RU2636966C1 - Method for production of liquefied natural gas - Google Patents
Method for production of liquefied natural gas Download PDFInfo
- Publication number
- RU2636966C1 RU2636966C1 RU2016144633A RU2016144633A RU2636966C1 RU 2636966 C1 RU2636966 C1 RU 2636966C1 RU 2016144633 A RU2016144633 A RU 2016144633A RU 2016144633 A RU2016144633 A RU 2016144633A RU 2636966 C1 RU2636966 C1 RU 2636966C1
- Authority
- RU
- Russia
- Prior art keywords
- stream
- gas
- production
- natural gas
- main
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 29
- 239000003949 liquefied natural gas Substances 0.000 title claims abstract description 18
- 239000007789 gas Substances 0.000 claims abstract description 49
- 238000000034 method Methods 0.000 claims abstract description 31
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 28
- 239000003345 natural gas Substances 0.000 claims abstract description 14
- 238000009826 distribution Methods 0.000 claims abstract description 10
- 238000000746 purification Methods 0.000 claims abstract description 9
- 238000002425 crystallisation Methods 0.000 claims abstract description 7
- 230000008025 crystallization Effects 0.000 claims abstract description 7
- 238000001035 drying Methods 0.000 claims abstract description 6
- 239000007791 liquid phase Substances 0.000 claims abstract description 6
- 230000001172 regenerating effect Effects 0.000 claims abstract description 6
- 238000003860 storage Methods 0.000 claims abstract description 6
- 238000010438 heat treatment Methods 0.000 claims abstract description 5
- 239000007788 liquid Substances 0.000 claims abstract description 5
- 239000000203 mixture Substances 0.000 claims abstract description 5
- 239000000126 substance Substances 0.000 claims abstract description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 14
- 229910002092 carbon dioxide Inorganic materials 0.000 description 7
- 239000001569 carbon dioxide Substances 0.000 description 7
- 238000004140 cleaning Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 238000009434 installation Methods 0.000 description 5
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000003463 adsorbent Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/004—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0035—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
- F25J1/0037—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0201—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0232—Coupling of the liquefaction unit to other units or processes, so-called integrated processes integration within a pressure letdown station of a high pressure pipeline system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0235—Heat exchange integration
- F25J1/0236—Heat exchange integration providing refrigeration for different processes treating not the same feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/24—Processes or apparatus using other separation and/or other processing means using regenerators, cold accumulators or reversible heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/06—Splitting of the feed stream, e.g. for treating or cooling in different ways
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/20—Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/60—Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being hydrocarbons or a mixture of hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/40—Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/60—Expansion by ejector or injector, e.g. "Gasstrahlpumpe", "venturi mixing", "jet pumps"
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Description
Изобретение относится к газовой промышленности и криогенной технике, конкретно к технологиям сжижения природного газа на газораспределительных станциях.The invention relates to the gas industry and cryogenic engineering, specifically to technologies for liquefying natural gas at gas distribution stations.
Известен способ производства сжиженного газа (патент РФ №2247908 C1, МПК 7 F25J 1/00, опубл. 10.03.2005 г. Бюл. №7), включающий разделение потока газа с газораспределительной станции (ГРС) на многочисленные потоки, охлаждение и очистку газа от примесей методом вымораживания в рекуперативном и предварительном теплообменниках, дросселирование газа, получение горячего газа в вихревой трубе на отогрев теплообменников.A known method for the production of liquefied gas (RF patent No. 2247908 C1, IPC 7 F25J 1/00, publ. March 10, 2005 Bull. No. 7), comprising dividing the gas stream from a gas distribution station (GDS) into multiple flows, cooling and purifying gas from impurities by freezing in recuperative and preliminary heat exchangers, gas throttling, receiving hot gas in a vortex tube to heat the heat exchangers.
Недостатками указанного способа оказывается то, что не используются в полной мере преимущества детандерного цикла в контуре охлаждения и сжижения газа и, соответственно, не будет обеспечена стабильность производства продукции из-за отсутствия возможности регулирования оптимальной температуры.The disadvantages of this method is that the advantages of the expander cycle in the gas cooling and liquefaction circuit are not used to the full and, accordingly, production stability is not ensured due to the inability to control the optimal temperature.
В известном способе раздачи природного газа с одновременной выработкой сжиженного газа при транспортировании потребителю из магистрального трубопровода высокого давления в трубопровод низкого давления (патент РФ №2534832 С2, МПК F17D 1/07, F25B 11/02, F25J 1/00, опубл. 10.12.2014 г. Бюл. №34) подаваемый газ из магистрального трубопровода расширяется в турбодетандере, после которого охлажденный газ проходит теплообменники и с низким давлением поступает к потребителям, при этом более полно используется полученная механическая энергия при расширении от перепада давлений в магистральном трубопроводе высокого давления и трубопроводе низкого давления.In the known method of distributing natural gas with the simultaneous generation of liquefied gas during transportation to the consumer from the main high pressure pipeline to the low pressure pipeline (RF patent No. 2534832 C2, IPC F17D 1/07, F25B 11/02, F25J 1/00, publ. 10.12. 2014 Bul. No. 34) the supplied gas from the main pipeline expands in a turboexpander, after which the cooled gas passes through heat exchangers and flows to consumers with low pressure, while the mechanical energy obtained is more fully used when expanding from the overflow and pressures in the high pressure main pipe and a low pressure conduit.
Недостатком способа может оказаться то, что полностью не решен вопрос о кристаллизации примесей природного газа, выпадающих при работе указанного оборудования.The disadvantage of this method may be that the issue of crystallization of natural gas impurities falling out during the operation of the specified equipment is not completely resolved.
Наиболее близким к предлагаемому способу является способ производства сжиженного природного газа и комплекс для его реализации (патент РФ №2541360 С1, МПК F25J 1/00), включающий отбор газа из магистрального трубопровода, очистку от механических частиц, осушку, разделение на продукционный и технологический потоки, один из которых проходит очистку от CO2, охлаждается, для получения парожидкостной смеси направляется через дроссель, жидкая фаза отделяется и поступает к потребителю СПГ, другой поток проходит через детандер, жидкая фаза дополнительно переохлаждается перед подачей в емкость потребителя.Closest to the proposed method is a method for the production of liquefied natural gas and a complex for its implementation (RF patent No. 2541360 C1, IPC F25J 1/00), including the selection of gas from the main pipeline, purification from mechanical particles, drying, separation into production and process flows one of which extends from the CO 2 purification is cooled to obtain a liquid-vapor mixture is guided through the throttle, the liquid phase is separated and fed to the LNG consumer, the other stream passes through the expander, the liquid phase additionally supercooled before serving in the capacity of a consumer.
Недостатками являются использование дополнительных веществ (растворителей или абсорберов) для поглощения CO2; безвозвратная потеря диоксида углерода, извлеченного из природного газа; многостадийные циклы очистки, что влечет за собой сложность процесса и высокую стоимость оборудования.The disadvantages are the use of additional substances (solvents or absorbers) to absorb CO 2 ; irretrievable loss of carbon dioxide extracted from natural gas; multi-stage cleaning cycles, which entails the complexity of the process and the high cost of equipment.
Задачей предлагаемого изобретения является создание эффективного способа производства сжиженного природного газа на газораспределительной станции (ГРС), позволяющего повысить производительность при снижении стоимости оборудования и уменьшить количество содержащегося в природном газе CO2.The objective of the invention is the creation of an effective method for the production of liquefied natural gas at a gas distribution station (GDS), which allows to increase productivity while reducing the cost of equipment and reduce the amount of CO 2 contained in natural gas.
Указанная задача решается тем, что в способе производства сжиженного природного газа, включающем подачу потока сжатого природного газа из магистрального трубопровода высокого давления со входа газораспределительной станции (ГРС), разделение потока на продукционный и технологический потоки, расширение технологического потока в детандере с совершением внешней работы, теплообмен в основном и предварительном теплообменниках и подачу его с низким давлением потребителю, при котором продукционный поток охлаждают за счет нагрева технологического с образованием газожидкостной смеси, дополнительно охлаждают и расширяют в дроссельном вентиле, на выходе из которого отделяют жидкую фазу с помощью сепаратора, которую направляют в хранилище или потребителям сжиженного природного газа (СПГ), оставшуюся после отделения часть потока смешивают с основным технологическим потоком и направляют на холодный вход теплообменника, согласно изобретению продукционный поток подвергают очистке и осушке в блоке регенеративных теплообменников за счет кристаллизации CO2 на поверхности их пластинок, а после прохождения технологического потока через них осуществляют растворение CO2 и удаляют вместе с потоком газа, подаваемого потребителям в трубопровод низкого давления.This problem is solved in that in a method for producing liquefied natural gas, comprising supplying a stream of compressed natural gas from a high-pressure main pipeline from the inlet of a gas distribution station (GDS), dividing the stream into production and process flows, expanding the process stream in the expander with performing external work, heat exchange in the main and preliminary heat exchangers and its supply with low pressure to the consumer, in which the production flow is cooled by heating technology gas with the formation of a gas-liquid mixture, it is additionally cooled and expanded in a throttle valve, at the outlet of which the liquid phase is separated using a separator, which is sent to storage or to consumers of liquefied natural gas (LNG), the remaining part of the stream after separation is mixed with the main process stream and sent to the cold inlet of the heat exchanger, according to the invention, the production stream is cleaned and dried in a regenerative heat exchanger unit due to crystallization of CO 2 on the surface of their plate stinks, and after the process stream passes through them, CO 2 is dissolved and removed along with the gas stream supplied to consumers in the low pressure pipeline.
Сущность изобретения иллюстрируется фигурой, на которой приведены следующие обозначения. Установка состоит из отвода от магистрального трубопровода на ГРС, где подается природный газ с высоким давлением, фильтра-пылеуловителя 1 для очистки газа, блока осушки 2 и фильтра 3 для очистки от частиц адсорбента. По линии 4 утилизации тепла установка содержит теплообменник 5. Также установка состоит из блока предварительных регенеративных теплообменников 6, струйного компрессора 7, охладителя масла 8, компрессора 9, для системы смазки турбодетандера масляного бака 10 и насоса 11, непосредственно детандера 12, основного теплообменника 13, регулятора давления 14, сепаратора 15, криогенных насосов 16 и 19, проходных кранов 17 и хранилища СПГ 18.The invention is illustrated by the figure, which shows the following notation. The installation consists of a branch from the main pipeline to the gas distribution station, where natural gas with high pressure is supplied, a dust filter 1 for gas purification, a
Реализация способа производства сжиженного природного газа с помощью установки, приведенной на фигуре, происходит следующим образом.The implementation of the method for the production of liquefied natural gas using the installation shown in the figure is as follows.
Природный газ поступает из ГРС с высоким давлением и разделяется на два потока. Один из которых проходит через фильтр 1, блок осушки 2 для очистки от влаги и для очистки от частиц адсорбента фильтр 3. Далее поток, осушенный и очищенный, направляется к компрессору 9, где подвергается сжатию. В действие компрессор 9 приводится за счет крутящего момента газового турбодетандера 12, с которым связаны одним валом, размещены в одном корпусе и образуют единый турбодетандерный агрегат. Поток сжатого газа охлаждается в теплообменнике 5 при нагреве второго потока газа, поступившего в линию утилизации тепла 4. Газ из линии 4 далее подается в сеть потребителя. Теплота сжатия компрессора 9 используется дополнительно для подогрева газа в ГРС. После теплообменника 5 газ вновь разделяется на два потока: технологический (для получения холода) и продукционный потоки (для сжижения природного газа).Natural gas comes from high pressure gas distribution system and is divided into two streams. One of which passes through the filter 1, the
Технологический поток направляется в детандер 12, подвергается расширению и происходит снижение давления и температуры, газ не сжигается, внутренняя энергия преобразуется в кинетическую энергию, затем в механическую работу, которая в генераторе в свою очередь преобразуется в электрическую энергию, направляется на вал компрессора для сжатия газа. Холодный поток газа после детандера 12 поступает в основной теплообменник 13 для охлаждения продукционного потока. После теплообменника 13 обратный поток проходит через теплообменник 6, растворяя диоксид углерода, и сбрасывается в трубопровод.The process stream is sent to expander 12, expands and pressure and temperature decrease, gas is not burned, internal energy is converted into kinetic energy, then into mechanical work, which in turn is converted into electrical energy in the generator, sent to the compressor shaft for gas compression . The cold gas stream after the
Продукционный поток проходит через блок предварительных регенеративных теплообменников 6 для охлаждения и очистки от CO2. Очищенный поток проходит через теплообменник 13 для следующей ступени охлаждения потоком холодного газа детандера 12. Поток проходит через регулятор давления 14 с целью его дальнейшего сжижения при снижении давления и температуры, и парожидкостная смесь попадает в сепаратор 15, где жидкость отделяется от паров. По мере накопления сепаратора СПГ сливается через кран 17 в хранилище 18. При высоком давлении на входе ГРС сжатие продукционного потока не требуется и исключается охлаждение газа после сжатия, соответственно, теплообменник 5 не требуется. Понижение давления в хранилище СПГ 18 производится за счет откачивания паров, которые смешиваются с обратным потоком паров из сепаратора 15, с помощью струйного компрессора.The production stream passes through a block of preliminary
Основной проблемой является очистка природного газа перед сжижением от диоксида углерода CO2. В низкотемпературном процессе вероятно попадание в область кристаллизации CO2 и образование его твердой фазы. Образование твердой кристаллической фазы в конструкциях низкотемпературного оборудования становится небезопасным фактором и может приводить к опасным последствиям, нарушениям нормальных технологических режимов работы криогенных аппаратов и выводу их из работы. Проходя турбодетандер примеси из газа конденсируются в сопловом узле, стекают и дренируются. Согласно фазовой диаграмме диоксида углерода выпадение твердой фазы при давлении 4,5 МПа произойдет при достижении температуры -52°С. Как правило, в существующих схемах предполагается установка блоков очистки газа от диоксида углерода. В работе вместо дополнительного блока очистки от углекислоты продукционного потока рассматривается использование в качестве предварительного регенеративного теплообменника непрерывного действия, где продукционный поток подвергают очистке и осушке за счет кристаллизации CO2 на поверхности их пластинок, а после прохождения технологического потока через них осуществляют растворение CO2 и удаляют вместе с потоком газа, подаваемого потребителям в трубопровод низкого давления. Для обеспечения непрерывности потока природного газа к потребителям предусматривается использование двух регенераторов.The main problem is the purification of natural gas before liquefaction from carbon dioxide CO 2 . In a low-temperature process, it is likely that CO 2 will enter the crystallization region and its solid phase will form. The formation of a solid crystalline phase in the construction of low-temperature equipment becomes an unsafe factor and can lead to dangerous consequences, disruption of normal technological modes of operation of cryogenic devices and their withdrawal from work. Passing a turbo-expander, impurities from the gas condense in the nozzle assembly, drain and drain. According to the phase diagram of carbon dioxide, the precipitation of the solid phase at a pressure of 4.5 MPa will occur when the temperature reaches -52 ° C. As a rule, in existing schemes it is planned to install carbon dioxide gas purification units. In the work, instead of an additional carbon dioxide purification unit, the production flow is considered to be used as a preliminary regenerative heat exchanger of continuous action, where the production flow is cleaned and dried by crystallization of CO 2 on the surface of their plates, and after the process stream passes through them, CO 2 is dissolved and removed together with the flow of gas supplied to consumers in the low pressure pipeline. To ensure the continuity of the flow of natural gas to consumers, the use of two regenerators is envisaged.
Проведенные расчеты показали, что при таком способе СПГ может быть получен за счет перепада давления на ГРС, где происходит понижение давления от 3,8 МПа до 0,6 МПа. Природный газ поступает из магистрального трубопровода в комплекс с давлением 3,8 МПа, проходит блок очистки и осушки, сжимается в компрессоре до 4,5 МПа, после теплообменника охлаждается и делится на два потока: продукционный 16% и технологический 84%. Продукционный поток дополнительно очищается в предварительном теплообменнике, а оба потока направляются через основной и предварительный теплообменники. В результате расширения в турбодетандере температура газа понижается до -115°С, что оказывается недостаточным для сжижения газа. Продукционный поток дополнительно дросселируется, и температура газа понижается до -140°С. Производительность установки составит 1,5 т/ч (0,417 кг/с). Преимуществом такой установки оказываются низкие удельные затраты на электроэнергию, так как для сжатия газа в компрессоре используется привод детандера. Мощность, потребляемая при достижении проектной производительности, составит 320 кВт.The calculations showed that with this method, LNG can be obtained due to the pressure drop across the GDS, where the pressure decreases from 3.8 MPa to 0.6 MPa. Natural gas comes from the main pipeline to the complex with a pressure of 3.8 MPa, passes the cleaning and drying unit, is compressed in the compressor to 4.5 MPa, after the heat exchanger it is cooled and divided into two flows:
Предлагаемая технология производства сжиженного природного газа является энергоэффективной, так как для сжижения применяется детандерный холодильный цикл газа, работающий на основе использования перепада между давлением в магистральном газопроводе и давлением в газораспределительной сети. При производстве СПГ на ГРС проявляется главный недостаток схем с внутренним охлаждением газа - при снижении температуры проявляется кристаллизация, в связи с чем необходимо проводить осушку и очистку всего проходящего через установку газа от диоксида углерода CO2, что решается в предлагаемом способе.The proposed technology for the production of liquefied natural gas is energy efficient, since an expander refrigeration gas cycle is used to liquefy, operating on the basis of using the differential between the pressure in the main gas pipeline and the pressure in the gas distribution network. In the production of LNG on GDS, the main drawback of gas-cooled internal circuits is manifested - crystallization occurs when the temperature decreases, and therefore it is necessary to dry and purify all the gas passing through the plant from carbon dioxide CO 2 , which is solved in the proposed method.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016144633A RU2636966C1 (en) | 2016-11-14 | 2016-11-14 | Method for production of liquefied natural gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016144633A RU2636966C1 (en) | 2016-11-14 | 2016-11-14 | Method for production of liquefied natural gas |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2636966C1 true RU2636966C1 (en) | 2017-11-29 |
Family
ID=60581310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016144633A RU2636966C1 (en) | 2016-11-14 | 2016-11-14 | Method for production of liquefied natural gas |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2636966C1 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2673972C1 (en) * | 2017-12-26 | 2018-12-03 | Андрей Владиславович Курочкин | Complex for reduction, liquidation and compression of natural gas (options) |
RU2686655C1 (en) * | 2018-10-23 | 2019-04-29 | Андрей Владиславович Курочкин | Plant for production of liquefied natural gas (versions) |
RU2688062C1 (en) * | 2018-10-29 | 2019-05-17 | Андрей Владиславович Курочкин | Liquefied natural gas installation |
RU2688595C1 (en) * | 2018-10-29 | 2019-05-21 | Андрей Владиславович Курочкин | Natural gas liquefaction plant |
RU2691876C1 (en) * | 2018-10-23 | 2019-06-18 | Андрей Владиславович Курочкин | Plant for liquefied natural gas production (versions) |
RU2692610C1 (en) * | 2017-12-20 | 2019-06-25 | Андрей Владиславович Курочкин | Liquefied natural gas production unit |
RU2692614C1 (en) * | 2017-12-20 | 2019-06-25 | Андрей Владиславович Курочкин | Plant for production of liquefied natural gas |
RU2699872C1 (en) * | 2018-10-29 | 2019-09-11 | Андрей Владиславович Курочкин | Plant for production of liquefied natural gas |
RU2717668C1 (en) * | 2019-12-24 | 2020-03-24 | Андрей Владимирович Курочкин | Low-temperature fractionation unit for complex gas treatment and production of lng |
RU2719533C1 (en) * | 2019-08-08 | 2020-04-21 | Юрий Васильевич Белоусов | Method for production of liquefied natural gas and compressed natural gas at a gas distribution station and a complex (versions) for its implementation |
RU2721347C1 (en) * | 2019-12-17 | 2020-05-19 | Андрей Владиславович Курочкин | Plant for reduction of natural gas and production of gas motor fuel |
RU2742645C2 (en) * | 2019-03-13 | 2021-02-09 | Андрей Владиславович Курочкин | Lng generator and principle thereof |
RU2749700C2 (en) * | 2019-05-07 | 2021-06-17 | Андрей Владиславович Курочкин | Plant for reducing gas and generating a constant amount of liquefied natural gas (options) |
RU2812844C1 (en) * | 2023-03-30 | 2024-02-02 | Общество с ограниченной ответственностью "Газпром трансгаз Уфа" | Natural gas liquefaction system at compressor station of main gas pipeline |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999001706A1 (en) * | 1997-07-01 | 1999-01-14 | Exxon Production Research Company | Process for liquefying a natural gas stream containing at least one freezable component |
RU2202078C2 (en) * | 2001-03-14 | 2003-04-10 | ЗАО "Сигма-Газ" | Method of liquefaction of natural gas |
RU2541360C1 (en) * | 2014-02-20 | 2015-02-10 | Общество с ограниченной ответственностью "Газпром трансгаз Екатеринбург" | Liquefied natural gas production method and complex for its implementation |
US20160109177A1 (en) * | 2014-10-16 | 2016-04-21 | General Electric Company | System and method for natural gas liquefaction |
US20160138863A1 (en) * | 2014-11-17 | 2016-05-19 | Nicholas F. Urbanski | Heat Exchange Mechanism For Removing Contaminants From A Hydrocarbon Vapor Stream |
-
2016
- 2016-11-14 RU RU2016144633A patent/RU2636966C1/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999001706A1 (en) * | 1997-07-01 | 1999-01-14 | Exxon Production Research Company | Process for liquefying a natural gas stream containing at least one freezable component |
RU2202078C2 (en) * | 2001-03-14 | 2003-04-10 | ЗАО "Сигма-Газ" | Method of liquefaction of natural gas |
RU2541360C1 (en) * | 2014-02-20 | 2015-02-10 | Общество с ограниченной ответственностью "Газпром трансгаз Екатеринбург" | Liquefied natural gas production method and complex for its implementation |
US20160109177A1 (en) * | 2014-10-16 | 2016-04-21 | General Electric Company | System and method for natural gas liquefaction |
US20160138863A1 (en) * | 2014-11-17 | 2016-05-19 | Nicholas F. Urbanski | Heat Exchange Mechanism For Removing Contaminants From A Hydrocarbon Vapor Stream |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2692610C1 (en) * | 2017-12-20 | 2019-06-25 | Андрей Владиславович Курочкин | Liquefied natural gas production unit |
RU2692614C1 (en) * | 2017-12-20 | 2019-06-25 | Андрей Владиславович Курочкин | Plant for production of liquefied natural gas |
RU2673972C1 (en) * | 2017-12-26 | 2018-12-03 | Андрей Владиславович Курочкин | Complex for reduction, liquidation and compression of natural gas (options) |
RU2686655C1 (en) * | 2018-10-23 | 2019-04-29 | Андрей Владиславович Курочкин | Plant for production of liquefied natural gas (versions) |
RU2691876C1 (en) * | 2018-10-23 | 2019-06-18 | Андрей Владиславович Курочкин | Plant for liquefied natural gas production (versions) |
RU2688595C1 (en) * | 2018-10-29 | 2019-05-21 | Андрей Владиславович Курочкин | Natural gas liquefaction plant |
RU2688062C1 (en) * | 2018-10-29 | 2019-05-17 | Андрей Владиславович Курочкин | Liquefied natural gas installation |
RU2699872C1 (en) * | 2018-10-29 | 2019-09-11 | Андрей Владиславович Курочкин | Plant for production of liquefied natural gas |
RU2742645C2 (en) * | 2019-03-13 | 2021-02-09 | Андрей Владиславович Курочкин | Lng generator and principle thereof |
RU2749700C2 (en) * | 2019-05-07 | 2021-06-17 | Андрей Владиславович Курочкин | Plant for reducing gas and generating a constant amount of liquefied natural gas (options) |
RU2719533C1 (en) * | 2019-08-08 | 2020-04-21 | Юрий Васильевич Белоусов | Method for production of liquefied natural gas and compressed natural gas at a gas distribution station and a complex (versions) for its implementation |
RU2721347C1 (en) * | 2019-12-17 | 2020-05-19 | Андрей Владиславович Курочкин | Plant for reduction of natural gas and production of gas motor fuel |
RU2717668C1 (en) * | 2019-12-24 | 2020-03-24 | Андрей Владимирович Курочкин | Low-temperature fractionation unit for complex gas treatment and production of lng |
RU2812844C1 (en) * | 2023-03-30 | 2024-02-02 | Общество с ограниченной ответственностью "Газпром трансгаз Уфа" | Natural gas liquefaction system at compressor station of main gas pipeline |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2636966C1 (en) | Method for production of liquefied natural gas | |
JP6608526B2 (en) | Conversion of waste heat from gas processing plant to electricity and cooling based on organic Rankine cycle | |
JP2018530691A (en) | Conversion of waste heat from gas processing plant to electricity based on the carina cycle | |
TWI424870B (en) | Method and installation for liquefying flue gas from combustion installations | |
CA2775449C (en) | Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams | |
MX2013014870A (en) | Process for liquefaction of natural gas. | |
RU2538192C1 (en) | Method of natural gas liquefaction and device for its implementation | |
RU2533044C2 (en) | Method and device for cooling flow of gaseous hydrocarbons | |
US20150013378A1 (en) | Apparatus And Method For Liquefying Natural Gas By Refrigerating Single Mixed Working Medium | |
AU2011244078A1 (en) | Method and installation for liquefying flue gas from combustion installations | |
US11747081B2 (en) | Method and system for efficient nonsynchronous LNG production using large scale multi-shaft gas turbines | |
AU2013234169A1 (en) | Method and device for condensing a carbon dioxide-rich gas stream | |
AU2018321557B2 (en) | Method and system for LNG production using standardized multi-shaft gas turbines, compressors and refrigerant systems | |
RU2735977C1 (en) | Natural gas liquefaction method and apparatus for implementation thereof | |
RU2715805C1 (en) | Natural gas liquefaction complex with inertial removal module (versions) | |
RU2770777C1 (en) | "mosenergo-turbokon" method for liquishing, storing and gasification of natural gas | |
RU2689505C1 (en) | Natural gas liquefaction complex at gas distribution station | |
RU2640050C1 (en) | Method for removing heavy hydrocarbons when liquefying natural gas and device for its implementation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20181115 |