RU2241281C2 - Способ получения тонких пленок кобальтата лития - Google Patents
Способ получения тонких пленок кобальтата лития Download PDFInfo
- Publication number
- RU2241281C2 RU2241281C2 RU2003103871/09A RU2003103871A RU2241281C2 RU 2241281 C2 RU2241281 C2 RU 2241281C2 RU 2003103871/09 A RU2003103871/09 A RU 2003103871/09A RU 2003103871 A RU2003103871 A RU 2003103871A RU 2241281 C2 RU2241281 C2 RU 2241281C2
- Authority
- RU
- Russia
- Prior art keywords
- lithium
- cobalt
- films
- lithium cobaltate
- film
- Prior art date
Links
Classifications
-
- Y02E60/122—
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Изобретение относится к области электроники, в частности к получению тонких пленок активного кобальтата лития, используемого в качестве катодного материала в производстве тонкопленочных литий-ионных аккумуляторов. Способ получения тонких пленок из активного кобальтата лития для литий-ионных аккумуляторов включает экстракцию лития и кобальта из водных растворов концентратом α-разветвленных монокарбоновых кислот, смешение экстрактов Li и Со в мольном соотношении металлов 1:1. Новым в способе является то, что пленки кобальтата лития получают на токопроводящих подложках, например, из медной, алюминиевой фольги путем многократного смачивания погружением в раствор смеси карбоксилатов лития и кобальта с последующим обжигом в течение 2-3 минут, а необходимую толщину пленки получают посредством нескольких циклов смачивания и отжига, а также регулируя концентрацию лития и кобальта в смеси их карбоксилатов при строгом мольном соотношении этих металлов 1:1, причем синтез кобальтата лития и формирование пленок протекают одновременно. Техническим результатом изобретения является создание простого, низкотемпературного способа получения тонких пленок кобальтата лития, которые обеспечивают повышение зарядно-разрядного напряжения и увеличивают удельную мощность электродов на их основе. 1 табл.
Description
Изобретение относится к области получения тонких пленок активного катодного материала кобальтатта лития (LiCoO2), используемого для производства тонкопленочных литий-ионных аккумуляторов.
Снижение размеров электронных приборов и устройств требует разработки миниатюрных автономных блоков электропитания. Если анод (металлический литий) может быть изготовлен способом прокатки на вальцах до необходимой толщины, то для получения тонких пленок для катодов из кобальтата лития необходимо использование технологий микроэлектроники: электростатического напыления [Nishzana Kohtalta // Bull. Soc. Jap. 1998. 71, №8. Р.2011-2015], высокочастотного магнетронного напыления и отжига при 700°С [Bates Z.B., Dudney N.J. //J. Elecrtochem. Soc., 2000. 147, №1. - Р.59-70], плазменного индуцирования в присутствии водорода и кислорода путем разложения комплексных соединений лития и марганца в паровой фазе [Li Pong. Zhang Li-Yuang // J. Electrochem. Soc., 1999. 146. №6.Р. 2001-2005].
Приведенные методы требуют предварительного твердофазного синтеза кобальтата лития и последующего получения пленки с использованием сложной энергоемкой дорогостоящей аппаратуры.
Известен способ получения кобальтата лития, используемого в качестве катодного материала в литий-ионных аккумуляторах путем обжига при 600-900°С смеси оксида кобальта и гидроксида или карбоната лития при мольном соотношении Li:Со=1:1 в течение 20 часов, после чего огарок охлаждают и измельчают в среде этанола [Л.С.Каневский, Т.С.Кулова, Е.А.Нижниковский и др. // Литиевые источники тока. Материалы VI Междунар.конф., Новочеркасск, Изд. Набла. - 2000. - С.94-95].
Существенными недостатками являются: необходимость измельчения в планетарной мельнице и тщательного стехиометрического смешивания исходных продуктов, применение высокой температуры обжига (до 900°С), длительность обжига (20 часов), необходимость повторного измельчения огарков в среде этанола и последующей сушки активного материала.
Известен также способ синтеза литий-кобальтового оксида из растворов ацетатов в многоатомных спиртах [Электрохимические, электрофизические и структурные свойства литированных оксидов Со(II) и Ni(II), полученных термодеструкцией ацетатов / Е.В.Карасева, B.C.Колосницын, Н.А.Аминева и др. // Литиевые источники тока. Материалы VI межд. конф., Новочеркасск, Набла, 2000. С.74-75].
При поликонденсации алкоксидов металлов с солями многоосновных кислот происходит образование гелей, которые подвергаются термодеструкции при 700-750°С с образованием фазы шпинелей.
Недостатками способа являются: использование дефицитных солей металлов (ацетатов), синтез которых достаточно сложен; наличие высокой температуры термодеструкции (750°С).
Перечисленные недостатки способов получения тонких пленок катодов устраняются методами, используемыми в микроэлектронике.
Наиболее близким техническим решением является способ синтеза активного катодного материала для литий-ионных аккумуляторов из смеси экстрактов монокарбоновых кислот лития и кобальта в соотношении металлов 1:1 (мольном) с последующим пиролизом карбоксилатов лития и кобальта при 500-570°С [Положительное решение о выдаче патента на изобретение по заявке №2001104458/02 (004536) // Патрушева Т.Н., Сухова Г.И и др., 2002].
Указанный технический результат в способе получения тонких пленок кобальтата лития, включающем экстракцию лития и кобальта из водных растворов их неорганических солей концентратом α-разветвленных карбоновых кислот, смешение экстрактов лития и кобальта в мольном соотношении металлов 1:1 согласно изобретению. В смеси экстрактов образуются комплексные гетерополисоединения, которые при термическом разложении при температурах 500-570°С формируются не в отдельные оксиды, а в фазу кобальтата лития. Пленки кобальтата лития получают на токопроводящих подложках из медной или алюминиевой фольги путем многократного смачивания погружением в раствор смеси карбоксилатов лития и кобальта с последующим отжигом в течение 2-3 минут при температуре 500-570°С. Относительно небольшой интервал времени отжига обуславливается способностью тонкой пленки и подложки к быстрому прогреву. Необходимую толщину пленок регулируют количеством циклов смачивания и отжига и концентрацией кобальта и лития в экстрактах.
Каждый слой, полученный методом погружения токопроводящей подложки в органический раствор, после удаления избыточного количества жидкости и растворителя отжигается при температуре фазообразования (500-570°С) в течение 2-3 мин. В качестве подложки применяют медную или алюминиевую фольгу. Полученные многократным повторением процессов смачивания погружением и отжига пленки кобальтата лития имеют хорошую адгезию и сплошность. Пленка на алюминиевой подложке имеет слоистую морфологию с ярко выраженной текстурой, то есть слои имеют слоистую структуру с субмикронным размером зерен.
Морфология пленок кобальтата лития на медной фольге характеризуется улучшенной гладкостью, сплошностью. При этом сохраняется мелкозернистая структура пленки, что способствует повышению удельной поверхности материала, увеличивается эффективность его функционирования.
Отличительными признаками заявляемого технического решения являются получение пленки кобальтата лития на токопроводящих подложках из меди или алюминия методом многократного смачивания погружением в раствор смеси карбоксилатов лития и кобальта при мольном соотношении 1:1 с последующим отжигом в течение 2-3 мин при температуре 500-570°С. Толщину пленок регулируют количеством циклов смачивания - отжига, а также концентрацией лития и кобальта в смеси их карбоксилатов при мольном соотношении этих металлов 1:1. Синтез кобальтата лития и формирование пленок на токопроводящих подложках протекают одновременно. Таким образом, совокупность отличительных признаков разработанного технического решения от прототипа и аналогов позволяет сделать вывод о соответствии разработанного способа критерию “существенные отличия”.
Предлагаемый способ получения тонких пленок из кобальтата лития для литий-ионных аккумуляторов реализуется следующим образом.
Проводят жидкофазную экстракцию кобальта и лития (раздельно) из водных хлоридных растворов с использованием в качестве экстрагента концентрата α-разветвленных карбоновых кислот. Экстракция проходит по катионообменному механизму, что позволяет получить необходимую концентрацию лития и кобальта в экстрактах, после чего их смешивают так, чтобы в смеси мольное соотношение лития и кобальта было 1:1. Далее подложки из медной или алюминиевой фольги смачивают погружением в полученный раствор с последующим отжигом при температуре 500-570°С в течение 2-3 минут. Толщину пленки регулируют количеством циклов смачивания и отжига, а также концентрацией лития и кобальта в экстрактах.
Пример 1. Берут водные хлоридные растворы лития и кобальта концентрации 1 моль/дм3 и проводят экстракцию смесью карбоновых кислот (С5-С9). Полученные экстракты лития и кобальта с концентрацией 0,8 м/дм3 и 0,4 м/дм3 соответственно смешивают в мольном соотношении лития и кобальта 1:2. Подложку из медной фольги погружают в полученный раствор, затем подвергают отжигу при температуре 570°С в течение 2 минут. Толщина полученной пленки составила 62,8 нм. При пятикратном погружении и отжиге подложки с пленкой ее толщина составила 308 нм.
Пример 2. Берут водные хлоридные растворы лития и кобальта концентрации 1 моль/дм3 и проводят экстракцию смесью карбоновых кислот (С5-С9). Полученные экстракты лития и кобальта с концентрацией 0,8 м/дм3 и 0,4 м/дм3 соответственно смешивают в мольном соотношении лития и кобальта 1:2. Смесь растворов экстрактов разбавляют гексаном в 2 раза. Подложку из медной фольги погружают в полученный раствор, затем подвергают отжигу при температуре 570°С в течение 2 минут. Толщина полученной пленки составила 35 нм. При пятикратном погружении и отжиге подложки с пленкой ее толщина составила 120 нм.
Пример 3. Аналогично примеру 1, при концентрации лития и кобальта в смеси экстрактов 0,4 моль/дм3, при последующем однократном погружении алюминиевой подложки и отжиге при температуре 570°С толщина пленки составила 80,5 нм. При пятикратном повторении цикла смачивание-отжиг толщина пленки составила 405 нм, при десятикратном - 760 нм, при пятнадцатикратном - 1170 нм.
Пример 4. Аналогично примеру 2, при концентрации лития и кобальта в смеси экстрактов 0,4 моль/дм3, при последующем однократном погружении алюминиевой подложки и отжиге при температуре 500°С и времени термообработки 3 минуты толщина пленки составила 40 нм. При пятикратном повторении цикла смачивание-отжиг толщина пленки составила 140 нм.
Пленки кобальтата лития получают по технологии смачивания подложки погружением в раствор карбоксилатов. Каждый слой получают методом погружения токопроводящей подложки в органический раствор с последующим отжигом при температуре образования фазы (500-570°С) в течение 2-3 мин. Относительно небольшой интервал времени обусловлен способностью тонкой пленки и подложки к быстрому прогреву. В качестве подложки используются медная и алюминиевая фольга. Полученные многократным повторением процессов смачивания и отжига пленки кобальтата лития LiCoO2 имели достаточно хорошую адгезию и сплошность.
При получении пленок кобальтата лития из разбавленного в два раза экстракта толщина пленок также уменьшается примерно в два раза. Структура пленки не меняется. Таким образом, предлагаемое техническое решение позволяет достаточно быстро получать тонкие пленки активного катодного материала из кобальтата лития различной толщины для изготовления тонкопленочных аккумуляторов.
Для определения электрохимических характеристик тонкопленочного катода из кобальтата лития, полученного методом смачивания подложки погружением и последующего отжига по примеру 1, был изготовлен полуэлемент с литиевым электродом. В таблице представлены электрохимические характеристики такого полуэлемента.
Из таблицы видно, что нанесенные тонкопленочные электроды способны неоднократно циклироваться. При снижении глубины разряда его эффективность возрастает до 90% и выше. Также пленки имеют повышенное зарядно-разрядное напряжение, что приводит к увеличению удельной мощности исследуемых электродов на основе кобальтата лития.
Claims (1)
- Способ получения тонких пленок кобальтата лития на токопроводящей подложке, выполненной из медной или алюминиевой фольги, включающий экстракцию лития и кобальта из водных растворов их неорганических солей концентратом α-разветвленных монокарбоновых кислот, смешение экстрактов лития и кобальта в мольном соотношении металлов 1:1, смачивание токопроводящей подложки погружением в раствор смеси карбоксилатов лития и кобальта с последующим отжигом при температуре 500-570°С в течение 2-3 мин, при этом необходимую толщину пленок регулируют количеством циклов смачивания – отжига и концентрацией лития и кобальта в смеси их карбоксилатов при строгом мольном соотношении этих металлов.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2003103871/09A RU2241281C2 (ru) | 2003-02-10 | 2003-02-10 | Способ получения тонких пленок кобальтата лития |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2003103871/09A RU2241281C2 (ru) | 2003-02-10 | 2003-02-10 | Способ получения тонких пленок кобальтата лития |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2003103871A RU2003103871A (ru) | 2004-08-20 |
RU2241281C2 true RU2241281C2 (ru) | 2004-11-27 |
Family
ID=34310386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2003103871/09A RU2241281C2 (ru) | 2003-02-10 | 2003-02-10 | Способ получения тонких пленок кобальтата лития |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2241281C2 (ru) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7959769B2 (en) | 2004-12-08 | 2011-06-14 | Infinite Power Solutions, Inc. | Deposition of LiCoO2 |
US7993773B2 (en) | 2002-08-09 | 2011-08-09 | Infinite Power Solutions, Inc. | Electrochemical apparatus with barrier layer protected substrate |
US8021778B2 (en) | 2002-08-09 | 2011-09-20 | Infinite Power Solutions, Inc. | Electrochemical apparatus with barrier layer protected substrate |
US8062708B2 (en) | 2006-09-29 | 2011-11-22 | Infinite Power Solutions, Inc. | Masking of and material constraint for depositing battery layers on flexible substrates |
US8197781B2 (en) | 2006-11-07 | 2012-06-12 | Infinite Power Solutions, Inc. | Sputtering target of Li3PO4 and method for producing same |
US8236443B2 (en) | 2002-08-09 | 2012-08-07 | Infinite Power Solutions, Inc. | Metal film encapsulation |
US8260203B2 (en) | 2008-09-12 | 2012-09-04 | Infinite Power Solutions, Inc. | Energy device with integral conductive surface for data communication via electromagnetic energy and method thereof |
US8268488B2 (en) | 2007-12-21 | 2012-09-18 | Infinite Power Solutions, Inc. | Thin film electrolyte for thin film batteries |
US8350519B2 (en) | 2008-04-02 | 2013-01-08 | Infinite Power Solutions, Inc | Passive over/under voltage control and protection for energy storage devices associated with energy harvesting |
US8394522B2 (en) | 2002-08-09 | 2013-03-12 | Infinite Power Solutions, Inc. | Robust metal film encapsulation |
US8404376B2 (en) | 2002-08-09 | 2013-03-26 | Infinite Power Solutions, Inc. | Metal film encapsulation |
US8431264B2 (en) | 2002-08-09 | 2013-04-30 | Infinite Power Solutions, Inc. | Hybrid thin-film battery |
US8445130B2 (en) | 2002-08-09 | 2013-05-21 | Infinite Power Solutions, Inc. | Hybrid thin-film battery |
US8508193B2 (en) | 2008-10-08 | 2013-08-13 | Infinite Power Solutions, Inc. | Environmentally-powered wireless sensor module |
US8518581B2 (en) | 2008-01-11 | 2013-08-27 | Inifinite Power Solutions, Inc. | Thin film encapsulation for thin film batteries and other devices |
US8599572B2 (en) | 2009-09-01 | 2013-12-03 | Infinite Power Solutions, Inc. | Printed circuit board with integrated thin film battery |
US8636876B2 (en) | 2004-12-08 | 2014-01-28 | R. Ernest Demaray | Deposition of LiCoO2 |
US8728285B2 (en) | 2003-05-23 | 2014-05-20 | Demaray, Llc | Transparent conductive oxides |
US8906523B2 (en) | 2008-08-11 | 2014-12-09 | Infinite Power Solutions, Inc. | Energy device with integral collector surface for electromagnetic energy harvesting and method thereof |
US9334557B2 (en) | 2007-12-21 | 2016-05-10 | Sapurast Research Llc | Method for sputter targets for electrolyte films |
US9634296B2 (en) | 2002-08-09 | 2017-04-25 | Sapurast Research Llc | Thin film battery on an integrated circuit or circuit board and method thereof |
US10680277B2 (en) | 2010-06-07 | 2020-06-09 | Sapurast Research Llc | Rechargeable, high-density electrochemical device |
-
2003
- 2003-02-10 RU RU2003103871/09A patent/RU2241281C2/ru not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
NISHZANA Kohtalta. Bull Soc., Jap. - 1998, 71, №8, p.2011-2015. * |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8404376B2 (en) | 2002-08-09 | 2013-03-26 | Infinite Power Solutions, Inc. | Metal film encapsulation |
US7993773B2 (en) | 2002-08-09 | 2011-08-09 | Infinite Power Solutions, Inc. | Electrochemical apparatus with barrier layer protected substrate |
US8021778B2 (en) | 2002-08-09 | 2011-09-20 | Infinite Power Solutions, Inc. | Electrochemical apparatus with barrier layer protected substrate |
US9793523B2 (en) | 2002-08-09 | 2017-10-17 | Sapurast Research Llc | Electrochemical apparatus with barrier layer protected substrate |
US9634296B2 (en) | 2002-08-09 | 2017-04-25 | Sapurast Research Llc | Thin film battery on an integrated circuit or circuit board and method thereof |
US8236443B2 (en) | 2002-08-09 | 2012-08-07 | Infinite Power Solutions, Inc. | Metal film encapsulation |
US8535396B2 (en) | 2002-08-09 | 2013-09-17 | Infinite Power Solutions, Inc. | Electrochemical apparatus with barrier layer protected substrate |
US8445130B2 (en) | 2002-08-09 | 2013-05-21 | Infinite Power Solutions, Inc. | Hybrid thin-film battery |
US8431264B2 (en) | 2002-08-09 | 2013-04-30 | Infinite Power Solutions, Inc. | Hybrid thin-film battery |
US8394522B2 (en) | 2002-08-09 | 2013-03-12 | Infinite Power Solutions, Inc. | Robust metal film encapsulation |
US8728285B2 (en) | 2003-05-23 | 2014-05-20 | Demaray, Llc | Transparent conductive oxides |
US8636876B2 (en) | 2004-12-08 | 2014-01-28 | R. Ernest Demaray | Deposition of LiCoO2 |
US7959769B2 (en) | 2004-12-08 | 2011-06-14 | Infinite Power Solutions, Inc. | Deposition of LiCoO2 |
US8062708B2 (en) | 2006-09-29 | 2011-11-22 | Infinite Power Solutions, Inc. | Masking of and material constraint for depositing battery layers on flexible substrates |
US8197781B2 (en) | 2006-11-07 | 2012-06-12 | Infinite Power Solutions, Inc. | Sputtering target of Li3PO4 and method for producing same |
US9334557B2 (en) | 2007-12-21 | 2016-05-10 | Sapurast Research Llc | Method for sputter targets for electrolyte films |
US8268488B2 (en) | 2007-12-21 | 2012-09-18 | Infinite Power Solutions, Inc. | Thin film electrolyte for thin film batteries |
US8518581B2 (en) | 2008-01-11 | 2013-08-27 | Inifinite Power Solutions, Inc. | Thin film encapsulation for thin film batteries and other devices |
US9786873B2 (en) | 2008-01-11 | 2017-10-10 | Sapurast Research Llc | Thin film encapsulation for thin film batteries and other devices |
US8350519B2 (en) | 2008-04-02 | 2013-01-08 | Infinite Power Solutions, Inc | Passive over/under voltage control and protection for energy storage devices associated with energy harvesting |
US8906523B2 (en) | 2008-08-11 | 2014-12-09 | Infinite Power Solutions, Inc. | Energy device with integral collector surface for electromagnetic energy harvesting and method thereof |
US8260203B2 (en) | 2008-09-12 | 2012-09-04 | Infinite Power Solutions, Inc. | Energy device with integral conductive surface for data communication via electromagnetic energy and method thereof |
US8508193B2 (en) | 2008-10-08 | 2013-08-13 | Infinite Power Solutions, Inc. | Environmentally-powered wireless sensor module |
US8599572B2 (en) | 2009-09-01 | 2013-12-03 | Infinite Power Solutions, Inc. | Printed circuit board with integrated thin film battery |
US9532453B2 (en) | 2009-09-01 | 2016-12-27 | Sapurast Research Llc | Printed circuit board with integrated thin film battery |
US10680277B2 (en) | 2010-06-07 | 2020-06-09 | Sapurast Research Llc | Rechargeable, high-density electrochemical device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2241281C2 (ru) | Способ получения тонких пленок кобальтата лития | |
Lee et al. | Scalable fabrication of flexible thin-film batteries for smart lens applications | |
US11600819B2 (en) | Positive electrode of lithium-ion battery, all-solid-state lithium-ion battery and preparation method thereof, and electrical device | |
Tan et al. | Controllable crystalline preferred orientation in Li–Co–Ni–Mn oxide cathode thin films for all-solid-state lithium batteries | |
KR20180041872A (ko) | 전고체 전지용 코어-쉘 구조의 전극 활물질의 제조방법 | |
CN104681808B (zh) | 一种锶盐掺杂镍锰酸锂的锂离子电池正极材料制备方法 | |
Porthault et al. | Synthesis of LiCoO2 thin films by sol/gel process | |
KR20040111488A (ko) | 비수성 전해질 2차 전지용 양극 활성 물질 및 이의 제조방법 | |
CN115566198A (zh) | 具有功能性保护层的三维集流体、锂金属复合电极及应用 | |
JP2006156284A (ja) | リチウムイオン導電体およびそれを用いた二次電池 | |
TWI536641B (zh) | 經金屬塗覆之電極活性材料的前驅物及其製法 | |
Chen et al. | High rate performance of LiMn2O4 cathodes for lithium ion batteries synthesized by low temperature oxygen plasma assisted sol–gel process | |
Perre et al. | Electrodeposited Cu 2 Sb as anode material for 3-dimensional Li-ion microbatteries | |
Cruz et al. | Spray pyrolysis as a method for preparing PbO coatings amenable to use in lead-acid batteries | |
WO2006080126A1 (ja) | リチウム電池及びその製造方法 | |
JP2002352801A (ja) | リチウム二次電池用負極材料、その改良方法とリチウム二次電池 | |
Azib et al. | Direct fabrication of LiCoO2 thin-films in water–ethanol solutions by electrochemical–hydrothermal method | |
EP3162764B1 (en) | Methods for forming lithium manganese oxide layers | |
Rao et al. | LiNi x Co 1− x O 2 Cell Grown by Pulsed Laser Deposition | |
JP2003217580A (ja) | リチウム二次電池用電極およびその製造方法 | |
CN110085917B (zh) | 全固态锂离子电池及其制备方法和用电设备 | |
CN113151790A (zh) | 离子/电子共导体薄膜及其制备方法、固态电池及电动车 | |
JP2002235177A (ja) | SnO膜及びその作製方法 | |
CN115064692B (zh) | 一种复合包覆钴酸锂正极材料及其制备工艺 | |
Kim et al. | The characterization of LiMn2O4 thin film cathode for lithium rechargeable microbattery prepared by liquid source misted chemical deposition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20070211 |