RU2565392C1 - Способ получения нанокапсул витаминов в ксантановой камеди - Google Patents
Способ получения нанокапсул витаминов в ксантановой камеди Download PDFInfo
- Publication number
- RU2565392C1 RU2565392C1 RU2014113520/15A RU2014113520A RU2565392C1 RU 2565392 C1 RU2565392 C1 RU 2565392C1 RU 2014113520/15 A RU2014113520/15 A RU 2014113520/15A RU 2014113520 A RU2014113520 A RU 2014113520A RU 2565392 C1 RU2565392 C1 RU 2565392C1
- Authority
- RU
- Russia
- Prior art keywords
- nanocapsules
- producing
- vitamins
- xanthan gum
- suspension
- Prior art date
Links
Images
Landscapes
- Medicinal Preparation (AREA)
Abstract
Изобретение относится в области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул витамина А, С, D, Е или Q10, заключающийся в том, что витамин А, С, D, Е или Q10 добавляют в суспензию ксантановой камеди в бутаноле, при перемешивании 1300 об/с, после чего приливают ацетонитрил, отфильтровывают полученную суспензию и сушат, при определенных условиях. Способ позволяет упростить и ускорить процесс получения нанокапсул и увеличить выход по массе. 7 ил., 8 пр.
Description
Изобретение относится к области нанотехнологии, медицины и пищевой промышленности.
Ранее были известны способы получения микрокапсул.
В пат. 2173140 МПК A61K 009/50, A61K 009/127, Российская Федерация, опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.
Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения
В пат. 2359662 МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, Российская Федерация, опубликован 27.06.2009, предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 об/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.
Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 об/мин).
Наиболее близким методом является способ, предложенный в пат. 2134967 МПК A01N 53/00, A01N 25/28, Российская Федерация, опубликован 27.08.1999. В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.
Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.
Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).
Решение технической задачи достигается способом получения нанокапсул витаминов, отличающимся тем, что в качестве оболочки нанокапсул используется ксантановая камедь, а в качестве ядра - витамины (A, C, D, E, Q10), а также экстраткы элеутерококка и жень-шеня при получении нанокапсул методом осаждения нерастворителем с применением ацетонитрила в качестве осадителя, процесс получения нанокапсул осуществляется без специального оборудования.
Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием ацетонитрила в качестве осадителя, а также использование ксантановой камеди в качестве оболочки частиц и витаминов - в качестве ядра.
Результатом предлагаемого метода являются получение нанокапсул витаминов A, C, D, E Q10, а также и экстрактов элеутерококка и жень-шеня.
ПРИМЕР 1. Получение нанокапсул витамина А в ксантановой камеди, соотношение ядро: оболочка 1:3
100 мг витамина А добавляют в суспензию ксантановой камеди в бутаноле, содержащей указанного 300 мг полимера в присутствии 0,01 г препарата Е472 с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) при перемешивании 1300 об/сек. Далее приливают 2 мл ацетонитрила. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 0,396 г порошка нанокапсул. Выход составил 99%.
ПРИМЕР 2. Получение нанокапсул витамина С ч ксантановой камеди, соотношение ядро:оболочка 1:3
100 мг витамина С добавляют в суспензию ксантановой камеди в бутаноле, содержащей указанного 300 мг полимера в присутствии 0,01 г препарата Е472 с при перемешивании 1300 об/сек. Далее приливают 2 мл ацетонитрила. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 0,4 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 3. Получение нанокапсул витамина D в ксантановой камеди, соотношение ядро:оболочка 1:3
100 мг витамина D добавляют в суспензию ксантановой камеди в бутаноле, содержащей указанного 300 мг полимера в присутствии 0,01 г препарата Е472 с при перемешивании 1300 об/сек. Далее приливают 2 мл ацетонитрила. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 0,4 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 4. Получение нанокапсул витамина Б в ксантановой камеди, соотношение ядро:оболочка 1:3
100 мг витамина Е добавляют в суспензию ксантановой камеди в бутаноле, содержащей указанного 300 мг полимера в присутствии 0,01 г препарата Е472 с при перемешивании 1300 об/сек. Далее приливают 2 мл ацетонитрила. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 0,4 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 5. Получение нанокапсул витамина Q10 в ксантановой камеди, соотношение ядро:оболочка 1:3
100 мг витамина Q10 в диметилсульфоксиде добавляют в суспензию ксантановой камеди в бутаноле, содержащей указанного 300 мг полимера в присутствии 0,01 г препарата Е472 с при перемешивании 1300 об/сек. Далее приливают 2 мл ацетонитрила. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 0,396 г порошка нанокапсул. Выход составил 99%.
ПРИМЕР 6. Получение нанокапсул экстракта элеутерококка в ксантановой камеди, соотношение ядро:оболочка 1:3 100 мг экстракта элеутерокка добавляют в суспензию ксантановой камеди в бутаноле, содержащей указанного 300 мг полимера в присутствии 0,01 г препарата Е472с при перемешивании 1300 об/сек. Далее приливают 2 мл ацетонитрила. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 0,4 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 7. Получение нанокапсул экстракта женьшеня в ксантановой камеди, соотношение ядро:оболочка 1:3
100 мг экстракта жень-шеня добавляют в суспензию ксантановой камеди в бутаноле, содержащей указанного 300 мг полимера в присутствии 0,01 г препарата Е472с при перемешивании 1300 об/сек. Далее приливают 2 мл ацетонитрила. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 0,4 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 8 Определение размеров нанокапсул методом NTA.
Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM E2834.
Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level=16, Detection Threshold=10 (multi), Min Track Length:Auto, Min Expected Size: Auto. длительность единичного измерения 215s, использование шприцевого насоса.
Claims (1)
- Способ получения нанокапсул витамина А, С, D, Е или Q10, заключающийся в том, что 100 мг витамина А, С, D, Е или Q10 добавляют в суспензию ксантановой камеди в бутаноле, содержащую 300 мг ксантановой камеди в присутствии 0,01 г Е472с при перемешивании 1300 об/с, после чего приливают 2 мл ацетонитрила, отфильтровывают полученную суспензию и сушат при комнатной температуре.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014113520/15A RU2565392C1 (ru) | 2014-04-07 | 2014-04-07 | Способ получения нанокапсул витаминов в ксантановой камеди |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014113520/15A RU2565392C1 (ru) | 2014-04-07 | 2014-04-07 | Способ получения нанокапсул витаминов в ксантановой камеди |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2565392C1 true RU2565392C1 (ru) | 2015-10-20 |
Family
ID=54327184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2014113520/15A RU2565392C1 (ru) | 2014-04-07 | 2014-04-07 | Способ получения нанокапсул витаминов в ксантановой камеди |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2565392C1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2665411C1 (ru) * | 2017-03-30 | 2018-08-29 | Александр Александрович Кролевец | Способ получения нанокапсул стрептоцида в ксантановой камеди |
RU2723716C1 (ru) * | 2020-01-17 | 2020-06-17 | Александр Александрович Кролевец | Способ получения нанокапсул 2,4-динитроанизола |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2134967C1 (ru) * | 1997-05-30 | 1999-08-27 | Шестаков Константин Алексеевич | Способ получения микрокапсулированных препаратов, содержащих пиретроидные инсектициды |
RU2462236C2 (ru) * | 2010-03-22 | 2012-09-27 | Государственное Образовательное Учреждение Высшего Профессионального Образования "Омский Государственный Технический Университет" | Липосомальная нанокапсула |
-
2014
- 2014-04-07 RU RU2014113520/15A patent/RU2565392C1/ru active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2134967C1 (ru) * | 1997-05-30 | 1999-08-27 | Шестаков Константин Алексеевич | Способ получения микрокапсулированных препаратов, содержащих пиретроидные инсектициды |
RU2462236C2 (ru) * | 2010-03-22 | 2012-09-27 | Государственное Образовательное Учреждение Высшего Профессионального Образования "Омский Государственный Технический Университет" | Липосомальная нанокапсула |
Non-Patent Citations (1)
Title |
---|
Солодовник В.Д. Микрокапсулирование. М.: Химия, 1980. С.22-35, 136-149,201. А.А. Кролевец и др. Применение нано- и микрокапсулирования в фармацевтике и пищевой промышленности// Вестник Российской академии естественных наук 2013/1. С. 77-84. Пищевая добавка Эфиры глицерина и лимонной и жирных кислот (E472c). Перечень данных [он-лайн] 01.07.2012 [Найдено 04.09.2014] " найдено из Интернет: URL: https://belousowa.ru/diet/dobavki/E472c * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2665411C1 (ru) * | 2017-03-30 | 2018-08-29 | Александр Александрович Кролевец | Способ получения нанокапсул стрептоцида в ксантановой камеди |
RU2723716C1 (ru) * | 2020-01-17 | 2020-06-17 | Александр Александрович Кролевец | Способ получения нанокапсул 2,4-динитроанизола |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2557900C1 (ru) | Способ получения нанокапсул витаминов | |
RU2626828C1 (ru) | Способ получения нанокапсул резвератрола в каппа-каррагинане | |
RU2562561C1 (ru) | Способ получения нанокапсул витаминов в каррагинане | |
RU2605596C1 (ru) | Способ получения нанокапсул витаминов группы в | |
RU2646474C1 (ru) | Способ получения нанокапсул витаминов группы В | |
RU2648816C2 (ru) | Способ получения нанокапсул спирулина в альгинате натрия | |
RU2586612C1 (ru) | Способ получения нанокапсул адаптогенов в ксантановой камеди | |
RU2590666C1 (ru) | Способ получения нанокапсул лекарственных растений, обладающих иммуностимулирующим действием | |
RU2639091C2 (ru) | Способ получения нанокапсул лекарственных растений, обладающих кардиотоническим действием | |
RU2591798C1 (ru) | Способ получения нанокапсул адаптогенов в конжаковой камеди | |
RU2565392C1 (ru) | Способ получения нанокапсул витаминов в ксантановой камеди | |
RU2639092C2 (ru) | Способ получения нанокапсул сухого экстракта шиповника | |
RU2631479C1 (ru) | Способ получения нанокапсул лекарственных растений, обладающих седативным действием | |
RU2625501C2 (ru) | Способ получения нанокапсул сухого экстракта шиповника | |
RU2599009C1 (ru) | Способ получения нанокапсул лекарственных растений, обладающих седативным действием в конжаковой камеди | |
RU2597153C1 (ru) | Способ получения нанокапсул адаптогенов в геллановой камеди | |
RU2607589C2 (ru) | Способ получения нанокапсул аминокислот в конжаковой камеди | |
RU2613881C1 (ru) | Способ получения нанокапсул сухого экстракта шиповника | |
RU2657748C1 (ru) | Способ получения нанокапсул спирулина в конжаковой камеди | |
RU2624530C1 (ru) | Способ получения нанокапсул унаби в геллановой камеди | |
RU2642054C2 (ru) | Способ получения нанокапсул лекарственных растений, обладающих кардиотоническим действием | |
RU2627585C1 (ru) | Способ получения нанокапсул сухого экстракта шиповника в агар-агаре | |
RU2609739C1 (ru) | Способ получения нанокапсул резвератрола в геллановой камеди | |
RU2616502C1 (ru) | Способ получения нанокапсул унаби в конжаковой камеди | |
RU2600441C1 (ru) | Способ получения нанокапсул лекарственных растений, обладающих иммуностимулирующим действием в конжаковой камеди |