RU2692349C1 - Способ получения целлюлозосодержащего геля - Google Patents

Способ получения целлюлозосодержащего геля Download PDF

Info

Publication number
RU2692349C1
RU2692349C1 RU2018132109A RU2018132109A RU2692349C1 RU 2692349 C1 RU2692349 C1 RU 2692349C1 RU 2018132109 A RU2018132109 A RU 2018132109A RU 2018132109 A RU2018132109 A RU 2018132109A RU 2692349 C1 RU2692349 C1 RU 2692349C1
Authority
RU
Russia
Prior art keywords
cellulose
water
aqueous
suspension
aluminosilicate
Prior art date
Application number
RU2018132109A
Other languages
English (en)
Inventor
Андрей Александрович Новиков
Борис Михайлович Аникушин
Максим Викторович Горбачевский
Дмитрий Сергеевич Копицын
Михаил Сергеевич Котелев
Ольга Владимировна Попова
Павел Александрович Гущин
Евгений Владимирович Иванов
Владимир Арнольдович Винокуров
Original Assignee
федеральное государственное автономное образовательное учреждение высшего образования "Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное автономное образовательное учреждение высшего образования "Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина" filed Critical федеральное государственное автономное образовательное учреждение высшего образования "Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина"
Priority to RU2018132109A priority Critical patent/RU2692349C1/ru
Application granted granted Critical
Publication of RU2692349C1 publication Critical patent/RU2692349C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B1/00Preparatory treatment of cellulose for making derivatives thereof, e.g. pre-treatment, pre-soaking, activation
    • C08B1/003Preparation of cellulose solutions, i.e. dopes, with different possible solvents, e.g. ionic liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • C08L101/14Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity the macromolecular compounds being water soluble or water swellable, e.g. aqueous gels

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Paper (AREA)

Abstract

Изобретение относится к способам получения композиций в виде гелей, содержащих наноразмерную целлюлозу, и может быть использовано в целлюлозно-бумажной, текстильной, химической, пищевой отраслях промышленности. Способ получения целлюлозосодержащего геля, включающий кислотную и окислительную обработку целлюлозосодержащего сырья, проводимую в присутствии водных растворов минеральной кислоты и неорганического окислителя с получением обработанного целлюлозосодержащего сырья, фильтрование обработанного целлюлозосодержащего сырья с получением целлюлозосодержащего осадка и фильтрата, направляемого на кислотную и окислительную обработку, промывку целлюлозосодержащего осадка промывочным раствором, отделение избыточного промывного раствора с образованием промытого целлюлозосодержащего осадка, диспергирование промытого целлюлозосодержащего осадка в воде с получением водной суспензии целлюлозы, механическое измельчение полученной водной суспензии целлюлозы с образованием водной суспензии наноразмерной целлюлозы, смешение водной суспензии наноразмерной целлюлозы с водной суспензией модифицированного алюмосиликатного коагулянта, которую получают путем смешения алюмосиликатного коагулянта с водой и, дополнительно, с водным раствором модификатора, выбранного из группы, включающей катионные поверхностно-активные вещества, вещества, диссоциирующие в водных растворах с образованием полимерных катионов, их смеси, с образованием целлюлозосодержащего геля в избытке воды, и отделение избытка воды с получением целевого целлюлозосодержащего геля. Технический результат заключается в обеспечении формирования структуры целлюлозосодержащего геля с коагулированными волокнами на алюмосиликатных частицах, а также в расширении арсенала технологий получения целлюлозосодержащих гелей из дешевого и доступного сырья. 4 з.п. ф-лы, 3 пр.

Description

Изобретение относится к способам получения композиций в виде гелей, содержащих наноразмерную целлюлозу, и может быть использовано в целлюлозно-бумажной, текстильной, химической, пищевой и других отраслях промышленности.
Композиции в виде гелей, содержащих наноразмерную целлюлозу, имеют широкое применение при производстве и модификации различных материалов. Так, данные композиции используют для модификации свойств целлюлозно-бумажной продукции, полупроницаемых мембран, в частности, для улучшения механических свойств и свойств смачиваемости водой и органическими растворителями. Указанные композиции используют также при изготовлении упаковочных материалов, синтетических и полусинтетических текстильных материалов, полупроницаемых мембран для очистки водных растворов от высокомолекулярных веществ.
Задача получения целлюлозосодержащего геля осложняется тем, что суспензии наноразмерной целлюлозы обладают чрезмерно высокой вязкостью уже при концентрациях около 3-5% мас., что приводит к высоким затратам энергии на удаление избыточного количества воды из таких композиций входе их применения. Весьма перспективно применение целлюлозосодержащих гелей, содержащих, помимо наноразмерной целлюлозы, компоненты, обеспечивающие простое и малозатратное повышение концентрации целлюлозы в целлюлозосодержащем геле при несущественном повышении вязкости геля. Такими компонентами могут быть алюмосиликатные материалы, в частности, природные алюмосиликатные материалы (глины). Дополнительным преимуществом внесения в композиции наноразмерной целлюлозы алюмосиликатных добавок является снижение горючести получаемых материалов.
Известен ряд способов получения дисперсий полимеров (в том числе целлюлозы) с добавлением алюмосиликатных (глинистых) материалов с целью повышения термической стойкости композиционных материалов, получаемых при высушивании таких дисперсий, а также с целью снижения затрат энергии для получения таких дисперсий при совместном измельчении целлюлозы и алюмосиликатного наполнителя.
В частности, в патенте US 6838507, 2005 описан способ получения нанокомпозиционной дисперсии полимера и глины путем смешения первой водной реакционной смеси, содержащей мономер с этиленовыми фрагментами, и второй водной реакционной смеси, содержащей дисперсию частично эксфолиированной глины и, как минимум, один мономер с этиленовыми фрагментами, с последующей полимеризацией, по меньшей мере, части мономеров с этиленовыми фрагментами.
Недостатками описанного способа являются необходимость использования синтетических мономеров с этиленовыми фрагментами, сложность технологии, а также необходимость, по меньшей мере, частичной эксфолиации используемой глины.
В патенте US 6893492, 2005 описан способ получения нанокомпозиционных материалов, содержащих целлюлозу и глину. Отмечается значительное увеличение термической стойкости таких материалов по сравнению с хлопковыми материалами, получаемыми по аналогичной технологии без добавления глины. Способ по данному патенту заключается в модификации глины в водной суспензии соединениями, содержащими алкиламмониевые или ариламмониевые катионы, высушивании образованной суспензии, смешении высушенной модифицированной глины с целлюлозой в растворителе, способном растворять целлюлозу, нагревании и перемешивании глины и целлюлозы при температуре от 100 до 150°С до растворения целлюлозы и суспендирования глины и осаждении целевого продукта в полярном растворителе с получением нанокомпозита, содержащего глину (0,5-25% мас.) и целлюлозу (остальное).
Недостатками описанного способа являются сложность технологии (в том числе необходимость растворения и переосаждения целлюлозы при экстремально высокой вязкости растворов целлюлозы), необходимость высокого расхода соединений, содержащих алкиламмониевые или ариламмониевые катионы, а также необходимость использования растворителей, способных растворять целлюлозу.
Известен способ получения нанокомпозиционных материалов, содержащих целлюлозу и глину, описанный в патенте RU 2549323, 2015. Способ заключается в смешении волокон целлюлозы с наполнителем и/или пигментом, выбранным из группы осажденный карбонат кальция, природный карбонат кальция и последующем их совместном фибриллировании (механическом измельчении).
Недостатками способа являются сложность технологии, требующей многостадийного измельчения целлюлозы, а также необходимость совместного измельчения целлюлозы с наполнителем, что делает технологию трудоемкой и затратной, хотя и приводит к повышению вязкости получаемого продукта при сравнительно меньших энергозатратах по сравнению со способом без введения наполнителя. При этом целлюлоза находится в получаемом продукте в виде протяженных фибрилл, что приводит к критическому возрастанию вязкости получаемых композиций при превышении массового содержания целлюлозы около 3-5% мас. и существенно затрудняет использование способа при необходимости получения высокодисперсной волокнистой целлюлозы при ее содержании в воде свыше 3-5% мас.
Наиболее близким к заявляемому способу является способ получения гелей, содержащих нанофибриллярную целлюлозу, описанный в патенте RU 2530067, 2014, в котором проводят подготовку целлюлозных волокон, подготовку наполнителя и/или пигмента, смешение целлюлозных волокон с наполнителем и/или пигментом, выбранным из группы осажденный карбонат кальция, природный измельченный карбонат кальция, доломит, тальк, бентонит, глину, магнезит, сатинит, сепиолит, гунтит, диатомит, силикаты и их смеси, и их совместном измельчении до тех пор, пока не останется волокон и пока в водной среде не образуется гель только из первичных фибрилл. Целлюлоза в получаемом продукте находится в виде геля, то есть в виде метастабильной сетки фибрилл. Под эффективным способом получения геля, содержащего нанофибриллярную целлюлозу, в рамках указанного патента понимают способ, приводящий к получению геля с заданной вязкостью по Брукфилду с наименьшими затратами энергии.
Недостатками способа являются невозможность получения геля низкой вязкости с высоким содержанием целлюлозы, а также необходимость совместного измельчения целлюлозы с наполнителем, что делает проводимую технологию трудоемкой и затратной, несмотря на повышение вязкости получаемого продукта при сравнительно меньших энергозатратах по сравнению со способом без введения наполнителя. При этом по указанному способу целлюлоза в получаемом продукте находится в виде протяженных фибрилл, что приводит к критическому возрастанию вязкости получаемых композиций при превышении массового содержания целлюлозы около 3-5% мас. и существенно затрудняет использование способа при необходимости получения высокодисперсной волокнистой целлюлозы при ее содержании в воде свыше 3-5% мас.
Таким образом, известный способ недостаточно эффективен.
Техническая проблема настоящего изобретения заключается в повышении эффективности способа получения целлюлозосодержащего геля, а именно, в обеспечении получения целлюлозосодержащего геля из природных материалов по упрощенной технологии, обеспечении возможности получения геля низкой вязкости с высоким содержанием целлюлозы.
Указанная техническая проблема решается описываемым способом получения целлюлозосодержащего геля, включающий кислотную и окислительную обработку целлюлозосодержащего сырья, проводимую в присутствии водных растворов минеральной кислоты и неорганического окислителя с получением обработанного целлюлозосодержащего сырья, фильтрование обработанного целлюлозосодержащего сырья с получением целлюлозосодержащего осадка и фильтрата, направляемого на кислотную и окислительную обработку, промывку целлюлозосодержащего осадка промывочным раствором, отделение избыточного промывного раствора с образованием промытого целлюлозосодержащего осадка, диспергирование промытого целлюлозосодержащего осадка в воде с получением водной суспензии целлюлозы, механическое измельчение полученной водной суспензии целлюлозы с образованием водной суспензии наноразмерной целлюлозы, смешение водной суспензии наноразмерной целлюлозы с водной суспензией модифицированного алюмосиликатного коагулянта, которую получают путем смешения алюмосиликатного коагулянта с водой и, дополнительно, с водным раствором модификатора, выбранного из группы, включающей катионные поверхностно-активные вещества, вещества, диссоциирующие в водных растворах с образованием полимерных катионов, их смеси, с образованием целлюлозосодержащего геля в избытке воды и отделение избытка воды с получением целевого целлюлозосодержащего геля.
Предпочтительно, в качестве минеральной кислоты используют кислоту, выбранную из группы, включающей серную, соляную, фосфорную кислоты, в качестве неорганического окислителя используют окислитель, выбранный из группы, включающей пероксиды, пероксокислоты и их соли, галоген- и кислородсодержащие кислоты и их соли, в качестве промывного
раствора используют воду, водный раствор или суспензию сильного основания концентрацией от 0,001 моль/л до 0,1 моль/л.
Предпочтительно, в качестве модифицированного алюмосиликатного коагулянта используют алюмосиликатные материалы с дзета-потенциалом от +1 мВ до +200 мВ.
Достигаемый технический результат заключается в обеспечении формирования структуры целлюлозосодержащего геля с коагулированными волокнами на алюмосиликатных частицах, а также в расширении арсенала технологий получения целлюлозосодержащих гелей из дешевого и доступного сырья, в том числе вторичного (макулатуры).
Сущность способа заключается в следующем.
В качестве целлюлозосодержащего сырья используют древесную сульфитную или сульфатную целлюлозу, как неотбеленную, так и беленую, хлопковое волокно, макулатуру, солому пшеницы, рисовую солому или микрокристаллическую целлюлозу. Возможно также использование иного целлюлозосодержащего сырья с содержанием целлюлозы не менее 5,0% мас.
Проводят кислотную и окислительную обработку целлюлозосодержащего сырья в присутствии водного раствора кислотного агента и водного раствора окислительного агента, предпочтительно, при температуре от 0°С до +60°С в течение 1-600 минут. Указанную обработку возможно проводить как при одновременном добавлении кислотного и окислительного агента (в совместном режиме), так и при последовательном их добавлении в различном порядке (в последовательном режиме). При проведении кислотной и окислительной обработки в последовательном режиме возможно проводить отделение первого агента (кислотного или окислительного) от обработанного целлюлозосодержащего сырья перед
добавлением второго агента (окислительного или кислотного), не допуская их смешения.
При этом в качестве кислотного агента используют минеральную кислоту, выбранную из группы, содержащей, например, серную кислоту, соляную кислоту, фосфорную кислоту. Содержание кислотного агента в водном растворе, предпочтительно, составляет 5,0-80,0% мас. В качестве окислительного агента используют неорганические окислители, такие как пероксиды, пероксокислоты и их соли, галоген- и кислородсодержащие кислоты и их соли, в частности, перекисные соединения водорода, пероксокислоты и их соли, хлористую кислоту и ее соли, хлорноватую кислоту и ее соли, хлорноватистую кислоту и ее соли, например, пероксид водорода, гипохлорит калия, гипохлорит натрия, персульфат калия, персульфат натрия или персульфат аммония. Содержание окислительного агента в водном растворе составляет, предпочтительно, 1,0-10,0% мас. Содержание целлюлозосодержащего сырья в смеси с водными растворами кислотного и окислительного агентов составляет, предпочтительно, 1,0-40,0% мас. В результате получают обработанное целлюлозосодержащее сырье.
Затем осуществляют фильтрование обработанного целлюлозосодержащего сырья на кислотостойком фильтре с получением целлюлозосодержащего осадка и фильтрата.
Фильтрат направляют (рециркулируют) на кислотную и окислительную обработку, поскольку последний содержит указанные кислотный и окислительный агенты. Рециркуляция фильтрата приводит к снижению затрат на проведение описываемого способа в целом и, как следствие, к упрощению технологии способа.
При этом при осуществлении кислотной и окислительной обработки в последовательном режиме возможно проводить фильтрование неоднократно с раздельным направлением фильтратов на рецикл. Так, например, возможно проведение кислотной обработки с последующим фильтрованием обработанного целлюлозосодержащего сырья и направлением фильтрата, содержащего кислотный агент, на рецикл, а затем проведение окислительной обработки с последующим фильтрованием обработанного целлюлозосодержащего сырья и направлением фильтрата, содержащего окислительный агент, на рецикл.
Фильтрование проводят таким образом, чтобы не допустить высыхания осадка целлюлозы на фильтре, поскольку полное высушивание целлюлозы необратимо изменяет ее свойства (удельную поверхность, поровый объем) и препятствует ее дальнейшему измельчению для получения целлюлозосодержащего геля.
В связи с тем, что концентрация кислотного и окислительного агентов изменяется незначительно в ходе обработки целлюлозы, при направлении фильтрата на рецикл достаточно добавлять небольшое количество кислотного и окислительного агентов в фильтрат для его повторного использования, а во многих случаях допустимо его повторное использование без добавления кислотного и окислительного агентов. При проведении кислотной и окислительной обработки в последовательном режиме возможно добавление кислотного и окислительного агентов в соответствующие фильтраты по отдельности, не допуская их смешения.
Образованный на стадии фильтрования целлюлозосодержащий осадок направляют на промывку промывным раствором и отделение избыточного промывного раствора. Расход промывного раствора выбирают, предпочтительно, из расчета от 0,1 кг до 20 кг воды на 1 кг целлюлозы в зависимости от природы использованного кислотного агента и его концентрации. При этом, с целью более полного удаления остатков кислотного агента, целесообразно использовать в качестве промывного раствора водный раствор или суспензию сильного основания концентрацией от 0,001 моль/л до 0,1 моль/л. В качестве сильного основания возможно использовать гидроксиды щелочных металлов, например, гидроксиды лития, натрия, калия, цезия, гидроксиды щелочноземельных металлов, например, гидроксиды бария, кальция, или же гидроксид аммония.
После проведения промывки и отделения избыточного промывного раствора осуществляют диспергирование промытого целлюлозосодержащего осадка в воде с получением водной суспензии с содержанием целлюлозы от 0,1% мас. до 10,0% мас., предпочтительно от 1,0% мас. до 5,0% мас., например, 3,0% мас. При этом механические примеси в составе исходного целлюлозосодержащего сырья, не разрушенные при кислотной и окислительной обработке, будут оставаться в виде осадка, поскольку обработанное целлюлозосодержащее сырье диспергируется в воде значительно легче механических примесей за счет приобретенного отрицательного дзета-потенциала.
Затем проводят механическое измельчение полученной суспензии целлюлозы. Процесс измельчения проводят до достижения величины среднего диаметра волокон не более 10000 нм, предпочтительно не более 1000 нм, например, со средним диаметром волокон 200 нм, получая, таким образом, суспензию наноразмерной целлюлозы в воде с отрицательным дзета-потенциалом, предпочтительно, в диапазоне от минус 200 до минус 1 мВ, более предпочтительно, от минус 125 до минус 30 мВ, например, минус 50 мВ.
Далее проводят приготовление суспензии алюмосиликатного коагулянта с водой, которое осуществляют путем смешения алюмосиликатного коагулянта с водой. Содержание алюмосиликатного коагулянта в образующейся водной суспензии коагулянта составляет, предпочтительно, 1,0-40,0% мас.
В качестве алюмосиликатного коагулянта используют природные или синтетические алюмосиликатные материалы с развитой поверхностью и положительным дзета-потенциалом, в частности, алюмосиликатные наноматериалы с дзета-потенциалом более +1 мВ. Так, например, в качестве природных алюмосиликатных материалов возможно использовать иллит, мусковит, а также разновидности палыгорскита с положительным дзета-потенциалом.
При этом, предпочтительно, приготовление суспензии алюмосиликатного коагулянта осуществляют путем смешения алюмосиликатного коагулянта с водой и, дополнительно, с водным раствором модификатора, выбранного из группы, включающей катионные поверхностно-активные вещества, вещества, диссоциирующие в водных растворах с образованием полимерных катионов, их смеси. В полученной водной суспензии содержание алюмосиликатного коагулянта составляет, предпочтительно, 1,0-40,0% мас.
В случае использования вышеописанного модификатора происходит процесс модификации алюмосиликатных материалов. При этом повышается их дзета-потенциал.
Предпочтительный вариант приготовления водной суспензии алюмосиликатного коагулянта проводят нижеследующим образом (в данном случае в качестве коагулянта используют галлуазит, однако, может быть использован и другой алюмосиликатный материал).
Проводят смешение (диспергирование) галлуазита с водой с получением водной суспензии и последующее смешение полученной суспензии с водным раствором модификатора при содержании модификатора, предпочтительно, от 0,01% мас. до 4,0% мас. При этом, в качестве модификатора используют катионные поверхностно-активные вещества, в том числе, например, соли четвертичного аммония, диссоциирующие в водных растворах с образованием гидрофобных катионов, в частности, хлориды или бромиды четырехзамещенного аммония, например, хлорид гексадецилтриметиламмония, или вещества, диссоциирующие в водных растворах с образованием полимерных катионов (поликатиониты), в частности, полиамины или полиимины, например, гидрохлорид полиаллиламина, гидрохлорид полилизина или гидрохлорид полигексаметиленгуанидиния. В результате смешения получают водную суспензию модифицированного алюмосиликатного коагулянта, обладающего положительным дзета-потенциалом, предпочтительно в диапазоне от +1 до +200 мВ, более предпочтительно от +20 до +100 мВ, например, +40 мВ.
Далее осуществляют смешение водной суспензии наноразмерной целлюлозы с водной суспензией алюмосиликатного коагулянта с образованием целлюлозосодержащего геля в избытке воды.
Для этого проводят смешение водной суспензии наноразмерной целлюлозы с водной суспензией алюмосиликатного коагулянта при температуре, предпочтительно, от 0°С до 60°С с добавлением водной суспензии алюмосиликатного коагулянта в течение, предпочтительно, 5-240 минут, при механическом перемешивании, выбирая при этом соотношение объемов водной суспензии наноразмерной целлюлозы и водной суспензии алюмосиликатного коагулянта, исходя из массового содержания в них наноразмерной целлюлозы и алюмосиликатного коагулянта, дзета-потенциала используемых наноразмерной целлюлозы и алюмосиликатного коагулянта, заданного дзета-потенциала целевого целлюлозосодержащего геля и заданного содержания целлюлозы в целлюлозосодержащем геле. При этом происходит коагуляция целлюлозы с образованием целлюлозосодержащего геля в избытке воды. Так, например, при заданном содержании целлюлозы 10% мас. используют водную суспензию наноразмерной целлюлозы с дзета-потенциалом от минус 30 мВ до минус 20 мВ и содержанием целлюлозы от 3% мас. до 6% мас. и водную суспензию алюмосиликатного коагулянта с дзета-потенциалом от +20 мВ до +40 мВ и содержанием алюмосиликатного коагулянта от 0,03% мас. до 1,5% мас. Предпочтительно, указанные суспензии смешивают в объемном отношении от 5:1 до 1:1.
Затем осуществляют отделение избытка воды с получением целевого целлюлозосодержащего геля.
Отделение избыточной воды проводят путем декантирования или фильтрования с получением целевого целлюлозосодержащего геля достаточно низкой вязкости с высоким содержанием целлюлозы. Под достаточно низкой вязкостью, в рамках данной заявки, понимают вязкость, позволяющую осуществлять перекачку целевого целлюлозосодержащего геля с помощью насоса, и составляющую, как правило, не более 10000 мПа⋅с, более предпочтительно - не более 1000 мПа⋅с.
В результате проведения описываемого способа из целлюлозосодержащего сырья получают целлюлозосодержащий гель с низкой вязкостью и высоким содержанием наноразмерной целлюлозы с отрицательным дзета-потенциалом, равным, предпочтительно, от минус 200 до минус 1 мВ, более предпочтительно от минус 125 до минус 20 мВ, например, минус 40 мВ.
Ниже приведены примеры, иллюстрирующие описываемый способ, но не ограничивающие его.
Пример 1.
В качестве целлюлозосодержащего сырья используют неотбеленную сульфитную целлюлозу.
Проводят стадию кислотной и окислительной обработки неотбеленной сульфитной целлюлозы, диспергируя ее в водном растворе, содержащем 55,0% мас. серной кислоты и 5,0% мас. пероксида водорода с получением суспензии целлюлозы с содержанием последней 5,0% мас. Выдерживают полученную суспензию при температуре 60°С в течение 120 минут, при перемешивании. После этого проводят стадию фильтрования обработанного целлюлозосодержащего сырья на кислотостойком фильтре с получением целлюлозосодержащего осадка, а фильтрат, содержащий около 50,0% мас. серной кислоты и около 4,0% мас. пероксида водорода, направляют на рецикл для обработки следующей порции целлюлозы, добавляя к нему концентрированную серную кислоту и концентрированный водный раствор пероксида водорода до концентрации 55,0% мас. серной кислоты и 5,0% мас. пероксида водорода.
Проводят стадию промывки целлюлозосодержащего осадка и отделения избыточного промывного раствора. Отфильтрованный целлюлозосодержащий осадок промывают водой из расчета 1 кг воды на 100 г осадка и проводят стадию диспергирования промытого целлюлозосодержащего осадка в воде с получением суспензии целлюлозы. Диспергирование в воде проводят до достижения содержания целлюлозы в получившейся суспензии 2,0% мас. Далее проводят стадию механического измельчения полученной суспензии целлюлозы на коллоидной мельнице Masuko SuperMassColloider с получением суспензии наноразмерной целлюлозы со средним диаметром волокон не более 200 нм. Дзета-потенциал полученной наноразмерной целлюлозы составляет минус 50 мВ, вязкость - около 6000 мПа⋅с.
Далее проводят стадию приготовления суспензии алюмосиликатного коагулянта с водой. Готовят дисперсию галлуазита в воде при перемешивании до достижения содержания галлуазита 8,0% мас. К полученной водной суспензии галлуазита добавляют водный раствор бромида гексадецилтриметиламмония до достижения содержания галлуазита в полученной суспензии 5,0% мас. и содержания бромида гексадецилтриметиламмония 1,0% мас., после чего выдерживают при перемешивании в течение 120 мин. Отфильтровывают образованный модифицированный галлуазит и промывают его водой из расчета 1 кг воды на 100 г модифицированного галлуазита. Диспергируют модифицированный галлуазит в воде до достижения содержания галлуазита 5,0% мас. с получением водной суспензии алюмосиликатного коагулянта с дзета-потенциалом плюс 61 мВ. Проводят стадию смешения водной суспензии наноразмерной целлюлозы с водной суспензией алюмосиликатного коагулянта, выдерживают при перемешивании в течение 10 минут. После этого выдерживают полученную смесь без перемешивания в течение 30 минут и наблюдают коагуляцию с образованием целевого целлюлозосодержащего геля. Проводят стадию отделения избытка воды путем фильтрования с получением целевого целлюлозосодержащего геля с массовым содержанием целлюлозы 3,0% мас. Вязкость полученного продукта составляет около 900 мПа⋅с.
Пример 2.
В качестве целлюлозосодержащего сырья используют газетную макулатуру.
Проводят стадию кислотной и окислительной обработки газетной макулатуры, диспергируя ее при перемешивании в водном растворе, содержащем 45,0% мас. серной кислоты и 7,0% мас. пероксида водорода с получением водной суспензии целлюлозы с содержанием последней 5,0% мас. Выдерживают полученную суспензию при температуре 50,0°С в течение 240 минут при перемешивании. После этого проводят стадию фильтрования обработанного целлюлозосодержащего сырья на кислотостойком фильтре с получением целлюлозосодержащего осадка, а фильтрат, содержащий около 40,0% мас. серной кислоты и около 5,0% мас. пероксида водорода, направляют на рецикл для обработки следующей порции макулатуры.
Проводят стадию промывки целлюлозосодержащего осадка и отделения избыточного промывного раствора. Отфильтрованный целлюлозосодержащий осадок промывают водным раствором гидроксида натрия концентрацией 0,01 моль/л из расчета 3,0 кг раствора на 1,0 кг осадка и проводят стадию диспергирования промытого целлюлозосодержащего осадка в воде с получением водной суспензии целлюлозы. Диспергирование в воде проводят до достижения содержания обработанной целлюлозы в получившейся суспензии 2,0% мас. Далее проводят стадию механического измельчения полученной суспензии целлюлозы на гомогенизаторе IKA UltraTurrax с получением водной суспензии наноразмерной целлюлозы со средним диаметром волокон не более 1000 нм. Дзета-потенциал полученной наноразмерной целлюлозы составляет минус 60 мВ, вязкость - около 4000 мПа⋅с.
Далее проводят стадию приготовления суспензии алюмосиликатного коагулянта с водой. Готовят дисперсию галлуазита в воде при перемешивании до достижения содержания галлуазита 5,0% мас. К полученной суспензии галлуазита добавляют водный раствор гидрохлорида полигексаметиленгуанидиния до достижения содержания галлуазита в полученной суспензии 3,0% мас. и содержания гидрохлорида полигексаметиленгуанидиния 0,15% мас., после чего выдерживают при перемешивании в течение 120 мин. Отфильтровывают образованный модифицированный галлуазит и промывают его водой из расчета 2 кг воды на 1 кг модифицированного галлуазита. Диспергируют модифицированный галлуазит в воде до достижения содержания галлуазита 5,0% мас. с получением суспензии алюмосиликатного коагулянта с дзета-потенциалом плюс 43 мВ. Затем проводят стадию смешения водной суспензии наноразмерной целлюлозы с водной суспензией алюмосиликатного коагулянта. Смешивают водную суспензию измельченной обработанной целлюлозы с водной суспензией модифицированного галлуазита, выдерживают при перемешивании в течение 10 минут. После этого выдерживают полученную смесь без перемешивания в течение 30 минут и наблюдают коагуляцию с образованием целевого целлюлозосодержащего геля. Проводят стадию отделения избытка воды путем фильтрования с получением целевого целлюлозосодержащего геля с массовым содержанием целлюлозы 7,0% мас. Вязкость полученного продукта составляет около 3000 мПа⋅с.
Пример 3.
В качестве целлюлозосодержащего сырья используют сульфатную целлюлозу.
Проводят стадию кислотной и окислительной обработки сульфатной целлюлозы в последовательном режиме. Для этого диспергируют целлюлозу в водном растворе, содержащем 50,0% мас. серной кислоты с получением суспензии целлюлозы с содержанием последней 3,0% мас. Выдерживают полученную суспензию при температуре 40,0°С в течение 90 минут при перемешивании. После этого проводят стадию фильтрования обработанного целлюлозосодержащего сырья на кислотостойком фильтре с получением целлюлозосодержащего осадка, а фильтрат, содержащий около 37,0% мас. серной кислоты, направляют на рецикл для обработки следующей порции сульфатной целлюлозы. Осадок целлюлозы, подвергнутой кислотной обработке, диспергируют в водном растворе, содержащем 20,0% мас. персульфата аммония с получением суспензии целлюлозы с содержанием последней 3,0% мас. Выдерживают полученную суспензию при температуре 60°С в течение 480 минут при перемешивании. После этого проводят стадию фильтрования обработанного целлюлозосодержащего сырья на кислотостойком фильтре с получением целлюлозосодержащего осадка, а фильтрат, содержащий около 18,0% мас. персульфата аммония, направляют на рецикл для обработки следующей порции сульфатной целлюлозы.
Проводят стадию промывки обработанного целлюлозосодержащего осадка и отделения избыточного промывного раствора. Отфильтрованный целлюлозосодержащий осадок промывают дистиллированной водой из расчета 5 кг воды на 1 кг осадка и проводят стадию диспергирования промытого целлюлозосодержащего осадка в воде с получением суспензии целлюлозы. Диспергирование в воде проводят до достижения содержания обработанной целлюлозы в получившейся суспензии 1,0% мас. Далее проводят стадию механического измельчения полученной суспензии целлюлозы на гомогенизаторе IKA UltraTurrax с получением суспензии наноразмерной целлюлозы со средним диаметром волокон не более 70 нм. Дзета-потенциал полученной наноразмерной целлюлозы составляет минус 65 мВ, вязкость - около 5000 мПа⋅с.
Далее проводят стадию приготовления суспензии алюмосиликатного коагулянта с водой. Для этого готовят дисперсию галлуазита в воде при перемешивании до достижения содержания галлуазита 4,0% мас. К полученной суспензии галлуазита добавляют водный раствор гидрохлорида полилизина до достижения содержания галлуазита в полученной суспензии 2,0% мас. и содержания гидрохлорида полилизина 0,2% мас., после чего выдерживают при перемешивании в течение 60 мин. При этом происходит модифицирование галлуазита. Модифицированный галлуазит отфильтровывают и промывают водой из расчета 3 кг воды на 1 кг модифицированного галлуазита. Диспергируют модифицированный галлуазит в воде до достижения содержания галлуазита 5,0% мас. с получением суспензии алюмосиликатного коагулянта с дзета-потенциалом плюс 45 мВ. Проводят стадию смешения суспензии наноразмерной целлюлозы с суспензией модифицированного алюмосиликатного коагулянта. Смешивают водную суспензию наноразмерной целлюлозы с водной суспензией модифицированного галлуазита, выдерживают при перемешивании в течение 15 минут. После этого выдерживают полученную смесь без перемешивания в течение 20 минут и наблюдают коагуляцию с образованием целевого целлюлозосодержащего геля. Проводят стадию отделения избытка воды путем фильтрования с получением целевого целлюлозосодержащего геля с массовым содержанием целлюлозы 10,0% мас. Вязкость полученного продукта составляет около 8000 мПа⋅с.
Таким образом, в результате применения описываемого способа получают целлюлозосодержащий гель с высоким содержанием целлюлозы, обладающий при этом достаточно низкой вязкостью (в известном способе сравнимая вязкость продукта достигается при низком содержании целлюлозы в геле - менее 1,5% мас.).
Описываемый способ позволяет использовать различное целлюлозосодержащее сырье, в том числе, содержащее, кроме целлюлозы, лигнин и другие компоненты древесины, а также вторичное сырье (макулатуру). Кроме того, описываемый способ проводят по более простой технологии в сравнении с известным за счет проведения механического измельчения целлюлозы в отсутствие наполнителей и/или пигментов.

Claims (5)

1. Способ получения целлюлозосодержащего геля, включающий кислотную и окислительную обработку целлюлозосодержащего сырья, проводимую в присутствии водных растворов минеральной кислоты и неорганического окислителя с получением обработанного целлюлозосодержащего сырья, фильтрование обработанного целлюлозосодержащего сырья с получением целлюлозосодержащего осадка и фильтрата, направляемого на кислотную и окислительную обработку, промывку целлюлозосодержащего осадка промывочным раствором, отделение избыточного промывного раствора с образованием промытого целлюлозосодержащего осадка, диспергирование промытого целлюлозосодержащего осадка в воде с получением водной суспензии целлюлозы, механическое измельчение полученной водной суспензии целлюлозы с образованием водной суспензии наноразмерной целлюлозы, смешение водной суспензии наноразмерной целлюлозы с водной суспензией модифицированного алюмосиликатного коагулянта, которую получают путем смешения алюмосиликатного коагулянта с водой и, дополнительно, с водным раствором модификатора, выбранного из группы, включающей катионные поверхностно-активные вещества, вещества, диссоциирующие в водных растворах с образованием полимерных катионов, их смеси, с образованием целлюлозосодержащего геля в избытке воды, и отделение избытка воды с получением целевого целлюлозосодержащего геля.
2. Способ по п. 1, отличающийся тем, что в качестве минеральной кислоты используют кислоту, выбранную из группы, включающей серную, соляную, фосфорную кислоты.
3. Способ по п. 1, отличающийся тем, что в качестве неорганического окислителя используют окислитель, выбранный из группы, включающей пероксиды, пероксокислоты и их соли, галоген- и кислородсодержащие кислоты и их соли.
4. Способ по п. 1, отличающийся тем, что в качестве промывного раствора используют воду, водный раствор или суспензию сильного основания концентрацией от 0,001 до 0,1 моль/л.
5. Способ по п. 1, отличающийся тем, что в качестве модифицированного алюмосиликатного коагулянта используют алюмосиликатные материалы с дзета-потенциалом от +1 до +200 мВ.
RU2018132109A 2018-09-07 2018-09-07 Способ получения целлюлозосодержащего геля RU2692349C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018132109A RU2692349C1 (ru) 2018-09-07 2018-09-07 Способ получения целлюлозосодержащего геля

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018132109A RU2692349C1 (ru) 2018-09-07 2018-09-07 Способ получения целлюлозосодержащего геля

Publications (1)

Publication Number Publication Date
RU2692349C1 true RU2692349C1 (ru) 2019-06-24

Family

ID=67038100

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018132109A RU2692349C1 (ru) 2018-09-07 2018-09-07 Способ получения целлюлозосодержащего геля

Country Status (1)

Country Link
RU (1) RU2692349C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2824156C1 (ru) * 2023-12-17 2024-08-06 Руслан Дамирович Нагимов Способ получения наноцеллюлозы

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6893492B2 (en) * 2003-09-08 2005-05-17 The United States Of America As Represented By The Secretary Of Agriculture Nanocomposites of cellulose and clay
RU2530067C2 (ru) * 2009-03-30 2014-10-10 Омиа Интернэшнл Аг Способ призводства нанофибриллярных целлюлозных гелей
RU2549323C2 (ru) * 2009-03-30 2015-04-27 Омиа Интернэшнл Аг Способ получения суспензий нановолокнистой целлюлозы

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6893492B2 (en) * 2003-09-08 2005-05-17 The United States Of America As Represented By The Secretary Of Agriculture Nanocomposites of cellulose and clay
RU2530067C2 (ru) * 2009-03-30 2014-10-10 Омиа Интернэшнл Аг Способ призводства нанофибриллярных целлюлозных гелей
RU2549323C2 (ru) * 2009-03-30 2015-04-27 Омиа Интернэшнл Аг Способ получения суспензий нановолокнистой целлюлозы
RU2671320C2 (ru) * 2009-03-30 2018-10-30 Файберлин Текнолоджиз Лимитед Способ производства нанофибриллярных целлюлозных гелей

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2824156C1 (ru) * 2023-12-17 2024-08-06 Руслан Дамирович Нагимов Способ получения наноцеллюлозы

Similar Documents

Publication Publication Date Title
EP3127867B1 (en) Manufacturing method for calcium-carbonate microparticles
US5346588A (en) Process for the chlorine-free bleaching of cellulosic materials with ozone
CN108350090B (zh) 纤维素黄原酸酯纳米纤维
KR20150073195A (ko) 셀룰로오스 나노 파이버
CN107345372A (zh) 一种基于生物质原料制备纤维素纳米纤维的方法
EP3294674B1 (en) Water treatment
DE69938565T2 (de) Herstellungsverfahren von stabilen kieselsol mit hoher oberfläche und verbesserter aktivität
CN101397766B (zh) 细碎填料水浆的制备及其用于制造高填料含量和高干强度纸的用途
BR112016000996B1 (pt) Método de produção de celulose oxidada ou microfibrilada
JP2009243014A (ja) セルロースナノファイバーの製造方法
JPH11500482A (ja) セルロース粒子、その製造方法およびその使用
AU2017210775B2 (en) Production of crystalline cellulose
WO2010108206A1 (en) Process for preparing polysaccharide gel particles and pulp furnish for use in paper or paper board production
JP6504885B2 (ja) 炭酸カルシウム微粒子を含む製品
DE69123768T2 (de) Verfahren zur Herstellung von Pfropfcopolymerisaten aus Lignin und Vinylmonomeren
NO174677B (no) Fremgangsmaate ved fremstilling av en defklokkulert kalsiumkarbonatsuspensjon, og anvendelse av denne
JP6366178B2 (ja) セルロースナノファイバーの製造方法
RU2692349C1 (ru) Способ получения целлюлозосодержащего геля
US2599091A (en) Forming pigment in cellulose fiber and paper containing the pigmented fiber
JP7283874B2 (ja) 酸化セルロースナノファイバー、および酸化セルロースナノファイバー分散液
CN110697754A (zh) 回用纳米碳酸钙压滤水制备工业沉淀碳酸钙的方法
CN105339544B (zh) 生产再生的纤维素和半纤维素的方法
CN111989433A (zh) 纤维素纤维与无机粒子的复合纤维及其制造方法
JP2014125689A (ja) 微細セルロース繊維の製造方法
CN104099802A (zh) 造纸工艺

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20201204

Effective date: 20201204