NO170756B - PROCEDURE FOR SEPARATION OF CARBOXYLIC ACIDS - Google Patents

PROCEDURE FOR SEPARATION OF CARBOXYLIC ACIDS Download PDF

Info

Publication number
NO170756B
NO170756B NO874744A NO874744A NO170756B NO 170756 B NO170756 B NO 170756B NO 874744 A NO874744 A NO 874744A NO 874744 A NO874744 A NO 874744A NO 170756 B NO170756 B NO 170756B
Authority
NO
Norway
Prior art keywords
ethylene
gas
acetylene
vinyl chloride
pyrolysis
Prior art date
Application number
NO874744A
Other languages
Norwegian (no)
Other versions
NO874744D0 (en
NO170756C (en
NO874744L (en
Inventor
Yves Samuel
Original Assignee
Charbonnages Ste Chimique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Charbonnages Ste Chimique filed Critical Charbonnages Ste Chimique
Publication of NO874744D0 publication Critical patent/NO874744D0/en
Publication of NO874744L publication Critical patent/NO874744L/en
Publication of NO170756B publication Critical patent/NO170756B/en
Publication of NO170756C publication Critical patent/NO170756C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/03Monocarboxylic acids
    • C07C57/04Acrylic acid; Methacrylic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/48Separation; Purification; Stabilisation; Use of additives by liquid-liquid treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

Separation of at least one acid chosen from isobutyric acid and methacrylic acid by extraction from an aqueous solution of the said acid by employing an organic solvent system containing toluene, followed by a distillation during which the solvent system is recovered and returned entirely to the extraction. The solvent system is a mixture of toluene and of at least one saturated organic ester which is poorly soluble in water and which has a boiling temperature of between 98 DEG C and 130 DEG C. Application to the purification of methacrylic acid.

Description

Fremgangsmåte for fremstilling av vinylklorid. Process for the production of vinyl chloride.

Foreliggende oppfinnelse angår en fremgangsmåte for fremstilling av vinylklorid som omfatter at en blandet spaltgass inneholdende acetylen og etylen fremstilles ved pyrolyse av et hydrokarbon med vanndamp oppvarmet til en hoy temperatur i en oppvarmingsinnretning, og at vinylklorid fremstilles fra spaltgassen uten å isolere det fremstilte acetylen og etylen. The present invention relates to a method for the production of vinyl chloride which comprises that a mixed fission gas containing acetylene and ethylene is produced by pyrolysis of a hydrocarbon with water vapor heated to a high temperature in a heating device, and that vinyl chloride is produced from the fission gas without isolating the produced acetylene and ethylene .

Det er allerede kjent å oppnå en spaltgass inneholdende acetylen og etylen ved pyrolyse av et hydrokarbon ved hoy temperatur og å bruke denne direkte for en omsetning uten å isolere det fremstilte acetylen og etylen. Eksempelvis er det spesielt fra britisk patent nr. 603 099 og U.S. patent nr. 2 858 347 kjent å bruke en fortynnet gassblanding av acetylen og etylen direkte for fremstilling av vinylklorid. It is already known to obtain a split gas containing acetylene and ethylene by pyrolysis of a hydrocarbon at high temperature and to use this directly for a reaction without isolating the produced acetylene and ethylene. For example, in particular from British Patent No. 603,099 and U.S. Pat. patent no. 2,858,347 known to use a dilute gas mixture of acetylene and ethylene directly for the production of vinyl chloride.

Videre er det fra nevnte britiske patent kjent en fremgangsmåte for fremstilling av vinylklorid fra acetylen, etylen og klor i en spaltgass, omfattende forst å ia hydrogenklorid innvirke på en hydrokarbonspaltgass inneholdende acetylen og etylen oppnådd ved pyrolyse av et hydrokarbon, slik at bare acetylenet omdannes til vinylklorid, derpå skille vinylkloridet fra ved absorpsjon, så omsette den resterende gass med klor for å skille ut etylenet som etylenklorid, rense dette og underkaste det pyrolyse for fremstilling av vinylklorid og hydrogenklorid og benytte dette hydrogenklorid for den ovennevnte forste omsetning. Furthermore, a method for the production of vinyl chloride from acetylene, ethylene and chlorine in a fission gas is known from the aforementioned British patent, comprising, of course, acting in hydrogen chloride on a hydrocarbon fission gas containing acetylene and ethylene obtained by pyrolysis of a hydrocarbon, so that only the acetylene is converted to vinyl chloride, then separate the vinyl chloride by absorption, then react the remaining gas with chlorine to separate the ethylene as ethylene chloride, purify this and subject it to pyrolysis to produce vinyl chloride and hydrogen chloride and use this hydrogen chloride for the above-mentioned first reaction.

En kjent fremgangsmåte for anvendelse i det ovennevnte tilfelle for oppnåelse av en hydrokarbonspaltgass er dén generelle pyrolyseprosess med direkte kontakt mellom en forbrenningsgass av hoy temperatur og et hydrokarbon, den såkalte flammekrakkingsprosess, og likeledes er det kjent en hydrokarbonpyrolysepro-sess under anvendelse av for eksempel et regenerativt ovnssystem, den såkalte Wulff ske pyrolyseprosess. A known method for use in the above-mentioned case for obtaining a hydrocarbon cracking gas is the general pyrolysis process with direct contact between a combustion gas of high temperature and a hydrocarbon, the so-called flame cracking process, and likewise a hydrocarbon pyrolysis process is known using, for example, a regenerative oven system, the so-called Wulff ske pyrolysis process.

I den såkalte flammekrakkingsprosess hvor pyrolysen gjennom-føres ved å lede et hydrokarbon i direkte kontakt med en hoy-temperatur-forbrenningsgass, idet forbrenningsgassen blandes med spaltningsproduktene av hydrokarbonet, unntagen i det spesielle tilfelle hvor det brukes et hydrogenbrensel, vil konsentrasjonen av acetylen og etylen i spaltgassen vanligvis bli lav. Når for eksempel en prpsessavgass bestående av slike komponenter som metan, hydrogen, karbonmonoksyd og karbondioksyd i en spaltgass, sirkuleres som brensel og for eksempel Kuwait-nafta med kokeområde 30° til 140°C brukes som hydro-karbonråmaterial, vil sammensetningen av spaltgassen bli som folger, og konsentrasjonen av acetylen og etylen vil bli så lav at mengden av gass som medgår til reaksjonen og fraskillelse i vinylkloridsynteseprosessen som en blandet gass, vil bli relativt stor. In the so-called flame cracking process where the pyrolysis is carried out by passing a hydrocarbon in direct contact with a high-temperature combustion gas, the combustion gas being mixed with the decomposition products of the hydrocarbon, except in the special case where a hydrogen fuel is used, the concentration of acetylene and ethylene will in the split gas usually become low. When, for example, a process waste gas consisting of such components as methane, hydrogen, carbon monoxide and carbon dioxide in a fissile gas is circulated as fuel and, for example, Kuwait naphtha with a boiling range of 30° to 140°C is used as hydrocarbon raw material, the composition of the fissile gas will be as follows, and the concentration of acetylene and ethylene will be so low that the amount of gas that is included in the reaction and separation in the vinyl chloride synthesis process as a mixed gas will be relatively large.

Eksempel: Spaltgass-sammensetning i tilfelle av flammekrakking Example: Fission gas composition in case of flame cracking

i volumprosent. in volume percentage.

For i et slikt tilfelle å kunne foreta en relativ reduksjon av mengden av blandet gass som medgår til vinylkloridsyntesen ved å oke konsentrasjonen av acetylen og etylen, har det vært over-veiet å skille fra og fjerne karbondioksyd fra prosessen eller å mate ikke bare prosessavgass, men for eksempel også et hydrogenbrensel eller metanbrensel utenfra prosessen og bruke det som et brensel. Det er imidlertid okonomisk uheldig å skille fra karbondioksyd <p>g anleggets tilstand setter i mange tilfeller en uheldig begrensning for mating av hydrogenbrensel eller metanbrensel. In order in such a case to be able to make a relative reduction in the amount of mixed gas that goes into the vinyl chloride synthesis by increasing the concentration of acetylene and ethylene, it has been considered to separate and remove carbon dioxide from the process or to feed not only process waste gas, but also, for example, a hydrogen fuel or methane fuel from outside the process and use it as a fuel. However, it is economically disadvantageous to separate from carbon dioxide <p>g the condition of the plant in many cases places an unfortunate limitation on the feeding of hydrogen fuel or methane fuel.

På den annen side vil det i tilfelle av en hydrogenpyrolyse i et regenerativt ovnssystem, ikke bli noen fortynning av spaltning sproduktet fra hydrokarbonet med forbrenningsgass, hvorfor konsentrasjonen av acetylen og etylen vil bli hoy og mengden av gass som medgår til vinylkloridsyntesen, vil bli relativt liten. On the other hand, in the case of a hydrogen pyrolysis in a regenerative furnace system, there will be no dilution of the cleavage product from the hydrocarbon with combustion gas, therefore the concentration of acetylene and ethylene will be high and the amount of gas included in the vinyl chloride synthesis will be relatively small .

Som et ytterligere eksempel på en spaltgass, når for eksempel Kuwait-nafta med kokepunktsområde 30° til 14o°C brukes som råmateriale, vil den få folgende sammensetning: Eksempel: Spaltgass-sammensetning i tilfelle spaltning ved hjelp av en regenerativ ovnstype i volumprosent: As a further example of a fission gas, when, for example, Kuwait naphtha with a boiling point range of 30° to 14o°C is used as raw material, it will have the following composition: Example: Fission gas composition in the case of fission at using a regenerative furnace type in volume percentage:

Imidlertid vil ved dette spaltningssystem sammensetningen av spaltgassen, eller spesielt konsentrasjonen av acetylen og etylen variere som folge av omkoblingen av den regenerative ovn, hvilken omkobling utfores i én syklus på flere minutter. Hvis derfor acetylen og etylen blir skilt fra og renset, vil det ikke bli noen vanskeligheter, men i det ovennevnte tilfelle for fremstilling av vinylklorid hvor de ikke blir isolert, men brukes som de er for omsetning i prosessen, vil det bli vanskelig å regulere stromningsvolumet av hydrogenklorid og klor, og under enhver omstendighet vil tapet av acetylen og etylen eller hydrogenklorid og klor være uunngåelig. However, in this cracking system, the composition of the cracking gas, or in particular the concentration of acetylene and ethylene, will vary as a result of the switching of the regenerative furnace, which switching is carried out in one cycle of several minutes. If, therefore, acetylene and ethylene are separated and purified, there will be no difficulty, but in the above case for the production of vinyl chloride where they are not isolated but used as they are for turnover in the process, it will be difficult to regulate the flow volume of hydrogen chloride and chlorine, and in any case the loss of acetylene and ethylene or hydrogen chloride and chlorine will be unavoidable.

I dette spaltningssystem oppnås den nodvendige energi for spaltning av hydrokarbonet fra en regenerator ved å bringe hydrokarbonet i direkte kontakt med regeneratoren. Den nodvendige kontakttid for spaltningen vil være relativt lang og utbyttet av acetylen og etylen på basis av hydrokarbonråmaterialet vil vanligvis bli redusert. Hvis for eksempel en Kuwait-nafta med kokepunktsområde 30° til 140°C brukes som råmateriale, vil utbyttet ved dette spaltningssystem bli 45 til 50 vekts% mot 50 til 54 vekts% i tilfelle flammekrakking. In this cracking system, the necessary energy for cracking the hydrocarbon is obtained from a regenerator by bringing the hydrocarbon into direct contact with the regenerator. The necessary contact time for the cleavage will be relatively long and the yield of acetylene and ethylene based on the hydrocarbon raw material will usually be reduced. If, for example, a Kuwait naphtha with a boiling point range of 30° to 140°C is used as raw material, the yield of this cracking system will be 45 to 50% by weight against 50 to 54% by weight in the case of flame cracking.

Formålet med foreliggende oppfinnelse er å tilveiebringe en forbedret fremgangsmåte for fremstilling av vinylklorid ved å 16se slike problemer som ovenfor nevnt. The purpose of the present invention is to provide an improved method for the production of vinyl chloride by addressing such problems as mentioned above.

Nærværende oppfinnelse vedrorer således en fremgangsmåte for fremstilling av vinylklorid som karakteriseres ved at man i et forste trinn fremstiller en spaltgass inneholdende acetylen og etylen ved pyrolyse av et hydrokarbonråmateriale ved innforing av dette i vanndamp oppvarmet til 1600° til 2300°C under anvendelse som brensel prosessavgassen oppnådd i det nedenfor nevnte fjerde trinn, og at man deretter på kjent måte utforer de folgende trinn ved at man i et andre trinn fjerner karbonbestanddeler, tjæresubstanser og hoyere hydrokarboner med 3 eller flere karbonatomer fra spaltgassen, i et tredje trinn lar hydrogenklorid innvirke på spaltgassen, renset i det andre trinn, for omdannelse av acetylenet deri til vinylklorid som skilles fra, i et fjerde trinn lar klor reagere med den gjenværende spaltgass etter fjerning av acetylenet for å omdanne det deri værende etylen til etylendiklorid som skilles fra, og i et femte trinn underkaster det fraskilte etylendiklorid pyrolyse for fremstilling av vinylklorid og hydrogenklorid, idet hydrogenkloridet oppnådd i det femte trinn og prosessavgassen oppnådd i det fjerde trinn sirkuleres for å bli brukt henh. for reaksjonen i det tredje trinn og i det forste trinn. The present invention thus relates to a method for the production of vinyl chloride which is characterized by the fact that, in a first step, a fission gas containing acetylene and ethylene is produced by pyrolysis of a hydrocarbon raw material by introducing this into steam heated to 1600° to 2300°C using the process exhaust gas as fuel obtained in the fourth step mentioned below, and that the following steps are then carried out in a known manner by removing carbon components, tar substances and higher hydrocarbons with 3 or more carbon atoms from the split gas in a second step, in a third step hydrogen chloride is allowed to act on the split gas , purified in the second stage, to convert the acetylene therein to vinyl chloride which is separated, in a fourth stage chlorine is allowed to react with the residual cracking gas after removal of the acetylene to convert the ethylene therein to ethylene dichloride which is separated, and in a fifth step subjects the separated ethylene dichloride to pyrolysis for production ng of vinyl chloride and hydrogen chloride, the hydrogen chloride obtained in the fifth stage and the process exhaust gas obtained in the fourth stage being circulated to be used acc. for the reaction in the third step and in the first step.

Det forste trinn skal bli mer fullstendig forklart i det folgende. The first step will be explained more fully in the following.

I det forste trinn fremstilles spaltgassen inneholdende acetylen og etylen ved oppvarming av vanndamp til en temperatur på 1600° til 2300°C med en oppvarmingsinnretning under anvendelse som brensel den gjenværende prosessavgass fra fjerde trinn og å innfore hydrokarbonråmaterialet i denne hoytemperaturdamp slik at hydrogenet pyrolyseres. I dette tilfelle kan hvilke som helst av de folgende nevnte oppvarmingsinnretninger brukes. In the first stage, the split gas containing acetylene and ethylene is produced by heating water vapor to a temperature of 1600° to 2300°C with a heating device using as fuel the remaining process exhaust gas from the fourth stage and introducing the hydrocarbon raw material into this high temperature steam so that the hydrogen is pyrolysed. In this case, any of the following heating devices can be used.

En av dem er en regenerativovn i hvilken slike ildfaste materi-aler som aluminiumoksyd eller zirkoniumoksyd brukes som regenerator. Etter at en slik ovn er oppvarmet ved forbrenning av slikt brensel som prosessavgass, kobles ovnen om slik at vanndamp kan bringes i direkte kontakt med regeneratoren i den regenerative ovn, hvorved vanndampen varmes opp til en hoy temperatur. Hoytemperaturdamp oppnås kontinuerlig ved anordning av to eller flere slike regenerativovner i dette system. I et annet tilfelle brukes en indirekte varmeveksler laget av ror eller blokker av slikt ildfast materiale som aluminiumoksyd eller zirkoniumoksyd. I dette system oppvarmes vanndampen kontinuerlig ved overforing av varme av hoy temperatur, oppnådd ved forbrenning av slikt brensel som prosessavgass indirekte til dampen gjennom veggen av ildfast materiale. One of them is a regenerative furnace in which such refractory materials as aluminum oxide or zirconium oxide are used as regenerator. After such a furnace is heated by burning such fuel as process exhaust gas, the furnace is switched so that water vapor can be brought into direct contact with the regenerator in the regenerative furnace, whereby the water vapor is heated to a high temperature. High-temperature steam is obtained continuously by arranging two or more such regenerative furnaces in this system. In another case, an indirect heat exchanger made of tubes or blocks of such refractory material as aluminum oxide or zirconium oxide is used. In this system, the water vapor is heated continuously by transferring heat of high temperature, obtained by burning fuel such as process exhaust gas indirectly to the steam through the wall of refractory material.

Vanndampen som skal anvendes i foreliggende oppfinnelse kan inneholde opp til 20 molprosent forurensninger uten at det vil oppstå noen vanskeligheter. The water vapor to be used in the present invention can contain up to 20 mole percent impurities without any difficulties arising.

Por å oke utbyttet av acetylen og etylen er det spesielt for-delaktig å tilsette hydrogen eller en gass inneholdende hydrogen. In order to increase the yield of acetylene and ethylene, it is particularly advantageous to add hydrogen or a gas containing hydrogen.

Temperaturen på denne hoytemperaturdamp er bragt til 1600° til 2300°C fordi forholdet acetylen til etylen vanligvis er onsket å være 1 ved prosessen for fremstilling av vinylklorid og for dette formål kreves det at den gjennomsnittlige effektive reak-sjon stemperatur er relativ h6y. Hvis temperaturen på vanndampen er under 1600°C, kreves det en stor mengde damp for å til-fredsstille dette krav og dette vil være ubkonomisk. The temperature of this high temperature steam is brought to 1600° to 2300°C because the ratio of acetylene to ethylene is usually desired to be 1 in the process for the production of vinyl chloride and for this purpose it is required that the average effective reaction temperature is relatively high. If the temperature of the water vapor is below 1600°C, a large amount of steam is required to satisfy this requirement and this will be uneconomical.

Hivs vanndamptemperaturen blir hoyere enn 2300°C vil den ter-miske dissosiasjon av vanndampen oke og dissosiasjonsproduktet og vanndampen selv vil reagere med hydrokarbonråmaterialet under frembringelse av karbonmonoksyd og annet, hvorved utbyttet av acetylen og etylen vil minske og prosessen vil bli ufordelaktig. If the water vapor temperature becomes higher than 2300°C, the thermal dissociation of the water vapor will increase and the dissociation product and the water vapor itself will react with the hydrocarbon raw material producing carbon monoxide and other, whereby the yield of acetylene and ethylene will decrease and the process will become disadvantageous.

Når det ovenfor nevnte temperaturområde anvendes, vil mengdefor-holdet vanndamp til hydrokarbon for å gi den nodvendige varme for pyrolysen, være 4:1 til 11:1 vektsdeler og spaltningsproduktet vil bli passende fortynnet hvorved utbyttet av acetylen og etylen på basis av hydrokarbonråmaterialet også vil bli gunstig. When the above-mentioned temperature range is used, the quantity ratio of water vapor to hydrocarbon to provide the necessary heat for the pyrolysis will be 4:1 to 11:1 parts by weight and the cleavage product will be suitably diluted whereby the yield of acetylene and ethylene on the basis of the hydrocarbon raw material will also become favorable.

Spaltningstrykket kan ligge hvor som helst mellom 10 kg/cm o og 200 mm Hg absolutt. Ved et trykk over 10 kg/cm 2 vil utbyttet av acetylen og etylen minske og prosessen vil bli ufordelaktig, og under 200 mm Hg vil også utbyttet av acetylen og etylen minske, hvorved trykket i det etterfølgende trinn vil oke, hvil-ket vil være spesielt ufordelaktig. The cracking pressure can be anywhere between 10 kg/cm o and 200 mm Hg absolute. At a pressure above 10 kg/cm 2 the yield of acetylene and ethylene will decrease and the process will become disadvantageous, and below 200 mm Hg the yield of acetylene and ethylene will also decrease, whereby the pressure in the subsequent step will increase, which will be particularly disadvantageous.

Den nodvendige tid for gjennomføring av spaltningsreaksjonen må noye reguleres i avhengighet^av temperaturen, trykket og arten av råmateriale, og ligger fortrinnsvis mellom 1/10 til 1/1000 sekund. The time required for carrying out the cleavage reaction must be carefully regulated depending on the temperature, the pressure and the nature of the raw material, and is preferably between 1/10 to 1/1000 of a second.

Som råmateriale anvendes et hydrokarbon med to eller flere karbonatomer i molekylet. A hydrocarbon with two or more carbon atoms in the molecule is used as raw material.

Vanligvis er en lett nafta (kokepunktsområde fra begynnende distillasjon til 100°C) og en tung nafta (kokepunktområde fra begynnende destillasjon til 190°) foretrukket, men også fraksjoner med hoyere kokepunktsområder kan godt anvendes. Generally, a light naphtha (boiling point range from initial distillation to 100°C) and a heavy naphtha (boiling point range from initial distillation to 190°) are preferred, but fractions with higher boiling point ranges can also be used.

Spesielt hvis det onskes aromatiske eller tjærelignende bipro-dukter, kan det brukes fraksjoner med hoyere koketemperaturer. Especially if aromatic or tar-like by-products are desired, fractions with higher boiling temperatures can be used.

EKSEMPEL EXAMPLE

14,2 m 3/h prosessavgass oppnådd i fjerde trinn eller et brensel bestående av 3,9 m <3> /h metan og 8,6 m <3>/h karbonmonoksyd ble brukt som brensel og ble forbrent med 65 m^ luft forvarmet til 200°C ved hjelp av en forvarmer. Forbrenningen ble utfort i en regenerativ ovn fyllt med e' z ildfast materiale bestående av zirkoniumoksyd. Den beregnede forbrenningsgasstemperatur var 2200°C. Temperaturen av det ildfaste materiale i ovnen var antatt å være hoyere enn 2000°C. Derpå ble 60 kg/h vanndamp innfort under et trykk på 2 kg/cm 2 i den regenerative ovn, etter at oppvarmingen var gjennomfort, og vanndampen ble oppvarmet til en temperatur på omkring 2000°C. 14.2 m 3 /h process off-gas obtained in the fourth stage or a fuel consisting of 3.9 m <3> /h methane and 8.6 m <3> /h carbon monoxide was used as fuel and was combusted with 65 m^ air preheated to 200°C using a preheater. The combustion was carried out in a regenerative furnace filled with e' z refractory material consisting of zirconium oxide. The calculated combustion gas temperature was 2200°C. The temperature of the refractory material in the furnace was assumed to be higher than 2000°C. Then 60 kg/h of water vapor was introduced under a pressure of 2 kg/cm 2 into the regenerative furnace, after the heating was completed, and the water vapor was heated to a temperature of about 2000°C.

To regenerative ovner ble koblet alternerende til hverandre for vekslende å gjennomfore forbrenningen og dampoppvarmingen. Det ble produsert 55 kg/h damp med en temperatur på 2000°C og et trykk på 1,0 kg/cm og dampen ble innfort i en pyrolysereaktor gjennom en ledning foret med ildfast materiale. Et hydrokarbonråmateriale forvarmet til 500°C ble innfort med en hastighet av 17,5 kg/h i denne hoytemperaturvanndamp. Two regenerative furnaces were connected alternately to each other to carry out combustion and steam heating alternately. 55 kg/h of steam was produced with a temperature of 2000°C and a pressure of 1.0 kg/cm and the steam was introduced into a pyrolysis reactor through a line lined with refractory material. A hydrocarbon feedstock preheated to 500°C was fed at a rate of 17.5 kg/h into this high temperature steam.

Som råmateriale ble brukt Kuwait-nafta med kokepunktsområde Kuwait naphtha with a boiling point range was used as raw material

fra 30° til 140°C. Pyrolysen ble gjennomfort kontinuerlig og sammensetningen av spaltningsproduktet var som folger: from 30° to 140°C. The pyrolysis was carried out continuously and the composition of the fission product was as follows:

Utbytte av acetylen + etylen: 54,5 vektsprosent. Yield of acetylene + ethylene: 54.5% by weight.

Den ved pyrolysen produserte gass ble bråkjolt med vanndusjer og deretter vasket med en tungolje for å fjerne tjærebestand-deler. The gas produced by the pyrolysis was quenched with water showers and then washed with a heavy oil to remove tarry components.

Spaltgassen ble så komprimert til et trykk på 7 kg/cm 2 og kjolt til -30°c'for å kondensere de aromatiske hydrokarboner. De aromatiske hydrokarboner ble fjernet og tatt vare på. Videre ble hydrokarbonene inneholdende tre eller flere karbonatomer absorbert og fjernet med tungoljen. The cracked gas was then compressed to a pressure of 7 kg/cm 2 and cooled to -30°C to condense the aromatic hydrocarbons. The aromatic hydrocarbons were removed and stored. Furthermore, the hydrocarbons containing three or more carbon atoms were absorbed and removed with the heavy oil.

Det ble oppnådd omkring 23 m 3A spaltgass inneholdende 17% acetylen og 18,6% etylen. About 23 m 3A of split gas containing 17% acetylene and 18.6% ethylene was obtained.

Den ovennevnte spaltgass ble så forvarmet til 130°C og matet til en acetylenreaktor inneholdende aktivt karbon som inneholdt kvikksolvklorid. På den annen side ble hydrogenklorid, frem-stilt i det etterfølgende etylendiklorid-pyrolysetrinn (femte trinn) innfort i nevnte acetylenreaktor med en molhastighet i det vesentlige lik molhastigheten til acetylenet i spaltgassen, eller 0,173 kgmol, som fikk reagere ved en temperatur på 180°C under et trykk av 6 kg/cm slik at bare acetylenet i. spaltgassen i det vesentlige fullstendig ble overfort til vinylklorid. Vinylkloridet ble skilt fra og tatt vare på ved å absorberes i etylendiklor id. The above split gas was then preheated to 130°C and fed to an acetylene reactor containing activated carbon containing mercuric chloride. On the other hand, hydrogen chloride, produced in the subsequent ethylene dichloride pyrolysis step (fifth step), was introduced into said acetylene reactor at a molar rate substantially equal to the molar rate of the acetylene in the split gas, or 0.173 kgmol, which was allowed to react at a temperature of 180° C under a pressure of 6 kg/cm so that only the acetylene in the split gas was substantially completely transferred to vinyl chloride. The vinyl chloride was separated and preserved by absorption in ethylene dichloride id.

Utbyttet av vinylklorid fra acetylenet i acetylenreaktoren var 98%. The yield of vinyl chloride from the acetylene in the acetylene reactor was 98%.

Ovennevnte spaltgass hvorfra acetylenet var blitt fjernet som vinylklorid, ble så innfort i en etylenreaktor, hvor det befant seg et etylendikloridopplosningsmiddel. The above-mentioned split gas from which the acetylene had been removed as vinyl chloride was then introduced into an ethylene reactor, where an ethylene dichloride solvent was present.

Ovennevnte spaltgass og en klorgass i molare mengder lik med etylenets i den ovenfornevnt spaltgass, eller 19 kgmol/h ble innfort i opplosningsmidlet hvor etylen og klor i spaltgassen reagerte i opplosningsmidlet ved en temperatur på 30-40°C under et trykk på 5,5 kg/cm'<2>. The above-mentioned fission gas and a chlorine gas in molar amounts equal to that of the ethylene in the above-mentioned fission gas, or 19 kgmol/h, were introduced into the solvent where the ethylene and chlorine in the fission gas reacted in the solvent at a temperature of 30-40°C under a pressure of 5.5 kg/cm'<2>.

Etylenet i spaltgassen ble dermed omdannet til etylendiklorid som ble skilt ifra spaltgassen. Utbyttet av etylendiklorid fra etylen var 96% av teoretisk utbytte. Mengden av den resterende spaltgass hvorfra etylen var fjernet, eller prosessavgassen utgjorde 14,2 m /h og dens sammensetning i volumprosent var som folger: The ethylene in the split gas was thus converted to ethylene dichloride which was separated from the split gas. The yield of ethylene dichloride from ethylene was 96% of theoretical yield. The quantity of the remaining split gas from which ethylene had been removed, or the process waste gas, amounted to 14.2 m/h and its composition in volume percentage was as follows:

Denne prosessavgass ble sirkulert og brukt som den var som brensel for oppvarming av den regenerative ovn i det forste trinn. Det fremstilte etylendiklorid ble renset og destillert og ble så pyrolysert med en hastighet av 17,8 kg/h ved 500°C og 7 kg/cm 2 trykk til vinylklorid og hydrogenklorid. Det fremstilte hydrogenklorid ble skilt fra vinylkloridet og derpå sirkulert og brukt i den ovenfor beskrevne acetylenreaktor. This process exhaust gas was circulated and used as it was as fuel for heating the regenerative furnace in the first stage. The produced ethylene dichloride was purified and distilled and was then pyrolyzed at a rate of 17.8 kg/h at 500°C and 7 kg/cm 2 pressure to vinyl chloride and hydrogen chloride. The hydrogen chloride produced was separated from the vinyl chloride and then circulated and used in the acetylene reactor described above.

Utbyttet av vinylklorid og etylendiklorid var 98% av det teoretiske. The yield of vinyl chloride and ethylene dichloride was 98% of the theoretical.

Som ovenfor nevnt er det blitt fastslått ved denne prosess at vinylklorid er oppnådd med en hastighet av 20,8 kg/h, hvoretter det renses og kan anvendes for polymerisasjon. As mentioned above, it has been determined by this process that vinyl chloride is obtained at a rate of 20.8 kg/h, after which it is purified and can be used for polymerisation.

Claims (1)

Fremgangsmåte for fremstilling av vinylklorid,karakterisert ved at man i et forste trinn fremstiller en spaltgass inneholdende acetylen og etylen ved pyrolyse av et hydrokarbonråmateriale ved innforing av dette i vanndamp oppvarmet til 1600° til 2300°C under anvendelse som brensel prosessavgassen oppnådd i det nedenfor nevnte fjerde trinn, og at man deretter på kjent måte utforer de folgende trinn ved at man i et andre trinn fjerner karbonbestanddeler, tjæresubstanser og hoyere hydrokarboner med 3 eller flere karbonatomer fra spaltgassen, i et tredje trinn lar hydrogenklorid innvirke på spaltgassen, renset i det andre trinn, for omdannelse av acetylenet deri til vinylklorid som skilles fra, i et fjerde trinn lar klor reagere med den gjenværende spaltgass etter fjerning av acetylenet for å omdanne det deri værende etylen til etylendiklorid som skilles fra, og i et femte trinn underkaster det fraskilte etylendiklorid pyrolyse for fremstilling av vinylklorid og hydrogenklorid, idet hydrogenkloridet oppnådd i det femte trinn og prosessavgassen oppnådd i det fjerde trinn sirkuleres for å bli brukt henh. for reaksjonen i det tredje trinn og i det forste trinn.Process for the production of vinyl chloride, characterized in that in a first step a fission gas containing acetylene and ethylene is produced by pyrolysis of a hydrocarbon raw material by introducing this into steam heated to 1600° to 2300°C using as fuel the process exhaust gas obtained in the below mentioned fourth step, and that the following steps are then carried out in a known manner by removing carbon components, tar substances and higher hydrocarbons with 3 or more carbon atoms from the split gas in a second step, in a third step hydrogen chloride is allowed to act on the split gas, purified in the second step, for converting the acetylene therein to vinyl chloride which is separated, in a fourth step allowing chlorine to react with the residual cracking gas after removal of the acetylene to convert the ethylene therein to ethylene dichloride which is separated, and in a fifth step subjecting the separated ethylene dichloride pyrolysis for the production of vinyl chloride and hydrogen chloride, as hydrog the monochloride obtained in the fifth step and the process exhaust gas obtained in the fourth step are circulated to be used acc. for the reaction in the third step and in the first step.
NO874744A 1986-11-14 1987-11-13 PROCEDURE FOR SEPARATION OF CARBOXYLIC ACIDS NO170756C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR8615840A FR2606663B1 (en) 1986-11-14 1986-11-14 PROCESS FOR THE EXTRACTIVE SEPARATION OF A CARBOXYLIC ACID FROM AN AQUEOUS SOLUTION OF THE SAME

Publications (4)

Publication Number Publication Date
NO874744D0 NO874744D0 (en) 1987-11-13
NO874744L NO874744L (en) 1988-05-16
NO170756B true NO170756B (en) 1992-08-24
NO170756C NO170756C (en) 1992-12-02

Family

ID=9340806

Family Applications (1)

Application Number Title Priority Date Filing Date
NO874744A NO170756C (en) 1986-11-14 1987-11-13 PROCEDURE FOR SEPARATION OF CARBOXYLIC ACIDS

Country Status (10)

Country Link
EP (1) EP0271371B1 (en)
JP (1) JPS63135350A (en)
KR (1) KR960006664B1 (en)
AT (1) ATE67477T1 (en)
CA (1) CA1274847A (en)
DE (1) DE3773145D1 (en)
ES (1) ES2026932T3 (en)
FR (1) FR2606663B1 (en)
GR (1) GR3003364T3 (en)
NO (1) NO170756C (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5877345A (en) * 1997-02-07 1999-03-02 Rohm And Haas Company Process for producing butyl acrylate
WO2007074827A1 (en) * 2005-12-26 2007-07-05 Mitsubishi Rayon Co., Ltd. Method for extracting methacrylic acid
CN113149832A (en) * 2021-05-08 2021-07-23 青岛科技大学 Method for separating n-butyric acid and water by liquid-liquid extraction-heterogeneous azeotropic distillation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR716448A (en) * 1930-05-13 1931-12-21 Organic acid concentration process
IT1084028B (en) * 1977-03-16 1985-05-25 Montedison Spa PROCEDURE FOR THE SEPARATION OF UNSATURATED CARBOXYLIC ACIDS FROM AQUEOUS SOLUTIONS CONTAINING THEM

Also Published As

Publication number Publication date
DE3773145D1 (en) 1991-10-24
ES2026932T3 (en) 1992-05-16
FR2606663B1 (en) 1989-02-10
NO874744D0 (en) 1987-11-13
GR3003364T3 (en) 1993-02-17
EP0271371B1 (en) 1991-09-18
EP0271371A1 (en) 1988-06-15
NO170756C (en) 1992-12-02
CA1274847A (en) 1990-10-02
NO874744L (en) 1988-05-16
JPS63135350A (en) 1988-06-07
ATE67477T1 (en) 1991-10-15
FR2606663A1 (en) 1988-05-20
KR960006664B1 (en) 1996-05-22
KR880005953A (en) 1988-07-21

Similar Documents

Publication Publication Date Title
US4152244A (en) Manufacture of hydrocarbon oils by hydrocracking of coal
US4725349A (en) Process for the selective production of petrochemical products
NO157756B (en) PROCEDURE AND APPARATUS FOR EXAMINATION OF PROPERTIES AND BASIC INFORMATION SURROUNDING A BORING HOLE.
JPS6124434B2 (en)
CZ254695A3 (en) Method of working old or waste plastic materials
EP4029924A1 (en) Pyrolytic process for thermal energy to chemical process
WO2011103047A2 (en) Low oxygen biomass-derived pyrolysis oils and methods for producing the same
NO122918B (en)
US2694035A (en) Distillation of oil-bearing minerals in two stages in the presence of hydrogen
WO2013169461A1 (en) Production of olefins and aromatics
JP7303258B2 (en) Crude oil heating method
EA039454B1 (en) Steam reforming system and process
NO170756B (en) PROCEDURE FOR SEPARATION OF CARBOXYLIC ACIDS
JPS59157181A (en) Production of pitch suitable as fuel from petroleum heavy oil and cracked light oil
US3712800A (en) Method for converting residual oils into fuel gas
US2951886A (en) Recovery and purification of benzene
US2977299A (en) Production of chemical products from coal products
GB2024245A (en) Production of gaseous and liquid fuels and coke from scrap rubber
US3373218A (en) Production of ethylene and acetylene
US3920804A (en) Hydrogen process
JPS6011957B2 (en) Gasification method for solid carbon feedstock containing hydrocarbons
US20240352321A1 (en) Method of producing activated carbon
SU1616954A1 (en) Method of producing lower olefins
RU2184721C1 (en) Integrated method of synthesis of vinyl chloride
JPS60235890A (en) Method for thermally cracking hydrocarbon to produce petrochemicals