RU2612918C1 - Device for determining positions of defects on aspherical surface of optical part (versions) - Google Patents
Device for determining positions of defects on aspherical surface of optical part (versions) Download PDFInfo
- Publication number
- RU2612918C1 RU2612918C1 RU2015137891A RU2015137891A RU2612918C1 RU 2612918 C1 RU2612918 C1 RU 2612918C1 RU 2015137891 A RU2015137891 A RU 2015137891A RU 2015137891 A RU2015137891 A RU 2015137891A RU 2612918 C1 RU2612918 C1 RU 2612918C1
- Authority
- RU
- Russia
- Prior art keywords
- aspherical surface
- mark
- beam splitter
- plane
- strokes
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/30—Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
- G01B11/303—Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces using photoelectric detection means
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
Предлагаемое изобретение относится к контрольно-измерительной технике и может быть использовано в оптическом производстве для контроля асферических поверхностей оптических деталей в процессе их формообразования.The present invention relates to instrumentation and can be used in optical production to control the aspherical surfaces of optical parts during their shaping.
Известно устройство для определения положений дефектов на асферических поверхностях второго порядка оптических деталей [Пуряев Д.Т. Методы контроля оптических асферических поверхностей. М., «Машиностроение», 1976, С. 83-87]. Устройство содержит источник излучения и установленные последовательно по ходу световых лучей конденсор, диафрагму, коллиматорный объектив, формирующий параллельный пучок световых лучей, светоделитель, предназначенный для разделения параллельного пучка световых лучей на две ветви - опорную и объектную, в объектной ветви по ходу прошедших светоделитель лучей установлены фокусирующий объектив и автоколлимационное зеркало, в опорной ветви перпендикулярно к параллельному пучку световых лучей, отраженному от светоделителя, установлено плоское зеркало, отражающее падающий на него параллельный пучок световых лучей к светоделителю, пропускающему часть этого пучка световых лучей в приемную часть, содержащую телескопическую лупуA device for determining the positions of defects on aspherical surfaces of the second order of optical parts [Puryaev D.T. Control methods for optical aspherical surfaces. M., "Engineering", 1976, S. 83-87]. The device contains a radiation source and a condenser, a diaphragm, a collimator lens forming a parallel beam of light rays, a beam splitter designed to separate a parallel beam of light rays into two branches — the reference and the object, installed in the object branch along the transmitted beam splitter — installed in series with the light beams. a focusing lens and an autocollimation mirror, installed in the reference branch perpendicular to a parallel beam of light rays reflected from the beam splitter a flat mirror reflecting a parallel beam of light rays incident on it to a beam splitter passing a part of this light beam into a receiving part containing a telescopic magnifier
В процессе контроля оптическая деталь с асферической поверхностью устанавливается в объектную ветвь устройства таким образом, чтобы геометрический фокус F1 контролируемой асферической поверхности совпал с фокусом F' фокусирующего объектива. В результате освещающий асферическую поверхность пучок световых лучей после отражений последовательно от асферической поверхности, автоколлимационного зеркала, асферической поверхности и светоделителя будет поступать из объектной ветви в приемную часть. Картина интерференции, образованная в приемной части в результате интерференции световых волн, соответствующих пучкам световых лучей, пришедших из объектной и опорной ветвей, наблюдается визуально и фотографируется с использованием телескопической лупы. Посредством интерференционных полос этой картины визуализируются положения дефектов на контролируемой асферической поверхности. Для определения координаты y этих дефектов используется приближенная формулаIn the control process, an optical part with an aspherical surface is installed in the object branch of the device so that the geometric focus F 1 of the controlled aspherical surface coincides with the focus F 'of the focusing lens. As a result, a beam of light rays illuminating an aspherical surface after reflections in series from an aspherical surface, an autocollimation mirror, an aspherical surface, and a beam splitter will come from the object branch to the receiving part. The interference pattern formed in the receiving part as a result of the interference of light waves corresponding to beams of light rays coming from the object and support branches is observed visually and photographed using a telescopic magnifier. Through the interference fringes of this pattern, the positions of the defects on a controlled aspherical surface are visualized. An approximate formula is used to determine the y coordinate of these defects
где y - ордината асферической поверхности в декартовой системе координат, центр которой совмещен с вершиной асферической поверхности,where y is the ordinate of the aspherical surface in the Cartesian coordinate system, the center of which is aligned with the vertex of the aspherical surface,
OF1 - параметр геометрического фокуса контролируемой асферической поверхности второго порядка,OF 1 - parameter of the geometric focus of the controlled aspherical surface of the second order,
- фокусное расстояние фокусирующего объектива в объектной ветви, - the focal length of the focusing lens in the object branch,
h - высота, на которой луч, распространяющийся от светоделителя, входит в фокусирующий объектив. Поскольку уравнение исходной асферической поверхности и фокусное расстояние фокусирующего объектива известны, то по данной формуле становится возможным определить координату y по измеренной величине h, которую определяют по интерференционной картине как половину расстояния между симметричными точками с искривлениями интерференционной полосы или как радиус интерференционного кольца.h is the height at which the beam propagating from the beam splitter enters the focusing lens. Since the equation of the initial aspherical surface and the focal length of the focusing lens are known, using this formula it becomes possible to determine the y coordinate from the measured value of h, which is determined by the interference pattern as half the distance between symmetrical points with distortions of the interference band or as the radius of the interference ring.
Недостатком данного устройства является то, что оно позволяет контролировать асферические поверхности только второго порядка. Это обусловлено тем, что принцип работы устройства основан на использовании свойств анаберрационных точек асферических поверхностей второго порядка и применении в этом случае автоколлимационного зеркала либо сферического (при контроле гиперболических, эллиптических и параболических поверхностей), либо плоского (при контроле параболических поверхностей).The disadvantage of this device is that it allows you to control aspherical surfaces only of the second order. This is due to the fact that the device’s principle of operation is based on the use of the properties of anaberration points of second-order aspherical surfaces and the use of an autocollimation mirror in this case, either spherical (when controlling hyperbolic, elliptic and parabolic surfaces), or flat (when controlling parabolic surfaces).
Недостатком данного устройства является также и то, что определение координаты y дефектов на контролируемой поверхности по приведенной выше формуле пригодно только для зональных (осесимметричных) ошибок, а для местных (не осесимметричных) дефектов координаты y определить не удается, так как высоту h в данном случае по интерференционной картине измерить невозможно. Кроме того, данное устройство обладает невысокой точностью, обусловленной использованием приближенной формулы (1) для нахождения координаты y асферической поверхности.The disadvantage of this device is also that the determination of the y coordinate of defects on the surface under control according to the above formula is only suitable for zonal (axisymmetric) errors, and for local (non-axisymmetric) defects, the y coordinates cannot be determined, since the height h in this case it is impossible to measure from the interference pattern. In addition, this device has low accuracy due to the use of approximate formula (1) to find the coordinate y of the aspherical surface.
Наиболее близким по технической сущности к предлагаемой группе изобретений является устройство для определения положений дефектов на асферических поверхностях оптических деталей [Ларионов Н.П., Лукин А.В., Нюшкин А.А. Контроль малогабаритной асферической оптики с помощью синтезированных голограмм // Оптический журнал, 2011, т. 78, №4, С. 61-64]. Это устройство содержит монохроматический источник света (лазер) и последовательно установленные по ходу световых лучей афокальную систему, светоделитель для формирования опорной и объектной ветвей и приемной части, установленные в объектной ветви по ходу световых лучей, распространяющихся от светоделителя, первый фокусирующий объектив для формирования сходящегося гомоцентрического пучка световых лучей со светящейся точкой в его заднем фокусе, синтезированный голограммный оптический элемент, состоящий из трех осевых соосных между собой синтезированных голограмм, одна из которых является голограммой-компенсатором, а две другие голограммы являются котировочными, плоское эталонное зеркало, установленное в опорной ветви перпендикулярно к световым лучам, распространяющимся от светоделителя, установленные в приемной части по ходу световых лучей, распространяющихся от светоделителя, второй фокусирующий объектив, фотоприемное устройство и блок отображения информации.The closest in technical essence to the proposed group of inventions is a device for determining the positions of defects on the aspherical surfaces of optical parts [Larionov NP, Lukin AV, Nyushkin AA Control of small-sized aspherical optics using synthesized holograms // Optical Journal, 2011, v. 78, No. 4, P. 61-64]. This device contains a monochromatic light source (laser) and an afocal system sequentially installed along the light rays, a beam splitter for forming the reference and object branches and a receiving part, installed in the object branch along the light rays propagating from the beam splitter, the first focusing lens for forming a converging homocentric a beam of light rays with a luminous dot in its back focus, a synthesized hologram optical element consisting of three axial coaxial between synthesized holograms, one of which is a compensating hologram, and the other two holograms are quotation marks, a flat reference mirror installed in the supporting branch perpendicular to the light rays propagating from the beam splitter, installed in the receiving part along the light rays propagating from the beam splitter, focusing lens, photodetector and information display unit.
В данном устройстве дефекты на контролируемой асферической поверхности оптической детали определяют путем анализа интерференционной картины, зарегистрированной фотоприемным устройством и выведенной на экран блока отображения информации.In this device, defects on the controlled aspherical surface of the optical part are determined by analyzing the interference pattern recorded by the photodetector and displayed on the screen of the information display unit.
Недостатком данного устройства является невысокая точность определения положений дефектов на асферической поверхности оптической детали, обусловленная тем, что в устройстве отсутствует механизм для точного определения положения дефектов.The disadvantage of this device is the low accuracy of determining the positions of defects on the aspherical surface of the optical part, due to the fact that the device does not have a mechanism for accurately determining the position of defects.
Задачей, на решение которой направлено предлагаемое техническое решение, является повышение точности определения положений дефектов на асферических поверхностях как второго, так и более высоких порядков.The task to which the proposed technical solution is directed is to increase the accuracy of determining the positions of defects on aspherical surfaces of both second and higher orders.
Решение поставленной задачи достигается тем, что в предлагаемом устройстве для определения положений дефектов на асферической поверхности оптической детали, содержащем монохроматический источник света и последовательно установленные по ходу световых лучей афокальную систему, светоделитель для формирования опорной и объектной ветвей и приемной части, установленные в объектной ветви по ходу световых лучей, распространяющихся от светоделителя, первый фокусирующий объектив для формирования сходящегося гомоцентрического пучка световых лучей со светящейся точкой в его заднем фокусе, синтезированный голограммный оптический элемент, состоящий из трех осевых соосных между собой синтезированных голограмм, одна из которых является голограммой-компенсатором, а две другие голограммы являются котировочными, плоское эталонное зеркало, установленное в опорной ветви перпендикулярно к световым лучам, распространяющимся от светоделителя, установленные в приемной части по ходу световых лучей, распространяющихся от светоделителя, второй фокусирующий объектив, фотоприемное устройство и блок отображения информации, устройство дополнительно содержит марку с двумя пересекающимися между собой штрихами, расположенную между светоделителем и первым фокусирующим объективом и совмещенную с промежуточным изображением асферической поверхности оптической детали, при этом марка закреплена в узле, снабженном механизмом угловых поворотов для угловой ориентации марки и тремя линейными каретками для выполнения возможности смещения марки в трех взаимно перпендикулярных направлениях, одно из которых перпендикулярно к плоскости расположения ее штрихов, для чего каждая линейная каретка снабжена приводом, подключенным к блоку управления приводами, для обеспечения возможности измерения величины смещения марки каждая линейная каретка снабжена датчиком линейного перемещения, подключенным на вход блока цифровой индикации, в приемной части по ходу световых лучей после светоделителя установлено плоское поворотное зеркало, в задней фокальной плоскости первого фокусирующего объектива установлена диафрагма;The solution of this problem is achieved by the fact that in the proposed device for determining the positions of defects on the aspherical surface of an optical part containing a monochromatic light source and an afocal system sequentially installed along the light rays, a beam splitter for forming the support and object branches and the receiving part, installed in the object branch by the first light focusing lens to form a converging homocentric beam of light propagating from the beam splitter of rays with a luminous point in its back focus, a synthesized hologram optical element consisting of three axial coaxial synthesized holograms, one of which is a compensating hologram, and the other two holograms are quotation marks, a flat reference mirror mounted in the reference branch perpendicular to light rays propagating from the beam splitter installed in the receiving part along the light rays propagating from the beam splitter, the second focusing lens, photodetector the triad and the information display unit, the device additionally contains a mark with two intersecting strokes located between the beam splitter and the first focusing lens and combined with an intermediate image of the aspherical surface of the optical part, the mark being fixed in a node equipped with an angular rotation mechanism for angular orientation of the mark and three linear carriages for the possibility of shifting marks in three mutually perpendicular directions, one of which is perpendicular to the flatness of the location of its strokes, for which each linear carriage is equipped with a drive connected to the drive control unit, in order to be able to measure the displacement of the brand, each linear carriage is equipped with a linear displacement sensor connected to the input of the digital display unit, in the receiving part along the light rays after the beam splitter a flat rotary mirror is installed, a diaphragm is installed in the rear focal plane of the first focusing lens;
а также тем, что оба штриха марки пересекаются друг с другом под углом 90 градусов и каждый из них ориентирован параллельно одному из двух направлений смещения марки, параллельных плоскости расположения пересекающихся между собой двух штрихов.as well as the fact that both strokes of the mark intersect each other at an angle of 90 degrees and each of them is oriented parallel to one of the two directions of the stamp’s displacement, parallel to the plane of arrangement of two strokes intersecting each other.
Решение поставленной задачи достигается тем, что в предлагаемом устройстве для определения положений дефектов на асферической поверхности оптической детали, содержащем монохроматический источник света и последовательно установленные по ходу световых лучей афокальную систему, светоделитель для формирования опорной и объектной ветвей и приемной части, установленные в объектной ветви по ходу световых лучей, распространяющихся от светоделителя, первый фокусирующий объектив для формирования сходящегося гомоцентрического пучка световых лучей со светящейся точкой в его заднем фокусе, синтезированный голограммный оптический элемент, состоящий из трех осевых соосных между собой синтезированных голограмм, одна из которых является голограммой-компенсатором, а две другие голограммы являются котировочными, плоское эталонное зеркало, установленное в опорной ветви перпендикулярно к световым лучам, распространяющимся от светоделителя, установленные в приемной части по ходу световых лучей, распространяющихся от светоделителя, второй фокусирующий объектив, фотоприемное устройство и блок отображения информации, устройство дополнительно содержит первую марку с двумя пересекающимися между собой штрихами, расположенную между афокальной системой и светоделителем и совмещенную с первым промежуточным изображением асферической поверхности оптической детали, при этом первая марка закреплена в первом узле, снабженном механизмом угловых поворотов для угловой ориентации первой марки и тремя линейными каретками для выполнения возможности смещения первой марки в трех взаимно перпендикулярных направлениях, одно из которых перпендикулярно к плоскости расположения ее штрихов, для чего каждая линейная каретка снабжена приводом, подключенным к первому блоку управления приводами, для обеспечения возможности измерения величины смещения первой марки каждая линейная каретка снабжена датчиком линейного перемещения, подключенным на вход первого блока цифровой индикации, в приемной части по ходу световых лучей после светоделителя установлено плоское поворотное зеркало, введена вторая марка с двумя пересекающимися между собой штрихами, которая совмещена со вторым промежуточным изображением асферической поверхности оптической детали и закреплена во втором узле, снабженном механизмом угловых поворотов для угловой ориентации второй марки и тремя линейными каретками для выполнения возможности смещения второй марки в трех взаимно перпендикулярных направлениях, одно из которых перпендикулярно к плоскости расположения ее штрихов, для чего каждая линейная каретка снабжена приводом, подключенным к второму блоку управления приводами, для обеспечения возможности измерения величины смещения второй марки каждая линейная каретка снабжена датчиком линейного перемещения, подключенным на вход второго блока цифровой индикации, в задней фокальной плоскости первого фокусирующего объектива установлена диафрагма;The solution of this problem is achieved by the fact that in the proposed device for determining the positions of defects on the aspherical surface of an optical part containing a monochromatic light source and an afocal system sequentially installed along the light rays, a beam splitter for forming the support and object branches and the receiving part, installed in the object branch by the first light focusing lens to form a converging homocentric beam of light propagating from the beam splitter of rays with a luminous point in its back focus, a synthesized hologram optical element consisting of three axial coaxial synthesized holograms, one of which is a compensating hologram, and the other two holograms are quotation marks, a flat reference mirror mounted in the reference branch perpendicular to light rays propagating from the beam splitter installed in the receiving part along the light rays propagating from the beam splitter, the second focusing lens, photodetector the triad and the information display unit, the device further comprises a first mark with two intersecting strokes located between the afocal system and the beam splitter and combined with the first intermediate image of the aspherical surface of the optical part, while the first mark is fixed in the first node equipped with an angular rotation mechanism for angular orientation of the first mark and three linear carriages to enable the first mark to be displaced in three mutually perpendicular directions, one of which it is perpendicular to the plane of its strokes, for which each linear carriage is equipped with a drive connected to the first drive control unit, to enable measurement of the displacement of the first mark, each linear carriage is equipped with a linear displacement sensor connected to the input of the first digital display unit, in the reception parts along the light rays after the beam splitter installed a flat rotary mirror, introduced a second mark with two intersecting strokes, which together it with a second intermediate image of the aspherical surface of the optical part and is fixed in the second node equipped with an angular rotation mechanism for angular orientation of the second mark and three linear carriages to enable the second mark to be displaced in three mutually perpendicular directions, one of which is perpendicular to the plane of its strokes, why each linear carriage is equipped with a drive connected to the second drive control unit, to enable measurement of the value, see scheniya second linear mark, each carriage is provided with a linear displacement sensor connected to the second input digital display unit, in the back focal plane of the first aperture of the focusing lens is set;
а также тем, что оба штриха каждой марки пересекаются друг с другом под углом 90 градусов и каждый из них ориентирован параллельно одному из двух направлений смещения соответствующей ему марки, параллельных плоскости расположения пересекающихся между собой двух штрихов.as well as the fact that both strokes of each mark intersect each other at an angle of 90 degrees and each of them is oriented parallel to one of the two directions of displacement of the corresponding mark parallel to the plane of arrangement of two strokes intersecting each other.
На фиг. 1 изображена принципиальная оптическая схема предложенного устройства для определения положений дефектов на асферической поверхности оптической детали с применением одной марки М, расположенной в объектной ветви между светоделителем и первым фокусирующим объективом.In FIG. 1 shows a schematic optical diagram of the proposed device for determining the positions of defects on the aspherical surface of an optical part using one brand M located in the object branch between the beam splitter and the first focusing lens.
На фиг. 2 изображена принципиальная оптическая схема предложенного устройства для определения положений дефектов на асферической поверхности оптической детали с применением двух марок M1 и М2, одна из которых (M1) расположена между афокальной системой и светоделителем, а вторая (М2) - в приемной части между плоским поворотным зеркалом и вторым фокусирующим объективом.In FIG. 2 shows a schematic optical diagram of the proposed device for determining the positions of defects on the aspherical surface of an optical part using two grades M1 and M2, one of which (M1) is located between the afocal system and the beam splitter, and the second (M2) is in the receiving part between the flat rotary mirror and a second focusing lens.
На фиг. 3 и фиг. 4 приведены интерферограммы, полученные при контроле конкретной асферической поверхности оптической детали, предложенным устройством (фиг. 2) с применением марки M1, расположенной между афокальной системой и светоделителем, и марки М2, расположенной в приемной части между плоским поворотным зеркалом и вторым фокусирующим объективом.In FIG. 3 and FIG. Figure 4 shows the interferograms obtained by monitoring a specific aspherical surface of the optical part proposed by the device (Fig. 2) using the M1 brand located between the afocal system and the beam splitter, and the M2 brand located in the receiving part between the flat rotary mirror and the second focusing lens.
Предлагаемое устройство (на фиг. 1) для определения положений дефектов на асферической поверхности оптической детали содержит монохроматический (лазерный) источник света 1, последовательно установленные по ходу световых лучей афокальную систему 2, светоделитель 3, разделяющий падающий на него пучок световых лучей на два пучка, один из которых (отраженный от светоделителя 3) поступает в опорную ветвь, а другой (прошедший свтоделитель 3) - в объектную ветвь устройства. В опорной ветви перпендикулярно к световым лучам, распространяющимся от светоделителя 3, установлено плоское эталонное зеркало 4. В объектной ветви по ходу световых лучей последовательно установлены узел 5 с закрепленной на нем маркой М, при этом узел 5 снабжен механизмом угловых поворотов 6 и линейными каретками 7, 8 и 9 для угловой ориентации марки М и смещения ее линейными каретками в трех взаимно перпендикулярных направлениях, первый фокусирующий объектив 10 с задним фокусным расстоянием для формирования в заднем фокусе светящейся точки A, диафрагма 11, расположенная в задней фокальной плоскости первого фокусирующего объектива 10, синтезированный голограммный оптический элемент 12, расположенный на расстоянии s от светящейся точки A до точки O1 на передней поверхности его подложки и состоящий из трех осевых соосных между собой синтезированных голограмм: голограммы-компенсатора 13, формирующей в проходящем свете осесимметричный пучок световых лучей, ось которого задает оптическую ось в объектной ветви, юстировочной голограммы 14, формирующей в отраженном свете автоколлимационное изображение A'14 светящейся точки A, и юстировочной голограммы 15, формирующей в проходящем свете светящуюся точку-репер Aреп, расположенную на расстоянии d2 от точки О2 на задней поверхности подложки синтезированного голограммного оптического элемента 12 и совпадающую с вершиной О3 асферической поверхности 16. Толщина подложки синтезированного голограммного оптического элемента 12 равна d1. Марка М ориентирована таким образом, чтобы плоскость расположения ее двух пересекающихся между собой штрихов была совмещена с плоскостью промежуточного изображения ППИ асферической поверхности 16 оптической детали 17, расположенной между светоделителем 3 и первым фокусирующим объективом 10. В приемной части по ходу световых лучей, распространяющихся от светоделителя 3, установлены плоское поворотное зеркало 18, второй фокусирующий объектив 19, фотоприемное устройство (например, цифровая видеокамера) 20 с плоскостью регистрации 21 его светочувствительных элементов и блок отображения информации (например, монитор) 22. Устройство также содержит приводы 23, 24 и 25, соединенные с линейными каретками 7, 8 и 9 соответственно и подключенные к блоку управления приводами 26 для придания смещений марке М в трех взаимно перпендикулярных направлениях, датчики линейных перемещений 27, 28 и 29, которыми снабжены линейные каретки 7, 8 и 9, соответственно подключенные к входу блока цифровой индикации 30 величин смещений марки М в трех взаимно перпендикулярных направлениях.The proposed device (in Fig. 1) for determining the positions of defects on the aspherical surface of the optical part contains a monochromatic (laser)
Предлагаемое устройство (на фиг. 2) для определения положений дефектов на асферической поверхности оптической детали содержит монохроматический (лазерный) источник света 1, последовательно установленные по ходу световых лучей афокальную систему 2, первую марку M1, светоделитель 3, разделяющий падающий на него пучок световых лучей на два пучка, один из которых (отраженный от светоделителя 3) поступает в опорную ветвь, а другой (прошедший свтоделитель 3) - в объектную ветвь устройства. В опорной ветви перпендикулярно к световым лучам, распространяющимся от светоделителя 3, установлено плоское эталонное зеркало 4. Первая марка M1 закреплена в первом узле 5, снабженном механизмом угловых поворотов 6 для угловой ориентации первой марки M1 и линейными каретками 7, 8 и 9 для смещения ее в трех взаимно перпендикулярных направлениях. В объектной ветви по ходу световых лучей, прошедших светоделитель 3, последовательно установлены первый фокусирующий объектив 10 с задним фокусным расстоянием для формирования в заднем фокусе светящейся точки A, диафрагма 11, расположенная в задней фокальной плоскости первого фокусирующего объектива 10, синтезированный голограммный оптический элемент 12, расположенный на расстоянии s от светящейся точки A до точки O1 на передней поверхности его подложки и состоящий из трех осевых соосных между собой синтезированных голограмм: голограммы-компенсатора 13, формирующей в проходящем свете осесимметричный пучок световых лучей, ось которого задает оптическую ось в объектной ветви, юстировочной голограммы 14, формирующей в отраженном свете автоколлимационное изображение A'14 светящейся точки A, и юстировочной голограммы 15, формирующей в проходящем свете светящуюся точку-репер Ареп, расположенную на расстоянии d2 от точки О2 на задней поверхности подложки синтезированного программного оптического элемента 12 и совпадающую с вершиной О3 асферической поверхности 16. Толщина подложки синтезированного голограммного оптического элемента 12 равна d1. В приемной части по ходу световых лучей, распространяющихся от светоделителя 3, установлены плоское поворотное зеркало 18, вторая марка М2, второй фокусирующий объектив 19, фотоприемное устройство (например, цифровая видеокамера) 20 с плоскостью регистрации 21 его светочувствительных элементов и блок отображения информации (например, монитор) 22. Плоскость расположения штрихов первой марки M1 совмещена с плоскостью первого промежуточного изображения ППИ1, расположенного между афокальной системой 2 и светоделителем 3. Линейные каретки 7, 8 и 9 первого узла 5 для крепления первой марки M1 снабжены приводами 23, 24 и 25 соответственно, которые подключены к первому блоку управления приводами 26 для придания смещений первой марке M1 в трех взаимно перпендикулярных направлениях. Для измерения величин смещений первой марке M1 служат датчики линейных перемещений 27, 28 и 29, которыми снабжены линейные каретки 7, 8 и 9 соответственно и которые подключены к входу первого блока цифровой индикации 30 величин смещений первой марки M1 в трех взаимно перпендикулярных направлениях. Вторая марка М2 введена в приемную часть после плоского поворотного зеркала 18. При этом она закреплена во втором узле 33, снабженном механизмом угловых поворотов 34 для угловой ориентации второй марки М2 и линейными каретками 35, 36 и 37 для смещения ее в трех взаимно перпендикулярных направлениях. Плоскость расположения штрихов второй марки М2 совмещена с плоскостью второго промежуточного изображения ППИ2, расположенного между плоским поворотным зеркалом 18 и вторым фокусирующим объективом 19. Линейные каретки 35, 36 и 37 второго узла 33 крепления второй марки М2 снабжены приводами 38, 39 и 40 соответственно, которые подключены к второму блоку управления приводами 41 для придания смещений второй марке М2 в трех взаимно перпендикулярных направлениях. Для измерения величин смещений второй марки М2 служат датчики линейных перемещений 42, 43 и 44, которыми снабжены линейные каретки 35, 36 и 37 соответственно и которые подключены к входу второго блока цифровой индикации 45 величин смещений второй марки М2 в трех взаимно перпендикулярных направлениях.The proposed device (in Fig. 2) for determining the positions of defects on the aspherical surface of the optical part contains a monochromatic (laser)
Предлагаемое устройство (на фиг. 1) для определения положений дефектов на асферической поверхности оптической детали работает следующим образом. Пучок световых лучей от монохроматического (лазерного) источника света 1 поступает в афокальную систему 2 и преобразуется ею в расширенный параллельный пучок световых лучей, который поступает в светоделитель 3, где частично проходит его и частично отражается им. Отраженная часть пучка световых лучей поступает в опорную ветвь устройства, падает на плоское эталонное зеркало 4, ориентированное перпендикулярно к световым лучам этого пучка, отражается от него и в автоколлимационном ходе частично отражается от светоделителя 3 и частично проходит его. Отраженная часть опорного пучка световых лучей проходит в обратном направлении афокальную систему 2 и падает в отверстие выходного окна источника света 1, а прошедшая светоделитель 3 часть опорного пучка поступает в приемную часть, отражается от плоского поворотного зеркала 18 и поступает во второй фокусирующий объектив 19, которым фокусируется в точку Ао, служащую в устройстве опорной точкой. Затем эта часть опорного пучка световых лучей проходит объектив фотоприемного устройства (например, цифровой видеокамеры) 20 и падает на плоскость регистрации 21 светочувствительных элементов фотоприемного устройства 20.The proposed device (in Fig. 1) for determining the positions of defects on the aspherical surface of the optical part operates as follows. The beam of light rays from a monochromatic (laser)
В объектную ветвь устройства поступает прошедшая светоделитель 3 часть параллельного пучка световых лучей, вышедшего из афокальной системы 2, которая проходит в этой ветви марку М, первый фокусирующий объектив 10, преобразуясь им в сходящийся гомоцентрический пучок световых лучей с центром в виде светящейся точки A в заднем фокусе объектива 10, проходит диафрагму 11, расположенную в задней фокальной плоскости объектива 10, и падает на синтезированный голограммный оптический элемент 12 в виде расходящегося гомоцентрического пучка световых лучей, освещая голограмму-компенсатор 13 и котировочные голограммы 14 и 15. Голограмма-компенсатор 13 в процессе дифракции на ней световых лучей в проходящем свете формирует осесимметричный пучок световых лучей, каждый луч которого падает на асферическую поверхности 16 оптической детали 17 по соответствующей ему определенной нормали этой поверхности и отражается от нее в обратном направлении. В этом случае отражающая асферическая поверхность 16 оптической детали 17 выступает в качестве предмета. Отраженный от этой асферической поверхности 16 оптической детали 17 пучок световых лучей в автоколлимационном ходе распространяется к голограмме-компенсатору 13 и в результате дифракции на ней фокусируется в точку A'16, которая является автоколлимационным изображением светящейся точки A. Затем этот пучок световых лучей проходит в обратном направлении диафрагму 11 и первый фокусирующий объектив 10, который преобразует его в параллельный пучок световых лучей. В ходе данного параллельного пучка световых лучей посредством синтезированной голограммы-компенсатора 13 и первого фокусирующего объектива 10 формируется изображение асферической поверхности 16 оптической детали 17, которое является промежуточным и обратным. Оно расположено в плоскости промежуточного изображения ППИ. В связи с этим точка O'3, лежащая в центре промежуточного изображения асферической поверхности 16, а значит, и на оптической оси, является оптически сопряженной с вершиной О3 асферической поверхности 16 оптической детали 17 и является ее изображением. Точно также точка G, лежащая в плоскости промежуточного изображения ППИ, является изображением точки E, расположенной вблизи границы асферической поверхности 16 оптической детали 17.The object beam of the device receives the transmitted
С плоскостью промежуточного изображения ППИ совмещена плоскость расположения штрихов марки М. Очевидно, что в этом случае в плоскости промежуточного изображения ППИ в обратном ходе лучей от асферической поверхности 16 оптической детали 17 будет формироваться также и изображение марки М. Далее, параллельный пучок световых лучей после прохождения марки М падает на светоделитель 3 и делится им на два пучка, один из которых, прошедший светоделитель 3, распространяется к афокальной системе 2, а другой, отраженный от светоделителя 3, поступает в приемную часть, где отражается от плоского поворотного зеркала 18, проходит второй фокусирующий объектив 19, которым он фокусируется в точку A''16, проходит объектив фотоприемного устройства (например, цифровой видеокамеры) 20 и падает на плоскость регистрации 21 светочувствительных элементов фотоприемного устройства 20. Посредством светоделителя 3, плоского поворотного зеркала 18, второго фокусирующего объектива 19 и объектива фотоприемного устройства (например, цифровой видеокамеры) 20 в плоскость регистрации 21 проецируется сформированное в плоскости промежуточного изображения ППИ промежуточное изображение асферической поверхности 16 оптической детали 17. В результате в плоскости регистрации 21 формируется конечное изображение асферической поверхности 16 оптической детали 17, которое является прямым. В эту же плоскость регистрации 21 проецируется также изображение штрихов марки М. В результате совмещения в приемной части пучков световых лучей, пришедших из опорной и объектной ветвей, и возникшей в связи с этим интерференции соответствующих им световых волн, образуется интерференционная картина для контролируемой асферической поверхности 16 оптической детали 17, которая также отображается в плоскости регистрации 21. Конечное изображение асферической поверхности 16 оптической детали 17, вместе с изображением этой интерференционной картины, а также марки М передаются фотоприемным устройством (например, цифровой видеокамерой) 20 на экран блока отображения информации (например, монитора) 22, где 31 - конечное изображение асферической поверхности 16 оптической детали 17, с соответствующей ей интерференционной картиной, а ИШм - изображение штрихов марки М. На экране блока отображения информации (например, монитора) 22 изображена точка O''3, расположенная в центре изображения 31 асферической поверхности 16 оптической детали 17 и интерференционной картины для этой асферической поверхности. В связи с этим она соответствует точке O'3 в плоскости промежуточного изображения ППИ и точке О3 - вершине асферической поверхности 16 оптической детали 17. Для того чтобы было удобно и наглядно идентифицировать дефекты и определять их расположения на контролируемой асферической поверхности 16 оптической детали 17, необходимо, чтобы на экране блока отображения информации (например, монитора) 22 было сформировано прямое изображение асферической поверхности 16 оптической детали 17. Для этого необходимо корпус фотоприемного устройства (например, цифровой видеокамеры) 20 повернуть на 180° вокруг его оптической оси относительно исходного рабочего положения фотоприемного устройства (например, цифровой видеокамеры) 20.The plane of arrangement of strokes of mark M is aligned with the plane of the intermediate image of the PPI. It is obvious that in this case, in the plane of the intermediate image of the PPI in the reverse ray path from the
Наличие дефектов на контролируемой асферической поверхности 16 оптической детали 17 определяют путем визуального анализа интерференционной картины, присутствующей на конечном изображении 31 этой асферической поверхности 16 на экране блока отображения информации (например, монитора) 22. Дефекты и их положения на контролируемой асферической поверхности 16 визуализируются искривлениями полос в этой интерференционной картине. По степени искривления интерференционных полос выбирают на контролируемой асферической поверхности 16 характерные точки, которым соответствуют наибольшие дефекты и которые необходимо устранить в первую очередь. Затем определяют положения этих характерных точек с дефектами на контролируемой асферической поверхности 16 относительно ее вершины.Defects on the controlled
Асферическая поверхность 16 задается уравнением в прямоугольной системе координат oxyz, центр которой о совмещен с вершиной О3 асферической поверхности 16, а ось oz совпадает с ее осью симметрии. На схеме, изображенной на фиг. 1, оси oy и oz лежат в плоскости рисунка; при этом ось oy направлена вверх, а ось oz направлена слева на право. Ось ох лежит в плоскости, перпендикулярной к плоскости рисунка. В связи с этим оси ох и оy лежат в двух взаимно перпендикулярных меридиональных плоскостях. Пусть оси ох, oy и oz образуют правую систему прямоугольных координат. Тогда ось ох, являясь перпендикулярной к плоскости рисунка, будет направлена от наблюдателя. С учетом этих данных узел 5 с маркой М установлен таким образом, чтобы посредством линейной каретки 7 марка М перемещалась параллельно оси oz, посредством линейной каретки 8 - параллельно оси ох, а посредством линейной каретки 9 - параллельно оси oy.The
Синтезированный голограммный оптический элемент 12 может быть выполнен на плоскопараллельной, плосковогнутой или же плосковыпуклой подложке с заданной толщиной d1 и показателем преломления n(λ) материала подложки, где λ - длина волны монохроматического источника света. Расчет параметров структуры синтезированных голограмм, отрезков оптической схемы контроля асферической поверхности второго и более высокого порядков, методы и средства для отображения структуры синтезированных голограмм на подложке, а также методы юстировки схем контроля асферических поверхностей рассмотрены в диссертации на соискание ученой степени кандидата технических наук Ларионова Н.П. (см. Ларионов Н.П. Методы и средства контроля формы асферических поверхностей крупногабаритных и светосильных оптических элементов на основе использования осевых синтезированных голограмм. Казань, 2002, с. 40-47, 136-142), а также в материалах на изобретение (см. Ларионов Н.П., Лукин А.В., Мустафин К.С., Рафиков Р.А. Способ настройки устройства для контроля оптических поверхностей. - Патент РФ №729437, бюлл. изобр., 1980, №5).The synthesized hologram
Марка М содержит два пересекающихся между собой под углом 90° тонких штриха, нанесенных, например, на одной из поверхностей тонкой стеклянной пластины, прозрачной для излучения источника света 1. Толщина штрихов марки М может быть, например, 0.015 мм. Она закреплена в узле 5 таким образом, чтобы плоскость расположения ее штрихов была ориентирована перпендикулярно к направлению смещения марки М, осуществляемого посредством линейной каретки 7 под воздействием привода 23 и блока управления приводами 26. В двух других взаимно перпендикулярных направлениях марка М смещается посредством линейных кареток 8 и 9 под воздействием приводов соответственно 24 и 25 и блока управления приводами 26. При этом марка М закреплена в узле 5 таким образом, чтобы один из ее штрихов был ориентирован параллельно направлению смещения марки М, осуществляемого посредством линейной каретки 8, а другой штрих - параллельно направлению смещения марки М, осуществляемого посредством линейной каретки 9. Величины смещений марки М измеряются посредством датчиков линейных перемещений 27, 28 и 29, закрепленных на линейных каретках 7, 8 и 9 соответственно и подключенных к блоку цифровой индикации 30.Grade M contains two thin strokes intersecting each other at an angle of 90 °, applied, for example, on one of the surfaces of a thin glass plate transparent to the radiation of
При проведении контроля асферической поверхности 16 оптической детали 17 необходимо провести котировочные операции, наиболее важные из которых рассмотренные ниже.When controlling the
Сначала ориентируют в опорной ветви плоское эталонное зеркало 4 перпендикулярно к падающему на него параллельному пучку лучей, распространяющемуся от светоделителя 3. Для чего угловыми наклонами зеркала 4 направляют отраженный от него опорный пучок лучей к светоделителю 3, а затем отраженную от светоделителя 3 часть опорного пучка направляют в афокальную систему 2 и затем в выходное окно лазера 1. Прошедшая светоделитель 3 часть опорного пучка поступает в приемную часть устройства, где после отражения от плоского поворотного зеркала 18 поступает во второй фокусирующий 19 и фокусируется им в точку Ао, служащую в устройстве опорной точкой. Затем эта часть опорного пучка лучей проходит объектив фотоприемного устройства (например, цифровой видеокамеры) 20 и падает на плоскость регистрации 21 светочувствительных элементов фотоприемного устройства (например, цифровой видеокамеры) 20.First, a
Затем юстируют синтезированный голограммный оптический элемент 12. Для этого сначала смещают его перпендикулярно к оптической оси первого фокусирующего объектива 10 и добиваются, чтобы его апертура освещалась осесимметрично падающему на него расходящемуся гомоцентрическому пучку световых лучей, вышедшему из светящейся точки A. После этого смещениями синтезированного голограммного оптического элемента 12 вдоль оптической оси объектива 10 и угловыми поворотами его получают посредством юстировочной голограммы 14 автоколлимационное изображение A'14 светящейся точки A, которое формируется в результате дифракции в обратном направлении лучей, упавших на голограмму 14. Процесс формирования автоколлимационного изображения A'14 контролируют визуально, наблюдая предварительно это изображение на диафрагме 11 в окрестности ее отверстия и добиваясь при этом его минимального размера путем продольного смещения синтезированного голограммного оптического элемента 12. После этого дифрагированный на юстировочной голограмме 14 пучок световых лучей посредством угловых поворотов синтезированного голограммного оптического элемента 12 направляют в отверстие диафрагмы 11, который проходит в обратном направлении первый фокусирующий объектив 10, преобразуясь им в параллельный пучок лучей, затем отражается от светоделителя 3 и поступает в приемную часть, где отражается от плоского поворотного зеркала 18, проходит второй фокусирующий объектив 19, фокусируясь им в точку A''14, проходит объектив фотоприемного устройства (например, цифровой видеокамеры) 20 и падет на плоскость регистрации 21 фотоприемного устройства 20. В результате совмещения пучков световых лучей, пришедших в приемную часть из опорной и объектной ветвей, в плоскости регистрации 21 будет присутствовать интерференционная картина, которая изобразится на экране блока отображения информации (например, монитора) 22 в виде отрезков интерференционных полос, расположенных в кольцевой картине 32. Эти отрезки должны быть прямолинейными и лежать на системе виртуальных прямых полос с постоянным шагом. Если это не выполняется, то необходимо продольными смещениями синтезированного голограммного оптического элемента 12 получить указанное выше расположение отрезков интерференционных полос в кольцевой картине 32. Затем угловыми наклонами синтезированного голограммного оптического элемента 12 необходимо произвести настройку на бесконечно широкую полосу либо на минимальное количество интерференционных полос и контролировать это состояние в кольцевой картине 32 в процессе работы устройства. Это состояние соответствует тому, что юстировочная голограмма 14 действительно формирует автоколлимационное изображение A'14 светящейся точки A, а это означает, что голограмма-компенсатор 13 и синтезированный голограммный оптический элемент 12 установлены на заданном расстоянии s от светящейся точки A. Для такого состояния точка A''14 является сфокусированной в фокальной плоскости второго фокусирующего объектива 19 и практически совмещенной с опорной точкой Ао.Then, the synthesized hologram
Затем юстируют оптическую деталь 17 с контролируемой асферической поверхности 16. Контроль совмещения оси симметрии асферической поверхности 16 с осью симметрии голограммы-компенсатора 13 (оптической осью) можно вести по виду интерференционных полос в картине 31 на экране блока отображения информации (например, монитора) 22, левая и правая части которой должны быть близки между собой по форме интерференционных полос. Однако этот метод можно использовать только в том случае, когда на контролируемой асферической поверхности 16 отсутствуют большие неосесимметричные дефекты. Более надежным является метод, основанный на визуальном наблюдении изображения точки A''16, которое посредством объектива фотоприемного устройства (например, цифровой видеокамеры) 20 проецируют совместно с изображением опорной точки Aо на плоскость регистрации 21 и наблюдают на экране блока отображения информации (например, монитора) 22. Путем поперечных смещений и угловых поворотов детали 17 добиваются максимально приближенного к осесимметричности изображения точки A''16 и совмещения его с изображением опорной точки Aо, наблюдая их на экране блока отображения информации (например, монитора) 22. Контроль расположения вершины О3 асферической поверхности 16 относительно точки О2 ведут по форме точки A''реп в фокальной плоскости второго фокусирующего объектива 19, изображение которой также отображается на экране блока отображения информации (например, монитора) 22. Точка А''реп образуется пучком световых лучей, сформированным юстировочной голограммой 15 в проходящем свете при освещении ее из светящейся точки A. Этот пучок световых лучей фокусируется в точку Ареп. Он падает на асферическую поверхность 16, отражается от нее, проходит в обратном ходе котировочную голограмму 15, фокусируясь в точку А'реп в результате дифракции на этой голограмме, затем проходит первый фокусирующий объектив 10 и после отражения от светоделителя 3 и плоского поворотного зеркала 18 фокусируется вторым фокусирующим объективом 19 в точку А''реп. Путем продольного смещения детали 17 получают минимальное изображение точки A''реп на экране блока отображения информации (например, монитора) 22, что соответствует тому, что точка Ареп будет расположена на асферической поверхности 16 и совпадать с ее вершиной - точкой О3, которая будет находиться на расстоянии d2 от точки O2 на задней поверхности подложки синтезированного голограммного оптического элемента 12. После проведения рассмотренных котировочных операций детали 17 фокусировкой объектива фотоприемного устройства (например, цифровой видеокамеры) 20 более тщательно проецируют изображение асферической поверхности 16 оптической детали 17 на плоскость регистрации 21, что визуально контролируют по резкости изображения на экране блока отображения информации (например, монитора) 22 небольшой метки, нанесенной для этого временно на асферическую поверхность 16, либо небольшой фрагмент тонкой бумаги, приклеенный также временно к асферической поверхности 16. Затем нанесенную метку или фрагмент тонкой бумаги удаляют.Then, the
Далее юстируют марку М. Сначала ее посредством механизма угловых поворотов 6 узла 5 ориентируют так, чтобы плоскость расположения ее штрихов была перпендикулярна к параллельному пучку световых лучей, вышедших из афокальной системы 2 и прошедших светоделитель 3. Контроль такой установки марки М осуществляют с помощью дополнительного вспомогательного плоского зеркала, которое прислоняют отражающим покрытием к оправе марки М со стороны, обращенной к первому фокусирующему объективу 10. Посредством механизма угловых поворотов 6 направляют отраженный от дополнительного вспомогательного плоского зеркала параллельный пучок световых лучей в афокальную систему 2, а затем вышедший из нее узкий пучок лучей - в выходное окно лазера 1. После этого совмещают плоскость расположения штрихов марки М с плоскостью промежуточного изображения ППИ. Для этого осуществляют продольное смещение марки М по ходу падающего на нее параллельного пучка световых лучей посредством линейной каретки 7, приводящейся в движение посредством привода 23 и блока управления приводами 26. Момент совмещения плоскости расположения штрихов марки М с плоскостью ППИ контролируют по возникновению резкого изображения штрихов ИШм марки М на экране блока отображения информации (например, монитора) 22.Next, the M mark is adjusted. First, it is oriented by the mechanism of angular rotations 6 of the
После проведения рассмотренных выше операций по юстировке устройства получают на экране блока отображения информации (например, монитора) 22 интерференционные полосы путем поворота детали 17 вокруг, например, оси ох и приступают к анализу интерференционной картины 31 с целью выявления дефектов на контролируемой асферической поверхности 16 оптической детали 17 и выбору из них наиболее характерных, которым соответствуют наибольшие дефекты и которые необходимо устранить в первую очередь. Затем определяют положения этих характерных точек с дефектами на контролируемой асферической поверхности 16 относительно ее вершины. Для этого предварительно выводят точку пересечения двух штрихов марки М на оптическую ось и тем самым совмещают ее с точкой, в которой должна располагаться точка O'3, оптически сопряженная с вершиной О3 асферической поверхности 16. Осуществляют это совмещение путем перемещения марки М в плоскости промежуточного изображения ППИ в двух взаимно перпендикулярных направлениях с помощью линейных кареток 8 и 9 под воздействием приводов 24 и 25 и блока управления приводами 26. Контроль вывода на оптическую ось точки пересечения двух штрихов марки М ведут, наблюдая, например, в лупу со стороны асферической поверхности 16 совмещение точки пересечения их теней со светящейся точкой-репером Ареп, расположенной на оптической оси. (Для проведения этой операции деталь 17 временно выводится из схемы контроля, а затем возвращается обратно). Показания для датчиков линейных перемещений 28 и 29 на блоке цифровой индикации 30, полученные при проведении этой операции, служат началом отсчета при измерении величин смещений марки М в плоскости ППИ от оптической оси, т.е. от точки O'3. Поэтому их можно обнулить. После проведения этой операции точка пересечения изображений штрихов в ИШм марки М, наблюдаемая на экране блока отображения информации (например, монитора) 22, будет визуализировать положение точки O''3.After carrying out the adjustment operations described above, interference fringes are obtained on the screen of the information display unit (for example, a monitor) 22 by turning the
После вывода точки пересечения двух штрихов марки М на оптическую ось проводят смещения марки М в плоскости ППИ в двух взаимно перпендикулярных направлениях посредством линейных кареток 8 и 9 и при этом наблюдают на экране блока отображения информации (например, монитора) 22 смещения изображения штрихов ИШм марки М. Осуществляют в результате этих смещений марки М совмещение точки пересечения изображений ее штрихов с искривлениями интерференционных полос в картине 31, изображаемой на экране блока отображения информации (например, монитора) 22. Для положений тех искривлений интерференционных полос, которые соответствуют выбранным характерным точкам на контролируемой асферической поверхности 16, снимают показания для датчиков линейных перемещений 28 и 29 на блоке цифровой индикации 30, значения которых отображают величины смещений марки М в плоскости ППИ в двух взаимно перпендикулярных направлениях от оптической оси. Поскольку промежуточная плоскость ППИ, оптически сопряженная с асферической поверхностью 16, по своей физической природе перпендикулярна к оптической оси, а смещение марки М линейными каретками 8 и 9 осуществляется параллельно соответственно оси ox и оси оy прямоугольной системы координат oxyz, то величины смещений марки М в плоскости ППИ можно выразить через координаты прямоугольной системы координат o'x'y'z', центр о' которой расположен на оптической оси и совмещен с точкой O'3, ось o'z' совмещена с осью oz системы координат oxyz, а оси o'x' и о'у' лежат в плоскости ППИ, параллельны соответственно осям ох и оy системы координат oxyz и направлены с ними в одну сторону. В связи с этим прямоугольная система координат o'x'y'z' также является правой.After the point of intersection of two strokes of mark M on the optical axis is drawn, the displacement of mark M is carried out in the PPI plane in two mutually perpendicular directions by means of linear carriages 8 and 9, and at the same time, on the screen of the information display unit (for example, a monitor), 22 displacements of the strokes of the IS m mark M. As a result of these displacements of the brand M, the intersection of the intersection point of the images of its strokes with the distortions of the interference fringes is performed in the picture 31 displayed on the screen of the information display unit (e.g. ) 22. For the positions of those curvature of interference fringes that correspond to the selected characteristic points on the controlled
Таким образом, для каждой выбранной характерной точки i на асферической поверхности 16 оптической детали 17 будут измерены координаты (х'ппи i, y'ппи i) соответствующей ей точки в плоскости промежуточного изображения ППИ, оптически сопряженной с асферической поверхностью 16. Эти координаты являются координатами промежуточного изображения асферической поверхности 16 оптической детали 17, расположенного в плоскости ППИ, которое сформировано в обратном ходе лучей, отраженных от асферической поверхности 16, посредством синтезированной голограммы-компенсатора 13 и первого фокусирующего объектива 10. По измеренным координатам (x'ппи i, y'ппи i) находят координаты (xап i, yaп i) выбранной характерной точки i на контролируемой асферической поверхности 16. Для осуществления этой операции необходимо установить связь между координатами точек асферической поверхности 16 оптической детали 17 с координатами соответствующих им точек в плоскости ППИ.Thus, for each selected characteristic point i on the
Поскольку асферическая поверхность 16 является осесимметричной, то связь абсциссы хап i для точки i на асферической поверхности 16 с абсциссой х'ппи i соответствующей ей точки в плоскости ППИ будет аналогичной связи ординаты yап i на асферической поверхности 16 с ординатой у'ппи i в плоскости ППИ. Поэтому достаточно эту связь установить для ординат yап i и y'ппи i. На оптической схеме, изображенной на фиг. 1, показан ход крайнего луча GABE, вышедшего из афокальной системы 2 и прошедшего через точку G в плоскости ППИ, через точку A - фокус первого фокусирующего объектива 10, через точку B на краю голограммы-компенсатора 13 и упавшего в точку E в краевой зоне асферической поверхности 16 оптической детали 17. В области хода этого луча между первым фокусирующим объективом 10 и синтезированной голограммой-компенсатором 13 справедливо соотношениеSince the
где y'ппи g - ордината точки G в плоскости ППИ, hгк е - высота, на которой луч в точке B падает на голограмму-компенсатор 13. На основании этого равенства можно записать аналогичное соотношение для ординаты y'ппи i точки i в плоскости ППИ, связанной с соответствующей ей точкой на голограмме-компенсаторе 13where y ' npi g is the ordinate of the point G in the PPI plane, h gk e is the height at which the ray at point B falls on the
где hгк i - высота точки падения на голограмму-компенсатор 13 луча, проходящего в плоскости ППИ через точку с ординатой y'ппи i. После дифракции на голограмме 13 он будет падать на асферическую поверхность 16 в точке с ординатой yaп i. Для определения этой ординаты можно использовать данные, полученные для случая расчета хода лучей от асферической поверхности 16 вдоль ее нормалей к голограмме-компенсатору 13. Для этого задают ряд точек, расположенных на профиле асферической поверхности 16 от ее вершины O3 до края светового диаметра оптической детали 17 с заданным интервалом Δy изменения ординаты y точек этого ряда, и находят с помощью известных программ для расчета оптических систем (например, OPAL, DEMOS, ZEMAX) для каждого нарастающего от 0 значения ординаты yап n = yап n-1 + Δy величины высот hгк n на голограмме-компенсаторе 13. Затем по формуле (3) для каждой высоты hгк n находят ординату y'ппи n в плоскости ППИ. Полученные расчетные данные сводят в таблицу вида Таблица 1. При контроле асферической поверхности в процессе анализа этой таблицы находят в четвертом столбце наиболее близкое значение y'ппи n к измеренному y'ппи i и определяют во втором столбце соответствующее ему значение yап n, которое принимают за ординату yaп i на асферической поверхности 16. Очевидно, что погрешность найденного таким образом значения yап i не превышает половины ширины выбранного шага Δy изменения ординаты y асферической поверхности 16. Отсюда следует, что погрешность определения ординаты yап i тем меньше, чем меньше выбранный шаг Δy изменения ординаты y при расчете значений для столбцов Таблицы 1. (По этой же таблице можно определять и значения абсцисс хап i дефектов на асферической поверхности по измеренным абсциссам х'пп i в плоскости ППИ.where h gk i is the height of the point of incidence on the hologram-
Поэтому в столбцах этой таблицы в круглых скобках приведены и выражения для абсцисс выбранных точек на профиле заданной асферической поверхности.). На практике для Δy можно задавать значение меньше 1 мм; поэтому погрешность определения ординаты yап i дефекта на асферической поверхности 16 будет составлять доли миллиметра. Поскольку в предложенном устройстве могут быть использованы высокоточные датчики линейных перемещений марки М, а шаг Δy при расчете значений Таблицы 1 может быть выбран достаточно маленьким (десятую долю миллиметра и даже меньше), то предложенное устройство действительно может обеспечить повышение точности контроля положений дефектов на асферических поверхностях. Кроме того, данное устройство обеспечивает повышение точности контроля положений дефектов на асферических поверхностях благодаря исключению влияния дисторсии, вносимой синтезированной голограммой-компенсатором. Это достигается за счет того, что при контроле асферической поверхности сначала измеряются координаты дефектов в искаженном дисторсией промежуточном изображении асферической поверхности с помощью марки М, а затем по Таблице 1 находятся истинные (свободные от дисторсии) координаты дефектов на асферической поверхности.Therefore, the expressions for the abscissas of the selected points on the profile of a given aspherical surface are also given in parentheses in the columns of this table.). In practice, Δy can be set to a value less than 1 mm; therefore, the error in determining the ordinate y ap i defect on the
Предлагаемое устройство (см. фиг. 2) для определения положений дефектов на асферической поверхности оптической детали работает следующим образом. Пучок световых лучей от монохроматического (лазерного) источника света 1 поступает в афокальную систему 2 и преобразуется ею в расширенный параллельный пучок лучей, который проходит первую марку M1, поступает в светоделитель 3, где частично проходит его и частично отражается им. Отраженная часть пучка лучей поступает в опорную ветвь устройства падает на плоское эталонное зеркало 4, ориентированное перпендикулярно к лучам этого пучка, отражается от него и в автоколлимационном ходе частично отражается от светоделителя 3 и частично проходит его. Отраженная часть опорного пучка лучей проходит в обратном направлении первую марку M1, афокальную систему 2 и падает в отверстие выходного окна источника света 1, а прошедшая светоделитель 3 часть опорного пучка лучей поступает в приемную часть где отражается от плоского поворотного зеркала 18, проходит вторую марку М2 и поступает во второй фокусирующий объектив 19, которым фокусируется в точку Аo, служащую в устройстве опорной точкой. Затем эта часть опорного пучка лучей проходит объектив фотоприемного устройства (например, цифровой видеокамеры) 20 и падает на плоскость регистрации 21 светочувствительных элементов фотоприемного устройства (например, цифровой видеокамеры) 20.The proposed device (see Fig. 2) for determining the positions of defects on the aspherical surface of the optical part operates as follows. The beam of light rays from a monochromatic (laser)
В объектную ветвь устройства поступает прошедшая светоделитель 3 часть параллельного пучка лучей, вышедшего из афокальной системы 2 и прошедшего первую марку M1. Поступивший в объектную ветвь пучок лучей проходит первый фокусирующий объектив 10, преобразуясь им в сходящийся гомоцентрический пучок световых лучей с центром в виде светящейся точки A в заднем фокусе объектива 10, проходит диафрагму 11, расположенную в задней фокальной плоскости объектива 10, и падает на синтезированный голограммный оптический элемент 12 в виде расходящегося гомоцентрического пучка световых лучей, освещая голограмму-компенсатор 13 и котировочные голограммы 14 и 15. Голограмма-компенсатор 13 в процессе дифракции на ней световых лучей в проходящем свете формирует осесимметричный пучок световых лучей, каждый луч которого падает на асферической поверхности 16 оптической детали 17 по соответствующей ему определенной нормали этой поверхности и отражается от нее в обратном направлении. В этом случае отражающая асферическая поверхность 16 оптической детали 17 выступает в качестве предмета. Отраженный от этой асферической поверхности 16 пучок световых лучей в автоколлимационном ходе распространяется к голограмме-компенсатору 13 и в результате дифракции на ней фокусируется в точку A'16, которая является автоколлимационным изображением светящейся точки A. Затем этот пучок лучей проходит в обратном направлении диафрагму 11 и преобразуется первым фокусирующим объективом 10 в параллельный пучок лучей, который светоделителем 3 делится на два пучка лучей. Один из них (прошедший светоделитель 3) проходит первую марку M1, афокальную систему 2 и поступает в отверстие выходного окна монохроматического источника света 1. Другой пучок лучей (отраженный от светоделителя 3) поступает в приемную часть, где отражается от плоского поворотного зеркала 18, проходит вторую марку М2, проходит второй фокусирующий объектив 19, фокусируясь им в точку A''16, проходит объектив фотоприемного устройства (например, цифровой видеокамеры) 20 и падает на плоскость регистрации 21 светочувствительных элементов фотоприемного устройства (например, цифровой видеокамеры) 20. В ходе каждого из этих двух пучков лучей посредством синтезированной голограммы-компенсатора 13 и первого фокусирующего объектива 10 формируется промежуточное изображение асферической поверхности 16 оптической детали 17. Таким образом, в данном устройстве присутствуют два промежуточных изображения асферической поверхности 16 оптической детали 17, одно из которых расположено между афокальной системой 2 и светоделителем 3 и ему соответствует плоскость промежуточного изображения ППИ1, а другое - в приемной части между плоским поворотным зеркалом 18 и вторым фокусирующим объективом 19. Ему соответствует плоскость промежуточного изображения ППИ2. При этом как в плоскости ППИ1, так и в плоскости ППИ2 формируется обратное изображение асферической поверхности 16 оптической детали 17. Плоскости ППИ1 и ППИ2 являются оптически сопряженными с асферической поверхностью 16 оптической детали 17. В связи с этим точка O'3 1 в плоскости промежуточного изображения ППИ1, лежащая в центре промежуточного изображения асферической поверхности 16 оптической детали 17 и соответственно на оптической оси, является оптически сопряженной с вершиной О3 асферической поверхности 16 оптической детали 17 и является ее изображением. Точка G1, лежащая в плоскости промежуточного изображения ППИ1, является оптически сопряженной с точкой E, расположенной вблизи границы асферической поверхности 16 оптической детали 17, и является ее изображением. Точно так же точки O'3 2 и G2 в плоскости промежуточного изображения ППИ2 являются оптически сопряженными соответственно с точками О3 и E асферической поверхности 16 и являются их изображениями. С плоскостями промежуточных изображений ППИ1 и ППИ2 совмещены плоскости расположения штрихов марок соответственно M1 и М2. Очевидно, что в этом случае в плоскостях ППИ1 и ППИ2 в обратном ходе лучей от асферической поверхности 16 оптической детали 17 будут формироваться изображения первой марки M1. Таким образом, в плоскости промежуточного изображения ППИ2 расположены вторая марка М2 и изображение первой марки M1.The object beam of the device receives the transmitted
Посредством второго фокусирующего объектива 19 и объектива фотоприемного устройства (например, цифровой видеокамеры) 20 в плоскость регистрации 21 фотоприемного устройства (например, цифровой видеокамеры) 20 проецируется сформированное в плоскости ППИ2 обратное промежуточное изображение асферической поверхности 16 оптической детали 17. В результате этого в плоскости регистрации 21 формируется конечное изображение асферической поверхности 16 оптической детали 17, которое является прямым. В эту же плоскость регистрации 21 проецируются также изображения штрихов марок M1 и М2. В результате совмещения в приемной части пучков световых лучей, пришедших из опорной и объектной ветвей, и возникшей в связи с этим интерференции соответствующих им световых волн, образуется интерференционная картина для контролируемой асферической поверхности 16 оптической детали 17, которая также отображается в плоскости регистрации 21. Конечное изображение асферической поверхности 16 оптической детали 17 вместе с изображением этой интерференционной картины, а также изображениями штрихов марок M1 и М2 передаются фотоприемным устройством (например, цифровой видеокамерой) 20 на экран блока отображения информации (например, монитора) 21, где 31 - конечное изображение асферической поверхности 16 оптической детали 17 с соответствующей ей интерференционной картиной, ИШм1 и ИШм2 - изображения штрихов марок соответственно M1 и М2. На экране блока отображения информации (например, монитора) 22 изображена точка O''3, расположенная в центре изображения 31 асферической поверхности 16 и интерференционной картины для этой поверхности. В связи с этим она соответствует точке O'3 1 в плоскости промежуточного изображения ППИ1, точке O'3 2 в плоскости промежуточного изображения ППИ2 асферической поверхности 16 оптической детали 17 и точке O3 - вершине асферической поверхности 16 оптической детали 17. На экране блока отображения информации (например, монитора) 22 изображена интерференционная картина в виде отрезков интерференционных полос в кольцевой зоне 32, окружающей интерференционную картину 31. Она соответствует юстировочной автоколлимационной голограмме 14, предназначенной для контроля установки синтезированного голограммного оптического элемента 12 относительно светящейся точки A.By means of the second focusing
Для того чтобы было удобно и наглядно идентифицировать дефекты и определять их расположения на контролируемой асферической поверхности 16, необходимо, чтобы на экране блока отображения информации (например, монитора) 22 было сформировано прямое изображение асферической поверхности 16 оптической детали 17. Для этого необходимо корпус фотоприемного устройства (например, цифровой видеокамеры) 20 повернуть на 180° вокруг его оптической оси относительно исходного рабочего положения фотоприемного устройства (например, цифровой видеокамеры) 20.In order to conveniently and clearly identify defects and determine their location on a controlled
Наличие дефектов на контролируемой асферической поверхности 16 оптической детали 17 определяют путем визуального анализа интерференционной картины, присутствующей на конечном изображении 31 этой асферической поверхности 16 на экране блока отображения информации (например, монитора) 22. Дефекты и их положения на контролируемой асферической поверхности 16 визуализируются искривлениями полос в этой интерференционной картине. По искривлениям интерференционных полос выбирают на контролируемой асферической поверхности 16 характерные точки, которым соответствуют наибольшие дефекты и которые необходимо устранить в первую очередь. Затем определяют положения этих характерных точек с дефектами на контролируемой асферической поверхности 16 относительно ее вершины подобно тому, как это осуществляется при использовании варианта устройства, оптическая схема которого изображена на фиг. 1. При этом визуализацию положения точки O''3 на экране блока отображения информации (например, монитора) 22 осуществляют с помощью изображения штрихов ИШм1 марки M1. Для этого перемещают марку M1 в плоскости промежуточного изображения ППИ1 асферической поверхности 16 посредством линейных кареток 8 и 9 и совмещают точку пересечения теней двух ее штрихов со светящейся точкой-репером Ареп. Контроль вывода на оптическую ось точки пересечения двух штрихов марки M1 ведут, наблюдая, например, в лупу со стороны асферической поверхности 16 совмещение точки пересечения их теней со светящейся точкой-репером Ареп, расположенной на оптической оси. (Для проведения этой операции деталь 17 временно выводится из схемы контроля, а затем возвращается обратно) Для этого положения марки M1 точка пересечения изображений ее штрихов на экране блока отображения информации (например, монитора) 22 будет совмещена с точкой O''3. Затем перемещают марку М2 в плоскости промежуточного изображения ППИ2 асферической поверхности 16 посредством линейных кареток 36 и 37 и совмещают на экране блока отображения информации (например, монитора) 22 изображение ее штрихов ИШм2 с изображением штрихов ИШм2 первой марки M1. После этого обнуляют на блоках цифровой индикации 30 и 45 показания для координат x'ппи i и y'ппи i и приступают к измерению координат характерных точек на асферической поверхности 16 подобно тому, как это рассмотрено выше для устройства, оптическая схема которого изображена на фиг. 1.Defects on the controlled
При контроле асферических поверхностей, у которых на стадиях формообразования присутствуют только осесимметричные дефекты, достаточно измерять с помощью предложенного устройства одну из координат дефектов: x или y в зависимости от того, как ориентированы интерференционные полосы на асферической поверхности: вдоль оси ох или оси oy правой прямоугольной системы координат oxyz, центр о которой расположен в вершине O3 асферической поверхности 16, а ось oz совпадает с осью симметрии асферической поверхности 16 (см. фиг. 1, фиг. 2).When monitoring aspherical surfaces in which only axisymmetric defects are present at the forming stages, it is sufficient to measure with the proposed device one of the coordinates of the defects: x or y depending on how the interference strips are oriented on the aspherical surface: along the axis ox or the axis oy right rectangular coordinate system oxyz, the center of which is located at the vertex O 3 of the
Работоспособность предложенного устройства проверялась на примере варианта устройства с принципиальной оптической схемой, изображенной на фиг. 2. Ниже приведены результаты контроля предложенным устройством асферической поверхности, на которой в процессе ее формообразования присутствовали только осесимметричные дефекты. Уравнение этой асферической поверхности имеет вид: z=0.036643y2/(1+(1+0.000331y2)½). Радиус кривизны R0 при вершине данной асферической поверхности равен 27.29 мм, а ее коническая постоянная K равна -1.246446. Полный и световой диаметры оптической детали с этой асферической поверхностью равны соответственно 32 и 30 мм. При проведении контроля данной асферической поверхности в предложенном устройстве (фиг. 2) в качестве источника света использовался лазер с излучением на длине волны λ, равной 0.6328 мкм, а в качестве приводов и датчиков линейных перемещений и блоков цифровой индикации применялись микрометрические винты со шкалами с ценой деления шкалы для точного отсчета, равной 0.01 мм.The operability of the proposed device was tested on the example of a variant of the device with the principal optical circuit depicted in FIG. 2. The following are the results of the control of the proposed device on an aspherical surface, on which only axisymmetric defects were present during its shaping. The equation of this aspherical surface has the form: z = 0.036643y 2 /(1+(1+0.000331y 2 ) ½ ). The radius of curvature R 0 at the apex of a given aspherical surface is 27.29 mm, and its conical constant K is -1.246446. The total and light diameters of the optical part with this aspherical surface are 32 and 30 mm, respectively. When monitoring this aspherical surface in the proposed device (Fig. 2), a laser with radiation at a wavelength λ equal to 0.6328 μm was used as a light source, and micrometric screws with scales with a price were used as drives and linear displacement sensors and digital indication blocks scale divisions for an accurate reading of 0.01 mm.
На фиг. 3 и фиг. 4 приведены наблюдаемые на экране блока отображения информации (например, монитора) 22 и зарегистрированные фотоприемным устройством (например, цифровой видеокамерой) 20 изображения 31 асферической поверхности 16 вместе с интерференционной картиной, полученные при контроле указанной выше асферической поверхности. Кроме этого, на фиг. 3 и фиг. 4 присутствуют изображения интерференционной картины в виде отрезков интерференционных полос в кольцевой зоне 32, которая соответствует автоколлимационной юстировочной голограмме 14, а также изображения штрихов ИШм1 и ИШм2 марок соответственно M1 и М2.In FIG. 3 and FIG. Figure 4 shows the images 31 of the
На фиг. 3 изображение 31 контролируемой асферической поверхности 16 вместе с интерференционной картиной зарегистрировано на начальной стадии, а на фиг. 4 - на финишной стадии полировки этой асферической поверхности. Интерференционные полосы в данных интерференционных картинах получены путем поворота контролируемой детали 17 вокруг оси ох правой системы прямоугольных координат oxyz (см. фиг. 2), в которой записано уравнение контролируемой асферической поверхности 16. При этом поворот детали 17 выбран таким, чтобы направление искривления интерференционных полос вверх на этих интерференционных картинах соответствовало направлению в сторону вершин бугров у дефектов, расположенных на контролируемой асферической поверхности 16. Указанная настройка интерференционной картины контролировалась визуально на экране блока отображения информации (например, монитора) 22, где, как отмечалось выше, было получено прямое изображение 31 асферической поверхности 16 вместе с интерференционной картиной.In FIG. 3, the image 31 of the controlled
На фиг. 3 и фиг. 4 показано, что изображения штрихов в ИШм1 и ИШм2 каждой марки М1 и М2 пересекаются между собой под углом 90°. При этом изображения штрихов данных марок, направленные слева направо, параллельны друг другу и совпадают между собой. Марка M1 в данном варианте предложенного устройства (см. фиг. 2) расположена между афокальной системой 2 и светоделителем 3 и совмещена с плоскостью промежуточного изображения ППИ1, в которой она установлена таким образом, что точка пересечения ее штрихов выведена на оптическую ось и совмещена с точкой O'3 1, оптически сопряженной с вершиной O3 контролируемой асферической поверхности 16. В этом случае точка пересечения изображений штрихов в ИШм1 будет совмещена с точкой O''3, расположенной на экране блока отображения информации (например, монитора) 22 и оптически сопряженной с вершиной О3 контролируемой асферической поверхности 16. Поэтому точка пересечения изображений штрихов в ИШм1 на фиг. 3 и фиг. 4 расположена в центре изображения 31 контролируемой асферической поверхности 16 вместе с интерференционной картиной. Поэтому она используется в данном конкретном случае (когда на контролируемой асферической поверхности 16 присутствуют осесимметричные погрешности) только для визуализации положения этого центра с целью контроля вывода на оптическую ось точки пересечения штрихов марки М2, которая расположена в приемной части предложенного устройства (см. фиг. 2) между плоским поворотным зеркалом 18 и вторым фокусирующим объективом 19. При этом плоскость расположения штрихов марки М2 совмещена с плоскостью промежуточного изображения ППИ2 контролируемой асферической поверхности 16. В этой плоскости расположены оси o'x' и o'y' правой прямоугольной системы координат o'x'y'z', начало координат о' которой расположено на оптической оси и совмещено с точкой O'3 2, оптически сопряженной с вершиной О3 асферической поверхности 16, а ось o'x' перпендикулярна к плоскости рисунка, изображенного на фиг. 2. С помощью марки М2 осуществляется определение положений дефектов на контролируемой асферической поверхности 16. Для этого предварительно точка пересечения штрихов марки М2 выводится на оптическую ось в приемной части предложенного устройства путем перемещения ее в плоскости промежуточного изображения ППИ2 посредством линейной каретки 36 вдоль оси o'x', а посредством линейной каретки 37 - вдоль оси o'y'. Контролируют это состояние по совмещению между собой изображений штрихов ИШм1 и ИШм2 марок M1 и М2 на экране блока отображения информации (например, монитора) 22. Значения на шкалах микровинтов линейных кареток 36 и 37 для этого состояния служат началом отсчета при измерении величин смещений марки М2 от оптической оси в плоскости промежуточного изображения ППИ2 при определении положений дефектов на асферической поверхности 16. Поскольку на контролируемой асферической поверхности 16 присутствовали только осесимметричные дефекты, то с помощью марки М2 контролировались положения дна для каждой выбранной (характерной) ямы и положения вершин характерных бугров присутствующих на асферической поверхности дефектов. Для этого она посредством линейной каретки 36 перемещалась вдоль оси o'x' (фиг. 2) до совмещения точки пересечения ее штрихов с точкой, соответствующей в плоскости промежуточного изображения ППИ2 дну каждой выбранной ямы и вершине каждого выбранного бугра. Эти совмещения контролировались визуально на экране блока отображения информации (например, монитора) 22 по совмещению точки пересечения изображений штрихов в ИШм2 марки М2 с визуализированным интерференционной картиной дном каждой выбранной ямы и вершиной каждого выбранного бугра (см. фиг. 3 и фиг. 4). Для каждого положения марки М2 в процессе совмещения точки пересечения ее штрихов с точкой, соответствующей в плоскости ППИ2 дну выбранной ямы и вершине выбранного бугра, снимались отсчеты по шкале микрометрического винта, по которым затем определялись величины смещений марки М2 от оптической оси, т.е. от начала координат o'. Таким образом, измеренные величины смещений марки М2 являются координатами x' точек в плоскости промежуточного изображения ППИ2, соответствующими координатам x положений дна каждой выбранной ямы и вершины каждого выбранного бугра на контролируемой асферической поверхности 16. Далее по найденным координатам x' находились координаты x положений дна каждой выбранной ямы и вершины каждого выбранного бугра с использованием рассчитанной для этого Таблицы 2, аналогичной Таблице 1. Шаг Δх изменения координаты x на профиле контролируемой асферической поверхности при расчете Таблицы 2 был выбран равным 0.2 мм.In FIG. 3 and FIG. 4 shows that the strokes in ISh m1 and ISh m2 of each brand M1 and M2 intersect at an angle of 90 °. In this case, the image of the strokes of these brands, directed from left to right, are parallel to each other and coincide. Brand M1 in this embodiment of the proposed device (see Fig. 2) is located between the afocal system 2 and the
На фиг. 3(а) и фиг. 3(в) точка пересечения изображений штрихов в ИШм2 расположена в зоне визуализированного интерференционной картиной дна каждой из присутствующих на асферической поверхности двух ям. Им соответствуют значения измеренных координат x' в плоскости промежуточного изображения ППИ2, равные -1.02 и - 4.23 мм. По этим данным с помощью Таблицы 2 были определены значения координат x соответствующих им точек на контролируемой асферической поверхности, которые равны: 3.20 и 13.50 мм.In FIG. 3 (a) and FIG. 3 (c) the intersection point of the strokes in ISh m2 is located in the area of the bottom of each of the two holes present on the aspherical surface visualized by the interference pattern. They correspond to the values of the measured coordinates x 'in the plane of the intermediate image PPI2, equal to -1.02 and - 4.23 mm. According to these data, using Table 2, we determined the x-coordinate values of the corresponding points on a controlled aspherical surface, which are equal to: 3.20 and 13.50 mm.
На фиг. 3(б) и фиг. 3(г) точка пересечения изображений штрихов в ИШм2 расположена на визуализированных интерференционной картиной вершинах двух бугров. Им соответствуют значения измеренных координат x' в плоскости промежуточного изображения ППИ2, равные - 3.17 и - 4.67 мм. По этим данным с помощью Таблицы 2 были определены значения координат x соответствующих им точек на контролируемой асферической поверхности, которые равны 10.00 и 14.80 мм.In FIG. 3 (b) and FIG. 3 (d) the intersection point of the strokes in ISh m2 is located on the vertices of two hillocks visualized by the interference pattern. They correspond to the values of the measured coordinates x 'in the plane of the intermediate image PPI2, equal to - 3.17 and - 4.67 mm. According to these data, using Table 2, the x-coordinate values of the corresponding points on the controlled aspherical surface were determined, which are 10.00 and 14.80 mm.
На фиг. 4(а), фиг. 4(в) и фиг. 4(д) точка пересечения изображений штрихов в ИШм2 расположена на визуализированных интерференционной картиной вершинах трех бугров. Им соответствуют значения измеренных координат х' в плоскости промежуточного изображения ППИ2, равные - 0.62, - 3.61 и - 4.77 мм. По этим данным с помощью Таблицы 2 были определены значения координат х соответствующих им точек на контролируемой асферической поверхности, которые равны 1.95, 11.45 и 15.10 мм.In FIG. 4 (a), FIG. 4 (c) and FIG. 4 (d) the intersection point of the strokes in ISh m2 is located on the vertices of three hillocks visualized by the interference pattern. They correspond to the values of the measured coordinates x 'in the plane of the intermediate image PPI2, equal to - 0.62, - 3.61 and - 4.77 mm. According to these data, using Table 2, we determined the coordinates x of the corresponding points on the controlled aspherical surface, which are equal to 1.95, 11.45 and 15.10 mm.
На фиг. 4(б) и фиг. 4(г) точка пересечения изображений штрихов в ИШм2 расположена в зоне визуализированного интерференционной картиной дна каждой из присутствующих на асферической поверхности двух ям. Им соответствуют значения измеренных координат х' в плоскости промежуточного изображения ППИ2, равные - 2.98 и - 3.88 мм. По этим данным с помощью Таблицы 2 были определены значения координат х соответствующих им точек на контролируемой асферической поверхности, которые равны 9.40 и 12.25 мм.In FIG. 4 (b) and FIG. 4 (d) the intersection point of the strokes in ISh m2 is located in the zone of the bottom of each of the two holes present on the aspherical surface visualized by the interference pattern. They correspond to the values of the measured coordinates x 'in the plane of the intermediate image PPI2, equal to - 2.98 and - 3.88 mm. According to these data, using Table 2, we determined the coordinates x of the corresponding points on a controlled aspherical surface, which are 9.40 and 12.25 mm.
Как указано выше на фиг. 4(д), положению точки пересечения изображений штрихов в ИШм2 соответствует на контролируемой асферической поверхности 16 точка с координатой х, равной 15.10 мм. Это означает, что рабочая зона асферической поверхности 16 полностью раскрыта, т.к. световой диаметр оптической детали 17 равен 30 мм.As indicated above in FIG. 4 (d), the position of the intersection point of the strokes in ISh m2 corresponds to a point with an x coordinate of 15.10 mm on a controlled
Из приведенных экспериментальных данных следует, что координаты дефектов на контролируемой асферической поверхности определены с точностью до сотых долей миллиметра. Как сказано выше, эту точность можно повысить за счет использования высокоточных датчиков линейного перемещения для линейных кареток, а также путем уменьшения шага Δy (или Δx) изменения координаты y (или x) при расчете Таблицы 1. Кроме того, дополнительный вклад в повышение точности определения координат дефектов на асферической поверхности предложенным устройством обеспечивается благодаря исключению влияния дисторсии синтезированной голограммы-компенсатора на процесс определения этих координат.It follows from the experimental data that the coordinates of the defects on a controlled aspherical surface are determined to within hundredths of a millimeter. As mentioned above, this accuracy can be improved by using high-precision linear displacement sensors for linear carriages, as well as by decreasing the step Δy (or Δx) of changing the coordinate y (or x) in the calculation of Table 1. In addition, an additional contribution to improving the accuracy of determination the coordinates of defects on an aspherical surface by the proposed device is ensured by eliminating the influence of distortion of the synthesized hologram compensator on the process of determining these coordinates.
В связи с тем, что синтезированная голограмма-компенсатор, используемая в предложенном устройстве, может быть изготовлена для контроля асферических поверхностей как второго, так и более высокого порядка (см. Ларионов Н.П. Методы и средства контроля формы асферических поверхностей крупногабаритных и светосильных оптических элементов на основе использования осевых синтезированных голограмм. Казань, 2002, с. 40-45 - диссертация на соискание ученой степени кандидата технических наук), то на основании приведенных выше данных следует, что предложенное устройство позволяет обеспечить контроль таких поверхностей с высокой точностью.Due to the fact that the synthesized hologram compensator used in the proposed device can be manufactured to control aspherical surfaces of both second and higher order (see Larionov N.P. Methods and means of controlling the shape of aspherical surfaces of large and high-aperture optical elements based on the use of axial synthesized holograms. Kazan, 2002, pp. 40-45 - dissertation for the degree of candidate of technical sciences), then on the basis of the above data it follows that the proposal read only allows device to provide control of such surfaces with high precision.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015137891A RU2612918C9 (en) | 2015-09-04 | 2015-09-04 | Device for determining positions of defects on aspherical surface of optical part (versions) |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015137891A RU2612918C9 (en) | 2015-09-04 | 2015-09-04 | Device for determining positions of defects on aspherical surface of optical part (versions) |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2612918C1 true RU2612918C1 (en) | 2017-03-13 |
RU2612918C9 RU2612918C9 (en) | 2017-06-13 |
Family
ID=58458285
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015137891A RU2612918C9 (en) | 2015-09-04 | 2015-09-04 | Device for determining positions of defects on aspherical surface of optical part (versions) |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2612918C9 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2766851C1 (en) * | 2021-02-25 | 2022-03-16 | Акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (АО "НПО ГИПО") | Holographic device for controlling shape of large-size concave aspherical optical surfaces |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102613277B1 (en) * | 2018-11-30 | 2023-12-12 | 제이에프이 스틸 가부시키가이샤 | Surface-defect detecting method, surface-defect detecting apparatus, steel-material manufacturing method, steel-material quality management method, steel-material manufacturing facility, surface-defect determination model generating method, and surface-defect determination model |
RU2770133C1 (en) * | 2020-11-18 | 2022-04-14 | Олег Михайлович Орешкин | Method for measuring parameters of material surface undulation and device for measuring parameters of part surface undulation |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1017923A1 (en) * | 1981-07-23 | 1983-05-15 | Предприятие П/Я Г-4671 | Device for checking aspheric surfaces |
JPH07198316A (en) * | 1993-12-28 | 1995-08-01 | Asahi Optical Co Ltd | Interferometer |
RU2155932C1 (en) * | 1999-10-21 | 2000-09-10 | Черненко Виктор Михайлович | Device inspecting surfaces of optical elements |
RU2396513C1 (en) * | 2009-02-26 | 2010-08-10 | Федеральное государственное унитарное предприятие "Научно-производственное объединение "Государственный институт прикладной оптики" (ФГУП "НПО ГИПО") | Interferometre for monitoring aspherical quadratic surfaces |
-
2015
- 2015-09-04 RU RU2015137891A patent/RU2612918C9/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1017923A1 (en) * | 1981-07-23 | 1983-05-15 | Предприятие П/Я Г-4671 | Device for checking aspheric surfaces |
JPH07198316A (en) * | 1993-12-28 | 1995-08-01 | Asahi Optical Co Ltd | Interferometer |
RU2155932C1 (en) * | 1999-10-21 | 2000-09-10 | Черненко Виктор Михайлович | Device inspecting surfaces of optical elements |
RU2396513C1 (en) * | 2009-02-26 | 2010-08-10 | Федеральное государственное унитарное предприятие "Научно-производственное объединение "Государственный институт прикладной оптики" (ФГУП "НПО ГИПО") | Interferometre for monitoring aspherical quadratic surfaces |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2766851C1 (en) * | 2021-02-25 | 2022-03-16 | Акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (АО "НПО ГИПО") | Holographic device for controlling shape of large-size concave aspherical optical surfaces |
Also Published As
Publication number | Publication date |
---|---|
RU2612918C9 (en) | 2017-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7298468B2 (en) | Method and measuring device for contactless measurement of angles or angle changes on objects | |
US4758089A (en) | Holographic interferometer | |
KR102549661B1 (en) | Method and related optical device for measuring the curvature of a reflective surface | |
TW200528698A (en) | Eccentricity measuring method and eccentricity measuring apparatus | |
US9239237B2 (en) | Optical alignment apparatus and methodology for a video based metrology tool | |
CN108168468B (en) | Focusing photoelectric auto-collimator with laser sighting device inside and sighting method | |
JP3206984B2 (en) | Lens inspection machine | |
RU2612918C1 (en) | Device for determining positions of defects on aspherical surface of optical part (versions) | |
JP2014163895A (en) | Shape measurement instrument and shape measurement method using shack-hartmann sensor | |
US2038914A (en) | Optical system for observing displacement or deflection in connection with measuring instruments | |
CN206146834U (en) | V V -prism refractometer based on auto -collimation and CCD vision technique | |
US10921721B1 (en) | Measurement system and grating pattern array | |
CN106247992B (en) | A kind of high-precision, wide scope and big working distance autocollimation and method | |
CN108061527A (en) | A kind of two-dimensional laser autocollimator of anti-air agitation | |
US1901632A (en) | Interferometer | |
RU2519512C1 (en) | Device to measure angular and linear coordinates of object | |
US3347130A (en) | Optical measuring instruments | |
CN107869964A (en) | The detection method and device of aspheric surface | |
JP2002048673A (en) | Physical quantity measuring method of optical element or optical system | |
RU2478185C1 (en) | Apparatus for determining spatial orientation of objects | |
Schulz et al. | Flow visualization using a Sanderson prism | |
KR100280006B1 (en) | Lens characteristic inspection device | |
CN106225731B (en) | The big working distance autocollimation of combination zeroing high-precision laser and method | |
RU2705177C1 (en) | Autocollimation device for centering optical elements | |
US2195168A (en) | Method and apparatus for measuring spectrograms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TH4A | Reissue of patent specification | ||
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20190905 |