RU2590693C1 - Способ получения нанокапсул адаптогенов в пектине - Google Patents
Способ получения нанокапсул адаптогенов в пектине Download PDFInfo
- Publication number
- RU2590693C1 RU2590693C1 RU2015121122/15A RU2015121122A RU2590693C1 RU 2590693 C1 RU2590693 C1 RU 2590693C1 RU 2015121122/15 A RU2015121122/15 A RU 2015121122/15A RU 2015121122 A RU2015121122 A RU 2015121122A RU 2590693 C1 RU2590693 C1 RU 2590693C1
- Authority
- RU
- Russia
- Prior art keywords
- nanocapsules
- suspension
- pectin
- esterified pectin
- sulfuric ether
- Prior art date
Links
Images
Landscapes
- Medicinal Preparation (AREA)
- Manufacturing Of Micro-Capsules (AREA)
Abstract
Изобретение относится к области нанотехнологии и фармацевтики. Описан способ получения нанокапсул адаптогенов в оболочке из пектина. В качестве материала оболочки используется низкоэтерифицированный или высокоэтерифицированный яблочный или цитрусовый пектины. В качестве адаптогена используют настойку лимонника китайского, родиолы розовой и аралии маньчжурской. Согласно способу настойку адаптогена при перемешивании добавляют в суспензию пектина в бутаноле в присутствии препарата Е472с в качестве поверхностно-активного вещества. Массовое соотношение настойка адаптогена:пектин составляет 1:1 или 1:3. Затем в качестве осадителя приливают серный эфир. Полученную суспензию нанокапсул отфильтровывают, промывают серным эфиром и сушат при 25°С. Процесс осуществляют в течение 15 минут. Изобретение обеспечивает упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. 2 ил., 28 пр.
Description
Изобретение относится к области нанокапсулирования адаптогенов в яблочном и цитрусовом пектине (высоко- и низкоэтерефицированном) физико-химическим методом.
Ранее были известны способы получения микрокапсул лекарственных препаратов. Так, в пат. 2092155, МПК A61K 047/02, A61K 009/16, опубликован 10.10.1997, Российская Федерация, предложен метод микрокапсулирования лекарственных средств, основанный на применении специального оборудования с использованием облучения ультрафиолетовыми лучами.
Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.
В пат. 2095055, МПК A61K 9/52, A61K 9/16, A61K 9/10, Российская Федерация, опубликован 10.11.1997 предложен способ получения твердых непористых микросфер включает расплавление фармацевтически неактивного вещества-носителя, диспергирование фармацевтически активного вещества в расплаве в инертной атмосфере, распыление полученной дисперсии в виде тумана в замораживающей камере под давлением, в инертной атмосфере, при температуре от - 15 до - 50°С, и разделение полученных микросфер на фракции по размерам. Суспензия, предназначенная для введения путем парентеральной инъекции, содержит эффективное количество указанных микросфер, распределенных в фармацевтически приемлемом жидком векторе, причем фармацевтически активное вещество микросферы нерастворимо в указанной жидкой среде.
Недостатки предложенного способа: сложность и длительность процесса, применение специального оборудования.
В пат. 2091071, МПК A61K 35/10, Российская Федерация, опубликован 27.09.1997, предложен способ получения препарата путем диспергирования в шаровой мельнице с получением микрокапсул.
Недостатками способа являются применение шаровой мельницы и длительность процесса.
В пат. 2076765, МПК B01D 9/02, Российская Федерация, опубликован 10.04.1997, предложен способ получения дисперсных частиц растворимых соединений в микрокапсулах посредством кристаллизации из раствора, отличающийся тем, что раствор диспергируют в инертной матрице, охлаждают и, изменяя температуру, получают дисперсные частицы.
Недостатком данного способа является сложность исполнения: получение микрокапсул путем диспергирования с последующим изменением температур, что замедляет процесс.
В пат. 2101010, МПК A61K 9/52, A61K 9/50, A61K 9/22, A61K 9/20, A61K 31/19, Российская Федерация, опубликован 10.01.1998, предложена жевательная форма лекарственного препарата со вкусовой маскировкой, обладающая свойствами контролируемого высвобождения лекарственного препарата, которая содержит микрокапсулы размером 100-800 мкм в диаметре и состоит из фармацевтического ядра с кристаллическим и бупрофеном и полимерного покрытия, включающего пластификатор, достаточно эластичного, чтобы противостоять жеванию. Полимерное покрытие представляет собой сополимер на основе метакриловой кислоты.
Недостатки изобретения: использование сополимера на основе метакриловой кислоты, так как данные полимерные покрытия способны вызывать раковые опухоли; получение микрокапсул методом суспензионной полимеризации; сложность исполнения; длительность процесса.
В пат. 2173140, МПК A61K 009/50, A61K 009/127, Российская Федерация, опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.
Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.
В пат. 2359662, МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация, предложен способ получения микрокапсул с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.
Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин).
В пат. WO/2010/076360 ES, МПК B01J 13/00; A61K 9/14; A61K 9/10; A61K 9/12, опубликован 08.07.2010, предложен новый способ получения твердых микро- и наночастиц с однородной структурой с размером частиц менее 10 мкм, где обработанные твердые соединения имеют естественное кристаллическое, аморфное, полиморфное и другие состояния, связанные с исходным соединением. Метод позволяет получить твердые микро- и наночастиц с существенно сфероидальной морфологи.
Недостатком предложенного способа является сложность процесса, что приводит к получению капсул с плавающим выходом.
В пат. WO/2010/119041 ЕР, МПК A23L 1/00, опубликован 21.10.2010, предложен способ получения микрошариков, сожержащих активный компонент инкапсулированный в гель-матрице сывороточного протеина, включающего денатурированный белок, сыворотку и активные компоненты. Изобретение относится к способу получения микрошариков, которые содержат такие компоненты, как пробиотические бактерии. Способ получения микрошариков включает стадию производства микрошариков в соответствии с методом изобретения, и последующее отверждение микрошариков в растворе анионный полисахарид с рН 4,6 и ниже в течение не менее 10, 30, 60, 90, 120, 180 минут. Примеры подходящих анионных полисахаридов: пектины, альгинаты, каррагинаны. В идеале, сывороточный протеин является тепло-денатурирующим, хотя и другие методы денатурации, также применимы, например, денатурация индуцированным давлением. В предпочтительном варианте сывороточный белок денатурирует при температуре от 75°С до 80°С, надлежащим образом в течение от 30 минут до 50 минут. Как правило, сывороточный протеин перемешивают при тепловой денатурации. Соответственно, концентрация сывороточного белка составляет от 5 до 15%, предпочтительно от 7 до 12%, а в идеале от 9 до 11% (вес/объем). Как правило, осуществление процесса осуществляется путем фильтрации через множество фильтров с постепенным снижением размера пор. В идеале, фильтр тонкой очистки имеет субмикронных размеров пор, например, от 0,1 до 0,9 микрон. Предпочтительным способом получения микрошариков является способ с применением вибрационных инкапсуляторов (Inotech, Швейцария) и машин производства Nisco Engineering AG,. Как правило, форсунки имеют отверстия 100 и 600 мкм, а в идеале около 150 микрон.
Недостатком данного способа является применение специального оборудования (вибрационных инкапсуляторов (Inotech, Швейцария)), получение микрокапсул посредством денатурации белка, сложность выделения полученных денным способом микрокапсул - фильтрация с применением множества фильтров, что делает процесс длительным.
В пат. 20110223314, МПК B05D 7/00; 20060101 B05D 007/00, В05С 3/02; 20060101 В05С 003/02, В05С 11/00; 20060101 В05С 011/00, B05D 1/18; 20060101 B05D 001/18; B05D 3/02; 20060101 B05D 003/02, B05D 3/06; 20060101 B05D 003/06 от 10.03.2011 US описан способ получения микрокапсул методом суспензионной полимеризации, относящийся к группе химических методов с применением нового устройства и ультрафиолетового облучения.
Недостатками данного способа являются сложность и длительность процесса, применение специального оборудования, использование ультрафиолетового облучения.
В пат. WO/2011/150138 US МПК C11D 3/37; B01J 13/08; C11D 17/00 опубликован 01.12.2011, описан способ получения микрокапсул твердых растворимых в воде агентов методом полимеризации.
Недостатками данного способа являются сложность исполнения и длительность процесса.
В пат. WO/2011/127030 US, МПК A61K 8/11, B01J 2/00, B01J 13/06, C11D 3/37, C11D 3/39, C11D 17/00, опубликован 13.10.2011, предложено несколько способов получения микрокапсул: межфазной полимеризацией, термоиндуцированным разделением фаз, распылительной сушкой, выпариванием растворителя и др. Недостатками предложенных способов является сложность, длительность процессов, а также применение специального оборудования (фильтр (Albet, Dassel, Германия), распылительная сушилка для сбора частиц (Spray-4M8 Сушилка от ProCepT, Бельгия)).
Недостатками предложенных способов является сложность, длительность процессов, а также применение специального оборудования (фильтр (Albet, Dassel, Германия), распылительная сушилка для сбора частиц (Spray-4М8 Сушилка от ProCepT, Бельгия)).
В пат.WO/2011/104526 GB, МПК B01J 13/00, B01J 13/14; С09В 67/00; C09D 11/02, опубликован 01.09.2011, предложен способ получения дисперсии инкапсулированных твердых частиц в жидкой среде, включающий: а) измельчение композиции, включающей твердые, жидкие среды и полиуретановые диспергаторы с кислотным числом от 0,55 до 3,5 ммоль на грамм диспергатора, указанная композиция включает от 5 до 40 частей полиуретанового диспергатора на 100 частей твердых, изделий, по весу; и б) сшивания полиуретанового диспергатора при наличии твердой и жидкой среды, так как для инкапсуляции твердых частиц которой полиуретановый диспергатор содержит менее 10% от веса повторяющихся элементов из полимерных спиртов.
Недостатками предложенного способа являются сложность и длительность процесса получения микрокапсул, а также то, что инкапсулированные частицы предложенным способом полезны в качестве красителей в чернилах, особенно чернил струйной печати, для фармацевтической промышленности данная методика неприменима.
В пат. WO/2011/056935 US, МПК C11D 17/00; A61K 8/11, B01J 13/02, C11D 3/50, опубликован 12.05.2011, описан способ получения микрокапсул размером от 15 микрон. В качестве материала оболочки предложены полимеры группы, состоящей из полиэтилена, полиамидов, полистиролов, полиизопренов, поликарбонаты, полиэфиры, полиакрилатов, полимочевины, полиуретанов, полиолефинов, полисахаридов, эпоксидных смол, виниловых полимеров и их смеси. Предложенные полимерные оболочки являются достаточно непроницаемым для материала сердечника и материалов в окружающей среде, в которой инкапсулируются агент выгода будет использоваться, чтобы обеспечивать выгоды, которые будут получены. Ядро инкапсулированных агентов может включать в себя духи, силиконовые масла, воска, углеводороды, высшие жирные кислоты, эфирные масла, липиды, охлаждающие кожу жидкости, витамины, солнцезащитные средства, антиоксиданты, глицерин, катализаторы, отбеливающие частицы, частицы диоксида кремния и др.
Недостатками предложенного способа являются сложность, длительность процесса, использование в качестве оболочек микрокапсул полимеров синтетического происхождения и их смесей.
Наиболее близким методом является способ, предложенный в пат. 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.
Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.
Техническая задача - упрощение и ускорение процесса получения нанокапсул адаптогенов в пектине, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).
Решение технической задачи достигается способом получения нанокапсул адаптогенов, отличающийся тем, что в качестве оболочки нанокапсул используется пектины, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - серного эфира.
Отличительной особенностью предлагаемого метода является использование в качестве оболочки нанокапсул адаптогенов, пектинов, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - этансерного эфира.
Результатом предлагаемого метода являются получение нанокапсул адаптогенов: лимонника китайского, родиолы розовой, аралии маньчжурской, элеутерокока, жень-шеня в пектинах при 25°С в течение 15 минут. Выход нанокапсул составляет 100%.
ПРИМЕР 1. Получение нанокапсул лимонника китайского в яблочном низкоэтерифицированном пектине, соотношение 1:3
К 3 г суспензии низкоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 5 мл настойки лимонника китайского. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Затем добавляют 5 мл серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат при 25°С.
Получено 4,0 г белого порошка. Выход составил 100%.
ПРИМЕР 2. Получение нанокапсул лимонника китайского в яблочном низкоэтерифицированном пектине, соотношение 1:1
К 1 г суспензии низкоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 5 мл настойки лимонника китайского. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Затем добавляют 5 мл серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат при 25°С.
Получено 2,0 г белого порошка. Выход составил 100%.
ПРИМЕР 3. Получение нанокапсул лимонника китайского в яблочном высокоэтерифицированном пектине, соотношение 1:3
К 3 г суспензии высокоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 5 мл настойки лимонника китайского. Полученную смесь ставят на магнитную мешалку и включают перемешивание. После этого добавляют 5 мл серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат рот 25°С.
Получено 4,0 г порошка. Выход составил 100%.
ПРИМЕР 4. Получение нанокапсул лимонника китайского в яблочном высокоэтерифицированном пектине, соотношение 1:1
К 1 г суспензии высокоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 5 мл настойки лимонника китайского. Полученную смесь ставят на магнитную мешалку и включают перемешивание. После этого добавляют 5 мл серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат рот 25°С.
Получено 2,0 г порошка. Выход составил 100%.
ПРИМЕР 5. Получение нанокапсул лимонника китайского в цитрусовом низкоэтерифицированном пектине, соотношение 1:3
К 3 г суспензии низкоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 5 мл настойки лимонника китайского. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Затем добавляют 5 мл серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат при 25°С.
Получено 4,0 г белого порошка. Выход составил 100%.
ПРИМЕР 6. Получение нанокапсул лимонника китайского в цитрусовом низкоэтерифицированном пектине, соотношение 1:1
К 1 г суспензии низкоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 5 мл настойки лимонника китайского. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Затем добавляют 5 мл серного эфира.
Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат при 25°С.
Получено 2,0 г белого порошка. Выход составил 100%.
ПРИМЕР 7. Получение нанокапсул лимонника китайского в цитрусовом высокоэтерифицированном пектине, соотношение 1:3
К 3 г суспензии высокоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 5 мл настойки лимонника китайского. Полученную смесь ставят на магнитную мешалку и включают перемешивание. После этого добавляют 5 мл серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат при 25°С.
Получено 4,0 г порошка. Выход составил 100%.
ПРИМЕР 8. Получение нанокапсул лимонника китайского в цитрусовом высокоэтерифицированном пектине, соотношение 1:1
К 1 г суспензии высокоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 5 мл настойки лимонника китайского. Полученную смесь ставят на магнитную мешалку и включают перемешивание. После этого добавляют 5 мл серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат при 25°С.
Получено 2,0 г порошка. Выход составил 100%.
ПРИМЕР 9. Получение нанокапсул родиолы розовой в яблочном низкоэтерифицированном пектине, соотношение 1:3
К 3 г суспензии низкоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 1 мл настойки родиолы розовой. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Затем добавляют 5 мл серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат при 25°С.
Получено 4 г белого порошка. Выход составил 100%.
ПРИМЕР 10. Получение нанокапсул родиолы розовой в яблочном низкоэтерифицированном пектине, соотношение 1:1
К 1 г суспензии низкоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 1 мл настойки родиолы розовой. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Затем добавляют 5 мл серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат при 25°С.
Получено 2 г белого порошка. Выход составил 100%.
ПРИМЕР 11. Получение нанокапсул родиолы розовой в яблочном высокоэтерифицированном пектине, соотношение 1:3
К 3 г суспензии высокоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 1 мл настойки родиолы розовой. Полученную смесь ставят на магнитную мешалку и включают перемешивание. После этого добавляют 5 мл серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат при 25°С.
Получено 4,0 г порошка. Выход составил 100%.
ПРИМЕР 12. Получение нанокапсул родиолы розовой в яблочном высокоэтерифицированном пектине, соотношение 1:1
К 1 г суспензии высокоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 1 мл настойки родиолы розовой. Полученную смесь ставят на магнитную мешалку и включают перемешивание. После этого добавляют 5 мл серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат при 25°С.
Получено 2,0 г порошка. Выход составил 100%.
ПРИМЕР 13. Получение нанокапсул родиолы розовой в цитрусовом низкоэтерифицированном пектине, соотношение 1:3
К 3 г суспензии низкоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 1 мл настойки родиолы розовой. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Затем добавляют 5 мл серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат при 25°С.
Получено 4,0 г порошка. Выход составил 100%.
ПРИМЕР 14. Получение нанокапсул родиолы розовой в цитрусовом низкоэтерифицированном пектине, соотношение 1:1
К 1 г суспензии низкоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 1 мл настойки родиолы розовой. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Затем добавляют 5 мл серного эфира.
Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат при 25°С. Получено 2,0 г порошка. Выход составил 100%.
ПРИМЕР 15. Получение нанокапсул родиолы розовой в цитрусовом высокоэтерифицированном пектине, соотношение 1:3
К 3 г суспензии высокоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 1 мл настойки родиолы розовой. Полученную смесь ставят на магнитную мешалку и включают перемешивание. После этого добавляют 5 мл серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат 25°С.
Получено 4,0 г порошка. Выход составил 100%.
ПРИМЕР 16. Получение нанокапсул родиолы розовой в цитрусовом высокоэтерифицированном пектине, соотношение 1:1
К 1 г суспензии высокоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 1 мл настойки родиолы розовой. Полученную смесь ставят на магнитную мешалку и включают перемешивание. После этого добавляют 5 мл серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат 25°С.
Получено 2,0 г порошка. Выход составил 100%.
ПРИМЕР 17. Получение нанокапсул аралии маньчжурской в яблочном низкоэтерифицированном пектине, соотношение 1:3
К 3 г суспензии низкоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 5 мл настойки аралии маньчжурской. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Затем добавляют 5 серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат 25°С.
Получено 4,0 г порошка. Выход составил 100%.
ПРИМЕР 18. Получение нанокапсул аралии маньчжурской в яблочном низкоэтерифицированном пектине, соотношение 1:1
К 1 г суспензии низкоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 5 мл настойки аралии маньчжурской. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Затем добавляют 5 серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат 25°С.
Получено 2,0 г порошка. Выход составил 100%.
ПРИМЕР 19. Получение нанокапсул аралии маньчжурской в яблочном высокоэтерифицированном пектине, соотношение 1:3
К 3 г суспензии высокоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 5 мл настойки аралии маньчжурской. Полученную смесь ставят на магнитную мешалку и включают перемешивание. После этого добавляют 5 серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат при 25°С.
Получено 4,0 г порошка. Выход составил 100%.
ПРИМЕР 20. Получение нанокапсул аралии маньчжурской в яблочном высокоэтерифицированном пектине, соотношение 1:1
К 1 г суспензии высокоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 5 мл настойки аралии маньчжурской. Полученную смесь ставят на магнитную мешалку и включают перемешивание. После этого добавляют 5 серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат при 25°С.
Получено 2,0 г порошка. Выход составил 100%.
ПРИМЕР 21. Получение нанокапсул аралии маньчжурской в цитрусовом низкоэтерифицированном пектине, соотношение 1:3
К 3 г суспензии низкоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 5 мл настойки аралии маньчжурской. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Затем добавляют 5 мл серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат при 25°С.
Получено 4,0 г порошка. Выход составил 100%.
ПРИМЕР 22. Получение нанокапсул аралии маньчжурской в цитрусовом низкоэтерифицированном пектине, соотношение 1:1
К 1 г суспензии низкоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 5 мл настойки аралии маньчжурской. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Затем добавляют 5 мл серного эфира.
Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат при 25°С.
Получено 2,0 г порошка. Выход составил 100%.
ПРИМЕР 23. Получение нанокапсул аралии маньчжурской в цитрусовом высокоэтерифицированном пектине, соотношение 1:3
К 3 г суспензии высокоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 5 мл настойки аралии маньчжурской. Полученную смесь ставят на магнитную мешалку и включают перемешивание. После этого добавляют 5 мл серного эфира Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат 25°С.
Получено 4,0 г порошка. Выход составил 100%.
ПРИМЕР 24. Получение нанокапсул аралии маньчжурской в цитрусовом высокоэтерифицированном пектине, соотношение 1:1
К 1 г суспензии высокоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 5 мл настойки аралии маньчжурской. Полученную смесь ставят на магнитную мешалку и включают перемешивание. После этого добавляют 5 мл серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат 25°С.
Получено 2,0 г порошка. Выход составил 100%.
ПРИМЕР 25. Получение нанокапсул элеутерококка в яблочном низкоэтерифицированном пектине, соотношение 1:3
К 3 г суспензии низкоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества добавляют 1 г элеутерококка. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Затем добавляют 5 мл серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат при 25°С.
Получено 4,0 г белого порошка. Выход составил 100%.
ПРИМЕР 26. Получение нанокапсул элеутерококка в цитрусовом низкоэтерифицированном пектине, соотношение 1:3
К 3 г суспензии низкоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества прибавляют 1 г элеутерококка. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Затем добавляют 5 мл серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат при 25°С.
Получено 4,0 г порошка. Выход составил 100%.
ПРИМЕР 27. Получение нанокапсул женьшеня в цитрусовом высокоэтерифицированном пектине, соотношение 1:3
К 3 г суспензии высокоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества прибавляют 1 г женьшеня. Полученную смесь ставят на магнитную мешалку и включают перемешивание. После этого добавляют 5 мл серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат при 25°С.
Получено 4,0 г порошка. Выход составил 100%.
ПРИМЕР 28. Определение размеров нанокапсул методом NTA.
Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM Е2834.
Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length: Auto, Min Expected Size: Auto, длительность единичного измерения 215s, использование шприцевого насоса.
Получены нанокапсулы адаптогенов в яблочном и цитрусовом пектине физико-химическим методом осаждения нерастворителем с использованием серного эфира в качестве нерастворителя. Процесс прост в исполнении и длится в течение 15 минут.
Пектины (Е440) широко используются в производстве кондитерских желейных и пастильных изделий, для стабилизации кисломолочных продуктов, при производстве варенья, а также в хлебобулочных и мучных кондитерских изделиях. Имеются данные по использованию пектинов в качестве стабилизаторов консистенции кремов, лосьонов, шампуней.
Е472с - сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием.
Claims (1)
- Способ получения нанокапсул адаптогенов в пектине, характеризующийся тем, что в качестве оболочки нанокапсул используется низкоэтерифицированный или высокоэтерифицированный яблочный или цитрусовый пектин, при этом настойку адаптогена, выбранного из лимонника китайского, родиолы розовой и аралии маньчжурской, при перемешивании добавляют в суспензию указанного пектина в бутаноле в присутствии препарата Е472с в качестве поверхностно-активного вещества при массовом соотношении настойка адаптогена:пектин 1:1 или 1:3, затем в качестве осадителя приливают серный эфир, полученную суспензию нанокапсул отфильтровывают, промывают серным эфиром и сушат при 25°С, процесс осуществляют в течение 15 минут.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015121122/15A RU2590693C1 (ru) | 2015-06-02 | 2015-06-02 | Способ получения нанокапсул адаптогенов в пектине |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015121122/15A RU2590693C1 (ru) | 2015-06-02 | 2015-06-02 | Способ получения нанокапсул адаптогенов в пектине |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2590693C1 true RU2590693C1 (ru) | 2016-07-10 |
Family
ID=56372071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015121122/15A RU2590693C1 (ru) | 2015-06-02 | 2015-06-02 | Способ получения нанокапсул адаптогенов в пектине |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2590693C1 (ru) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2659825C1 (ru) * | 2017-06-21 | 2018-07-04 | Александр Александрович Кролевец | Способ получения кофейного мороженого с наноструктурированным экстрактом аралии маньчжурской |
RU2659824C1 (ru) * | 2017-02-27 | 2018-07-04 | Александр Александрович Кролевец | Способ производства мороженого с наноструктурированным экстрактом элеутерококка |
RU2659826C1 (ru) * | 2017-07-27 | 2018-07-04 | Александр Александрович Кролевец | Способ производства мороженого с наноструктурированным экстрактом аралии маньчжурской |
RU2663974C1 (ru) * | 2017-05-29 | 2018-08-14 | Александр Александрович Кролевец | Способ производства мороженого с шоколадом и экстрактом лимонника китайского |
RU2674603C1 (ru) * | 2018-01-17 | 2018-12-11 | Александр Александрович Кролевец | Способ производства кофейного мороженого с коньяком и наноструктурированным экстрактом лимонника китайского |
RU2685125C1 (ru) * | 2018-09-03 | 2019-04-16 | Александр Александрович Кролевец | Способ производства хлеба, содержащего наноструктурированный экстракт женьшеня |
RU2737550C1 (ru) * | 2020-06-15 | 2020-12-01 | Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") | Способ производства смоквы, содержащей аралию маньчжурскую |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU676316A1 (ru) * | 1978-03-24 | 1979-07-30 | Киевский Ордена Ленина Государственный Университет Им.Т.Г.Шевченко | Способ получени микрокапсул |
SU707510A3 (ru) * | 1975-10-30 | 1979-12-30 | Стауффер Кемикал Компани (Фирма) | Способ получени микрокапсул |
RU2098121C1 (ru) * | 1990-02-13 | 1997-12-10 | Такеда Кемикал Индастриз, Лтд. | Микрокапсула для длительного высвобождения физиологически активного пептида |
RU2134967C1 (ru) * | 1997-05-30 | 1999-08-27 | Шестаков Константин Алексеевич | Способ получения микрокапсулированных препаратов, содержащих пиретроидные инсектициды |
-
2015
- 2015-06-02 RU RU2015121122/15A patent/RU2590693C1/ru active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU707510A3 (ru) * | 1975-10-30 | 1979-12-30 | Стауффер Кемикал Компани (Фирма) | Способ получени микрокапсул |
SU676316A1 (ru) * | 1978-03-24 | 1979-07-30 | Киевский Ордена Ленина Государственный Университет Им.Т.Г.Шевченко | Способ получени микрокапсул |
RU2098121C1 (ru) * | 1990-02-13 | 1997-12-10 | Такеда Кемикал Индастриз, Лтд. | Микрокапсула для длительного высвобождения физиологически активного пептида |
RU2134967C1 (ru) * | 1997-05-30 | 1999-08-27 | Шестаков Константин Алексеевич | Способ получения микрокапсулированных препаратов, содержащих пиретроидные инсектициды |
Non-Patent Citations (1)
Title |
---|
ЧУЕШОВ В.И. "Промышленная технология лекарств в 2-х томах", Харьков, Изд-во НФАУ, МТК-Книга, 2002, т.2, стр.383. NAGAVARMA B. V. N. "Different techniques for preparation of polymeric nanoparticles", Asian Journal Pharm Clin Res, vol.5, suppl.3, 2012, pages 16-23. СОЛОДОВНИК В.Д. "Микрокапсулирование", Москва, "Химия", 1980, стр.136. * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2659824C1 (ru) * | 2017-02-27 | 2018-07-04 | Александр Александрович Кролевец | Способ производства мороженого с наноструктурированным экстрактом элеутерококка |
RU2663974C1 (ru) * | 2017-05-29 | 2018-08-14 | Александр Александрович Кролевец | Способ производства мороженого с шоколадом и экстрактом лимонника китайского |
RU2659825C1 (ru) * | 2017-06-21 | 2018-07-04 | Александр Александрович Кролевец | Способ получения кофейного мороженого с наноструктурированным экстрактом аралии маньчжурской |
RU2659826C1 (ru) * | 2017-07-27 | 2018-07-04 | Александр Александрович Кролевец | Способ производства мороженого с наноструктурированным экстрактом аралии маньчжурской |
RU2674603C1 (ru) * | 2018-01-17 | 2018-12-11 | Александр Александрович Кролевец | Способ производства кофейного мороженого с коньяком и наноструктурированным экстрактом лимонника китайского |
RU2685125C1 (ru) * | 2018-09-03 | 2019-04-16 | Александр Александрович Кролевец | Способ производства хлеба, содержащего наноструктурированный экстракт женьшеня |
RU2737550C1 (ru) * | 2020-06-15 | 2020-12-01 | Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") | Способ производства смоквы, содержащей аралию маньчжурскую |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2590693C1 (ru) | Способ получения нанокапсул адаптогенов в пектине | |
RU2606854C1 (ru) | Способ получения нанокапсул сухого экстракта шпината | |
RU2561586C1 (ru) | Способ получения микрокапсул биопага-д в пектине | |
RU2550950C1 (ru) | Способ получения нанокапсул биопага-д | |
RU2555824C1 (ru) | Способ получения микрокапсул сухого экстракта топинамбура в пектине | |
RU2500404C2 (ru) | Способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в интерфероне | |
RU2619331C2 (ru) | Способ получения нанокапсул умифеновира (Арбидола) в альгинате натрия | |
RU2563618C2 (ru) | Способ получения микрокапсул биопага-д в пектине | |
RU2605614C1 (ru) | Способ получения нанокапсул сухого экстракта топинамбура | |
RU2640130C2 (ru) | Способ получения нанокапсул сухого экстракта топинамбура | |
RU2599007C1 (ru) | Способ получения нанокапсул ципрофлоксацина гидрохлорида в альгинате натрия | |
RU2599841C1 (ru) | Способ получения нанокапсул аминогликозидных антибиотиков в альгинате натрия | |
RU2578403C2 (ru) | Способ получения нанокапсул цитокининов | |
RU2595825C1 (ru) | Способ получения нанокапсул иодида калия в пектине | |
RU2640490C2 (ru) | Способ получения нанокапсул сухого экстракта топинамбура в геллановой камеди | |
RU2632428C1 (ru) | Способ получения нанокапсул сухого экстракта топинамбура в ксантановой камеди | |
RU2640127C2 (ru) | Способ получения нанокапсул сухого экстракта топинамбура | |
RU2634256C2 (ru) | Способ получения нанокапсул сухого экстракта топинамбура | |
RU2654229C1 (ru) | Способ получения нанокапсул витаминов в пектине | |
RU2555472C2 (ru) | Способ получения микрокапсул антиоксидантов в пектине | |
RU2622752C1 (ru) | Способ получения нанокапсул сухого экстракта шпината | |
RU2555782C1 (ru) | Способ получения нанокапсул сульфата глюкозамина в конжаковой камеди в гексане | |
RU2564898C1 (ru) | Способ получения нанокапсул антибиотиков | |
RU2580613C1 (ru) | Способ получения нанокапсул антибиотиков в агар-агаре | |
RU2641190C1 (ru) | Способ получения нанокапсул сухого экстракта топинамбура в пектине |