RU2447300C2 - Система теплопередачи - Google Patents

Система теплопередачи Download PDF

Info

Publication number
RU2447300C2
RU2447300C2 RU2007128955/06A RU2007128955A RU2447300C2 RU 2447300 C2 RU2447300 C2 RU 2447300C2 RU 2007128955/06 A RU2007128955/06 A RU 2007128955/06A RU 2007128955 A RU2007128955 A RU 2007128955A RU 2447300 C2 RU2447300 C2 RU 2447300C2
Authority
RU
Russia
Prior art keywords
heat
heat pipe
rack
housing
pipes
Prior art date
Application number
RU2007128955/06A
Other languages
English (en)
Other versions
RU2007128955A (ru
Inventor
Катталайхери Сринивасан ВЕНКАТАРАМАНИ (US)
Катталайхери Сринивасан ВЕНКАТАРАМАНИ
Томас Ори МОНИЗ (US)
Томас Ори МОНИЗ
Джастин П. СТЕФЕНСОН (US)
Джастин П. СТЕФЕНСОН
Original Assignee
Дженерал Электрик Компани
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38692028&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2447300(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Дженерал Электрик Компани filed Critical Дженерал Электрик Компани
Publication of RU2007128955A publication Critical patent/RU2007128955A/ru
Application granted granted Critical
Publication of RU2447300C2 publication Critical patent/RU2447300C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • F01D25/125Cooling of bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/04Air intakes for gas-turbine plants or jet-propulsion plants
    • F02C7/047Heating to prevent icing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • F02K3/06Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type with front fan
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0466Nickel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/207Heat transfer, e.g. cooling using a phase changing mass, e.g. heat absorbing by melting or boiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/208Heat transfer, e.g. cooling using heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/11Iron
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/13Refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W
    • F05D2300/133Titanium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Система теплопередачи для газотурбинного двигателя, содержащего кольцеобразный корпус с расположенным в нем рядом элементов стойки, проходящих, по существу, в радиальном направлении, содержит, по меньшей мере, одну дугообразную тепловую трубу. Тепловая труба расположена в контакте с внешней поверхностью корпуса и термически связана с источником тепла таким образом, что тепло от источника тепла может передаваться через тепловую трубу и корпус к элементам стойки. Изобретение направлено на упрощение выполнения системы теплопередачи, а также возможности избегать возникновения пожара внутри двигателя. 9 з.п. ф-лы, 4 ил.

Description

Уровень техники
Настоящее изобретение относится, в общем, к газотурбинным двигателям, а более конкретно к системе и способу, использующим тепловые трубы для переноса тепла внутри газотурбинного двигателя.
Газотурбинные двигатели используют масло под давлением, чтобы смазывать и охлаждать различные компоненты (например, подшипники и т.д.). Масло захватывает значительную часть тепла в процессе, которое следует отводить, чтобы поддерживать температуру масла внутри приемлемых пределов. Газотурбинные двигатели предшествующего уровня техники часто используют теплообменники для охлаждения моторного масла, использующие относительно холодный воздушный поток, такой как воздух, нагнетаемый вентилятором. В турбовентиляторных двигателях такой теплообменник часто располагают на пути потока канала вентилятора. Эта конфигурация приводит к падению давления и, следовательно, к значительным проблемам сгорания топлива. Было оценено, что проблемы удельного расхода топлива (УРТ), связанные с этим типом конфигурации, могут достигать 1%. Также существуют проблемы стоимости и веса, связанные с этой конфигурацией.
Кроме того, в некоторых двигателях выходные направляющие лопатки (ВНЛ), стойки крепления вентилятора или другие подобные стойкам элементы в канале вентилятора, расположенные позади вентилятора, при некоторых условиях окружающей среды обрастают льдом. Нарастание льда внутри двигателя и поверх наружных конструкций двигателя может быть значительным. Обрастание льдом может приводить к частичному блокированию прохождений выходных направляющих лопаток и нестабильности вентилятора. Накопленный лед также может внезапно сбрасываться, например, во время непрерывной работы двигателя, из-за внезапного переключения рычага управления двигателем от работы на более низкой мощности к работе на более высокой мощности, или из-за вибраций или турбулентности, или из-за асимметрии обледенения.
Существуют различные способы предшествующего уровня техники для защиты от намерзания льда, например принуждение двигателя работать с увеличенной рабочей температурой, направление отбираемого от компрессора двигателя воздуха с высокой температурой к подверженным воздействию поверхностям, разбрызгивание на двигатель противообледенительного раствора перед работой и нагревание с помощью электрического сопротивления. Однако все эти способы имеют различные недостатки. Повышенная рабочая температура и системы отбора воздуха от компрессора могут снижать рабочие характеристики двигателя. Для таких систем также могут требоваться вентили, чтобы отключать поток воздуха с высокой температурой во время запуска и других действий с высокой мощностью для предохранения двигателя.
Химический антиобледенитель обеспечивает защиту только в течение ограниченного времени. Электрический нагрев требует больших количеств электричества для выполнения операции удаления льда и может нуждаться в дополнительных электрических генераторах, электрических схемах и сложной логике взаимодействия с компьютерами самолета с сопровождающим увеличением проблем стоимости, веса и эксплуатационных характеристик.
Наиболее близкими аналогами заявленного изобретения являются технические решения, описанные в заявке на патент США 2005/0050877 Al (F02C 7/047, 10.03.2005) и патенте США 4,921,041 (F28D 15/02, 01.05.1990).
В частности, в заявке на патент США 2005/0050877 А1 описаны способ и устройство для предотвращения накопления льда на газотурбинном двигателе во время его работы. Для этого тепловые трубы находятся в термическом сообщении с источником тепла и внешней поверхностью компонента двигателя, который расположен выше по потоку от источника тепла.
В патенте США 4,921,041 описана структура для теплопередачи, включающая в себя замкнутую тепловую трубу, в которой теплонесущая текучая среда, предпочтительно двухфазная неконденсируемая текучая среда, циркулирует в контуре при собственном давлении пара с высокой скоростью в удлиненной трубе для повторения испарения и конденсации, таким образом осуществляя теплопередачу.
Раскрытие изобретения
К вышеупомянутым недостаткам в предшествующем уровне техники среди прочего адресовано настоящее изобретение, обеспечивающее систему теплопередачи, которая удаляет отработанное тепло из моторного смазочного масла и переносит это тепло к компонентам двигателя, которые нуждаются в теплоснабжении, например, с целью защиты от намерзания льда или удаления льда. Это тепло переносится с использованием тепловых труб, которые являются облегченными, уплотненными и пассивными элементами, не требующими никаких вентилей или насосов. Кроме того, тепловые трубы могут использовать рабочую текучую среду, которая является невоспламеняющейся, чтобы избегать введения опасности возникновения пожара внутри двигателя.
Согласно одному объекту, изобретение обеспечивает систему теплопередачи для газотурбинного двигателя, содержащего кольцеобразный корпус с рядом теплопроводных, продолжающихся, по существу, в радиальном направлении элементов стойки, расположенных в нем. Система теплопередачи включает в себя по меньшей мере одну дугообразную тепловую трубу, расположенную в контакте с внешней поверхностью корпуса и термически связанную с источником тепла таким образом, что тепло от источника тепла может передаваться через тепловую трубу и корпус к элементам стойки.
По меньшей мере одна тепловая труба предпочтительно расположена в пределах осевой протяженности элементов стойки.
Каждый элемент стойки предпочтительно представляет собой направляющую лопатку, имеющую поперечное сечение аэродинамической поверхности, образованное первой и второй сторонами, проходящими между разнесенными передней и задней кромками.
По меньшей мере участок конца каждой тепловой трубы предпочтительно расположен внутри полой внутренней части теплообменника, выполненного с возможностью приема проходящего через него потока нагретой текучей среды.
Множество дугообразных тепловых труб предпочтительно расположены в контакте с внешней поверхностью корпуса в пределах осевой протяженности элемента стойки, при этом каждая из тепловых труб термически связана с источником тепла.
Каждая тепловая труба предпочтительно включает в себя неизолированный сегмент, причем неизолированные сегменты тепловых труб расположены ступенчато таким образом, что участок протяженности по окружности корпуса находится в прямом контакте, по существу, не больше чем с одним из неизолированных сегментов.
Каждая тепловая труба предпочтительно имеет первый конец, термически связанный с источником тепла, и неизолированный сегмент, расположенный у второго конца, отдаленного от первого конца.
Каждая тепловая труба предпочтительно включает в себя первый конец, соединенный с теплообменником, неизолированный сегмент, расположенный у отдаленного конца тепловой трубы, и изолированный участок, расположенный между первым концом и неизолированным сегментом.
Выбранный элемент стойки предпочтительно содержит металл.
Элементы стойки предпочтительно выполнены из сплава алюминия, железа, никеля или титана.
Согласно другому объекту изобретения, газотурбинный двигатель включает в себя кольцеобразной корпус вентилятора; ряд расположенных в нем продолжающихся, по существу, в радиальном направлении направляющих лопаток, причем каждая направляющая лопатка имеет поперечное сечение аэродинамической поверхности, образованной первой и второй сторонами, проходящими между разнесенными передней и задней кромками; множество дугообразных тепловых труб, причем по меньшей мере участок каждой тепловой трубы расположен напротив внешней поверхности корпуса вентилятора в пределах осевой протяженности направляющих лопаток; и источник тепла, термически связанный с тепловыми трубами таким образом, что тепло от источника тепла может передаваться через тепловые трубы и корпус вентилятора к направляющим лопаткам.
Согласно другому объекту изобретения, обеспечен способ переноса тепла в газотурбинном двигателе, имеющем кольцеобразный корпус с рядом расположенных в нем проходящих, по существу, в радиальном направлении направляющих лопаток. Способ включает в себя этапы, на которых: обеспечивают множество дугообразных тепловых труб, причем по меньшей мере участок каждой тепловой трубы расположен напротив внешней поверхности корпуса и в пределах осевой протяженности направляющих лопаток; термически связывают тепловые трубы с источником тепла; и получают тепло от источника тепла в тепловых трубах и переносят тепло к направляющим лопаткам через корпус.
Краткое описание чертежей
Изобретение можно лучше понять в отношении последующего описания, приведенного в связи с прилагаемыми чертежами, на которых:
Фиг.1 представляет собой вид в перспективе участка модуля вентилятора (хвостовая часть смотрит вперед) газотурбинного двигателя, включающего в себя систему теплопередачи, сконструированную в соответствии с объектом настоящего изобретения;
Фиг.2 представляет собой увеличенный вид выреза участка модуля вентилятора, показанного на Фиг.1;
Фиг.3 представляет собой увеличенный вид в перспективе теплообменника, установленного на модуле вентилятора, показанного на Фиг.1; и
Фиг.4 представляет собой схематическое изображение, показывающее конфигурацию тепловых труб, расположенных вокруг периферии модуля вентилятора, показанного на Фиг.1.
Подробное описание изобретения
Со ссылкой чертежи, на которых идентичные ссылочные позиции обозначают одинаковые элементы на протяжении всех различных видов и где на Фиг.1-3 показан участок модуля вентилятора газотурбинного двигателя, включающего в себя кольцеобразной корпус 10 вентилятора. Множество выходных направляющих лопаток 12 соединены с корпусом 10 вентилятора и расположены внутри него. Каждая из выходных направляющих лопаток 12 (также показаны на Фиг.2) имеет хвостовик 14, вершину 16, переднюю кромку 18, заднюю кромку 20 и противоположные стороны 22 и 24. Выходные направляющие лопатки 12 имеют форму аэродинамической поверхности и установлены и ориентированы таким образом, чтобы удалять тангенциальную составляющую завихрения из воздушного потока, выходящего впереди вентилятора (не показано). В показанном примере выходные направляющие лопатки также служат в качестве конструктивных элементов (иногда упоминаемых как «стойки вентилятора»), которые соединяют корпус вентилятора с внутренним кожухом 26. Однако, в других конфигурациях двигателя, эти функции могут выполнять отдельные компоненты. Система теплопередачи, описанная здесь, в равной степени применима к выходным направляющим лопаткам, стойкам вентилятора и всем другим типам проходящих, по существу, в радиальном направлении «элементам стоек».
Выходные направляющие лопатки 12 могут быть выполнены из любого материала, который имеет адекватную прочность, чтобы выдерживать ожидаемые рабочие нагрузки, и который можно изготавливать в требуемой форме. Чтобы усиливать теплопередачу, предпочтительно, чтобы выходные направляющие лопатки были теплопроводными. Примерами подходящих материалов являются металлические сплавы, такие как сплавы на основе алюминия, железа, никеля или титана.
Теплообменник 28 установлен на внешней стороне корпуса 10 вентилятора. Теплообменником 28 может быть просто кожух с открытой внутренней частью. В показанном примере масло из системы смазки двигателя входит в теплообменник 28 через откачивающую линию 30. После выхода из теплообменника 28 оно проходит в бак-накопитель 32 до тех пор, пока оно потребуется, когда оно течет обратно в систему смазки двигателя через подводящую линию 34. Остальная часть системы хранения, циркуляции и распределения масла, подсоединенной к откачивающей и подводящей линиям 30 и 34, является стандартной для предшествующего уровня техники газотурбинных двигателей и в данном описании не обсуждается. При желании теплообменник 28 может быть связан с другим типом источника тепла, таким как выпускной воздухопровод, источник электроэнергии или другая система текучей среды внутри двигателя.
Множество тепловых труб 36 расположены вокруг внешней поверхности корпуса 10 вентилятора, в контакте с его внешней поверхностью 38, и позиционированы в пределах, образованных осевой протяженностью выходных направляющих лопаток 12. Хотя на Фиг.2 участок тепловых труб 36, который лежит напротив корпуса 10 вентилятора, показан как круглый, его можно образовывать с овальной, сглаженной или другой некруговой формой поперечного сечения, чтобы приспосабливать к желательной площади поперечного сечения, в то же время улучшая объемную компоновку или теплопередачу.
Каждая тепловая труба 36 имеет продолговатую внешнюю стенку 40 с закрытыми концами, которые образуют полость 42. Полость 42 выровнена с капиллярной конструкцией или фитилем (не показан) и удерживает рабочую текучую среду. Для использования в тепловых трубах известны различные рабочие текучие среды, такие как газы, вода, органические вещества и легкоплавкие металлы. Рабочая текучая среда может быть невоспламеняющейся, чтобы избежать опасности возникновения пожара в области корпуса 10 вентилятора в случае просачивания или прорыва тепловой трубы 36.
Один конец каждой тепловой трубы 36 расположен внутри теплообменника 28. Этот участок обозначен как "горячий" или "испарительный" конец 44.
Тепловые трубы 36 являются высокоэффективными при переносе тепла. Например, их эффективная теплопроводность по величине на несколько порядков выше, чем эффективная теплопроводность объемной меди. Количество, длина, диаметр, форма, рабочая текучая среда и другие эксплуатационные характеристики тепловых труб выбирают на основании необходимой степени теплопередачи во время работы двигателя. Работа тепловых труб 36 описана более подробно ниже.
На Фиг.4 схематично показан пример того, как могут быть расположены тепловые трубы 36 для обеспечения передачи тепла к периферии корпуса 10 вентилятора. Следует отметить, что на Фиг.4 тепловые трубы 36 показаны разнесенными в радиальном направлении, или "расположенными друг над другом". Это показано просто с целью более ясной иллюстрации того, как проходят тепловые трубы 36 вокруг корпуса 10 вентилятора. Фиг.4 не обязательно является отображающей фактический физический монтаж тепловых труб 36, которые показаны на Фиг.1-3. На каждой стороне от вертикальной средней линии дугообразная первая тепловая труба 36А подсоединена к теплообменнику 28 и проходит приблизительно на 30° вокруг корпуса 10 вентилятора. Полная протяженность каждой из первых тепловых труб 36А не изолирована, как показано на чертеже штриховыми линиями.
На каждой стороне от вертикальной средней линии «С» дугообразная вторая тепловая труба 36В подсоединена к теплообменнику 28 и проходит приблизительно на 60° вокруг корпуса 10 вентилятора. Первые 30° пролета каждой из вторых тепловых труб 36В закрыты соответствующим типом термоизоляции (не показана), чтобы снижать до минимума теплопередачу. Сегмент отдаленного от центра конца (приблизительно 30° пролета) каждой из вторых тепловых труб 36В не изолирован, как показано штриховыми линиями на чертеже. Этот неизолированный сегмент тепловой трубы 36 обозначен как «холодный» или «конденсаторный» конец 46. Следует отметить, что термины «горячий», «испарительный», «холодный» и «конденсаторный», когда используются относительно тепловых труб 36, описывают расположение тепловых труб 36 в зонах относительно высокой или низкой температуры и не связаны непосредственно с каким-либо конкретным объектом конструкции тепловых труб 36.
Эта конфигурация продолжается с использованием пар дугообразных третьих тепловых труб 36С, четвертых тепловых труб 36D, пятых тепловых труб 36Е и шестых тепловых труб 36F. Каждая пара тепловых труб 36 проходит приблизительно на 30° дальше, чем предыдущая пара, и сегмент отдаленного от центра конца (приблизительно 30° пролета) каждой пары тепловых труб 36 не изолирован. Тепловые трубы 36 изолированы таким образом, чтобы тепло могло переноситься на существенное расстояние вокруг периферии корпуса 10 вентилятора. Конфигурация неизолированных сегментов обеспечивает по существу перекрытие на 360° корпуса вентилятора. Следует отметить, что Фиг.4 является просто схематичной и что при фактическом выполнении на практике неизолированный сегмент каждой тепловой трубы 36 может быть помещен в прямом контакте с корпусом 10 вентилятора. Другими словами, любой участок протяженности по окружности корпуса 10 вентилятора находится в прямом контакте, по существу, не больше чем с одним из неизолированных сегментов тепловых труб 36.
Количество тепловых труб 36, протяженность по окружности каждой тепловой трубы 36 и процентное отношение каждой тепловой трубы 36, которая является неизолированной, могут варьироваться, чтобы приспосабливаться к конкретному применению. Например, можно использовать меньшее количество тепловых труб 36, каждую с большим неизолированным сегментом, или также можно использовать большее количество тепловых труб, каждую с меньшим неизолированным сегментом.
Дополнительную термоизоляцию, которая не показана для ясности, можно обеспечивать внутри системы теплопередачи везде, где это необходимо, чтобы предотвращать потери тепла. Например, можно располагать изоляцию вокруг внешней поверхности теплообменника 28.
При работе масло, которое имеет поглощенное тепло от различных элементов двигателя, циркулирует в теплообменнике 28, где оно нагревает горячие или испарительные концы 44 тепловых труб 36. Удаление тепла охлаждает масло до приемлемой рабочей температуры так, что оно может проходить в бак-накопитель 32 и впоследствии рециркулировать через двигатель. Рабочая текучая среда внутри тепловых труб 36 поглощает это тепло и испаряется. Произведенный пар затем перемещается через полости 42 и конденсируется на холодных участках 46 тепловых труб 36, тем самым перенося тепло к холодным участкам 46. Фитиль или другая капиллярная конструкция, которая проходит от одного конца тепловой трубы 36 к другому, переносит конденсированную жидкость назад к горячему участку 44 посредством капиллярного воздействия, тем самым завершая контур. Теплопередача к выходным направляющим лопаткам 12 является эффективной для предотвращения обледенения (то есть для защиты от намерзания льда) и/или удаления льда, который сформировался на выходных направляющих лопатках 12 (то есть для удаления льда), в зависимости от скорости нагревания.
Система теплопередачи, описанная в данном описании, является пассивной, не нуждается ни в каких вентилях и герметизирована. Количество, размер и местонахождение тепловых труб 36 можно выбирать таким образом, чтобы обеспечивать удаление и перенос тепла, как это необходимо. В зависимости от выбранной точной конфигурации рабочие характеристики системы могут использоваться только для защиты от намерзания льда, или для удаления льда, или только для масляного охлаждения, или для обеих целей. Система теплопередачи использует тепло, которое является нежелательным в одном участке двигателя, и использует это тепло там, где оно необходимо, в другом участке двигателя, избегая как потерь, связанных с системами охлаждения предшествующего уровня техники, так и потребности в отдельном источнике тепла для защиты от намерзания льда.
Хотя были описаны конкретные варианты осуществления настоящего изобретения, специалистам в данной области техники должно быть понятно, что могут быть выполнены различные модификации для них, не отступая при этом от сущности и объема изобретения. Соответственно, вышеизложенное описание предпочтительного варианта осуществления изобретения и лучшего способа осуществления на практике настоящего изобретения приведены только с целью иллюстрации, а не ограничения, и изобретение определено формулой изобретения.

Claims (10)

1. Система теплопередачи для газотурбинного двигателя, содержащего кольцеобразный корпус (10) с расположенным в нем рядом элементов стойки, проходящих, по существу, в радиальном направлении, причем система теплопередачи содержит, по меньшей мере, одну дугообразную тепловую трубу (36), расположенную в контакте с внешней поверхностью (38) корпуса (10) и термически связанную с источником тепла таким образом, что тепло от источника тепла может передаваться через тепловую трубу и корпус (10) к элементам стойки.
2. Система по п.1, в которой, по меньшей мере, одна тепловая труба (36) расположена в пределах осевой протяженности элементов стойки.
3. Система по п.1, в которой каждый элемент стойки представляет собой направляющую лопатку, имеющую поперечное сечение аэродинамической поверхности, образованное первой и второй сторонами, проходящими между разнесенными передней и задней кромками.
4. Система по п.1, в которой, по меньшей мере, участок (44) конца каждой тепловой трубы расположен внутри полой внутренней части теплообменника (28), выполненного с возможностью приема проходящего через него потока нагретой текучей среды.
5. Система по п.1, в которой множество дугообразных тепловых труб (36) расположены в контакте с внешней поверхностью (38) корпуса (10) в пределах осевой протяженности элемента стойки, при этом каждая из тепловых труб (36) термически связана с источником тепла.
6. Система по п.5, в которой каждая тепловая труба (36) включает в себя неизолированный сегмент, причем неизолированные сегменты тепловых труб (36) расположены ступенчато таким образом, что участок протяженности по окружности корпуса (10) находится в прямом контакте, по существу, не больше, чем с одним из неизолированных сегментов.
7. Система по п.1, в которой каждая тепловая труба (36) имеет первый конец (44), термически связанный с источником тепла, и неизолированный сегмент, расположенный у второго конца (46), отдаленного от первого конца (44).
8. Система по п.1, в которой каждая тепловая труба (36) включает в себя первый конец (44), соединенный с теплообменником (28), неизолированный сегмент, расположенный у отдаленного конца тепловой трубы (36), и изолированный участок, расположенный между первым концом (44) и неизолированным сегментом.
9. Система по п.1, в которой выбранный элемент стойки содержит металл.
10. Система по п.1, в которой элементы стойки выполнены из сплава алюминия, железа, никеля или титана.
RU2007128955/06A 2006-07-28 2007-07-27 Система теплопередачи RU2447300C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/460,791 US7900437B2 (en) 2006-07-28 2006-07-28 Heat transfer system and method for turbine engine using heat pipes
US11/460,791 2006-07-28

Publications (2)

Publication Number Publication Date
RU2007128955A RU2007128955A (ru) 2009-02-10
RU2447300C2 true RU2447300C2 (ru) 2012-04-10

Family

ID=38692028

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007128955/06A RU2447300C2 (ru) 2006-07-28 2007-07-27 Система теплопередачи

Country Status (6)

Country Link
US (1) US7900437B2 (ru)
EP (1) EP1884628B1 (ru)
JP (1) JP5036433B2 (ru)
CN (1) CN101113689B (ru)
CA (1) CA2594049C (ru)
RU (1) RU2447300C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2621438C1 (ru) * 2016-03-03 2017-06-06 Алексей Алексеевич Сердюков Котел наружного размещения

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8197204B2 (en) * 2005-12-23 2012-06-12 Behr Gmbh & Co. Kg Fan system, heat exchanger module, method for manufacturing a fan system and/or a heat exchanger module
EP2159377A1 (de) * 2008-08-27 2010-03-03 Siemens Aktiengesellschaft Leitschaufelträger für eine Gasturbine und entsprechende Gasturbinenanlage
TWI409382B (zh) * 2008-12-25 2013-09-21 Ind Tech Res Inst 熱管式發電元件及具有該熱管式發電元件的氫/氧氣產生裝置與內燃機系統
FR2948679B1 (fr) * 2009-07-28 2011-08-19 Arkema France Procede de transfert de chaleur
GB201009264D0 (en) 2010-06-03 2010-07-21 Rolls Royce Plc Heat transfer arrangement for fluid washed surfaces
EP2472067B1 (fr) * 2010-12-31 2013-09-25 Techspace Aero S.A. Intégration d'un échangeur de chaleur surfacique avec débit d'air régulé dans un moteur d'avion
US9309781B2 (en) 2011-01-31 2016-04-12 General Electric Company Heated booster splitter plenum
US8444093B1 (en) * 2011-04-18 2013-05-21 Eran Epstein Airplane leading edge de-icing apparatus
US9016633B2 (en) * 2011-06-13 2015-04-28 The Boeing Company Electromechanical actuator (EMA) heat sink integrated de-icing system
US9382013B2 (en) 2011-11-04 2016-07-05 The Boeing Company Variably extending heat transfer devices
US9382810B2 (en) * 2012-07-27 2016-07-05 General Electric Company Closed loop cooling system for a gas turbine
US9422063B2 (en) * 2013-05-31 2016-08-23 General Electric Company Cooled cooling air system for a gas turbine
US9963994B2 (en) 2014-04-08 2018-05-08 General Electric Company Method and apparatus for clearance control utilizing fuel heating
CN104110308B (zh) * 2014-05-08 2015-12-16 中国联合工程公司 一种用于大型燃气轮机的进气加热结构
US9777963B2 (en) * 2014-06-30 2017-10-03 General Electric Company Method and system for radial tubular heat exchangers
US20160290235A1 (en) * 2015-04-02 2016-10-06 General Electric Company Heat pipe temperature management system for a turbomachine
US9797310B2 (en) * 2015-04-02 2017-10-24 General Electric Company Heat pipe temperature management system for a turbomachine
DE102015110615A1 (de) 2015-07-01 2017-01-19 Rolls-Royce Deutschland Ltd & Co Kg Leitschaufel eines Gasturbinentriebwerks, insbesondere eines Flugtriebwerks
US10125625B2 (en) * 2015-08-03 2018-11-13 Siemens Energy, Inc. Gas turbine engine component with performance feature
US10400675B2 (en) * 2015-12-03 2019-09-03 General Electric Company Closed loop cooling method and system with heat pipes for a gas turbine engine
CN106882390B (zh) * 2015-12-15 2020-06-19 中国航发商用航空发动机有限责任公司 飞机引气预冷回热系统
US11125160B2 (en) 2015-12-28 2021-09-21 General Electric Company Method and system for combination heat exchanger
US20170184026A1 (en) * 2015-12-28 2017-06-29 General Electric Company System and method of soakback mitigation through passive cooling
US20170314471A1 (en) * 2016-04-28 2017-11-02 General Electric Company Systems and methods for thermally integrating oil reservoir and outlet guide vanes using heat pipes
US11168583B2 (en) 2016-07-22 2021-11-09 General Electric Company Systems and methods for cooling components within a gas turbine engine
US10583933B2 (en) 2016-10-03 2020-03-10 General Electric Company Method and apparatus for undercowl flow diversion cooling
FR3059353B1 (fr) * 2016-11-29 2019-05-17 Safran Aircraft Engines Aube directrice de sortie pour turbomachine d'aeronef, comprenant une zone coudee de passage de lubrifiant presentant une conception amelioree
FR3060057B1 (fr) * 2016-12-14 2019-08-30 Safran Aircraft Engines Circuit fluidique dans une turbomachine
FR3062169B1 (fr) * 2017-01-20 2019-04-19 Safran Aircraft Engines Carter de module de turbomachine d'aeronef, comprenant un caloduc associe a un anneau d'etancheite entourant une roue mobile aubagee du module
US10450957B2 (en) * 2017-01-23 2019-10-22 United Technologies Corporation Gas turbine engine with heat pipe system
CN206942877U (zh) * 2017-05-03 2018-01-30 深圳光启合众科技有限公司 涵道风扇
ES2797324T3 (es) 2017-10-27 2020-12-01 MTU Aero Engines AG Paleta guía con pared del tubo de calor, sistema con paleta guía y método de fabricación de una paleta guía
US10443620B2 (en) 2018-01-02 2019-10-15 General Electric Company Heat dissipation system for electric aircraft engine
US11092024B2 (en) * 2018-10-09 2021-08-17 General Electric Company Heat pipe in turbine engine
JP7445452B2 (ja) * 2020-02-14 2024-03-07 川崎重工業株式会社 ガスタービンエンジン
US11326519B2 (en) 2020-02-25 2022-05-10 General Electric Company Frame for a heat engine
US11047306B1 (en) 2020-02-25 2021-06-29 General Electric Company Gas turbine engine reverse bleed for coking abatement
US11560843B2 (en) 2020-02-25 2023-01-24 General Electric Company Frame for a heat engine
US11255264B2 (en) 2020-02-25 2022-02-22 General Electric Company Frame for a heat engine
US12031484B2 (en) 2021-01-28 2024-07-09 General Electric Company Gas turbine engine cooling system control
FR3130893B1 (fr) * 2021-12-21 2023-11-17 Safran Système de refroidissement d’un liquide de lubrification d’une turbomachine d’aéronef
US11970971B2 (en) 2022-04-27 2024-04-30 General Electric Company Heat transfer system for gas turbine engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1516041A (en) * 1977-02-14 1978-06-28 Secr Defence Multistage axial flow compressor stators
US5878808A (en) * 1996-10-30 1999-03-09 Mcdonnell Douglas Rotating heat exchanger
RU2130404C1 (ru) * 1995-10-02 1999-05-20 Витко Андрей Владимирович Термодипольный способ полета и летательный аппарат для его осуществления и его вариант
US5979220A (en) * 1998-06-30 1999-11-09 Siemens Westinghouse Power Corporation In-situ sensors for gas turbines
RU2203432C2 (ru) * 2001-02-23 2003-04-27 Открытое акционерное общество "Научно-производственное объединение "Сатурн" Противообледенительная система газотурбинного двигателя

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2747365A (en) * 1953-07-03 1956-05-29 Armstroug Siddeley Motors Ltd Supply of hot air from a gas turbine engine for anti-icing or other purposes
US3116789A (en) * 1960-03-14 1964-01-07 Rolls Royce Heat exchange apparatus, e. g. for use in gas turbine engines
US4240257A (en) 1973-02-22 1980-12-23 The Singer Company Heat pipe turbo generator
US3965681A (en) 1975-06-30 1976-06-29 General Motors Corporation Internal combustion engine and turbosupercharger therefor with heat pipe for intake mixture heating
US4186559A (en) 1976-06-07 1980-02-05 Decker Bert J Heat pipe-turbine
GB1541894A (en) 1976-08-12 1979-03-14 Rolls Royce Gas turbine engines
GB1548836A (en) 1977-03-17 1979-07-18 Rolls Royce Gasturbine engine
GB1605405A (en) 1977-07-22 1995-07-19 Rolls Royce Heat pipes
GB1555587A (en) 1977-07-22 1979-11-14 Rolls Royce Aerofoil blade for a gas turbine engine
IT1123460B (it) * 1978-07-10 1986-04-30 Westinghouse Canada Ltd Metodo per riscaldare le palette direttrici in una turbina a gas
JPS56143525U (ru) * 1980-03-28 1981-10-29
US5192186A (en) 1980-10-03 1993-03-09 Rolls-Royce Plc Gas turbine engine
GB2090333B (en) 1980-12-18 1984-04-26 Rolls Royce Gas turbine engine shroud/blade tip control
GB2136880A (en) 1983-03-18 1984-09-26 Rolls Royce Anti-icing of gas turbine engine air intakes
GB2245314B (en) 1983-05-26 1992-04-22 Rolls Royce Cooling of gas turbine engine shroud rings
US4671348A (en) * 1985-05-21 1987-06-09 Mcdonnell Douglas Corporation Transverse flow edge heat pipe
US4782658A (en) * 1987-05-07 1988-11-08 Rolls-Royce Plc Deicing of a geared gas turbine engine
JPH063354B2 (ja) * 1987-06-23 1994-01-12 アクトロニクス株式会社 ル−プ型細管ヒ−トパイプ
US4914904A (en) * 1988-11-09 1990-04-10 Avco Corporation Oil cooler for fan jet engines
US5046920A (en) 1989-02-23 1991-09-10 Fuji Electric Co., Ltd. Bearing cooling system in horizontal shaft water turbine generator
JP3365005B2 (ja) * 1993-10-26 2003-01-08 石川島播磨重工業株式会社 タービン静翼の冷却装置
US5873699A (en) * 1996-06-27 1999-02-23 United Technologies Corporation Discontinuously reinforced aluminum gas turbine guide vane
JPH10184389A (ja) * 1996-12-26 1998-07-14 Ishikawajima Harima Heavy Ind Co Ltd ガスタービンエンジン
US5964279A (en) 1997-02-10 1999-10-12 Fujikura Ltd. Cooler for electronic devices
US5975841A (en) 1997-10-03 1999-11-02 Thermal Corp. Heat pipe cooling for turbine stators
US6442944B1 (en) * 2000-10-26 2002-09-03 Lockheet Martin Corporation Bleed air heat exchanger integral to a jet engine
GB0112876D0 (en) * 2001-05-26 2001-07-18 Rolls Royce Plc A method of manufacturing an article
US7131612B2 (en) * 2003-07-29 2006-11-07 Pratt & Whitney Canada Corp. Nacelle inlet lip anti-icing with engine oil
US6990797B2 (en) * 2003-09-05 2006-01-31 General Electric Company Methods and apparatus for operating gas turbine engines
US7377100B2 (en) * 2004-08-27 2008-05-27 Pratt & Whitney Canada Corp. Bypass duct fluid cooler

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1516041A (en) * 1977-02-14 1978-06-28 Secr Defence Multistage axial flow compressor stators
RU2130404C1 (ru) * 1995-10-02 1999-05-20 Витко Андрей Владимирович Термодипольный способ полета и летательный аппарат для его осуществления и его вариант
US5878808A (en) * 1996-10-30 1999-03-09 Mcdonnell Douglas Rotating heat exchanger
US5979220A (en) * 1998-06-30 1999-11-09 Siemens Westinghouse Power Corporation In-situ sensors for gas turbines
RU2203432C2 (ru) * 2001-02-23 2003-04-27 Открытое акционерное общество "Научно-производственное объединение "Сатурн" Противообледенительная система газотурбинного двигателя

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2621438C1 (ru) * 2016-03-03 2017-06-06 Алексей Алексеевич Сердюков Котел наружного размещения

Also Published As

Publication number Publication date
US7900437B2 (en) 2011-03-08
EP1884628B1 (en) 2016-11-09
EP1884628A3 (en) 2014-08-06
JP5036433B2 (ja) 2012-09-26
RU2007128955A (ru) 2009-02-10
CA2594049C (en) 2014-12-02
CN101113689A (zh) 2008-01-30
CN101113689B (zh) 2012-06-06
EP1884628A2 (en) 2008-02-06
JP2008031997A (ja) 2008-02-14
CA2594049A1 (en) 2008-01-28
US20100236217A1 (en) 2010-09-23

Similar Documents

Publication Publication Date Title
RU2447300C2 (ru) Система теплопередачи
JP5188122B2 (ja) ヒートパイプを使用したタービンエンジン用の熱伝達システム
RU2436975C2 (ru) Теплопередающая система для турбинного двигателя с использованием тепловых труб
EP1895124B1 (en) Oil cooling apparatus in fan cowling
US8015788B2 (en) Heat transfer system for turbine engine using heat pipes
US20170314471A1 (en) Systems and methods for thermally integrating oil reservoir and outlet guide vanes using heat pipes
US20170184026A1 (en) System and method of soakback mitigation through passive cooling

Legal Events

Date Code Title Description
HE4A Change of address of a patent owner

Effective date: 20191008

MM4A The patent is invalid due to non-payment of fees

Effective date: 20200728