnetnih polov rotorja pa so navitja sosednjih polov v skupini navita v nasprotnih smereh. Na mejah med sosednjimi skupinami se električna faza statorskih polov uskladi z magnetno fazo rotorskih polov. Zaradi tega pripadajo navitja polov sosednjih skupin različnim psevdofazam, del fazne razlike pa se lahko uskladi tudi s pomočjo razmika med sosednjimi skupinami.The stator contains the same number of equally spaced poles of each individual electrical phase. The number of poles of each phase N is preferably an even number, allowing such an arrangement of the individual poles to minimize the total force per rotor. The total number of poles of all phases is at least two different from the number of rotor poles, which causes a discrepancy between the phases of the rotor and stator poles. The stator poles are therefore grouped together, within which the difference between the gain of the rotor magnetic phase and the statue electrical phase between the two adjacent poles is small, and the total discrepancy between the magnetic and electrical phases in the group area is smaller than the phase difference between the two electrical pseudophases. The windings of the poles of each group belong to the same pseudophase, and due to the alternately oriented magnetic rotor poles, the windings of the adjacent poles in the group are wound in opposite directions. At the boundaries between adjacent groups, the electrical phase of the stator poles is aligned with the magnetic phase of the rotor poles. Because of this, the windings of the poles of adjacent groups belong to different pseudophases, and part of the phase difference can also be adjusted by the distance between adjacent groups.
Število skupin je sodi večkratnik 2r števila električnih faz F, kar omogoča takšno razporeditev, da je skupna sila na rotor minimalna. Še posebej ugodno je, kadar je skupno število polov vseh faz deljivo s številom skupin, saj je struktura statoija v takih primerih najbolj simetrična. Prednostno je čim manjše število skupin, kar zagotavlja večjo izkoriščenost rotorskih polov, vendar pa je mogoče z večjim številom skupin zmanjšati oziroma enakomerneje razporediti mehanske obremenitve rotorja in dvigniti frekvenco mehanskih vzbujanj rotorja. Skupna fazna razlika med magnetno in električno fazo na območju skupine statorskih polov, ki šteje P polov, je enaka Z>=P(A//(F/V)-l)*180o. Pri prehodu na sosednjo skupino statorskih polov se mora zato električna faza spremeniti za Eh-P* 180°, k temu pa je potrebno prišteti še morebitno spremembo zaradi razmika do naslednje skupine. Navitja polov sosednje skupine pripadajo psevdofazi, ki najbolje zadosti temu pogoju. Prednostno število polov v posamezni skupini statorja je določeno tako, daje absolutna vrednost skupne fazne razlike med magnetno in električno fazo na območju skupine približno enaka fazni razliki med psevdofazami.The number of groups is an even multiple of 2r the number of electrical phases F, which allows for such an arrangement that the total force per rotor is minimal. It is especially advantageous when the total number of poles of all phases is divisible by the number of groups, since the statue structure is in such cases most symmetrical. Preferably, the number of groups is as low as possible, which ensures greater utilization of the rotor poles, but with a larger number of groups it is possible to reduce or evenly distribute the mechanical loads of the rotor and to increase the frequency of mechanical excitations of the rotor. The total phase difference between the magnetic and electric phases in the region of the group of stator poles, which counts P poles, is equal to Z> = P (A // (F / V) -l) * 180 o . Therefore, when switching to an adjacent group of stator poles, the electrical phase must change by Eh-P * 180 °, plus any possible change due to the distance to the next group. The windings of the poles of the neighboring group belong to the pseudophase that best satisfies this condition. The preferred number of poles in each stator group is determined such that the absolute value of the total phase difference between the magnetic and electrical phases in the group region is approximately equal to the phase difference between the pseudophases.
Zaradi majhne povprečne fazne razlike med magnetno fazo rotorskih polov in električno fazo statorskih polov, še posebej pri statoijih z velikim številom polov, je izkoriščenost magnetnih polov rotoija zelo velika. Zaradi tega omogoča konstrukcija doseganje zelo velikih razmerij med navorom in maso trajnih magnetov. Optimalna izkoriščenost magnetnih polov rotorja se običajno doseže, kadar ti zavzemajo od sedemdeset do petinosemdeset odstotkov obsega ploskve rotorja, ki meji na magnetno režo s statorskimi poli, kar je odvisno tudi od oblike glav jeder polov statorja.Due to the small average phase difference between the magnetic phase of the rotor poles and the electric phase of the stator poles, especially for statues with a large number of poles, the utilization of the rotoi magnetic poles is very high. Because of this, the construction enables very high torque to mass ratios of permanent magnets. Optimal utilization of rotor magnetic poles is usually achieved when they account for between seventy and fifty-eighty percent of the volume of the rotor surface adjacent to the magnetic slot with stator poles, which also depends on the shape of the stator core cores.
Najboljši izkoristek magnetov je mogoče doseči pri konstrukcijah z dvema statoijema, ki stojita nasproti rotorju z obeh strani rotorskih magnetnih polov. Prednostno je, da imata statoija enako število in razporeditev polov. Statoija sta običajno zamaknjena eden nasproti drugemu približno za sodo število rotorskih polov, pri čemer je prednostna vrednost števila enaka najbližjemu sodemu številu kvocienta med številom polov rotorja in dvakratnikom števila skupin statorskih polov, katerih navitja pripadajo isti električni fazi A//(4r). V takem primeru so rotorski poli najmanj razmagnetilno obremenjeni, saj se pri vseh rotorskih polih na nasprotnih straneh istega pola nahajata vsaj dva statorska pola, ki pripadata različnima fazama. Hkrati se razmagnetilna obremenitev, ki jo premaguje posamezni pol rotoija, pri vrtenju najmanj spreminja.The best use of magnets can be achieved with two statues standing opposite the rotor on either side of the rotor magnetic poles. Preferably, the statues have the same number and arrangement of poles. Statios are usually displaced from each other approximately by an even number of rotor poles, the priority value being equal to the closest even quotient between the number of rotor poles and twice the number of groups of stator poles whose windings belong to the same electrical phase A // (4r). In this case, the rotor poles are at least magnetically loaded, since at least two stator poles belonging to different phases are located on opposite sides of the same pole on opposite sides of the same pole. At the same time, the magnetization load overcome by the individual pole of the rotoi changes the least when rotating.
Konstrukcija z dvema statorjema omogoča tudi bistveno izboljšanje toplotne prehodnosti med navitji in ohišjem v primeijavi s konstrukcijami podobnih sposobnosti, ki vsebujejo le en stator. To je še posebej pomembno pri zelo obremenjenih motoijih, ki so aktivno hlajeni. Dvig temperature v motorju negativno vpliva na lastnosti motorja, ker vsebujejo rotorji običajno trajne magnete, ki jim magnetne lastnosti z rastjo temperature slabijo, hkrati pa se poveča tudi upornost navitij statoija ter zaradi tega uporovne izgube.The two-stator construction also makes it possible to significantly improve the thermal transmittance between the windings and the housing, in comparison with structures of similar capabilities containing only one stator. This is especially important for heavily laden, cooled motoes. Increasing the temperature in the motor has a negative effect on the engine's properties, since the rotors usually contain permanent magnets, whose magnetic properties weaken as the temperature rises, while increasing the resistance of the winding statues and consequently the resistive losses.
Ker navitja posameznih faz niso prepletena, je mogoče statorje sestavljati iz elementov, ki vsebujejo enega ali več polov oziroma jeder in navitij polov. Prednost takšnega načina je v tem, da je mogoče navitja statorskih polov naviti, preden se elementi sestavijo. Po namestitvi posameznih elementov statoija se njihova navitja samo še električno spojijo. Še posebej ugodno je to v primeru, ko je stator sestavljen iz posameznih polov, katerih navitja predhodno navijemo na enostavnih strojih za navijanje na vreteno, zaradi česar je mogoče pri tako izdelanih statoijih doseči najvišje polnilne vrednosti za navitja.As the windings of the individual phases are not intertwined, the stators can be composed of elements containing one or more poles or cores and windings of poles. The advantage of this method is that the stator windings can be wound before the elements are assembled. After the individual statue elements are installed, their windings are only electrically connected. This is especially advantageous when the stator is made up of individual poles whose windings are pre-wound on simple spindle winding machines, which makes it possible to achieve the highest fill values for windings in such statues.
Glede na razliko v številu rotorskih in statorskih polov ter razporeditev statorskih polov ima konstrukcija več variant. Po prvi varianti je število polov rotoija enako najbližjemu sodemu številu, ki je manjše ali enako razliki med skupnim številom statorskih polov vseh električnih faz in številom skupin statorskih polov, katerih navitja pripadajo isti električni fazi, posameznega statorja (Af=2w; m=navzdol zaokroženo(FA72-r); prednostno r=l). Po tej varianti so poli statorja približno enakomerno razporejeni in imajo prednostno jedra enake oblike. Takšna razporeditev zagotavlja zelo majhen zastojni navor, še posebej pri motorjih s statoiji, ki imajo skupine s povprečno šest ali več statorskimi poli, kjer že pri enostavno oblikovanih glavah polovnih jeder ne presega nekaj tisočin maksimalnega navora motorja. Običajno se z večanjem povprečnega števila polov statorske skupine, manjša zastojni navor. Neenakomernost navora pri sinusni obliki toka posameznih električnih faz je zelo majhna in dosega običajno do nekaj odstotkov. Jedra polov statorja, ki pripadajo posamezni statorski skupini, so lahko oblikovana tako, da še dodatno zmanjšajo razliko med magnetno fazo rotorskih polov in električno fazo statorskih polov. To je mogoče doseči tako, da so glave jeder polov, ki so bližje robovom skupine, bolj nesimetrične in zamaknjene za večji kot 12 proti robu skupine glede na steblo jedra. S tem se še poveča izkoristek rotorskih polov, vendar se hkrati lahko poveča tudi zastojni navor.Due to the difference in the number of rotor and stator poles and the arrangement of the stator poles, the construction has several variants. According to the first variant, the number of rotoi poles equals the closest even number that is less than or equal to the difference between the total number of stator poles of all electrical phases and the number of groups of stator poles whose windings belong to the same electrical phase of each stator (Af = 2w; m = down rounded (FA72-r); preferably r = 1). In this embodiment, the stator poles are approximately evenly spaced and preferably have the same core shape. This arrangement provides very low stalling torque, especially for statue motors having groups with an average of six or more stator poles, where even with simply formed heads of the half-cores, it does not exceed several thousandths of maximum engine torque. Usually, as the average number of poles of the stator group increases, the deadlock torque decreases. The uneven torque of the sinusoidal current of the individual electrical phases is very small and usually reaches up to a few percent. The cores of the stator poles belonging to each stator group may be designed to further reduce the difference between the magnetic phase of the rotor poles and the electrical phase of the stator poles. This can be achieved by making the heads of the core poles closer to the edges of the group more asymmetrical and offset by more than 12 toward the edge of the group relative to the core stem. This increases the efficiency of the rotor poles, but can also increase the stalling torque.
Po drugi varianti je število polov rotoija enako najbližjemu sodemu številu, ki je večje ali enako vsoti skupnega števila statorskih polov vseh električnih faz in števila skupin statorskih polov, katerih navitja pripadajo isti električni fazi, posameznega statorja (Af=2w; zzz-navzgor zaokroženo(FV/2+r); prednostno r=l). Po tej varianti so poli statorja približno enakomerno razporejeni in imajo prednostno jedra enake oblike. Velikost in narava zastojnega navora je podobna kot pri prvi varianti, kar velja tudi za neenakomernost navora pri sinusni obliki toka posameznih električnih faz. Jedra polov statorja, ki pripadajo posamezni statorski skupini, so lahko oblikovana tako, da še dodatno zmanjšajo razliko med magnetno fazo rotorskih polov in električno fazo statorskih polov. To je mogoče doseči tako, da so glave jeder polov, ki so bližje robovom skupine, bolj nesimetrične in zamaknjene za večji kot 12 proti sredini skupine glede na steblo jedra. S tem se še poveča izkoristek rotorskih polov, vendar se hkrati lahko poveča tudi zastojni navor.Alternatively, the number of rotoi poles equals the closest even number greater than or equal to the sum of the total number of stator poles of all electrical phases and the number of groups of stator poles whose windings belong to the same electrical phase of each stator (Af = 2w; zzz-up rounded ( FV / 2 + r); preferably r = l). In this embodiment, the stator poles are approximately evenly spaced and preferably have the same core shape. The magnitude and nature of the stalled torque is similar to that of the first variant, which also applies to the uneven torque in the sinusoidal flow of the individual electrical phases. The cores of the stator poles belonging to each stator group may be designed to further reduce the difference between the magnetic phase of the rotor poles and the electrical phase of the stator poles. This can be achieved by making the heads of the core poles closer to the edges of the group more asymmetrical and offset by more than 12 towards the center of the group relative to the core of the nucleus. This increases the efficiency of the rotor poles, but can also increase the stalling torque.
Po tretji varianti je število polov rotoija in statoija enako kot po drugi varianti. Poli statoija so neenakomerno razporejeni, znotraj posameznih skupin statorskih polov pa so razporejeni tako, da je razmik med njimi odsekoma približno enakem razmiku med poli rotorja. Razmik med sosednjima robnima poloma 14, 15 odsekov je večji kot med poli posameznega odseka. Prehod med sosednjimi odseki je lahko izveden tudi tako, da se med robnima poloma obeh odsekov nahaja slepi pol 16, iz magnetno permeabilnega materiala, ki nima navitja. S tem se poveča področje magnetne reže, kar ima za posledico manjše nihanje polja magnetnih polov rotoija pri prehodu preko mej odsekov. Isto je mogoče doseči tudi s spremembo oblike glave jedra enega ali obeh robnih polov. V tem primeru je običajno del glave, ki je najbližji polu sosednjega odseka, razpotegnjen v smeri sosednjega odseka. Ker je lahko pri tretji varianti povprečna razlika med magnetno fazo rotorskih polov in električno fazo statorskih polov najmanjša, je možno z njo doseči največje navore, vendar ima med vsemi variantami tudi naj večji zastojni navor in neenakomernost navora. Z ustrezno razporeditvijo polov statoija in izbiro oblike glav njihovih jeder je mogoče tudi v tej varianti zastojni navor zmanjšati tako, da je primerljiv z zastojnim navorom ostalih variant. Zastojni navor je mogoče zmanjšati tudi z ustrezno lego ali obliko magnetnih polov rotorja, pri konstrukcijah z dvema statorjema pa tudi z ustrezno izbiro kotnega zamika med njima.According to the third variant, the number of poles of the rotoi and the statue is the same as in the second variant. The statue poles are unevenly distributed, and within each group of stator poles they are arranged such that the spacing between them is approximately equal to the spacing between the rotor poles. The distance between adjacent edge sections 14, 15 of the sections is greater than that between the sections of each section. Transition between adjacent sections may also be carried out in such a way that there is a blank pole 16 between the edge poles of the two sections, made of magnetically permeable material which has no winding. This increases the area of the magnetic gap, which results in a smaller oscillation of the magnetic pole field of the rotoi as it crosses the sections. The same can be achieved by changing the shape of the core head of one or both edge poles. In this case, the part of the head closest to the pole of the adjacent section is usually stretched in the direction of the adjacent section. Since, in the third variant, the average difference between the magnetic phase of the rotor poles and the electric phase of the stator poles may be the smallest, it can achieve maximum torques, but it also has the greatest torque congestion and uneven torque among all variants. By appropriately arranging the statue poles and choosing the shape of the heads of their cores, the stalling torque can also be reduced in this variant to be comparable to the stalling torque of the other variants. The deadlock torque can also be reduced by the appropriate position or shape of the magnetic rotor poles, and for structures with two stators, the corresponding angular offset between them can be selected accordingly.
Vse variante so lahko izvedene v izvedbah z enim ali dvema statoijema, možno pa je tudi, da vsebuje motor statorja različnih variant. Poli rotorja so lahko orientirani v radialni smeri glede na os vrtenja rotorja (radialna konstrukcija) ali vzporedno z osjo vrtenja rotoija (aksialna konstrukcija). Pri radialni konstrukciji z enim statorjem je mogoča izvedba z zunanjim oziroma notranjim rotorjem. Očitno je, da je mogoča tudi linearna konstrukcija vseh treh variant, z enim ali več statorji.All variants can be made in one or two statues, but it is also possible that the stator motor contains different variants. The rotor poles can be oriented radially with respect to the axis of rotation of the rotor (radial construction) or parallel to the axis of rotation of the rotor (axial construction). In the case of single-stator radial construction, an external or internal rotor may be used. Obviously, linear construction of all three variants, with one or more stators, is also possible.
Pri radialni konstrukciji z enim statoijem se rotor 1 običajno sestoji iz magnetno visoko permeabilnega jarma 5 v obliki obroča in trajnih magnetov 4, ki so pritrjeni po enem od obodov jarma, prednostno z lepljenjem ali s pomočjo mehanskih pritrdilnih elementov. Pri konstrukciji z notranjim rotorjem lahko ima jarem tudi obliko valja. Pri radialni konstrukciji z dvema statoijema pa ima rotor običajno obliko tankega obroča in se prednostno sestoji iz trajnih magnetov, ki so preko stranic, ki ne mejijo na magnetne reže s statoiji, medsebojno povezani z elementi 17 iz magnetno nepermeabilnega in električno neprevodnega materiala, prednostno polimerov oziroma keramike. Tak rotor je lahko izdelan tudi tako, da se magneti razporedijo in zalijejo z veznim materialom, pri čemer je običajno, da se hkrati zalijejo tudi elementi za povezavo rotoija z gredjo motoija. V primerih, ko je pri konstrukciji z dvema statorjema pomembna velika togost rotorja, se lahko rotor sestoji iz magnetno permeabilnega jarma v obliki obroča in trajnih magnetov, ki so pritrjeni po obeh obodih jarma, prednostno tako, da so magneti na notranjem in zunanjem obodu približno poravnani in enako orientirani.In a single stato radial construction, the rotor 1 typically consists of a magnetically highly permeable yoke 5 in the form of a ring and permanent magnets 4, which are attached to one of the yoke circumference, preferably by gluing or by means of mechanical fasteners. In the construction with an internal rotor, the yoke may also have the shape of a cylinder. In the case of a radial structure with two statues, the rotor usually has the form of a thin ring and preferably consists of permanent magnets which are interconnected with elements 17 of magnetically non-permeable and electrically non-conductive material, preferably polymers via non-adjacent magnetic slots with statues. or ceramics. Such a rotor may also be constructed in such a way that the magnets are arranged and sealed with bonding material, and it is customary to also fill the elements to connect the rotoi to the moto shaft at the same time. In cases where high stiffness of the rotor is important for the two-stator construction, the rotor may consist of a magnetically permeable yoke in the form of a ring and permanent magnets attached to both yoke circumference, preferably such that the magnets at the inner and outer circumference are approximately aligned and equally oriented.
Pri aksialni konstrukciji z enim statorjem se rotor običajno sestoji iz magnetno visoko penneabilnega jarma v obliki diska in trajnih magnetov, ki so ob obodu jarma pritrjeni na eno od njegovih ravnih ploskev, prednostno z lepljenjem oziroma s pomočjo mehanskih pritrdilnih elementov. Pri aksialni konstrukciji z dvema statoijema pa ima rotor običajno obliko tankega diska in se prednostno sestoji iz trajnih magnetov, ki so preko stranic, ki ne mejijo na magnetne reže s statoiji, medsebojno povezani z elementi iz magnetno nepermeabilnega in električno neprevodnega materiala, prednostno polimerov oziroma keramike. Tak rotor je lahko izdelan tudi tako, da se magneti razporedijo in zalijejo z veznim materialom, pri čemer je običajno, da se hkrati zalijejo tudi elementi za povezavo rotorja z gredjo motorja. V primerih, ko je pri konstrukciji z dvema statoijema pomembna velika togost rotorja, se lahko ta sestoji iz magnetno permeabilnega jarma v obliki diska in trajnih magnetov, ki so ob obodu pritijeni po obeh ravnih ploskvah jarma, prednostno tako, da so magneti obeh ploskev približno poravnani in enako orientirani.In a single stator axial construction, the rotor typically consists of a magnetically high-foam disc-shaped yoke and permanent magnets, which are attached to one of its flat surfaces at the circumference of the yoke, preferably by gluing or by means of mechanical fasteners. In the case of an axial construction with two statues, the rotor usually has the form of a thin disk and preferably consists of permanent magnets which are interconnected by elements of magnetically non-permeable and electrically non-conductive material, preferably polymers, or via non-adjacent magnetic slots with statues. ceramics. Such a rotor may also be constructed in such a way that the magnets are arranged and sealed with binding material, and it is customary to simultaneously fill the elements for connecting the rotor to the motor shaft. In cases where a high stiffness of the rotor is important in the construction of two statues, the rotor may consist of a magnetically permeable yoke in the form of a disk and permanent magnets, which are attached at the circumference to both straight yoke surfaces, preferably such that the magnets of both surfaces are approximately aligned and equally oriented.
Magnetni pretok med sosednjimi poli statorja je običajno sklenjen preko magnetno permeabilnega jarma, ki povezuje jedra sosednjih polov. Stebla jeder polov lahko prehajajo v jarem ali pa so od njega ločena s tankim električno neprevodnim slojem. Magnetno permeabilni deli statorja so običajno izdelani iz magnetno visoko permeabilne pločevine.The magnetic flux between adjacent poles of the stator is usually contracted via a magnetically permeable yoke connecting the nuclei of adjacent poles. The stems of the core poles may pass into the yoke or be separated from it by a thin electrically conductive layer. The magnetically permeable parts of the stator are typically made of magnetically high permeable sheet metal.
Jarem in jedra polov so lahko izdelana v enem kosu, ki je pri radialni konstrukciji običajno sestavljen iz elementov v obliki lamel, pri aksialni pa se običajno izdeluje z izsekavanjem traku, ki se navija okoli trna. V obeh primerih je slabost to, da je pri izdelavi težko doseči visoke polnilne vrednosti za navitja polov.The yoke and the cores of the poles can be made in one piece, which in the radial construction is usually made up of lamellae elements, and in the axial one it is usually made by punching the ribbon, which curves around the mandrel. In both cases, the disadvantage is that it is difficult to obtain high fill values for the winding poles during manufacture.
Eden od načinov izdelave statorja je tudi ta, da se jarem in jedra polov izdelajo ločeno. Jarem se v tem primeru običajno izdela z navijanjem traku na trn, pri čemer se pri radialni konstrukciji trak navija tako, da vsi navoji nalegajo na obod trna. Jedra polov so običajno izdelana iz lamel enake oblike. Pri sestavljanju statorja se na stebla jeder najprej nasadijo navitja, ki so običajno navita na tuljavniku, nato pa se jedra polov s pomočjo mehanskih pritrdilnih elementov ali lepila pritrdijo na jarem tako, da so jedra polov in jarem električno izolirani. Pri takšnem načinu izdelave statoija je mogoče doseči visoke polnilne vrednosti za navitja polov, slabost pa je v tem, da sloj izolacije zmanjša toplotno prevodnost med jedri polov in jarmom, hkrati pa ustvarja tudi dodatno magnetno režo med poli in jarmom. Dodatna slabost je tudi v tem, daje način izdelave neprimeren za izdelavo tankih jarmov, ki se običajno uporabljajo pri motoijih z velikim številom polov.One way to make a stator is also to make the yokes and cores of the poles separately. In this case, the yoke is usually made by winding the belt onto a mandrel, and in the case of radial construction, the belt is bent in such a way that all the threads rest against the circumference of the mandrel. The cores of the poles are usually made of lamellae of the same shape. When assembling the stator, the cores of the cores are first wound on the coil, which is usually wound on the coil, and then the cores of the poles are electrically isolated by means of mechanical fasteners or adhesive so that the cores of the poles and the yoke are electrically isolated. This method of producing the statue can achieve high fill values for the windings of the poles, but the disadvantage is that the insulation layer reduces the thermal conductivity between the cores of the poles and the yoke, while also creating an additional magnetic gap between the poles and the yoke. An additional disadvantage is that the manufacturing method is unsuitable for the manufacture of thin yokes, which are commonly used in motoes with a large number of poles.
Prednostno je stator izdelan iz polov, ki imajo jedra 8 oblikovana tako, da vsebujejo del jarma, zaradi česar se magnetni pretok sklene neposredno med jedri sosednjih polov. Jedra so oblikovana tako, da je površina reže 19, skozi katero prehaja polje iz enega pola v drugega, čim večja in so običajno izdelana iz lamel enake oblike. Posamezen pol se sestavi tako, da se na steblo jedra natakneta dva, prednostno enaka, dela 20, ki sestavljata tuljavnik, na katerega se nato navije navitje pola 9. Stator se običajno sestavi tako, da se poli pritrdijo na ohišje motorja 3, prednostno z lepljenjem ali s pomočjo mehanskih pritrdilnih elementov. Če je del ohišja, na katerega so pritrjeni poli, električno prevoden, mora biti od polov statoija električno izoliran. Pri polih, ki so nalepljeni na ohišje, služi sloj lepila 18 med jedrom pola in ohišjem ter v reži 19 med sosednjima poloma tudi kot električni izolator. Zaradi enostavne izdelave navitij, dosegajo navitja polov tako izdelanih statorjev visoke polnilne vrednosti. Ker so magnetne upornosti rež med sosednjimi poli običajno vsaj za razred manjše od upornosti magnetne reže med poli statoija in rotorja, ne zmanjšajo znatno magnetnega pretoka skozi statorske pole. Tako izdelani statoiji omogočajo dobro odvajanje toplote na ohišje, dodatna prednost pa je še v tem, da omejujejo nastanek mehanskih napetosti v statoiju in ohišju, ki nastajajo zaradi različnih temperatur in temperaturnih raztezkov materialov, iz katerih so narejeni posamezni elementi.Preferably, the stator is made of poles having cores 8 formed to contain a portion of the yoke, which causes the magnetic flux to contract directly between the nuclei of adjacent poles. The cores are designed so that the surface of the slot 19 through which the field passes from one pole to the other is as large as possible and is usually made of lamellae of the same shape. The individual pole is assembled by affixing two, preferably identical, parts 20 to the core of the core, which form a coil, to which the winding of the pole 9 is then wound. The stator is usually assembled by attaching the poles to the housing of the motor 3, preferably by gluing or using mechanical fasteners. If the part of the housing to which the poles are attached is electrically conductive, the poles of the statue must be electrically insulated. In the case of poles which are glued to the housing, the adhesive layer 18 between the core of the pole and the housing and in the gap 19 between adjacent poles also serves as an electrical insulator. Because of the simple winding design, the windings of the poles made in this way are of high filling value. Since the magnetic resistances of the slots between adjacent poles are usually at least one class smaller than the resistances of the magnetic gap between the poles of the statue and the rotor, they do not significantly reduce the magnetic flux through the stator poles. The statues made in this way allow for good heat dissipation to the housing, and the additional advantage is that they limit the formation of mechanical stresses in the statue and the housing, which are due to the different temperatures and temperature elongations of the materials from which the individual elements are made.
Pri radialni konstrukciji z dvema statorjema so stebla jeder polov pri notranjem statoiju običajno daljša kot pri zunanjem statorju, tako da imajo navitja polov obeh statoijev približno enake električne in magnetne lastnosti.In the case of a two-stator radial construction, the stems of the pole cores in the inner statue are usually longer than in the outer stator, so that the windings of the poles of both statues have approximately the same electrical and magnetic properties.
Claims (17)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI200400151A SI21830A (en) | 2004-05-25 | 2004-05-25 | Synchronous electromechanical transducer |
EP05740427A EP1884013A1 (en) | 2004-05-25 | 2005-05-23 | Synchronous electromechanical transformer |
PCT/SI2005/000015 WO2005117243A1 (en) | 2004-05-25 | 2005-05-23 | Synchronous electromechanical transformer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI200400151A SI21830A (en) | 2004-05-25 | 2004-05-25 | Synchronous electromechanical transducer |
Publications (1)
Publication Number | Publication Date |
---|---|
SI21830A true SI21830A (en) | 2005-12-31 |
Family
ID=34972073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SI200400151A SI21830A (en) | 2004-05-25 | 2004-05-25 | Synchronous electromechanical transducer |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1884013A1 (en) |
SI (1) | SI21830A (en) |
WO (1) | WO2005117243A1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0620069D0 (en) | 2006-10-10 | 2006-11-22 | Force Engineering Ltd | Improvements in and relating to electromotive machines |
US8288916B2 (en) * | 2007-09-13 | 2012-10-16 | Eric Stephane Quere | Composite electromechanical machines with uniform magnets |
JP4926107B2 (en) * | 2008-03-28 | 2012-05-09 | 株式会社豊田中央研究所 | Rotating electric machine |
IT1391500B1 (en) | 2008-09-03 | 2011-12-30 | Lenzi | ROTATING ELECTRIC MACHINE |
ITFI20080163A1 (en) * | 2008-09-03 | 2010-03-04 | Leonardo Lenzi | ROTATING ELECTRIC MACHINE. |
SI23711B (en) | 2011-04-05 | 2020-12-31 | Elaphe Pogonske Tehnologije D.O.O. | compact multiphase wave winding electric machine with a high specific torque |
CN104137400A (en) * | 2012-02-28 | 2014-11-05 | 西门子公司 | Electric motor |
CN104137394A (en) * | 2012-02-28 | 2014-11-05 | 西门子公司 | Electric motor |
EP2728713A1 (en) * | 2012-10-31 | 2014-05-07 | Openhydro IP Limited | An electrical machine |
WO2023174856A1 (en) | 2022-03-15 | 2023-09-21 | Elaphe Propulsion Technologies, Ltd. | Winding for an electric machine, electric machine and manufacturing method |
DE102022113127A1 (en) | 2022-05-24 | 2023-11-30 | Roland KASPER | Winding, electrical machine and manufacturing process |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3609351A1 (en) * | 1986-03-20 | 1987-09-24 | Bosch Gmbh Robert | BRUSHLESS ELECTRIC MOTOR |
US5006745A (en) * | 1988-08-03 | 1991-04-09 | Victor Company Of Japan, Ltd. | Polyphase direct current motor |
JPH03139156A (en) * | 1989-10-25 | 1991-06-13 | Mitsubishi Electric Corp | Twin-stator brushless motor |
JPH04289759A (en) * | 1991-03-18 | 1992-10-14 | Matsushita Electric Ind Co Ltd | Brushless motor |
US5212419A (en) * | 1992-01-10 | 1993-05-18 | Fisher Electric Motor Technology, Inc. | Lightweight high power electromotive device |
GB2297433B (en) * | 1995-01-20 | 1999-03-10 | Norcroft Dynamics Ltd | Brushless DC motors |
JP2000152581A (en) * | 1998-11-04 | 2000-05-30 | Asmo Co Ltd | Brushless motor and stator of brushless motor |
JP2002335658A (en) * | 2001-05-08 | 2002-11-22 | Nsk Ltd | Motor |
JP4723118B2 (en) | 2001-06-01 | 2011-07-13 | 三菱電機株式会社 | Rotating electric machine and pulley drive device using the rotating electric machine |
-
2004
- 2004-05-25 SI SI200400151A patent/SI21830A/en not_active IP Right Cessation
-
2005
- 2005-05-23 EP EP05740427A patent/EP1884013A1/en not_active Withdrawn
- 2005-05-23 WO PCT/SI2005/000015 patent/WO2005117243A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
EP1884013A1 (en) | 2008-02-06 |
WO2005117243A1 (en) | 2005-12-08 |
WO2005117243B1 (en) | 2006-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7723888B2 (en) | Synchronous electromechanical transformer | |
EP2169804B1 (en) | Flux-switching magnetic machine | |
US8836196B2 (en) | Transverse and/or commutated flux systems having segmented stator laminations | |
US4788465A (en) | Armature for DC motor | |
US8405275B2 (en) | Transverse and/or commutated flux systems having segmented stator laminations | |
CN105474512B (en) | Synchronous motor | |
US20130113320A1 (en) | Transverse and/or commutated flux systems having multidirectional laminations | |
US10742084B2 (en) | High power density motor having bridged spoked rotor and prewound bobbins for stator | |
MX2011001263A (en) | Interior permanent magnet motor including rotor with unequal poles. | |
WO2004054068A2 (en) | Rotor for line-start reluctance motor | |
CN104467209A (en) | Motor and rotor | |
US4810914A (en) | Linear actuator with multiple closed loop flux paths essentially orthogonal to its axis | |
KR101248201B1 (en) | Permanent magnet-type stepping motors | |
SI21830A (en) | Synchronous electromechanical transducer | |
JP3220535B2 (en) | Linear pulse motor | |
US20140340185A1 (en) | Rotary Connection for Electric Power Transmission | |
JP2009296878A (en) | High-frequency motor or generator | |
CA3024781A1 (en) | Multi-teeth switched reluctance motor with short flux path | |
JP2003164085A (en) | Rotating electric machine | |
CN113273057A (en) | Interior permanent magnet machine with flux distribution gap | |
SI22072A (en) | Synchronous electro-mechanical converter | |
WO2021117320A1 (en) | Coil and motor comprising same | |
KR100260650B1 (en) | Axial air-gap electric machine and assembly method having a multidisk stator | |
JP2004222467A (en) | Embedded magnet type motor | |
KR100452380B1 (en) | Synchronizer Reluctance Motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OO00 | Grant of patent |
Effective date: 20050908 |
|
KO00 | Lapse of patent |
Effective date: 20120111 |