NO324096B1 - Mixing and method of sealing an annulus between a borehole and a liner - Google Patents
Mixing and method of sealing an annulus between a borehole and a liner Download PDFInfo
- Publication number
- NO324096B1 NO324096B1 NO20021313A NO20021313A NO324096B1 NO 324096 B1 NO324096 B1 NO 324096B1 NO 20021313 A NO20021313 A NO 20021313A NO 20021313 A NO20021313 A NO 20021313A NO 324096 B1 NO324096 B1 NO 324096B1
- Authority
- NO
- Norway
- Prior art keywords
- particulate material
- binder
- borehole
- annulus
- mixture
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 31
- 238000007789 sealing Methods 0.000 title claims description 27
- 239000011236 particulate material Substances 0.000 claims description 38
- 239000011230 binding agent Substances 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 23
- 239000000463 material Substances 0.000 claims description 19
- 239000012530 fluid Substances 0.000 claims description 18
- 239000007788 liquid Substances 0.000 claims description 15
- 239000002245 particle Substances 0.000 claims description 12
- 239000002105 nanoparticle Substances 0.000 claims description 10
- 239000002253 acid Substances 0.000 claims description 9
- 239000000725 suspension Substances 0.000 claims description 9
- 239000003795 chemical substances by application Substances 0.000 claims description 7
- 238000005553 drilling Methods 0.000 claims description 7
- 239000004575 stone Substances 0.000 claims description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 6
- 230000003213 activating effect Effects 0.000 claims description 4
- 238000007711 solidification Methods 0.000 claims description 4
- 230000008023 solidification Effects 0.000 claims description 4
- 239000004927 clay Substances 0.000 claims description 3
- 238000005520 cutting process Methods 0.000 claims description 3
- 239000011499 joint compound Substances 0.000 claims description 3
- 239000004576 sand Substances 0.000 claims description 3
- 230000035699 permeability Effects 0.000 claims description 2
- 230000004913 activation Effects 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 description 15
- 238000005755 formation reaction Methods 0.000 description 15
- 239000004568 cement Substances 0.000 description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000005012 migration Effects 0.000 description 4
- 238000013508 migration Methods 0.000 description 4
- 239000011435 rock Substances 0.000 description 4
- 229910001868 water Inorganic materials 0.000 description 4
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000005086 pumping Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 208000010392 Bone Fractures Diseases 0.000 description 1
- 206010017076 Fracture Diseases 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 229930013930 alkaloid Natural products 0.000 description 1
- 230000005465 channeling Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000012065 filter cake Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011234 nano-particulate material Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 229910000406 trisodium phosphate Inorganic materials 0.000 description 1
- 235000019801 trisodium phosphate Nutrition 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B33/00—Sealing or packing boreholes or wells
- E21B33/10—Sealing or packing boreholes or wells in the borehole
- E21B33/13—Methods or devices for cementing, for plugging holes, crevices or the like
- E21B33/14—Methods or devices for cementing, for plugging holes, crevices or the like for cementing casings into boreholes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B12/00—Cements not provided for in groups C04B7/00 - C04B11/00
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/005—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing gelatineous or gel forming binders, e.g. gelatineous Al(OH)3, sol-gel binders
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/42—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
- C09K8/44—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing organic binders only
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/42—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
- C09K8/46—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S507/00—Earth boring, well treating, and oil field chemistry
- Y10S507/906—Solid inorganic additive in defined physical form
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/734—Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
- Y10S977/753—Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc. with polymeric or organic binder
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/773—Nanoparticle, i.e. structure having three dimensions of 100 nm or less
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/895—Manufacture, treatment, or detection of nanostructure having step or means utilizing chemical property
- Y10S977/896—Chemical synthesis, e.g. chemical bonding or breaking
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Ceramic Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Structural Engineering (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Environmental & Geological Engineering (AREA)
- Geochemistry & Mineralogy (AREA)
- Dispersion Chemistry (AREA)
- Sealing Material Composition (AREA)
- Gasket Seals (AREA)
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
Description
Oppfinnelsen angår en fremgangsmåte og en blanding for tetting av borehull, spesielt for tetting av ringrommet mellom et borehull og en f6ring som er anbrakt i borehullet. The invention relates to a method and a mixture for sealing boreholes, in particular for sealing the annulus between a borehole and a liner which is placed in the borehole.
Under ferdigstillingen av en underjordisk brønn, spesielt en hydrokarbonpro-duserende brønn eller en injeksjonsbrønn, anbringes en foring inne i brønnen etter boring, slik at det fås en kanal gjennom hvilken fluider kan transporteres. Vanligvis blir foringen sementert på plass ved at et sementmateriale anbringes i ringrommet for å danne en ringformet tetning mellom foringen og de geologiske lag gjennom hvilke borehullet er blitt boret, for å stive opp borehullet og foringen. During the completion of an underground well, especially a hydrocarbon-producing well or an injection well, a liner is placed inside the well after drilling, so that a channel is obtained through which fluids can be transported. Typically, the casing is cemented in place by placing a cementitious material in the annulus to form an annular seal between the casing and the geological strata through which the borehole has been drilled, to stiffen the borehole and casing.
I patentpublikasjon US 5,411,092 beskrives en fremgangsmåte for sementering av en brønn ved å kombinere vann, masovnslagg og trinatriumfosfat til dannelse av en sementslurry, plassering av sementslurryen i brønnen og herding derav. I patentpublikasjon US 6,152,227 beskrives en fremgangsmåte for boring og sementering, hvorved borefluidet tilsettes sementerende materiale som får filterkaken til å herde med sement som påfølgende tilføres borehullet. Ingen av de nevnte publikasjoner vedrører sementering av foringsrør i en brønn hvorved det partikkelformige materialet er et steinmateriale og det anvendes et bindemiddel omfattende en alkoholsyresuspensjon av nanopartikler. Patent publication US 5,411,092 describes a method for cementing a well by combining water, blast furnace slag and trisodium phosphate to form a cement slurry, placing the cement slurry in the well and curing it. Patent publication US 6,152,227 describes a method for drilling and cementing, whereby a cementing material is added to the drilling fluid which causes the filter cake to harden with cement which is subsequently fed into the borehole. None of the aforementioned publications relate to the cementation of casing in a well whereby the particulate material is a stone material and a binder comprising an alcoholic acid suspension of nanoparticles is used.
Konvensjonelle sementmaterialer som benyttes for slik tetting, taper i bestandighet som følge av kjemisk angrep, høy temperatur og/eller fluider som finnes i brønnens omgivelser. Dessuten vil en sementoppslemming kunne gi ufullstendig tetting mellom borehullet og foringen og kan ofte tillate fluidmigrering eller kanaldannelse som hindrer oppnåelse av den effektive tetning som ønskes. Dessuten er det påkrevet med en kort herdetid. Conventional cement materials used for such sealing lose their durability as a result of chemical attack, high temperature and/or fluids found in the well's surroundings. In addition, a cement slurry can provide an incomplete seal between the borehole and the casing and can often allow fluid migration or channel formation which prevents the achievement of the desired effective seal. In addition, a short curing time is required.
Videre forholder det seg slik, at når sementen først har herdet fullstendig, vil den utgjøre en meget stiv struktur og kunne skades dersom omgivelsene i hvilke den er anbrakt skulle undergå endringer og lignende. Furthermore, once the cement has hardened completely, it will form a very rigid structure and could be damaged if the environment in which it is placed should undergo changes and the like.
Det er således klart at det er behov for en forbedret fremgangsmåte og blanding for tetting av brønnhull. It is thus clear that there is a need for an improved method and mixture for sealing well holes.
Det er følgelig et første siktemål med den foreliggende oppfinnelse å tilveiebringe en fremgangsmåte og en blanding for tetting av brønnhull og ringformede rom inne i slike brønner, for derigjennom å unngå de ovenfor omtalte problemer. It is consequently a first aim of the present invention to provide a method and a mixture for sealing well holes and annular spaces inside such wells, thereby avoiding the above-mentioned problems.
Det er videre et siktemål med den foreliggende oppfinnelse å tilveiebringe en slik fremgangsmåte og blanding som ikke resulterer i vesentlig økte kostnader. It is further an aim of the present invention to provide such a method and mixture which does not result in significantly increased costs.
Et ytterligere siktemål med oppfinnelsen er å tilveiebringe en slik fremgangsmåte og blanding som kan anbringes i konvensjonelle brønner ved bruk av konvensjonelt utstyr. A further aim of the invention is to provide such a method and mixture which can be placed in conventional wells using conventional equipment.
Andre siktemål og fordeler med oppfinnelsen vil fremgå av det nedenstående. Other aims and advantages of the invention will be apparent from the following.
SAMMENFATNING AV OPPFINNELSEN SUMMARY OF THE INVENTION
Ved hjelp av den foreliggende oppfinnelse er de ovenfor omtalte siktemål og fordeler blitt realisert. With the help of the present invention, the aims and advantages mentioned above have been realized.
I henhold til oppfinnelsen tilveiebringes en fremgangsmåte for tetting av et ringrom mellom et borehull og en foring, omfattende: å tilveiebringe et flytende tetningssystem omfattende et partikkelformig materiale og et bindemiddel, According to the invention, a method for sealing an annulus between a borehole and a casing is provided, comprising: providing a liquid sealing system comprising a particulate material and a binder,
å anbringe det flytende tetningssystem i ringrommet, hvorved det partikkelformige materiale adhererer til borehullets vegger og foringen, og placing the liquid seal system in the annulus, whereby the particulate material adheres to the walls of the borehole and the casing, and
å herde det flytende tetningssystem, slik at det dannes en fast tetning i ringrommet, to harden the liquid sealing system, so that a solid seal is formed in the annulus,
særpreget ved at det partikkelformige materiale omfatter et steinmateriale, og at bindemidlet omfatter en alkohol-syre-suspensjon av nanopartikler. characterized by the fact that the particulate material comprises a stone material, and that the binder comprises an alcohol-acid suspension of nanoparticles.
I henhold til oppfinnelsen tilveiebringes likeledes en blanding for tetting av borehull, omfattende According to the invention, a mixture for sealing boreholes is also provided, comprising
et flytende tetningssystem inneholdende et partikkelformig materiale og et bindemiddel, og at bindemidlet lar seg aktivere til å binde partikler av det partikkelformige materiale og å danne en fast tetning, a liquid sealing system containing a particulate material and a binder, and that the binder can be activated to bind particles of the particulate material and to form a solid seal,
særpreget ved at det partikkelformige materiale omfatter et steinmateriale, og at bindemidlet omfatter en alkohol-syre-suspensjon av nanopartikler. characterized by the fact that the particulate material comprises a stone material, and that the binder comprises an alcohol-acid suspension of nanoparticles.
Blandingen og fremgangsmåten ifølge oppfinnelsen tilveiebringer et system som adhererer til brønnhullet og foringen og derved sikrer tetningen bedre bestandighet, med vesentlig redusert tilbøyelighet til fluidmigrering, kanaldannelse og lignende. Videre gir fremgangsmåten og blandingen ifølge oppfinnelsen en mer fleksibel sluttstruktur som er mindre utsatt for skade som følge av geografiske endringer og lignende, og blandingen kan fremstilles til kostnader som er sammenlignbare med kostnadene for konvensjonell sement. The mixture and the method according to the invention provide a system that adheres to the wellbore and the liner and thereby ensures better durability of the seal, with a significantly reduced tendency to fluid migration, channel formation and the like. Furthermore, the method and the mixture according to the invention provide a more flexible final structure that is less susceptible to damage as a result of geographical changes and the like, and the mixture can be produced at costs that are comparable to the costs of conventional cement.
KORT BESKRIVELSE AV TEGNINGENE BRIEF DESCRIPTION OF THE DRAWINGS
En detaljert beskrivelse av foretrukne utførelsesformer av den foreliggende oppfinnelse følger, med henvisning til de vedføyde tegninger, hvor: Fig. 1 viser en lokalitet for utøvelse av oppfinnelsen og flere aspekter av fremgangsmåen ifølge oppfinnelsen. A detailed description of preferred embodiments of the present invention follows, with reference to the attached drawings, where: Fig. 1 shows a location for practicing the invention and several aspects of the method according to the invention.
NÆRMERE BESKRIVELSE AV OPPFINNELSEN DETAILED DESCRIPTION OF THE INVENTION
Oppfinnelsen angår en fremgangsmåte og en blanding for tetting av brønnhull, spesielt for tetting av ringrom mellom et borehull og en foring. The invention relates to a method and a mixture for sealing wellbore, in particular for sealing annulus between a borehole and a casing.
Som ovenfor angitt krever underjordiske brønner som for eksempel hydrokar-bonproduserende brønner og/eller injeksjonsbrønner i typiske tilfeller at en foring anbringes i brønnhullet for å tilveiebringe en kanal for transport av fluider, og denne foring må sementeres på plass i hullet. I henhold til oppfinnelsen tilveiebringes en blanding som med fordel kan anbringes i ringrommet som avgrenses av brønnhullet eller borehullet og foringen, slik at det dannes en pålitelig, massiv tetning med forbedrede egenskaper sammenlignet med konvensjonell sement. As stated above, underground wells such as hydrocarbon producing wells and/or injection wells typically require a liner to be placed in the wellbore to provide a channel for transporting fluids, and this liner must be cemented in place in the hole. According to the invention, a mixture is provided which can advantageously be placed in the annulus which is delimited by the wellbore or borehole and the casing, so that a reliable, solid seal is formed with improved properties compared to conventional cement.
Fig. 1 viser en typisk utførelse, hvor et borehull 10 er blitt boret gjennom underjordiske formasjoner 12, og en foring 14 er anbrakt inne i borehullet 10. Fig. 1 shows a typical embodiment, where a borehole 10 has been drilled through underground formations 12, and a liner 14 is placed inside the borehole 10.
Den foreliggende oppfinnelse er rettet på en tetningsblanding og en fremgangsmåte som er ideell for bruk for tetting av et ringrom 16 avgrenset mellom veggene av borehullet 10 og den utvendige overflate av foringen 14. Fig. 1 viser en massiv tetning 18 anbrakt i ringrommet 16 i henhold til intensjonen. The present invention is directed to a sealing compound and a method which is ideal for use for sealing an annular space 16 defined between the walls of the borehole 10 and the outer surface of the liner 14. Fig. 1 shows a massive seal 18 placed in the annular space 16 according to the intention.
I henhold til oppfinnelsen kan den ringformede tetning 18 dannes ved pumping av den egnede blanding gjennom et innvendig rom 20 i foring 14, slik at fluidet strømmer gjennom det innvendige rom i foringen 14, ut av bunnen av f&ringen 14 ved hullets nedre ende og opp gjennom ringrommet 16, som vist ved piler A på Fig. 1. Alternativt kan en egnet blanding føres direkte inn i ringrommet 16, for eksempel som vist ved pil B på Fig. 1. According to the invention, the annular seal 18 can be formed by pumping the suitable mixture through an internal space 20 in the liner 14, so that the fluid flows through the internal space in the liner 14, out of the bottom of the liner 14 at the lower end of the hole and up through the annulus 16, as shown by arrows A in Fig. 1. Alternatively, a suitable mixture can be introduced directly into the annulus 16, for example as shown by arrow B in Fig. 1.
I henhold til oppfinnelsen er blandingen for dannelse av den ønskede tetning med fordel et flytende tetningssystem som innbefatter et partikkelformig materiale og et bindemiddel som er aktiverbart, slik at det herder og binder partikler i det partikkel-formige materiale sammen, slik at den ønskede, massive tetning oppnås. According to the invention, the mixture for forming the desired seal is advantageously a liquid sealing system which includes a particulate material and a binder which is activatable, so that it hardens and binds particles in the particulate material together, so that the desired, massive sealing is achieved.
Videre kan det flytende tetningssystem ifølge oppfinnelsen, som omfatter et partikkelformig materiale og et bindemiddel i væskefase, med fordel utstyres med et aktiveringsmiddel som tjener til å opprettholde fluiditeten av systemet av partikkelformig materiale og bindemiddel under pumping, og som dessuten tjener til å akselerere størk-ningen av dette system under herding. Aktiveringsmidlet er et pH-modifiserende middel som justerer pH-verdien mot basiske verdier. Furthermore, the liquid sealing system according to the invention, which comprises a particulate material and a binder in liquid phase, can advantageously be equipped with an activating agent which serves to maintain the fluidity of the system of particulate material and binder during pumping, and which also serves to accelerate solidification ning of this system during curing. The activator is a pH-modifying agent that adjusts the pH value towards basic values.
I henhold til oppfinnelsen er det partikkelformige materiale et steinmateriale, for eksempel et materiale valgt blant sand, mudder, leire og liknende. Steinmaterialet kan omfatte rester fra formasjonen, som er blitt dannet under brønnboreprosessen. Det partikkelformige materiale omfatter partikler med en midlere partikkelstørrelse på mellom ca. 0,5 um og 500 um. I henhold til oppfinnelsen adhererer det partikkelformige materiale med fordel til brønnhullets vegger og den utvendige overflate av foringen under pumping av fluid, hvorved det på fordelaktig måte hindrer migrering av fluid inn i ringrommet og kanaldannelse eller andre uønskede omstendig-heter mens fluidet herdes. According to the invention, the particulate material is a stone material, for example a material selected from among sand, mud, clay and the like. The rock material may include residues from the formation, which have been formed during the well drilling process. The particulate material comprises particles with an average particle size of between approx. 0.5 µm and 500 µm. According to the invention, the particulate material advantageously adheres to the walls of the wellbore and the outer surface of the liner during pumping of fluid, whereby it advantageously prevents migration of fluid into the annulus and channel formation or other undesirable circumstances while the fluid hardens.
Det partikkelformige materiale kan hensiktsmessig utgjøres av partikler av ønsket størrelse av ethvert egnet materiale. I denne henseende velges materialet fortrinnsvis slik at det fås et materiale som er i stand til å stabilisere brønnen mekanisk, mens det samtidig er forlikelig med formasjonene og fluidene som opptrer i brønnhullet. Videre kan det partikkelformige materiale, i henhold til et foretrukket aspekt av oppfinnelsen, fås ved oppbryting eller annen knusing av borekaks under boringen av brønnen. På denne måte utgjøres det partikkelformige materiale av et steinmateriale, dannet fra bergarten som omgir brønnen som skal tettes. Dette bidrar til å sikre forlikelighet mellom det partikkelformige materiale og brønnen og andre geologiske omgivelser. The particulate material can conveniently be made up of particles of the desired size of any suitable material. In this respect, the material is preferably chosen so that a material is obtained which is capable of mechanically stabilizing the well, while at the same time being compatible with the formations and fluids occurring in the wellbore. Furthermore, the particulate material can, according to a preferred aspect of the invention, be obtained by breaking up or otherwise crushing drilling cuttings during the drilling of the well. In this way, the particulate material is made up of a stone material, formed from the rock that surrounds the well to be sealed. This helps to ensure compatibility between the particulate material and the well and other geological surroundings.
Bindemidlet foreligger i væskefase inneholdende oppslemmede nanopartikler og tilveiebringes som en alkohol-/syresuspensjon av nanopartikler. Egnede alkohol-/syresuspensjoner innbefatter metanol/HCL, etanol/HCL, metanol/H2S04 og lignende. Nanopartiklene som anvendes i henhold til oppfinnelsen, tilveiebringes med en midlere The binder is in liquid phase containing suspended nanoparticles and is provided as an alcohol/acid suspension of nanoparticles. Suitable alcohol/acid suspensions include methanol/HCL, ethanol/HCL, methanol/H 2 SO 4 and the like. The nanoparticles used according to the invention are provided by a means
partikkelstørrelse på mellom ca. 1 nanometer (10"<9>m) (nm) og ca. 200 nanometer (10"<9>m) particle size of between approx. 1 nanometer (10"<9>m) (nm) and about 200 nanometers (10"<9>m)
(nm). Nanopartiklene kan dannes av molekyler av organiske og uorganiske komponenter. Den uorganiske komponent har affinitet for steinmaterialet og de geologiske omgivelser i formasjonen. Således er for eksempel SiC>2 velegnet som den uorganiske forbindelse, spesielt silika og/eller kvarts. Den organiske komponent muliggjør polymerisasjonsbinding av den uorganiske komponent til steinmaterialet som den kommer i kontakt med, og de geologiske omgivelser i formasjonen under visse pH-betingelser, slik det vil bli forklart nedenfor. Egnede organiske komponenter innbefatter for eksempel silaner, hydroksylforbindelser og/eller alkaloider. Egnede nanopartikkel-materialer for bruk ved fremgangsmåten ifølge oppfinnelsen innbefatter de materialer som er beskrevet i PCT/EP97/06370, publisert 28. mai 1998. Bindemidlet tjener som et nanobindemiddel ved at det, når det herdes, tjener til å binde det partikkelformige materiale, slik at det bidrar til å bygge opp en ønsket fast struktur. Den polymerisasjonsbinding av nanopartiklene som er beskrevet ovenfor, er praktisk talt fraværende under sure betingelser. Bindingsprosessen vil finne sted over tid i omgivelser med nøytral pH. Bindingen og herdeprosessen kan akselereres ved injeksjon av vann etter konsoliderings-fluidet. Ytterligere akselerering oppnås ved å endre systemets pH-verdi mot høyere basisitet. Alkohol/syre-suspensjonen tjener videre til å rengjøre brønnhullets og foringens overflater, slik at det oppnås en ønskelig tetting mot disse. (nm). The nanoparticles can be formed from molecules of organic and inorganic components. The inorganic component has an affinity for the rock material and the geological surroundings in the formation. Thus, for example, SiC>2 is suitable as the inorganic compound, especially silica and/or quartz. The organic component enables polymerization bonding of the inorganic component to the rock material with which it comes into contact, and the geological environment of the formation under certain pH conditions, as will be explained below. Suitable organic components include, for example, silanes, hydroxyl compounds and/or alkaloids. Suitable nanoparticulate materials for use in the method of the invention include those described in PCT/EP97/06370, published May 28, 1998. The binder serves as a nanobinder in that, when cured, it serves to bind the particulate material, so that it helps to build up a desired fixed structure. The polymerization bond of the nanoparticles described above is practically absent under acidic conditions. The binding process will take place over time in an environment with a neutral pH. The bonding and curing process can be accelerated by injecting water after the consolidation fluid. Further acceleration is achieved by changing the system's pH value towards higher basicity. The alcohol/acid suspension also serves to clean the surfaces of the wellbore and the liner, so that a desirable seal is achieved against them.
Det partikkelformige materiale og bindemidlet er til stede i det flytende tetningssystem i et vektforhold mellom partikkelformig materiale og bindemiddel på mellom ca. 8,5:1 og ca. 9,5:1. The particulate material and the binder are present in the liquid sealing system in a weight ratio between particulate material and binder of between approx. 8.5:1 and approx. 9.5:1.
Det flytende bindemiddel og det partikkelformige materiale kan blandes på hensiktsmessig måte for å danne tetningssystemet. The liquid binder and the particulate material may be suitably mixed to form the sealing system.
Blandingen ifølge oppfinnelsen benyttes med fordel for å danne en fast tetning i en brønns ringrom ved at det flytende system anbringes i ringrommet på en hvilken som helst kjent måte, for eksempel ved bruk av én av metodene vist på Fig. 1. Så snart systemet er på plass, blir systemet herdet og tillatt å størkne, og dette utføres fortrinnsvis ved at systemets pH endres mot mer basiske verdier, slik at den ønskede størkning akselereres. Systemets pH kan justeres for eksempel gjennom injeksjon av H20, en basisk NaOH-oppløsning i H2O eller ved hjelp av annet pH-modifiserende additiv. The mixture according to the invention is advantageously used to form a firm seal in the annulus of a well by placing the liquid system in the annulus in any known way, for example using one of the methods shown in Fig. 1. As soon as the system is in place, the system is hardened and allowed to solidify, and this is preferably done by changing the system's pH towards more basic values, so that the desired solidification is accelerated. The system's pH can be adjusted, for example, by injecting H20, a basic NaOH solution in H2O or by means of another pH-modifying additive.
Så snart den faste tetning er blitt herdet i tilstrekkelig grad, kan hvilke som helst ytterligere handlinger foretas i brønnen, for eksempel perforering gjennom den ringformede tetning til et geografisk lag av formasjonen hvorfra produksjon er ønskelig, og brønnen kan deretter settes i produksjon og/eller underkastes injeksjon etter ønske. Once the fixed seal has been sufficiently hardened, any further operations may be performed in the well, such as perforating through the annular seal to a geographic layer of the formation from which production is desired, and the well may then be put on production and/or subject to injection as desired.
Den faste tetning som dannes i henhold til den foreliggende oppfinnelse, har en permeabilitet på høyst ca. 1 md. Følgelig er den faste tetning pålitelig med hensyn til å hindre fluidmigrering fra uønskede formasjoner. The fixed seal that is formed according to the present invention has a permeability of at most approx. 1 month. Consequently, the fixed seal is reliable in terms of preventing fluid migration from unwanted formations.
Den faste tetning har en sammenpressingsstyrke på minst ca. 5516 kPa, hvilket gjør den faste tetning ideell for bruk i ringrom i underjordiske brønner. The fixed seal has a compressive strength of at least approx. 5516 kPa, which makes the fixed seal ideal for use in annulus in underground wells.
Det vil lett forstås at det med den foreliggende oppfinnelse er tilveiebrakt en fremgangsmåte og en blanding som fordelaktig muliggjør forbedringer sammenlignet med bruk av konvensjonell sement ved tetting av ringrom og andre brønnhullomgivelser. Blandingen ifølge oppfinnelsen medfører fordeler med hensyn til adhesjon og tetningens bestandighet, samt med hensyn til fleksibilitet. Videre er kostnadene for blandingen ifølge oppfinnelsen stort sett de samme som kostnadene for konvensjonell sement, som for eksempel sement av type B og sement av type H. It will be easily understood that the present invention has provided a method and a mixture which advantageously enables improvements compared to the use of conventional cement when sealing annulus and other wellbore surroundings. The mixture according to the invention entails advantages with regard to adhesion and the durability of the seal, as well as with regard to flexibility. Furthermore, the costs of the mixture according to the invention are largely the same as the costs of conventional cement, such as cement of type B and cement of type H.
Den økede adhesjon av det partikkelformige materiale til foringens overflate og formasjonsveggene reduserer muligheten for kanalisering av fluid som ville resultere i uønsket produksjon fra uønskede soner eller formasjoner gjennom hvilke brønnen er blitt boret. Dette bidrar også til å hindre overkryssing av formasjonsfluid som følge av trykk-forskjeller. The increased adhesion of the particulate material to the casing surface and formation walls reduces the possibility of fluid channeling that would result in unwanted production from unwanted zones or formations through which the well has been drilled. This also helps to prevent crossing over of formation fluid as a result of pressure differences.
Det partikkelformige materiale velges i henhold til den spesielle anvendelse i ethvert gitt tilfelle, fortrinnsvis slik at det er forlikelig med formasjonsfluidene, og slik at det gir en tilstrekkelig grad av fleksibilitet som reduserer risikoen for brudd og sprekkdannelse. The particulate material is selected according to the particular application in any given case, preferably so that it is compatible with the formation fluids, and so that it provides a sufficient degree of flexibility that reduces the risk of fracture and cracking.
Bruk av et bindemiddel innbefattende en alkohol/syre-suspensjon muliggjør også, som ovenfor angitt, rengjøring av formasjonsveggenes og foringens overflate som et innledende trinn, før herdingen, slik at det fås tetninger av bedre kvalitet. Use of a binder including an alcohol/acid suspension also enables, as indicated above, cleaning of the surface of the formation walls and liner as an initial step, prior to curing, so that better quality seals are obtained.
Claims (16)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/809,871 US6554070B2 (en) | 2001-03-16 | 2001-03-16 | Composition and method for sealing an annular space between a well bore and a casing |
Publications (3)
Publication Number | Publication Date |
---|---|
NO20021313D0 NO20021313D0 (en) | 2002-03-15 |
NO20021313L NO20021313L (en) | 2002-09-17 |
NO324096B1 true NO324096B1 (en) | 2007-08-13 |
Family
ID=25202389
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO20021313A NO324096B1 (en) | 2001-03-16 | 2002-03-15 | Mixing and method of sealing an annulus between a borehole and a liner |
Country Status (5)
Country | Link |
---|---|
US (1) | US6554070B2 (en) |
CA (1) | CA2376827C (en) |
MX (1) | MXPA02002722A (en) |
NO (1) | NO324096B1 (en) |
RU (1) | RU2230178C2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6935432B2 (en) * | 2002-09-20 | 2005-08-30 | Halliburton Energy Services, Inc. | Method and apparatus for forming an annular barrier in a wellbore |
US7828068B2 (en) * | 2002-09-23 | 2010-11-09 | Halliburton Energy Services, Inc. | System and method for thermal change compensation in an annular isolator |
US6854522B2 (en) * | 2002-09-23 | 2005-02-15 | Halliburton Energy Services, Inc. | Annular isolators for expandable tubulars in wellbores |
US20050109502A1 (en) * | 2003-11-20 | 2005-05-26 | Jeremy Buc Slay | Downhole seal element formed from a nanocomposite material |
US7013998B2 (en) * | 2003-11-20 | 2006-03-21 | Halliburton Energy Services, Inc. | Drill bit having an improved seal and lubrication method using same |
US20050161212A1 (en) * | 2004-01-23 | 2005-07-28 | Schlumberger Technology Corporation | System and Method for Utilizing Nano-Scale Filler in Downhole Applications |
DE102007059424A1 (en) * | 2007-12-10 | 2009-06-18 | Epg (Engineered Nanoproducts Germany) Ag | Cement additives for oil-compatible cements |
US8273173B2 (en) * | 2008-09-22 | 2012-09-25 | Intevep, S.A. | Nano-additive for hydrocarbon well cementing operations |
US8936081B2 (en) | 2009-04-09 | 2015-01-20 | Schlumberger Technology Corporation | Compositions and methods for servicing subterranean wells |
FI20106154A0 (en) | 2010-11-03 | 2010-11-03 | Atlas Copco Rotex Ab Oy | Method and apparatus for connecting a ground pipe to the ground |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3998269A (en) * | 1975-10-10 | 1976-12-21 | Shell Oil Company | Plugging a subterranean reservoir with a self-sealing filter cake |
US4176720A (en) * | 1978-07-27 | 1979-12-04 | Atlantic Richfield Company | Well cementing in permafrost |
US4696698A (en) * | 1985-10-15 | 1987-09-29 | American Colloid Company | Flexible grout composition and method |
US4730675A (en) * | 1986-12-22 | 1988-03-15 | Marathon Oil Company | Plugging an abandoned well with a polymer gel |
US4948428A (en) * | 1988-09-14 | 1990-08-14 | Baroid Technology, Inc. | Grouting composition and method for grouting conduits in well bores |
US5038863A (en) * | 1990-07-20 | 1991-08-13 | Altantic Richfield Company | Cementing oil and gas wells |
US5351757A (en) * | 1992-12-18 | 1994-10-04 | Chevron Research And Technology Company | Method for silica gel emplacement for enhanced oil recovery |
US5407879A (en) * | 1993-09-29 | 1995-04-18 | American Colloid Company | Method of improving the contaminant resistance of a smectite clay by rewetting and impregnating the clay with a water-soluble polymer, and redrying the polymer-impregnated clay |
US5398758A (en) * | 1993-11-02 | 1995-03-21 | Halliburton Company | Utilizing drilling fluid in well cementing operations |
US5411092A (en) * | 1993-12-30 | 1995-05-02 | Shell Oil Company | Optimizing blast furnace slag cements |
DE19647368A1 (en) | 1996-11-15 | 1998-05-20 | Inst Neue Mat Gemein Gmbh | Composites |
US6152227A (en) * | 1997-10-24 | 2000-11-28 | Baroid Technology, Inc. | Drilling and cementing through shallow waterflows |
-
2001
- 2001-03-16 US US09/809,871 patent/US6554070B2/en not_active Expired - Lifetime
-
2002
- 2002-03-13 MX MXPA02002722 patent/MXPA02002722A/en active IP Right Grant
- 2002-03-14 CA CA 2376827 patent/CA2376827C/en not_active Expired - Fee Related
- 2002-03-15 NO NO20021313A patent/NO324096B1/en not_active IP Right Cessation
- 2002-03-15 RU RU2002106718A patent/RU2230178C2/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
US6554070B2 (en) | 2003-04-29 |
MXPA02002722A (en) | 2004-11-12 |
NO20021313D0 (en) | 2002-03-15 |
CA2376827C (en) | 2005-01-04 |
CA2376827A1 (en) | 2002-09-16 |
RU2230178C2 (en) | 2004-06-10 |
NO20021313L (en) | 2002-09-17 |
US20020129939A1 (en) | 2002-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7886823B1 (en) | Well remediation using downhole mixing of encapsulated plug components | |
US5358047A (en) | Fracturing with foamed cement | |
EP0936344A2 (en) | System and method for treatment of drilling or completion fluid | |
CA2969788C (en) | Additive for improving homogeneity of epoxy resin and cement composites | |
AU2015390249B2 (en) | Fracture having a bottom portion of reduced permeability and a top portion having a higher permeability | |
AU2012279069B2 (en) | Method for drilling and completion operations with settable resin compositions | |
MXPA03011078A (en) | Method for managing the production of a well. | |
US20190264091A1 (en) | Biologically mediated precipitation of carbonates for use in oilfield applications | |
US20050274516A1 (en) | Formation Consolidation Process | |
AU2012279069A1 (en) | Method for drilling and completion operations with settable resin compositions | |
NO324096B1 (en) | Mixing and method of sealing an annulus between a borehole and a liner | |
US6938692B2 (en) | Permeable cement composition and method for preparing the same | |
AU2015398683A1 (en) | Fluid creating a fracture having a bottom portion of reduced permeability and a top having a higher permeability | |
US10913886B2 (en) | Superhydrophobic additive | |
RU2002106718A (en) | Method of compaction of wells and composition used for this purpose | |
US12065610B2 (en) | Well barriers for subterranean storage of carbon dioxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM1K | Lapsed by not paying the annual fees |