NO124547B - - Google Patents

Download PDF

Info

Publication number
NO124547B
NO124547B NO151828A NO15182864A NO124547B NO 124547 B NO124547 B NO 124547B NO 151828 A NO151828 A NO 151828A NO 15182864 A NO15182864 A NO 15182864A NO 124547 B NO124547 B NO 124547B
Authority
NO
Norway
Prior art keywords
fibers
web
fiber
component
treatment
Prior art date
Application number
NO151828A
Other languages
Norwegian (no)
Inventor
S Davies
C Sissons
Original Assignee
British Nylon Spinners Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by British Nylon Spinners Ltd filed Critical British Nylon Spinners Ltd
Publication of NO124547B publication Critical patent/NO124547B/no

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/48Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation
    • D04H1/485Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation in combination with weld-bonding
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/50Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by treatment to produce shrinking, swelling, crimping or curling of fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5414Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres side-by-side
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5418Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • D04H1/549Polyamides
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • D04H1/55Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • D04H3/147Composite yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0015Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using fibres of specified chemical or physical nature, e.g. natural silk
    • D06N3/0025Rubber threads; Elastomeric fibres; Stretchable, bulked or crimped fibres; Retractable, crimpable fibres; Shrinking or stretching of fibres during manufacture; Obliquely threaded fabrics
    • D06N3/0031Retractable fibres; Shrinking of fibres during manufacture
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5412Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres sheath-core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24438Artificial wood or leather grain surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide
    • Y10T428/31728Next to second layer of polyamide
    • Y10T428/31732At least one layer is nylon type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/627Strand or fiber material is specified as non-linear [e.g., crimped, coiled, etc.]
    • Y10T442/629Composite strand or fiber material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/69Autogenously bonded nonwoven fabric

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonwoven Fabrics (AREA)
  • Laminated Bodies (AREA)

Description

Fremgangsmåte til fremstilling av Method for the production of

sammenbundne, uvevede, fibrøse materialer. bonded, non-woven, fibrous materials.

Oppfinnelsen angår en fremgangsmåte til fremstilling av sammenbundne, uvevede, fibrøse materialer med en egenvekt på mindre enn 0,08 g/cm , ved hvilken det på passende måte dannes et ark- eller baneformet materiale bestående av minst 5% sammensatte fibre med potentiell krusning og 0-95% andre fibre, hvorefter krusning utvikles ved en termisk eller kjemisk behandling. The invention relates to a process for the production of bonded, non-woven, fibrous materials with a specific gravity of less than 0.08 g/cm, by which a sheet or web-shaped material is suitably formed consisting of at least 5% composite fibers with potential ripple and 0-95% other fibres, after which curling is developed by a thermal or chemical treatment.

Slike materialer, som er hovedsakelig sammenbundet ved fiberinnfiltring på grunn av utvikling av krusning, har et attraktivt grep og et godt fald, men er ikke tilstrekkelig stabile og har ikke tilstrekkelig styrke til mange anvendelser av materialet, og det må derfor ytterligere sammenbindes ved klebning. Hittil har det vært anvendt kjente fiberklebemidler, men slike bindemidler gjør materialene stive og meddeler dem et grovt og stivt grep, hvorved de nevnte gode egenskaper elimineres. Det har også vært anvendt homogene binderfibre til å binde materialene ved klebning, men disse vil, når de blir gjort klebende under betingelser, som gir tilstrekkelig styrke, miste sin fiberform og flyte gjennom materialet, som derved blir stivere og mister sitt gode grep og fald. Such materials, which are mainly bonded by fiber entanglement due to the development of crimp, have an attractive grip and a good hem, but are not sufficiently stable and do not have sufficient strength for many applications of the material, and therefore must be further bonded by gluing. Until now, known fiber adhesives have been used, but such binders make the materials stiff and give them a rough and stiff grip, whereby the mentioned good properties are eliminated. Homogeneous binder fibers have also been used to bind the materials by gluing, but these will, when they are made sticky under conditions that provide sufficient strength, lose their fiber shape and flow through the material, which thereby becomes stiffer and loses its good grip and hem .

U.S. patent 2.774.129 beskriver fremstilling av ikke-vevde materialer fra fibre som kan utvikle krusning ved en egnet behandling mens fibrene er i floret. Strukturen stabiliseres ved at disse fibre kruser seg og krølles. U.S. patent 2,774,129 describes the production of non-woven materials from fibers which can develop ripples by a suitable treatment while the fibers are in the fleece. The structure is stabilized by these fibers curling and curling.

Ifølge U.S. patent 2.439.815 utnyttes fibrenes krusning for å styrke strukturen, og det nevnes intet om at man må anvende slike komponenter at den ene kan gjøres klebende under betingelser som ikke påvirker den annen komponent, og at den klebende komponent skal tjene til å styrke strukturen ytterligere. According to the U.S. patent 2,439,815, the curling of the fibers is used to strengthen the structure, and there is no mention that one must use such components that one can be made adhesive under conditions that do not affect the other component, and that the adhesive component must serve to further strengthen the structure .

U.S. patent 2.336.797 angår anvendelse av en blanding av homogene fibre, hvorav den ene type kan gjøres klebende. U.S. patent 2,336,797 concerns the use of a mixture of homogeneous fibres, one type of which can be made adhesive.

U.S. patent 2.939.200 beskriver vevde stoffer fremstilt av belagte garn. Formålet med å belegge garnene er å gjøre stoffet brannsikkert. Stoffets styrke skyldes dets vevde struktur og ikke klebning eller krusning. U.S. patent 2,939,200 describes woven fabrics made from coated yarns. The purpose of coating the yarns is to make the fabric fireproof. The strength of the fabric is due to its woven structure and not clinging or curling.

Fransk patent 1.306.205 angår et ikke-vevet stoff som ligner på det ikke-vevde stoff ifølge det ovenfor omtalte U.S. patent 2.336.797. French Patent 1,306,205 relates to a nonwoven fabric similar to the nonwoven fabric of the above-mentioned U.S. Pat. patent 2,336,797.

Ifølge britisk patent 597.514 fremstilles et ikke-vevet stoff fra bikomponentfibre med en kjerne omgitt av et varmeherdende dekke i termoplastisk tilstand, og sammenbinding av filamentene i strukturen til hverandre ved krysningspunktene skjer ved polymerisa-sjon av herdeplasten. According to British patent 597,514, a non-woven fabric is produced from bicomponent fibers with a core surrounded by a heat-setting cover in a thermoplastic state, and the filaments in the structure are joined to each other at the crossing points by polymerization of the thermoset.

Formålet med foreliggende oppfinnelse er å tilveiebringe en fremgangsmåte, ved hjelp av hvilken det kan fremstilles materialer av den angitte art, som inneholder krusede fibre, og som beholder fordelene ved slike med hensyn til grep og fald, efter at materialet er bundet ved klebning. The purpose of the present invention is to provide a method, by means of which materials of the specified kind can be produced, which contain crimped fibers, and which retain the advantages of such with regard to grip and hem, after the material has been bound by gluing.

Dette oppnåes ved at de sammensatte fibre har minst én potentiell klebende komponent, som danner i det minste en del av fiberoverflaten, og som blir klebende under en termisk eller kjemisk behandling, uten at den annen komponent blir klebende, og ved at den potentielle klebeevne utvikles ved samme kjemiske eller termiske behandling som den potentielle krusning eller ved en særskilt behandling, alt uten at materialet sammentrykkes vesentlig. This is achieved by the composite fibers having at least one potential adhesive component, which forms at least part of the fiber surface, and which becomes adhesive during a thermal or chemical treatment, without the other component becoming adhesive, and by the potential adhesive ability being developed by the same chemical or thermal treatment as the potential ripple or by a special treatment, all without significantly compressing the material.

Når det anvendes krusede sammensatte fibre inneholdendeWhen crimped composite fibers containing

en komponent, som blir klebende uten samtidig å påvirke de andre komponenter, vil komponentene ikke spres gjennom materialet, slik som tilfellet er når man anvender separate binderfibre, men vil forbli samlet med de andre komponenter og begrense klebningen til bestemte punkter. Derved oppnåes et materiale, som har den nødvendige sammenheng og styrke og samtidig et tilfredsstillende grep og fald. a component, which becomes adhesive without simultaneously affecting the other components, the components will not spread through the material, as is the case when using separate binder fibers, but will remain together with the other components and limit the adhesion to specific points. This results in a material that has the necessary cohesion and strength and at the same time a satisfactory grip and hem.

Det har vist seg at særlig verdifulle produkter kan oppnåes ved å anvende sammensatte fibre, som er i besittelse av potentiell kruseevne som et resultat av forskjell i de fysiske egenskaper av de to komponenter. Hvis de to komponenter i en sammen-satt fiber, f.eks. har i det vesentlige forskjellige tiloversblevne krusningsegenskaper, forårsakes en krusning ved den forskjellige krusning av de to komponenter ved hjelp av en passende behandling. It has been shown that particularly valuable products can be obtained by using composite fibres, which possess potential frizziness as a result of the difference in the physical properties of the two components. If the two components of a composite fiber, e.g. have substantially different residual ripple properties, a ripple is caused by the different ripple of the two components by means of a suitable treatment.

Den særlige nytte av produkter som fremstilles ved frem-gangsmåten ifølge oppfinnelsen, kan i det minste delvis tillegges den kjensgjerning at den følgende utvikling av de klebende egenskaper som et resultat av aktivering bevarer den potentielt klebende komponent i mere eller mindre tett forbindelse med den fiberdannende komponent og ikke spres i stoffet". Som følge herav er det i slike produkter en liten eller slett ingen dannelse av skillevegger av klebestoff, men det skjer en bevaring av så og si alle indre mellomrom mellom og blant fibrene. Ytterligere er det mulig å ofte bekvemt sett ut fra et fremstillingssynspunkt å anvende sammensatte fibre, hvori de to komponenter er valgt ut fra den samme kjemiske gruppe (dvs. at de begge inneholder de samme funksjonelle grupper), hvilket fører til et produkt, som lett kan farves ensartet ved hjelp av kun ett farvestoff. The particular benefit of products produced by the process according to the invention can be at least partially attributed to the fact that the subsequent development of the adhesive properties as a result of activation preserves the potentially adhesive component in more or less close connection with the fiber-forming component and does not spread in the fabric". As a result, in such products there is little or no formation of partitions of adhesive material, but there is a preservation of virtually all internal spaces between and among the fibers. Furthermore, it is often possible to conveniently from a manufacturing point of view to use composite fibres, in which the two components are selected from the same chemical group (i.e. that they both contain the same functional groups), which leads to a product which can easily be dyed uniformly using only a dye.

Med hensyn til den mekaniske styrke i det endelige produkt foretrekkes det, at begge komponentene i fibren er fiberdannende og derfor belastningsbærende komponenter, da den potentielt klebende komponent, som - som et resultat av utviklingen av sine klebende egenskaper - danner bindinger, som i hvert fall fordeler en del av den spenning, som oppstår ved en binding over et stykke av den annen fiberdannende komponent. Når det anvendes sammensatte fibre, hvor begge komponentene er fiberdannende, er det dessuten mulig å oppnå With regard to the mechanical strength of the final product, it is preferred that both components in the fiber are fiber-forming and therefore load-bearing components, as the potentially adhesive component, which - as a result of the development of its adhesive properties - forms bonds, which in any case distributes part of the tension, which arises from a bond over a piece of the other fiber-forming component. When composite fibers are used, where both components are fiber-forming, it is also possible to achieve

et produkt som fullstendig består av fibre, som alle spiller en rolle a product entirely made up of fibres, all of which play a role

ved dannelse av produktets struktur og opprettholdelse av helheten. Et slikt produkt kan betraktes som homogent av karakter i motsetning til tidligere tiders produkter basert på fibre og additive fiberbinde-stoffer, som er heterogene. by forming the product's structure and maintaining the whole. Such a product can be considered homogeneous in character, in contrast to earlier products based on fibers and additive fiber binders, which are heterogeneous.

I tverrsnittet opptar de to komponenter bestemte områder. Komponentene kan f.eks. være anbragt side om side, eller en komponent kan Være fullstendig og eksentrisk omgitt av den annen komponent, dvs. en form for det såkalte skall- og kjerneforhold, idet den komponent, som danner skallet, er den potentielt klebende komponent, eller fibren. kan være en ikke-sirkulær, f.eks. trearmet, idet en eller to av armene dannes av en potentielt klebende komponent. De relative forhold mellom de to komponenter i fibrene kan varieres i overens-stemmelse med bruken av sluttproduktet. In the cross-section, the two components occupy specific areas. The components can e.g. be placed side by side, or one component can be completely and eccentrically surrounded by the other component, i.e. a form of the so-called shell and core relationship, since the component that forms the shell is the potentially adhesive component, or the fiber. can be a non-circular, e.g. three-armed, one or two of the arms being formed by a potentially adhesive component. The relative proportions between the two components in the fibers can be varied in accordance with the use of the final product.

Egnede komponenter til fremstilling av sammensatte fibre kan finnes i alle grupper av syntetiske fiberdannende stoffer. På grunn av sin handelsmessige verdi og gode egenskaper, samt det at de er lette å fremstille, er kondensasjonspolymerer, f.eks. polyamider og polyestere og særlig polymerisater, som kan smeltespinnes, meget velegnet til bruk i den foreliggende oppfinnelse. Andre fibre, som kan anvendes, er f.eks. de som er basert på eller inneholder poly-esteramider, polysulfonamider, polyestere, polyolefiner, polyuretaner eller en hvilken som helst kombinasjon av disse polymerer, idet den Suitable components for the production of composite fibers can be found in all groups of synthetic fibre-forming substances. Because of their commercial value and good properties, as well as their ease of preparation, condensation polymers, e.g. polyamides and polyesters and especially polymers, which can be melt spun, very suitable for use in the present invention. Other fibres, which can be used, are e.g. those based on or containing polyester amides, polysulfonamides, polyesters, polyolefins, polyurethanes or any combination of these polymers, as the

• eneste vesentlige begrensning er at komponentene i fibren skal være tilstrekkelig forenelige, slik at de kan motstå fiberrillering. Eksempler på passende sammensatte fibre, hvori begge komponenter er fiberdannende, er anført i nedenstående tabell • the only significant limitation is that the components in the fibers must be sufficiently compatible, so that they can resist fiber creasing. Examples of suitable composite fibers in which both components are fibre-forming, are listed in the table below

Fibrene dannes til en fiberbane av passende tykkelse ved hjelp av forskjellige fremgangsmåter, idet den valgte metode i hvert tilfelle i stor utstrekning avhenger av fibrenes lengde, når det anvendes andre fibre enn kontinuerlige fibre. The fibers are formed into a fiber web of suitable thickness using different methods, the method chosen in each case largely depends on the length of the fibers when fibers other than continuous fibers are used.

Hvis det ønskes, kan fiberbanen behandles med nåler på en alminnelig nålevevestol, og/eller et lett vevet nett kan opptaes deri. Efter dannelsen av fiberbanen kruses fibrene deri og sammenbindes. If desired, the fiber web can be treated with needles on a common needle loom, and/or a light woven net can be incorporated therein. After the formation of the fiber web, the fibers therein are crimped and joined together.

Krusningen kan utvikles, og den potentielt klebende komponént aktiveres ved én og samme behandling, men det er ikke nød-vendig at krusnings- og aktiveringstrinnet utføres samtidig eller ved samme behandling. The ripple can be developed and the potentially adhesive component activated in one and the same treatment, but it is not necessary for the ripple and activation step to be carried out at the same time or in the same treatment.

Sammensatte fibre kan kruses ved at fiberbanen som inneholder disse, utsettes for en passende krusningsbehandling. Krusningen av fibrene for å bevirke krusning kan utføres ved hjelp av et hvilket som helst passende kjent krusningsmiddel. Krusning kan f.eks. utføres ved oppvarmning på forskjellige måter, så som ved et varmt, vandig medium (f.eks. varmt eller kokende vann og damp, inklusive damp under trykk), olje, varm luft eller andre varme gasser eller flytende medier, som er kjemisk inerte overfor polymerene i fibrene. Alterna-tivt eller samtidig kan krusning utføres ved å utsette fiberbanen, som inneholder de sammensatte fibre, for en passende kjemisk behandling. Svake syrer og alkalibad er eksempler på at det ofte kan være akseptable kjemiske behandlinger. Likegyldig om krusningen utvikles ved hjelp av en fysisk eller kjemisk behandling eller ved en kombinasjon av de to, er det vanligvis bekvemt å aktivere den potentielt klebende komponent ved samme behandling og derved binde fibrene i banen sammen der hvor de krysser over hverandre eller er i kontakt med hverandre. Således kan krusning og aktivering utføres ved å utsette fiberbanen for en varmebehandling, hvor temperaturen over-stiger mykningspunktet for den potentielt klebende komponent. Eksempler på fibre, som kan kruses og aktiveres på denne måte, og de betingelser, hvorunder disse trinn kan forekomme, er angitt i neden- Composite fibers can be crimped by subjecting the fiber web containing them to a suitable crimping treatment. The crimping of the fibers to effect crimping may be effected by any suitable known crimping agent. Ripple can e.g. is carried out by heating in various ways, such as by a hot, aqueous medium (e.g. hot or boiling water and steam, including steam under pressure), oil, hot air or other hot gases or liquid media, which are chemically inert to the polymers in the fibers. Alternatively or simultaneously, crimping can be carried out by subjecting the fiber web, which contains the composite fibres, to a suitable chemical treatment. Weak acids and alkaline baths are examples of acceptable chemical treatments. Regardless of whether the crimp is developed by means of a physical or chemical treatment or by a combination of the two, it is usually convenient to activate the potentially adhesive component in the same treatment and thereby bind the fibers of the web together where they cross or are in contact together. Thus, crimping and activation can be carried out by subjecting the fiber web to a heat treatment, where the temperature exceeds the softening point of the potentially adhesive component. Examples of fibres, which can be crimped and activated in this way, and the conditions under which these steps can occur, are given below-

stående tabell. standing table.

Når den potentielt klebende komponent i den sammensatte fiber er slik_at den kan aktiveres kjemisk, kan krusningen og aktiveringen utføres ved samme kjemiske behandling. En slik kjemisk behandling kan passende anvendes for fibre, som f.eks. består av forskjellige vektmengder (f.eks. like mengder) av polyheksametylen adipamid som den ene komponent og en uregelmessig kopolymer (f.eks. en 80:20 kopolymer) av polyheksametylenadipamid/poly-epsilon-kaprolaktam som den annen komponent, hvori de to komponenter er anbragt side om side. Slike fibre kan kruses, og den kopolymere komponent gjøres klebende ved å behandle fiberbanen, som inneholder de sammensatte fibre, ved romtemperatur i et salpetersyrebad av passende styrke, ved en annen metode, som er beskrevet mer utførlig i eksempel 7, kan slike sammensatte fibre kruses og aktiveres ved f.eks. å utsette fiberbanen for en varm (100°C) i det vesentlige vannfri etylenglykoloppløsning av formaldehyd under slike betingelser, at polyheksametylenadipamidkomponenten i de sammensatte fibre bevares så å si ikke-klebende. When the potentially adhesive component in the composite fiber is such that it can be activated chemically, the crimping and activation can be carried out by the same chemical treatment. Such a chemical treatment can suitably be used for fibres, such as e.g. consists of different weight amounts (e.g., equal amounts) of polyhexamethylene adipamide as one component and an irregular copolymer (e.g., an 80:20 copolymer) of polyhexamethylene adipamide/poly-epsilon-caprolactam as the other component, wherein the two components are placed side by side. Such fibers may be crimped and the copolymer component made tacky by treating the fiber web containing the composite fibers at room temperature in a nitric acid bath of suitable strength, by another method, which is described more fully in Example 7, such composite fibers may be crimped and is activated by e.g. exposing the fiber web to a hot (100°C) essentially anhydrous ethylene glycol solution of formaldehyde under such conditions that the polyhexamethylene adipamide component in the composite fibers is preserved so to speak non-adhesive.

Efter aktivering fjernes det kjemiske medium, som ble anvendt til aktivering av den potentielt klebende komponent, på passende måte, f.eks. ved inndampning eller utvaskning med en væske, som kan blandes med det førnevnte kjemiske medium, men er inert overfor fibrene. After activation, the chemical medium, which was used to activate the potentially adhesive component, is removed in a suitable way, e.g. by evaporation or leaching with a liquid, which can be mixed with the aforementioned chemical medium, but is inert towards the fibres.

I alle tilfelle hvor krusning og aktivering utføres ved adskilte behandlinger, utsettes fiberbanen efter at krusningen er utviklet i fibrene deri, for ytterligere en behandling for å aktivere den potentielt klebende komponent og derved sammenbinde fibrene, In all cases where crimping and activation are carried out by separate treatments, the fiber web is subjected, after the crimping has been developed in the fibers therein, to a further treatment to activate the potentially adhesive component and thereby bond the fibres,

hvor de krysser over hverandre eller er i kontakt med hverandre. Binding på denne måte kan utføres på mange forskjellige måter, og i hvert enkelt tilfelle avhenger den metode som anvendes for en stor del av arten av den potentielt klebende komponent og likeledes av den annen komponent i den sammensatte fiber. Hvor den potentielt klebende komponent har et lavere mykningspunkt enn den annen, kan den passende gjøres klebende ved å utsette banen for en varmebehandling, som f.eks. kan oppnåes ved anvendelse av tørr varme, f.eks. ved å sende varm luft gjennom banen eller ved å oppvarme den i en elektrisk ovn eller ved å behandle fiberbanen med fuktig varme ved hjelp av fuktig luft, varmt vann og damp. Andre mulige fremgangsmåter til varmeaktivering går ut på å utsette banen for strå» ling, f.eks. infrarød stråling av passende intensitet og varighet. Når den potentielt klebende komponent kan aktiveres kjemisk, kan aktivering utføres ved en passende kjemisk behandling. where they cross over each other or are in contact with each other. Bonding in this way can be carried out in many different ways, and in each individual case the method used depends for a large part on the nature of the potentially adhesive component and likewise on the other component of the composite fiber. Where the potentially adhesive component has a lower softening point than the other, it can suitably be made adhesive by subjecting the web to a heat treatment, such as can be achieved by using dry heat, e.g. by passing hot air through the web or by heating it in an electric furnace or by treating the fiber web with moist heat using moist air, hot water and steam. Other possible methods for heat activation involve exposing the web to radiation, e.g. infrared radiation of appropriate intensity and duration. When the potentially adhesive component can be activated chemically, activation can be carried out by a suitable chemical treatment.

Alle fibrenes denier og lengder er, når det anvendes stapelfibre, ikke kritisk i den foreliggende oppfinnelsen. Til å tilveiebringe passende strekkstyrke, rivestyrke og god bøyelighet foretrekkes det å anvende fibre med én lengde på minst ca. 1,3 cm, selv om kortere fibre i visse tilfeller kan være nyttige. Sett ut fra det synspunkt, at fiberbanen skal behandles på standardteksti1-maskiner, er det undertiden fordelaktig å anvende fibre som er kortere enn ca. 20 cm. All the fibers' deniers and lengths are, when staple fibers are used, not critical in the present invention. To provide suitable tensile strength, tear strength and good flexibility, it is preferred to use fibers with one length of at least approx. 1.3 cm, although shorter fibers may be useful in certain cases. From the point of view that the fiber web is to be processed on standard texti1 machines, it is sometimes advantageous to use fibers that are shorter than approx. 20 cm.

Det er passende å anvende fibre med en denier av størrel-sesordenen. 1-6 denier/fiber. På den annen side kan fibre med en denier så lav som 0,1 denier/fiber anvendes sammen med fibre med en større denier, f.eks. 5-8 denier/fiber. Fibre med en tungere denier enn f.eks. 20 denier/fiber frembringer et produkt med utmerket styrke og holdbarhet, men det har ofte et ubehagelig grep. It is suitable to use fibers with a denier of the order of magnitude. 1-6 denier/fibre. On the other hand, fibers with a denier as low as 0.1 denier/fiber can be used together with fibers with a higher denier, e.g. 5-8 denier/fibre. Fibers with a heavier denier than e.g. 20 denier/fiber produces a product with excellent strength and durability, but it often has an uncomfortable grip.

Det er bare nødvendig at fiberbanen og produkter avledet herav inneholder 5% sammensatte fibre, selv om det foretrekkes at de sammensatte fibre foreligger i en mengde på 20% eller mere, og andre fibre, som er inerte eller så å si inerte overfor i det minste aktiveringsbehandlingen, som fiberbanen utsettes for, kan anvendes i blanding med de sammensatte fibre. Avhengig av de særlige ønsker med hensyn til det blandede produkt, kan prosentdelen av sammensatte fibre, som finnes i fiberbanen og produktet avledet derav, variere i vid utstrekning. Produkter som fullstendig består av de sammensatte fibre eller de, hvori slike fibre dominerer, har tendens til å få større styrke, motstandsdyktighet overfor revner og slitasje og motstandsdyktighet overfor spaltning. Produkter av denne art er nyttige til mange forskjellige formål, hvor det kreves en lett, bøyelig, elastisk, bløt, uvevet struktur, så som isolerende lag i bekledningsgjenstander, i bysteholderforinger, hjelmkanter, soveposer, puter, støtputer, former og foringer til nye kjoler og hatter, plater til kirurgisk bruk og lignende. It is only necessary that the fiber web and products derived from it contain 5% composite fibers, although it is preferred that the composite fibers are present in an amount of 20% or more, and other fibers, which are inert or so to speak inert to at least the activation treatment, to which the fiber web is subjected, can be used in combination with the composite fibers. Depending on the particular wishes with regard to the mixed product, the percentage of composite fibers present in the fiber web and the product derived therefrom can vary widely. Products consisting entirely of the composite fibers or those in which such fibers predominate tend to have greater strength, resistance to cracking and wear, and resistance to splitting. Products of this nature are useful for many different purposes where a light, flexible, elastic, soft, non-woven structure is required, such as insulating layers in clothing items, in bra liners, helmet edges, sleeping bags, cushions, shock pads, shapes and liners for new dresses and hats, plates for surgical use and the like.

Tilstedeværelse av andre fibre jevnt fordelt i hele fiberbanen og således i produktet avledet derav i en vektmengde på inntil 95%, f.eks. fra 50 til 80% på grunnlag av vekten av fibrene i banen, gir mer bøyelige produkter, som i visse tilfeller har estetiske overflatekvaliteter, som viser seg ved draperingsevnen, grepet og det alminnelige utseende. Slike produkter kan fremstilles og anvendes til mange forskjellige formål for uvevet materiale. De er særlig velegnet til mange husholdningsartikler, inklusive tepper, senge-tepper, draperte ting, foringer, samt til polstrede varer og lignende og til bekledningsbruk, såsom drakter, halstørkler og forstoffer. Presence of other fibers evenly distributed throughout the fiber web and thus in the product derived from it in an amount by weight of up to 95%, e.g. from 50 to 80% based on the weight of the fibers in the web, gives more pliable products, which in certain cases have aesthetic surface qualities, which are shown by the draping ability, the grip and the general appearance. Such products can be produced and used for many different purposes for non-woven material. They are particularly suitable for many household items, including carpets, bedspreads, draped items, linings, as well as for upholstered goods and the like and for clothing use, such as suits, scarves and linings.

De sammenbundne, uvevede produkter som fremstilles ifølge foreliggende oppfinnelse, kan hvis det ønskes utsettes for en hvilken som helst av de kjente tekstilbehandlinger, så som børstning, flossing, skjæring og ornamentering. Til noen formål kan de forsynes med et overtrekk, f.eks. et myknet polyvinylklorid- eller polyuretan-overtrekk. The bonded, non-woven products produced according to the present invention can, if desired, be subjected to any of the known textile treatments, such as brushing, flossing, cutting and ornamentation. For some purposes they can be provided with a cover, e.g. a softened polyvinyl chloride or polyurethane cover.

Oppfinnelsen vil nu bli ytterligere illustrert i de følgende eksempler. Produktenes strekkstyrke bestemmes på en 15,2 cm lang og en 15,1 cm bred prøve, idet det anvendes enInstron strekkprøve; dennes kjever anbringes med en innbyrdes avstand på 5 cm. Oppfinnelsens strekkstyrke bestemtes ved romtemperatur ved en relativ fuktighet på 3% og en forlengelseshastighet på 5 cm/min., dvs. 100%. The invention will now be further illustrated in the following examples. The products' tensile strength is determined on a 15.2 cm long and a 15.1 cm wide sample, using an Instron tensile test; its jaws are placed with a mutual distance of 5 cm. The tensile strength of the invention was determined at room temperature at a relative humidity of 3% and an elongation rate of 5 cm/min., i.e. 100%.

EKSEMPEL 1EXAMPLE 1

Dette eksempel viser dannelsen av et bane- eller ark-lignende materiale bestående av 100% sammensatte fibre i form av heterofilamenter. En fibermengde bestående av 12 denier, 3,5 cm stapelfibre fremstilt fra fullt strukket, potensielt krympbar polyheksametylenadipamid/poly(omega-aminoundekansyre) (nylon 66/11) heterofilament i hvilken de to komponenter er tilstede i like vekt-deler og side ved side i forhold til hverandre, med en svak spiralformet krusning på grunn av trekningsprosessen, ble kardet ved hjelp av en Shirley miniature kardemaskin til et flor med 2,5 cm tykkelse og med en egenvekt på 0,005 gr/cm . Dette flor ble så oppvarmet i en ovn i 3 min. ved en temperatur på 230 til 240°C under et begynnende trykk på 0,04 gr/cm<2>frembragt av en 15 x 28 cm 19° vekt slik at produktet ble gitt en glatt overflate. This example shows the formation of a web or sheet-like material consisting of 100% composite fibers in the form of heterofilaments. A fiber lot consisting of 12 denier, 3.5 cm staple fibers made from fully stretched, potentially shrinkable polyhexamethylene adipamide/poly(omega-aminoundecanoic acid) (nylon 66/11) heterofilament in which the two components are present in equal parts by weight and side by side relative to each other, with a slight spiral ripple due to the drawing process, was carded using a Shirley miniature carding machine into a flor of 2.5 cm thickness and with a specific gravity of 0.005 gr/cm . This flour was then heated in an oven for 3 min. at a temperature of 230 to 240°C under an initial pressure of 0.04 gr/cm<2>produced by a 15 x 28 cm 19° weight so that the product was given a smooth surface.

Til å begynne med krympet fibrene som dannet floret, på en spiralaktig måte, og floret trakk seg sammen til et mindre volum (tilnærmet 15% krymping av flaten). Den krusning som ble dannet i fibrene var i motsatt retning og meget tettere enn den som var til stede i de ikke avspente fibre, og denne omsnuing og tilstramming av krusningene forårsaket en vridning i fibrene slik at de ble tvunnet inn i hverandre og mekanisk sammenbundet. Initially, the fibers forming the felt shrunk in a spiral manner, and the felt contracted to a smaller volume (approximately 15% area shrinkage). The crimp formed in the fibers was in the opposite direction and much tighter than that present in the unstrained fibers, and this reversal and tightening of the crimps caused a twist in the fibers so that they were twisted into each other and mechanically bonded.

Idet fibrene nådde den temperatur som var til stede i ovnen, ved hvilken tid de var i det vesentlige helt kruset, ble den komponent i heterofilamentet som har det laveste smeltepunkt, dvs. poly(omega-aminoundekansyre) som smelter ved en temperatur på ca. 165°C, ble klebende, utviklet sine vedhengende eller klebende egenskaper og fikk de fibre som var i kontakt med hverandre til å smelte sammen. Den resulterende fiberbane hadde en gjennomsnittlig egenvekt på 0,035 g/cm , en ypperlig fjæringsevne idet den gjenvant sin ori- ginale form etter å ha vært utsatt for trykk og hadde utseende av et skumlignende materiale. Denne selvunderstøttende bane hadde et teksti Ilignende greip, var meget porøs, ganske bøyelig og hadde meget god slitasjestyrke og rivestyrke. As the fibers reached the temperature present in the oven, at which time they were essentially completely crimped, the component of the heterofilament which has the lowest melting point, i.e. poly(omega-aminoundecanoic acid) which melts at a temperature of approx. 165°C, became sticky, developed its adherent or adhesive properties and caused the fibers in contact with each other to fuse together. The resulting fibrous web had an average specific gravity of 0.035 g/cm , excellent resilience in that it recovered its original shape after being subjected to pressure and had the appearance of a foam-like material. This self-supporting web had a texture similar to grip, was very porous, quite flexible and had very good wear and tear strength.

De forskjellige egenskaper av materialet ble så bestemt ved hjelp av en prøve og vist i den nedenfor oppførte tabell. The different properties of the material were then determined using a sample and shown in the table listed below.

I denne og andre tabeller reprodusert i denne beskrivelse er porøsiteten et mål for den prosentdel av det totale volum av produktet som er tomrom. In this and other tables reproduced in this specification, porosity is a measure of the percentage of the total volume of the product that is void.

S_ angir forholdet mellom strekkstyrken i kg/g/cm og egen-vekten i g/cm^. S_ indicates the ratio between the tensile strength in kg/g/cm and the specific weight in g/cm^.

Under mikroskop kan polyamidfibrene sees å være forbundet med hverandre ved punkter hvor de krysser eller berører poly(omega-aminoundekansyre) komponenten som dannet en liten boble ved slike punkter, men som ble værende langs hele fiberens lengde i tett for-lengelse med polyheksametylenadipamid komponenten. De indre mellomrom mellom fibrene var videre fullstendig fri fra bindingsmaterialet. Under the microscope, the polyamide fibers can be seen to be connected to each other at points where they cross or touch the poly(omega-aminoundecanoic acid) component which formed a small bubble at such points, but which remained along the entire length of the fiber in close extension with the polyhexamethylene adipamide component. The inner spaces between the fibers were also completely free of the binding material.

Da banen hadde homogen struktur i at den fullt ut bestoAs the track had a homogeneous structure in that it fully consisted

av fibre av hvilke alle var valgt fra samme kjemiske klasse, dvs. alle fibre hadde samme funksjonelle grupper, var den lett å farve jevnt med bare ett farvestoff. of fibers all of which were selected from the same chemical class, i.e. all fibers had the same functional groups, it was easy to dye uniformly with only one dye.

Materiale ifølge dette eksempel ble farget med et surt farvestoff, f.eks. Solway Blue, som benyttes for polyamidfarvning, til en jevn sjattering. Den resulterende myke ettergivende struktur var anvendelig som gulvteppe. Material according to this example was dyed with an acid dye, e.g. Solway Blue, which is used for polyamide dyeing, for an even shading. The resulting soft yielding structure was usable as a floor carpet.

EKSEMPEL 2EXAMPLE 2

En andel stapelfibre ifølge eksempel 1 ble blandet med en andel ikke-aktiverbar kruset polyheksametylenadipamid 3,8 cm 6 denier stapelfibre i et vektforhold på 60:40. En andel av denne blanding ble kardet ved hjelp av en Shirley miniatyrkardemaskin til et løst flor med tykkelse 1,3 cm og med en gjennomsnittlig egenvekt på 0,02 g/cm . Dette flor ble oppvarmet i en ovn i 4 min. ved en temperatur på 220 til 232°C under et begynnende trykk på0,05 g/m<2>for å få et resulterende produkt med en glatt overflate. Idet fibrene nådde ovns-temperaturen ved hvilken tid heterofilamentene var i det vesentlige fullt kruset, ble den komponent av heterofilamenter med laveste smeltepunkt, dvs. poly(omegaundekansyre) klebende, utviklet sine klebende egenskaper og forårsaket sammensmeltet heterofilamentene hvor de var i kontakt med hverandre eller med ikke-aktiverbare fibre. Floret krympet omtrent 25% i flateinnhold som et resultat av varmebehandlingen og ga en bane med gjennomsnittlig egenvekt på 0,03 g/cm<3>som hadde en mer åpen struktur enn i det foregående eksempel hvor det ble benyttet 100% heterofilamenter. Banens åpne natur, som hadde et tomromsinnhold dvs. porøsitet på 92% (tilnærmet) ble vist ved å holde fiberbanen opp foran øynene og en lyskilde, idet det viste seg A portion of staple fibers according to example 1 was mixed with a portion of non-activatable crimped polyhexamethylene adipamide 3.8 cm 6 denier staple fibers in a weight ratio of 60:40. A portion of this mixture was carded with the aid of a Shirley miniature carding machine to a loose floc with a thickness of 1.3 cm and an average specific gravity of 0.02 g/cm. This flour was heated in an oven for 4 min. at a temperature of 220 to 232°C under an initial pressure of 0.05 g/m<2> to obtain a resulting product with a smooth surface. As the fibers reached the oven temperature at which time the heterofilaments were substantially fully crimped, the component of heterofilaments with the lowest melting point, i.e., poly(omegaundecanoic acid) became adhesive, developed its adhesive properties and caused the heterofilaments to fuse where they were in contact with each other or with non-activatable fibers. The filament shrank approximately 25% in surface area as a result of the heat treatment and produced a web with an average specific gravity of 0.03 g/cm<3> which had a more open structure than in the previous example where 100% heterofilaments were used. The open nature of the web, which had a void content ie porosity of 92% (approximately) was shown by holding up the fiber web in front of the eyes and a light source, as it appeared

at den var meget gjennomsiktig. Det vil si at gjenstander var klart synlige gjennom floret, noe som indikerer mange åpne mellomrom i tykkelsen av floret. Da floret ble holdt meget tett opp til øynene og således eliminerte nesten alt lys som ikke passerte gjennom floret, viste det seg i virkeligheten at dette så ut til å være helt gjennomsiktig. Da floret ble holdt opp mot en stråle av vann fra springen ble strålen bare svakt deformert ved å passere gjennom. that it was very transparent. This means that objects were clearly visible through the felt, which indicates many open spaces in the thickness of the felt. When the felt was held very close to the eyes, thus eliminating almost all light that did not pass through the felt, it actually appeared to be completely transparent. When the felt was held up to a jet of water from the tap, the jet was only slightly deformed by passing through.

Fiberbanen hadde ikke en slik markert grad av skumlignende utseende som den fiberbane som besto av 100% heterofilamenter, The fiber web did not have such a marked degree of foam-like appearance as the fiber web that consisted of 100% heterofilaments,

men hadde en bedre utviklet tekstillignende mykhet og draperingsevne. Dens myke, bøyelige, draperbare og krympemotstandsdyktige natur gjorde den spesielt egnet for anvendelse som for i frakker eller dresser. but had a better developed textile-like softness and draping ability. Its soft, pliable, drapeable and shrink-resistant nature made it particularly suitable for use as a lining in coats or suits.

De forskjellige egenskaper av materialet ble så fastlagt ved hjelp av et prøveeksempel. Detaljer av målingene og egenskapene er oppført i den nedenstående tabell: The different properties of the material were then determined using a sample. Details of the measurements and characteristics are listed in the table below:

EKSEMPEL 3 EXAMPLE 3

I dette eksempel ble en andel heterofilament stapelfibre ifølge eksempel I blandet med en like stor vektandel ikke-aktiverbare polyheksametylenadipamid stapelfibre 3,5 cm, 6 denier pr. filament med et trearmet tverrsnitt. Blandingen ble utført ved hjelp av en Shirley Miniature kardemaskin til et løst flor med gjennomsnittlig egenvekt 0,008 g/cm 3, hvorefter fiberfloret ble oppvarmet i en ovn i 3 min. ved en temperatur på fra 220° - 240°C for å utvikle krus-ninger og aktivere poly(omega-aminoundekansyre) komponenten av heterofilamentet. Den resulterende bane hadde en gjennomsnittlig egenvekt på 0,02 g/cm 3, et mykt tiltalende grep sammenlignet med mange vevde artikler og var dimensjonalt sterk og tilstrekkelig bøyelig til å gi god draperingsevne. Farving av fiberbanen med et surt farvestoff, resulterte i et mykt, rødt, teppe med god motstandsdyktighet overfor rivning og slitasje. En 6 cm lang og 2 cm bred prøve av arket eller banen ble funnet å o ha en egenvekt på o0,021 g/cm 3, en vekt pr. lengdeenhet på 0,07 g/cm, en bruddforlengelse på 70%, In this example, a proportion of heterofilament staple fibers according to example I was mixed with an equal proportion by weight of non-activatable polyhexamethylene adipamide staple fibers 3.5 cm, 6 denier per filament with a three-armed cross-section. The mixture was carried out using a Shirley Miniature carding machine into a loose fleece with an average specific gravity of 0.008 g/cm 3 , after which the fiber fleece was heated in an oven for 3 min. at a temperature of from 220° - 240°C to develop ripples and activate the poly(omega-aminoundecanoic acid) component of the heterofilament. The resulting web had an average specific gravity of 0.02 g/cm 3 , a soft pleasing feel compared to many woven articles and was dimensionally strong and sufficiently pliable to provide good drapeability. Dyeing the fiber web with an acidic dye resulted in a soft, red carpet with good resistance to tearing and wear. A 6 cm long and 2 cm wide sample of the sheet or web was found to o have a specific gravity of o0.021 g/cm 3 , a weight per unit length of 0.07 g/cm, an elongation at break of 70%,

en strekkstyrke på 65 kg/g/cm, en porøsitet på ca. 98,2% og et forhold mellom strekkstyrke og egenvekt på 3,095. a tensile strength of 65 kg/g/cm, a porosity of approx. 98.2% and a ratio between tensile strength and specific weight of 3.095.

EKSEMPEL 4EXAMPLE 4

Et ikke-vevd, kardet flor ifølge eksempel 2, men sammen-satt av 20 vekt-% heterofilamenter og 80 vekt-% ikke-aktiverbare, krusede polyheksametylenadipamid-fibre fikk lov til å trekke seg fritt sammen, krympe, i alle retninger under oppvarming ved hjelp av varm luft ved en temperatur på 230° - 240°C i et tidsrom på A non-woven carded fleece according to Example 2, but composed of 20 wt% heterofilaments and 80 wt% non-activatable crimped polyhexamethylene adipamide fibers was allowed to freely contract, shrink, in all directions during heating using hot air at a temperature of 230° - 240°C for a period of

3,5 min. Ved denne temperatur ble poly(omega-aminodekansyre) komponenten av heterofilamentet aktivert, dvs. utviklet sine klebende egenskaper hvorved heterofilamentfibrene ble smeltet sammen i kontakt med hverandre og med de ikke-aktiverbare fibre. Krympingen var omtrent 12% pr. flateenhet og den resulterende bane hadde en gjennomsnittlig egenvekt på0,020g/cm . De forskjellige egenskaper til materialet ble så målt ved hjelp av en prøve, 6 cm langt og 2 cm bred og resultatet er angitt i den nedenfor oppsatte tabell: 3.5 min. At this temperature the poly(omega-aminodecanoic acid) component of the heterofilament was activated, i.e. developed its adhesive properties whereby the heterofilament fibers were fused together in contact with each other and with the non-activatable fibers. The shrinkage was approximately 12% per unit area and the resulting web had an average specific gravity of 0.020g/cm . The different properties of the material were then measured using a sample, 6 cm long and 2 cm wide, and the result is shown in the table below:

( (

Materialet hadde en meget åpen struktur og var meget bøyelig. Det var ingen tegn på "vindusruter" (dvs. det var opprettholdelse av i det vesentlige alle indre mellomrom) og materialet kunne foldes og skrukkes sammen og deretter bli spredt flatt utover i dets opprinnelige tilstand. I utseende var det meget likt vanlige ullteppestoffer og det var voluminøst og lett med gode varmeisola-sjonsegenskaper. Det tørket hurtig etter å være vætet og ble lett farvet med bare ett farvestoff. Materialbanen ble deretter benyttet for å fremstille ulltepper som hadde ypperligere bruksegenskaper. The material had a very open structure and was very flexible. There was no evidence of "window panes" (ie, there was maintenance of essentially all internal spaces) and the material could be folded and crumpled and then spread out flat in its original state. In appearance it was very similar to ordinary woolen carpet fabrics and it was voluminous and light with good thermal insulation properties. It dried quickly after being wet and was easily dyed with just one dye. The material web was then used to produce woolen carpets that had superior utility properties.

EKSEMPEL 5EXAMPLE 5

En andel 6 denier, 6 cm stapelfiber ble formet fra fullt strukne potensielt krympbare polyheksametylenadipamid/poly(omega-aminoundekansyre) (nylon 66/11) heterofilamenter i hvilken de to komponenter var tilstede i like vektmengder. Fibrene ble derefter kardet på en Shirley miniature kardemaskin og derefter krysslagt på konvensjonell måte til et flor med løse skikt med en tykkelse på omtrent 3 cm. Dette flor ble derefter delt i to 22,5 cm lange og 16 cm brede baner som hver hadde en vekt på 136 g/m 2 og en gjennomsnittlig egenvekt på 0,005 g/cm . Materialbanene ble så anbragt en på hver side av et lett vevd nettstoff med 5 vefttråder pr. 2,5 cm og 5 varptråder pr. 2,5 cm. Denne "sandwich" struktur ble derefter lett nålstanset på en nålmaskin med enkelt nålleie for å forbedre den dimensjonale stabilitet og strekkfasthet. Efter nålbehandlingen ble strukturen oppvarmet i en luftovn i 4 1/2 min. ved en temperatur på 230 - 240°C ved et begynnende trykk på 0,03 g/cm<2>tilveiebragt ved hjelp av en glimmerplate for å glatte florets overflate. Under denne oppvarmingsperiode krympet heterofilamentene, floret trakk seg sammen gradvis og tapte omtrent 22% av sitt flateinnhold og poly(omega-aminoundekansyre)komponenten av heterofilamentene ble aktivert og utviklet derved sine klebende egenskaper og forårsaket at fibre i kontakt med hverandre klebet eller smeltet sammen. A portion of 6 denier, 6 cm staple fiber was formed from fully drawn potentially shrinkable polyhexamethylene adipamide/poly(omega-aminoundecanoic acid) (nylon 66/11) heterofilaments in which the two components were present in equal amounts by weight. The fibers were then carded on a Shirley miniature carding machine and then cross-laid in a conventional manner into a loose ply roving approximately 3 cm thick. This flour was then divided into two 22.5 cm long and 16 cm wide webs each of which had a weight of 136 g/m 2 and an average specific gravity of 0.005 g/cm . The material webs were then placed one on each side of a lightly woven mesh fabric with 5 weft threads per 2.5 cm and 5 warp threads per 2.5 cm. This "sandwich" structure was then lightly needle punched on a single needle bed needle machine to improve dimensional stability and tensile strength. After the needle treatment, the structure was heated in an air oven for 4 1/2 min. at a temperature of 230 - 240°C at an initial pressure of 0.03 g/cm<2>provided by means of a mica plate to smooth the surface of the felt. During this heating period, the heterofilaments shrank, the roving gradually contracted and lost approximately 22% of its surface area, and the poly(omega-aminoundecanoic acid) component of the heterofilaments was activated and thereby developed its adhesive properties, causing fibers in contact with each other to stick or fuse together.

Den resulterende selvbærende materialbane hadde en jevn glatt overflate og var motstandsdyktig mot delaminering og rivning. The resulting self-supporting material web had a uniform smooth surface and was resistant to delamination and tearing.

Materialbanens forskjellige egenskaper ble derefter målt tilsvarende i det foregående eksempel og resultatene er angitt nedenfor: The different properties of the material web were then measured similarly to the previous example and the results are set out below:

EKSEMPEL 6 EXAMPLE 6

En del 20 denier, 6 cm stapelfibre dannet fra potensielt krympbare heterofilamenter inneholdende like vekt-deler av polyheksametylenadipamid og 80/20 vilkårlig kopolymer av polyheksametylenadipamid og poly-epsilon-kaprolaktam (nylon 66//66/6), hvor de to komponenter var anordnet side ved side i forhold til hverandre,ble kardet på en Shirley miniature kardemaskin og kardeflorene dannet på denne måte ble lagt opp på hverandre med påfølgende laganordnet i en vinkel på 90° i forhold til det foregående lag, slik at det ble dannet et krysslagt flor med en vekt på 224 g/m 2, og en egenvekt på 0,01 g/cm 3.Floret ble derefter neddyppet i 30 sek. i en 3,6 N salpetersyreoppløsning (21°C) i et bad. Denne væskebehandling ved hjelp av salpetersyre resulterte i 20% krymping av floret, krymping av heterofilamentene og aktivering av kopolymerkomponenten, som derved utviklet sine klebende egenskaper og forårsaket sammenklebing av fibre i kontakt med hverandre. Umiddelbart efter fjerning fra salpetersyrebadet blebanen skyllet godt med koldt vann og derefter tørret. A portion of 20 denier, 6 cm staple fibers formed from potentially shrinkable heterofilaments containing equal parts by weight of polyhexamethylene adipamide and 80/20 random copolymer of polyhexamethylene adipamide and poly-epsilon-caprolactam (nylon 66//66/6), where the two components were arranged side by side in relation to each other, the cards were carded on a Shirley miniature carding machine and the carded flors formed in this way were laid on top of each other with successive layers arranged at an angle of 90° to the previous layer, so that a cross-laid flor was formed with a weight of 224 g/m 2 and a specific gravity of 0.01 g/cm 3. The fabric was then immersed for 30 sec. in a 3.6 N nitric acid solution (21°C) in a bath. This liquid treatment with nitric acid resulted in 20% shrinkage of the fleece, shrinkage of the heterofilaments and activation of the copolymer component, which thereby developed its adhesive properties and caused adhesion of fibers in contact with each other. Immediately after removal from the nitric acid bath, the web was rinsed well with cold water and then dried.

En 6 cm lang og 2 cm bred prøve av materialbanen ble funnet å ha en egenvekt på 0,038 g/cm 3. En vekt pr. lengdeenhet på 0,090 g/cm, en bruddforlengelse på 25%, en strekkstyrke på 130 kg/g/cm, A 6 cm long and 2 cm wide sample of the material web was found to have a specific gravity of 0.038 g/cm 3. A weight per unit length of 0.090 g/cm, an elongation at break of 25%, a tensile strength of 130 kg/g/cm,

en porøsitet på 96,7% og et forhold mellom strekkstyrke og egenvekt på 3421. a porosity of 96.7% and a ratio between tensile strength and specific gravity of 3421.

EKSEMPEL 7EXAMPLE 7

En andel stapelfibre ifølge eksempel 6 ble kardet under anvendelse av en Shirley miniature kardemaskin, og kardeflorene formet på denne måte ble krysslagt for å gi et flor med en vekt på o 170 g/m<2>en egenvekt på 0,01 g/cm 3. En 16,5 cm lang og 15 cm bred prøve av det krysslagte flor ble neddyppet i et formaldehyd/glycerolblanding A proportion of staple fibers according to Example 6 was carded using a Shirley miniature carding machine, and the carded rovings thus formed were cross-laid to give a roving having a weight of o 170 g/m<2>a specific gravity of 0.01 g/cm 3. A 16.5 cm long and 15 cm wide sample of the cross-laid flor was immersed in a formaldehyde/glycerol mixture

ved en temperatur på 100°C i et tidsrom på 15 min.at a temperature of 100°C for a period of 15 min.

I løpet av denne periode krympet fibrene, floret trakk seg sammen tilnærmet 25% og kopolymerkomponenten av heterofilamentene ble aktivert og utviklet sine klebende egenskaper slik at fibre i kontakt med hverandre smeltet sammen og dannet en selvbærende materialbane. Umiddelbart efter denne behandling ble floret vasketmed varmt vann og den resulterende porøse bane hadde en jevn glatt overflate, god ettergivenhet, var lett sammentrykkbar og ved oppnevning av trykket istand til å gå tilbake i det vesentlige fullstendig til sin opprinnelige usammentrykte form og var ganske bra bøyelig. During this period the fibers shrunk, the ply contracted approximately 25% and the copolymer component of the heterofilaments was activated and developed its adhesive properties so that fibers in contact with each other fused together to form a self-supporting web of material. Immediately after this treatment, the felt was washed with warm water and the resulting porous web had a uniform smooth surface, good compliance, was easily compressible and, on application of the pressure, was capable of returning substantially completely to its original uncompressed form and was quite flexible. .

Den hadde følgende egenskaper: It had the following characteristics:

EKSEMPEL 8 EXAMPLE 8

Kontinuerlige fibre inneholdende like vektdeler polyheksametylenadipamid og en vilkårlig 80/20 kopolymer av polyheksametylenadipamid/poly-epsilonkaprolaktam (nylon 66//66/6) ble lagt opp til et flor. Continuous fibers containing equal parts by weight of polyhexamethylene adipamide and an arbitrary 80/20 copolymer of polyhexamethylene adipamide/poly-epsiloncaprolactam (nylon 66//66/6) were laid up to a flor.

Et 30 cm langt og 21 cm bredt prøvestykke av dette kon-tinuerlige filamentflor ble anbragt i et dampkammer med trykk. Trykket av den mettede damp ble hevet til 4,2 kg/cm 2 og holdt ved dette trykk i tilnærmet 4 min. Under denne periode ble heterofilamentene krympet, floret trakk seg sammen omtrent 15% og filamenter i kontakt med hverandre smeltet sammen slik at det ble dannet en stabil bane som et resultat av aktivering av kopolymerkomponenten i heterofilamentene. A 30 cm long and 21 cm wide test piece of this continuous filament pile was placed in a pressurized steam chamber. The pressure of the saturated steam was raised to 4.2 kg/cm 2 and held at this pressure for approximately 4 minutes. During this period the heterofilaments were shrunk, the roving contracted approximately 15% and filaments in contact with each other fused to form a stable web as a result of activation of the copolymer component of the heterofilaments.

Materialstykkets styrke i lengde og bredderetningen ble målt på 6 cm lange og 2 cm brede prøver, som ble festet mellom kjevene i en Instrol Tensile Tester, hvor kjevene var anordnet5cm fra hverandre.Belastningen og de prosentvise bruddforlengelser ble målt og styrken utregnet. Detaljer ved målingene etc. var som følger: The strength of the piece of material in the length and width direction was measured on 6 cm long and 2 cm wide samples, which were fixed between the jaws of an Instrol Tensile Tester, where the jaws were arranged 5 cm apart. The load and the percentage elongation at break were measured and the strength calculated. Details of the measurements etc. were as follows:

EKSEMPEL 9 EXAMPLE 9

Dette eksempel viser dannelse av et sammenbundet ikke-vevd florprodukt i baneform fra et våtlagt flor. This example shows the formation of a bonded non-woven fleece product in web form from a wet-laid fleece.

En ikke-kruset fiberstreng av fullt strukne 12 denier A fully drawn 12 denier non-crimp fiber strand

heterofilamenter i hvilke polyheksametylenadipamid var en komponent og en 80/20 vilkårlig kopolymer og polyheksametylenadipamid/poly-epsilonkaprolaktam den andre (nylon 66//66/6) ble oppskåret til 0,6 cm stapellengder i en DSrstling floss-skjæremaskin. En mengde på 10 g av denne floss ble ved hjelp av kraftig røring i 10 min. utrørt i 3 liter vann inneholdende en liten mengde "Dispersol V.L." Den resulterende jevne suspensjon ble filtrert over en kvadratisk 20 heterofilaments in which polyhexamethylene adipamide was one component and an 80/20 random copolymer and polyhexamethylene adipamide/poly-epsiloncaprolactam the other (nylon 66//66/6) were cut into 0.6 cm staple lengths in a DSrstling floss cutting machine. A quantity of 10 g of this floss was by vigorous stirring for 10 min. stirred in 3 liters of water containing a small amount of "Dispersol V.L." The resulting uniform suspension was filtered over a square 20

cm 100 mesh metallsikt, noe som resulterte i et jevnt sammenhengende flor i form av en hård bane. Efter tørking ble materialbanen plassert i en varmluftsovn og oppvarmet ved en temperatur på 226 - 236°C i et tidsrom på 3 1/2 min. under svakt trykk (0,06/g/cm<2>) frembragt av en glimmerplate for å glatte overflaten i det resulterende produkt; under varmebehandlingen ble fibrene i floret kruset.Floret krympet, og fibre i berøring med hverandre smeltet sammen som et resultat av utviklingen av de klebende egenskaper i kopolymerkomponenten. Denne sammenhengende materialbane hadde en ypperlig ettergivenhet og god bøyelighet. Banen hadde en egenvekt på 0,032 g/cm^, en vekt pr. lengdeenhet på 0,055 g/cm, en bruddforlengelse 35%, en strekkstyrke på 112 kg/g/cm, en porøsitet på 97,2%, et forhold mellom strekkstyrke og egenvekt på 2036 og et fast, men bøyelig grep som gjorde den hensiktsmessig for anvendelse som for i klesplagg. cm 100 mesh metal sieve, which resulted in an even continuous flour in the form of a hard web. After drying, the material web was placed in a hot air oven and heated at a temperature of 226 - 236°C for a period of 3 1/2 min. under slight pressure (0.06/g/cm<2>) produced by a mica sheet to smooth the surface in the resulting product; during the heat treatment the fibers in the fleece were crimped. The fleece shrunk, and fibers in contact with each other fused together as a result of the development of the adhesive properties in the copolymer component. This continuous web of material had excellent compliance and good flexibility. The web had a specific gravity of 0.032 g/cm^, a weight per unit length of 0.055 g/cm, an elongation at break of 35%, a tensile strength of 112 kg/g/cm, a porosity of 97.2%, a ratio of tensile strength to specific gravity of 2036 and a firm but pliable grip which made it suitable for use as lining in garments.

Som et alternativ til å danne floret ved hjelp av en satsvis operasjon, kan det fremstilles på kontinuerlig basis ved hjelp av en Fourdrinier eller en annen papirmaskin. As an alternative to forming the web using a batch operation, it can be produced on a continuous basis using a Fourdrinier or other paper machine.

EKSEMPEL 10EXAMPLE 10

En andel 20 denier, 6 cm stapelfibre dannet fra potensielt krympbare heterofilamenter inneholdende like vektdeler polyheksametylenadipamid og en 80/20 vilkårlig kopolymer av polyheksametylenadipamid og poly-epsilon - kaprolaktam (nylon 66//66/6), hvor de to komponenter var anordnet side ved side i forhold.til hverandre, ble kardet på en Shirley miniature kardemaskin og kardeflorene dannet på denne måte ble lagt opp på hverandre med påfølgende lag anordnet i en vinkel på 90° i forhold til det foregående lag slik at det ble dannet et krysslagt flor med en vekt på 238 g/m og en egenvekt på 0,01 g/cm<3>. A proportion of 20 denier, 6 cm staple fibers formed from potentially shrinkable heterofilaments containing equal parts by weight polyhexamethylene adipamide and an 80/20 random copolymer of polyhexamethylene adipamide and poly-epsilon-caprolactam (nylon 66//66/6), the two components being arranged side by side side to side, was carded on a Shirley miniature carding machine and the carded floes formed in this way were laid on top of each other with successive layers arranged at an angle of 90° to the previous layer so that a criss-crossed floe was formed with a weight of 238 g/m and a specific gravity of 0.01 g/cm<3>.

Den resulterende banelignende gjenstand hadde et grepThe resulting web-like object had a grip

som i flere henseender lignet svamp eller skumgummi, men adskilte seg fra disse materialer ved å ha jevn elastisitet i alle retninger i banens plan. Den hadde utseende av en tett filtet masse av fine fibre fordelt mer eller mindre vilkårlig gjennom hele strukturen og hvor fibrene var sammenbundet ved krysnings- og kontaktpunktene. Produktet adskilte seg også fra skumgummi ved at det var luft og which in several respects resembled sponge or foam rubber, but differed from these materials by having uniform elasticity in all directions in the plane of the track. It had the appearance of a densely felted mass of fine fibers distributed more or less randomly throughout the structure and where the fibers were joined at the crossing and contact points. The product also differed from foam rubber in that there was air and

væskegjennomtrengelig og hadde en høyere rivestyrke. Materialbanen ble jevnt farvet med et surt farvestoff og ble funnet meget anvendelig som støpnings- eller polstringsmateriale. liquid permeable and had a higher tear strength. The material web was evenly colored with an acidic dye and was found to be very useful as a molding or upholstery material.

De forskjellige egenskaper av materialbanen ble så målt ved hjelp av en 6 cm lang og 2 cm bred prøve, og resultatene er angitt i den følgende tabell: The different properties of the material web were then measured using a 6 cm long and 2 cm wide sample, and the results are shown in the following table:

EKSEMPEL 11 EXAMPLE 11

Det sammenbundne ikke-vevde florprodukt ifølge oppfinnelsen kan være i form av et hattelegeme. På fig. 5 er f.eks. vist en ut-førelse av en fremgangsmåte for å fremstille et slikt hattelegeme.- The bonded non-woven fleece product according to the invention may be in the form of a hat body. In fig. 5 is e.g. shown an embodiment of a method for producing such a hat body.-

En andel stapelfibre ifølge eksempel 1 ble kardet ved hjelp av en Shirley miniature kardemaskin og krysslagt på konvensjonell måte A proportion of staple fibers according to example 1 were carded using a Shirley miniature carding machine and cross-laid in a conventional manner

til en strimmel av løst lagt flor med en tykkelse på omtrent 2,5 cm og en egenvekt på o omtrent 0,005 g/cm 3. Strimmelen blir viklet overlappende på en hatteform som er anbragt på en form og roteres ved hjelp av en aksel, ved å rotere formen kan strimmelen bli tilført formens overflate i overlappende lag til et lag av den påkrevde tykkelse er oppbygget. Ved dette punkt blir hatteformen anbragt i en varmluftovn med en temperatur av 220-240°C i et tidsrom på omtrent 3 min. Under denne periode kruses fibrene i floret, floret krymper så de overlappende lag formes i fasong av hatteformen mer nøyaktig og en sammenhengende struktur resulterer fra sammensmeltingen av fibre som er i kontakt med hverandre, ved en alternativ utførelses-form, kan floret fra hvilket hattelegemet fremstilles, frembringes ved luftavlegning av stapelfibre på en stasjonært anordnet skjerm i form av en hatteformet konus. Sugning kan tilføres under skjermen for å lette avleiringen av fibre på denne. Fibrene i floret kan derefter aktiveres og kruses for å danne hattelegemet. to a strip of loosely laid fleece with a thickness of about 2.5 cm and a specific gravity of o about 0.005 g/cm 3. The strip is wound overlapping on a hat form which is placed on a mold and is rotated by means of a shaft, at rotating the mold, the strip can be fed to the surface of the mold in overlapping layers until a layer of the required thickness is built up. At this point, the hat form is placed in a hot air oven with a temperature of 220-240°C for a period of approximately 3 minutes. During this period, the fibers in the felt are crimped, the felt shrinks so that the overlapping layers are formed in the shape of the hat shape more precisely and a coherent structure results from the fusion of fibers that are in contact with each other, in an alternative embodiment, the felt from which the hat body can be produced , is produced by air deposition of staple fibers on a stationary screen in the form of a hat-shaped cone. Suction can be applied under the screen to facilitate the deposition of fibers on it. The fibers in the felt can then be activated and crimped to form the hat body.

Det vil forståes at de ikke-vevde produkter ifølge denne oppfinnelse kan være i form av andre gjenstander enn hattelegemer. Disse kan f.eks. fremstilles ved å forme en materialbane umiddelbart efter at fibrene i floret er sammenbundet og før banen er avkjølt til den riktige fasong, hvilken fasong fikseres ved kjøling. Korte rørseksjoner kan f.eks. dekkes med et lag isolasjonsmateriale ved å vikle den varme bane rundt røret til det er blitt bygget opp et It will be understood that the non-woven products according to this invention can be in the form of objects other than hat bodies. These can e.g. is produced by forming a web of material immediately after the fibers in the felt have been joined and before the web has cooled to the correct shape, which shape is fixed by cooling. Short pipe sections can e.g. covered with a layer of insulating material by wrapping the hot web around the pipe until a has been built up

lag av den nødvendige tykkelse hvorefter strukturen tillates å avkjøle, slik vikling kan utføres uten noen avslitning eller brudd på båndet mellom fibrene og uten vesentlig sammentrykking av banen som derved stort sett beholder sine voluminøse egenskaper med et stort antall små luftrom og høy isolasjonsverdi. layers of the required thickness after which the structure is allowed to cool, such winding can be carried out without any wear or breaking of the tape between the fibers and without significant compression of the web which thereby largely retains its voluminous properties with a large number of small air spaces and high insulation value.

Denne isolasjon er i form av en kontinuerlig hylse friThis insulation is in the form of a continuous sleeve free

for sømmer eller sprekker i lengderetningen.for seams or cracks in the longitudinal direction.

Formede gjenstander kan også dannes ved hjelp av en fremgangsmåte som består i å fylle eller fore en formdel med et fiber-flor, og derefter å kruse og aktivere fibrene i floret så at floret herdes i formens fasong. Shaped objects can also be formed using a method which consists of filling or lining a mold part with a fiber felt, and then crimping and activating the fibers in the felt so that the felt hardens in the shape of the mold.

På grunn av krusningen er filamentmaterialet til stede i det ferdige produkt anordnet i en ikke-lineær slynget form som gir bøyelighet, volum og fjæring. Due to the crimp, the filament material present in the finished product is arranged in a non-linear coiled shape that provides flexibility, volume and springiness.

De følgende to eksempler belyser denne siste metode for å fremstille formede gjenstander. The following two examples illustrate this last method of producing shaped objects.

EKSEMPEL 12EXAMPLE 12

4,3 g 12 denier 6 cm stapelfiber formet fra fullt strukne potensielt krympbare polyheksametylenadipamid/poly(omega-aminoundekan-syre) (nylon 66/11) heterofilamenter, i hvilke de to komponenter er til stede side om side i forhold til hverandre, og ikke avslappet men med en svak spiralformet krusning forårsaket av sprekkeprosessen, ble kardet under anvendelse av en Shirley miniature kardemaskin og dannet et flor med en egenvekt på 0,005 g/cm 3. Et 15 cm langt reagensglass med en diameter på 2,5 cm ble derefter fyllt med fiberfloret. Røret med innhold ble derefter plassert i 12 min. i opp-reist stilling i en varmluftovn ved en temperatur på 232-240°C. Ved enden av denne periode hadde stapelfibrene krympet og smeltet sammen. Efter kjøling ble fibermassen brudt vekk fra reagensglassets indre flate og derefter fjernet fra dette i form av sterk, sammenhengende 4.3 g 12 denier 6 cm staple fiber formed from fully drawn potentially shrinkable polyhexamethylene adipamide/poly(omega-aminoundecanoic acid) (nylon 66/11) heterofilaments, in which the two components are present side by side relative to each other, and unrelaxed but with a slight helical ripple caused by the cracking process, was carded using a Shirley miniature carding machine to form a floc with a specific gravity of 0.005 g/cm 3 . A 15 cm long test tube with a diameter of 2.5 cm was then filled with fibrous tissue. The tube with contents was then placed for 12 min. in an upright position in a hot air oven at a temperature of 232-240°C. By the end of this period, the staple fibers had shrunk and fused together. After cooling, the fiber mass was broken away from the inner surface of the test tube and then removed from this in the form of a strong, continuous

og porøs formet gjenstand, som hadde tatt fasong av reagensglasset beskrevet ovenfor. and porous shaped article, which had taken the shape of the test tube described above.

EKSEMPEL 13EXAMPLE 13

En matriseformdel i form av en sfærisk seksjon 20 cm i diameter og med en største dybde på 10 cm og den indre overflate oppvarmet til 150°C og besprøytet med et silikonslippmiddel, ble foret til en dybde på 5 cm med et flor inneholdende stapelfibre tilsvarende floret ifølge eksempel 1. En patriseformdel med mindre dimensjoner ble anbragt i matriseformdelen så fiberfloret opptok det ringformede mellomrom mellom de to formdeler. Den sammensatte form ble derefter anbragt i en varmluftovn hvor den ble holdt ved en temperatur på A matrix mold part in the form of a spherical section 20 cm in diameter and with a maximum depth of 10 cm and the inner surface heated to 150°C and sprayed with a silicone release agent, was lined to a depth of 5 cm with a fleece containing staple fibers corresponding to the fleece according to example 1. A patrice mold part with smaller dimensions was placed in the matrix mold part so that the fiber pile occupied the annular space between the two mold parts. The composite mold was then placed in a hot air oven where it was maintained at a temperature of

220 til 230°C i et tidsrom på 10 min.220 to 230°C for a period of 10 min.

Resultatet av denne formingsbehandling var en lett, mykThe result of this shaping treatment was a light, soft

og bøyelig koppformet gjenstand som hadde dimensjonene til den ringformede seksjon beskrevet ovenfor. Gjenstanden hadde varig form, vaskbarhet, styrke, slitasjestyrke, brukbar mykhet og bøyelighet og gjennomtrengningsevne overfor luft og fuktighet slik at den "pustet" riktig. Bånd, glidelås o.l. kan sys direkte på koppens kanter, noe som er av viktighet når det er påkrevet med en sterk og ettergivende natur slik som i brystholderskåler og hjelmforinger. and flexible cup-shaped article having the dimensions of the annular section described above. The item had lasting shape, washability, strength, wear resistance, usable softness and pliability and permeability to air and moisture so that it "breathed" properly. Straps, zippers, etc. can be sewn directly onto the edges of the cup, which is important when a strong and yielding nature is required, such as in bra cups and helmet liners.

EKSEMPEL 14EXAMPLE 14

Det bundne ikke-vevde florprodukt ifølge oppfinnelsen har en rekke forskjellige anvendelser på lamineringsområdet. Enten i form av mellomlegg eller underlagsbaner i forbindelse med plastfilmer og baner som f.eks. av nylon eller polyetylen eller i forbindelse med tekstilstoffer av vevd, flettet, strikket, knyttet eller filtet karakter. The bonded non-woven fleece product according to the invention has a number of different applications in the field of lamination. Either in the form of interlayers or underlay webs in connection with plastic films and webs such as e.g. of nylon or polyethylene or in connection with textile fabrics of a woven, braided, knitted, knotted or felted nature.

Claims (1)

F remgangsmåte for fremstilling av sammenbundne uvevde, fibrøse materialer med en egenvekt på mindre enn 0,08 g/cm , ved hvilken det på passende måte dannes et ark- eller baneformet materiale bestående av minst 5% sammensatte fibre med potentiell krusning og 0 - 95% andre fibre, hvoretter krusning utvikles ved en termisk eller kjemisk behandling, karakterisert ved at de sammensatte fibre har minst én potentielt klebende komponent, som danner i det minste en del av fiberoverflaten, og som blir klebende under en termisk eller kjemisk behandling, uten at den annen komponent blir klebende,Process for the production of bonded non-woven fibrous materials with a specific gravity of less than 0.08 g/cm , which suitably forms a sheet or web-shaped material consisting of at least 5% composite fibers with potential crimp and 0 - 95 % other fibres, after which crimp is developed by a thermal or chemical treatment, characterized in that the composite fibers have at least one potentially adhesive component, which forms at least part of the fiber surface, and which becomes adhesive during a thermal or chemical treatment, without the other component becomes sticky, og ved at den potentielle klebeevne utvikles ved samme kjemiske eller termiske behandling som den potentielle krusning eller ved en særskilt behandling, alt uten at materialet sammentrykkes vesentlig.and in that the potential adhesiveness is developed by the same chemical or thermal treatment as the potential ripple or by a special treatment, all without the material being significantly compressed.
NO151828A 1963-02-05 1964-02-03 NO124547B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB4733/63A GB1073181A (en) 1963-02-05 1963-02-05 Bonded-web nonwoven products

Publications (1)

Publication Number Publication Date
NO124547B true NO124547B (en) 1972-05-02

Family

ID=9782773

Family Applications (1)

Application Number Title Priority Date Filing Date
NO151828A NO124547B (en) 1963-02-05 1964-02-03

Country Status (14)

Country Link
US (1) US3595731A (en)
AT (2) AT296211B (en)
BE (2) BE643420A (en)
CH (2) CH448006A (en)
DE (1) DE1560653B1 (en)
DK (2) DK120531B (en)
ES (2) ES296120A1 (en)
FI (1) FI44052C (en)
FR (2) FR1392034A (en)
GB (2) GB1073183A (en)
LU (2) LU45367A1 (en)
NL (2) NL6400929A (en)
NO (1) NO124547B (en)
SE (2) SE327687B (en)

Families Citing this family (138)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1102361A (en) * 1964-06-09 1968-02-07 Ici Ltd Tufted fabrics
GB1095656A (en) * 1964-09-08 1967-12-20 Ici Ltd Nonwoven fabrics and methods of making them
US3498873A (en) * 1965-10-29 1970-03-03 Dow Chemical Co Net structures of multicomponent filaments
DE1922089A1 (en) * 1969-04-30 1970-11-05 Artos Meier Windhorst Kg Process for the production of nonwovens
US4039711A (en) * 1971-06-07 1977-08-02 The Kendall Company Non-woven fabrics
US3770562A (en) * 1971-09-09 1973-11-06 Kendall & Co Composite nonwoven fabrics
US3893488A (en) * 1971-11-10 1975-07-08 Johns Manville Corrosion resistant gel coating lining for composite plastic pipe
US4065599A (en) * 1972-01-19 1977-12-27 Toray Industries, Inc. Spherical object useful as filler material
US4189338A (en) * 1972-11-25 1980-02-19 Chisso Corporation Method of forming autogenously bonded non-woven fabric comprising bi-component fibers
US3923942A (en) * 1973-01-16 1975-12-02 Toray Industries Filler material and method of manufacturing same
US3895162A (en) * 1973-02-16 1975-07-15 Summa Corp Composite metal fiber wool resin product and method
US4170680A (en) * 1974-04-26 1979-10-09 Imperial Chemical Industries Limited Non-woven fabrics
GB1524713A (en) * 1975-04-11 1978-09-13 Ici Ltd Autogeneously bonded non-woven fibrous structure
GB1537494A (en) * 1975-04-24 1978-12-29 Ici Ltd Thermoplastics articles having a surface keyed to cloth
US4189511A (en) * 1975-10-31 1980-02-19 Celanese Corporation Filter
GB1569417A (en) * 1976-03-30 1980-06-18 Ici Ltd Sheet type wall covering or ceiling covering
CA1073648A (en) * 1976-08-02 1980-03-18 Edward R. Hauser Web of blended microfibers and crimped bulking fibers
NZ185412A (en) * 1976-10-20 1980-03-05 Chisso Corp Heat-adhesive compsite fibres based on propylene
GB1564550A (en) * 1976-12-14 1980-04-10 Jowitt P Fire protection means for fuel tanks
US4112167A (en) * 1977-01-07 1978-09-05 The Procter & Gamble Company Skin cleansing product having low density wiping zone treated with a lipophilic cleansing emollient
US4187669A (en) * 1977-02-01 1980-02-12 Hamanaka Kabushiki Kaisha Knitting material
GB1567977A (en) * 1977-02-23 1980-05-21 Ici Ltd Water repellant fibrous structure and its use as a flame suppressant
US4211816A (en) * 1977-03-11 1980-07-08 Fiber Industries, Inc. Selfbonded nonwoven fabrics
US4285748A (en) * 1977-03-11 1981-08-25 Fiber Industries, Inc. Selfbonded nonwoven fabrics
JPS53147816A (en) * 1977-05-24 1978-12-22 Chisso Corp Hot-melt fiber of polypropylene
US4162344A (en) * 1978-07-27 1979-07-24 American Manufacturing Company Porous resin impregnated stratified fiber flexible sheet backed mat and process of forming the same
DE2834438C3 (en) * 1978-08-05 1987-12-03 Fa. Carl Freudenberg, 6940 Weinheim Spunbonded nonwoven fabric made of polyester filaments for use as a carrier material for a thermoformable tufted carpet
JPS5584420A (en) * 1978-12-20 1980-06-25 Chisso Corp Method of making side by side conjugate fiber with no crimp
DE3164554D1 (en) * 1980-07-10 1984-08-09 Ici Plc Coverstock fabrics
DE3038664C2 (en) * 1980-10-13 1984-04-05 Fa. Carl Freudenberg, 6940 Weinheim Iron-on interlining nonwoven
US4552603A (en) * 1981-06-30 1985-11-12 Akzona Incorporated Method for making bicomponent fibers
JPS5823951A (en) * 1981-07-31 1983-02-12 チッソ株式会社 Production of bulky nonwoven fabric
US4400426A (en) * 1981-11-03 1983-08-23 Warnaco Inc. Thermal insulation material comprising a mixture of silk and synthetic fiber staple
JPS58136867A (en) * 1982-02-05 1983-08-15 チッソ株式会社 Production of heat bonded nonwoven fabric
JPS599255A (en) * 1982-06-29 1984-01-18 チッソ株式会社 Heat adhesive nonwoven fabric
GB2123861A (en) * 1982-07-14 1984-02-08 Yen Ming Tsai Autogenous bonding of nylon flbres activated by acid
US4433024A (en) * 1982-07-23 1984-02-21 Minnesota Mining And Manufacturing Company Reduced-stress vapor-sorptive garments
FR2546537B1 (en) * 1983-05-25 1985-08-16 Rhone Poulenc Fibre SEALING MEMBRANE AND ITS MANUFACTURING METHOD
AT401154B (en) * 1983-06-27 1996-07-25 Vitrofil Spa Process and apparatus for the continuous production of films from thermoplastic polymers, reinforced with glass fibres or strands
US4729371A (en) * 1983-10-11 1988-03-08 Minnesota Mining And Manufacturing Company Respirator comprised of blown bicomponent fibers
US4508113A (en) * 1984-03-09 1985-04-02 Chicopee Microfine fiber laminate
US4522203A (en) * 1984-03-09 1985-06-11 Chicopee Water impervious materials
US4684570A (en) * 1984-03-09 1987-08-04 Chicopee Microfine fiber laminate
JPS6269822A (en) * 1985-09-19 1987-03-31 Chisso Corp Heat bondable conjugate fiber
US4807619A (en) * 1986-04-07 1989-02-28 Minnesota Mining And Manufacturing Company Resilient shape-retaining fibrous filtration face mask
US4681801A (en) * 1986-08-22 1987-07-21 Minnesota Mining And Manufacturing Company Durable melt-blown fibrous sheet material
US4868032A (en) * 1986-08-22 1989-09-19 Minnesota Mining And Manufacturing Company Durable melt-blown particle-loaded sheet material
BR8807813A (en) * 1987-11-25 1990-10-23 Maxwell Victor Lane FIBROUS, CONNECTED, INSULATION BLOCK
GB2212709A (en) * 1987-11-28 1989-08-02 Alex Poppleton Clothing garment, wrap or enclosure
US5593768A (en) * 1989-04-28 1997-01-14 Fiberweb North America, Inc. Nonwoven fabrics and fabric laminates from multiconstituent fibers
US5108827A (en) 1989-04-28 1992-04-28 Fiberweb North America, Inc. Strong nonwoven fabrics from engineered multiconstituent fibers
US5284704A (en) * 1992-01-15 1994-02-08 American Felt & Filter Company Non-woven textile articles comprising bicomponent fibers and method of manufacture
US5202178A (en) * 1992-02-28 1993-04-13 International Paper Company High-strength nylon battery separator material and related method of manufacture
MX9304488A (en) * 1992-08-10 1994-02-28 Akzo Nv POLYESTER THREAD WITH GOOD ADHESION TO RUBBER AND PROCEDURE FOR ITS PREPARATION.
US5382400A (en) 1992-08-21 1995-01-17 Kimberly-Clark Corporation Nonwoven multicomponent polymeric fabric and method for making same
US5405682A (en) 1992-08-26 1995-04-11 Kimberly Clark Corporation Nonwoven fabric made with multicomponent polymeric strands including a blend of polyolefin and elastomeric thermoplastic material
US5336552A (en) * 1992-08-26 1994-08-09 Kimberly-Clark Corporation Nonwoven fabric made with multicomponent polymeric strands including a blend of polyolefin and ethylene alkyl acrylate copolymer
CA2092604A1 (en) * 1992-11-12 1994-05-13 Richard Swee-Chye Yeo Hydrophilic, multicomponent polymeric strands and nonwoven fabrics made therewith
US5482772A (en) * 1992-12-28 1996-01-09 Kimberly-Clark Corporation Polymeric strands including a propylene polymer composition and nonwoven fabric and articles made therewith
US5454142A (en) * 1992-12-31 1995-10-03 Hoechst Celanese Corporation Nonwoven fabric having elastometric and foam-like compressibility and resilience and process therefor
US5399174A (en) * 1993-04-06 1995-03-21 Kimberly-Clark Corporation Patterned embossed nonwoven fabric, cloth-like liquid barrier material
US5599420A (en) * 1993-04-06 1997-02-04 Kimberly-Clark Corporation Patterned embossed nonwoven fabric, cloth-like liquid barrier material and method for making same
CA2105026C (en) * 1993-04-29 2003-12-16 Henry Louis Griesbach Iii Shaped nonwoven fabric and method for making the same
US5512358A (en) * 1993-09-22 1996-04-30 Kimberly-Clark Corporation Multi-component polymeric strands including a butene polymer and nonwoven fabric and articles made therewith
US6169045B1 (en) 1993-11-16 2001-01-02 Kimberly-Clark Worldwide, Inc. Nonwoven filter media
US5597645A (en) * 1994-08-30 1997-01-28 Kimberly-Clark Corporation Nonwoven filter media for gas
US5695376A (en) * 1994-09-09 1997-12-09 Kimberly-Clark Worldwide, Inc. Thermoformable barrier nonwoven laminate
CN1067910C (en) * 1994-10-31 2001-07-04 金伯利-克拉克环球有限公司 High density nonwowen filter media
US6417122B1 (en) 1994-11-23 2002-07-09 Bba Nonwovens Simpsonville, Inc. Multicomponent fibers and fabrics made using the same
US6417121B1 (en) 1994-11-23 2002-07-09 Bba Nonwovens Simpsonville, Inc. Multicomponent fibers and fabrics made using the same
US6420285B1 (en) 1994-11-23 2002-07-16 Bba Nonwovens Simpsonville, Inc. Multicomponent fibers and fabrics made using the same
US6203905B1 (en) * 1995-08-30 2001-03-20 Kimberly-Clark Worldwide, Inc. Crimped conjugate fibers containing a nucleating agent
US5709735A (en) * 1995-10-20 1998-01-20 Kimberly-Clark Worldwide, Inc. High stiffness nonwoven filter medium
US6100208A (en) * 1996-10-31 2000-08-08 Kimberly-Clark Worldwide, Inc. Outdoor fabric
AU5337798A (en) * 1996-12-20 1998-07-17 Moy Isover Limited A non-woven cloth
GB9822398D0 (en) * 1998-10-14 1998-12-09 Jacob Cowen & Sons Limited Improvements in/or relating to oil absorbent materials
US6613704B1 (en) * 1999-10-13 2003-09-02 Kimberly-Clark Worldwide, Inc. Continuous filament composite nonwoven webs
MXPA02006183A (en) 1999-12-21 2002-12-05 Kimberly Clark Co Fine denier multicomponent fibers.
DE10023391A1 (en) * 2000-05-12 2001-03-15 Lurgi Zimmer Ag Production of cellulosic articles, e.g. fibers, comprises extruding solution to produce fiber, stretching article produced, feeding it without tension to conveyor and removing it from end of conveyor under tension
DE10035679A1 (en) * 2000-07-21 2002-01-31 Inst Neue Mat Gemein Gmbh Nanoscale corundum powder, sintered bodies made therefrom and process for their production
US6736916B2 (en) 2000-12-20 2004-05-18 Kimberly-Clark Worldwide, Inc. Hydraulically arranged nonwoven webs and method of making same
WO2003048442A1 (en) * 2001-11-30 2003-06-12 Reemay, Inc. Spunbound nonwoven fabric
US6984276B2 (en) * 2001-12-21 2006-01-10 Invista North America S.Arl. Method for preparing high bulk composite sheets
US7036197B2 (en) * 2001-12-21 2006-05-02 Invista North America S.A.R.L. Stretchable multiple-component nonwoven fabrics and methods for preparing
US7005395B2 (en) * 2002-12-12 2006-02-28 Invista North America S.A.R.L. Stretchable composite sheets and processes for making
US7258758B2 (en) * 2001-12-21 2007-08-21 Kimberly-Clark Worldwide, Inc. Strong high loft low density nonwoven webs and laminates thereof
US7201816B2 (en) * 2001-12-21 2007-04-10 Invista North America S.A.R.L. High bulk composite sheets and method for preparing
WO2003097353A1 (en) * 2002-05-15 2003-11-27 Ahlstrom Windsor Locks Llc Improved abrasion resistance of nonwovens
US20040077247A1 (en) * 2002-10-22 2004-04-22 Schmidt Richard J. Lofty spunbond nonwoven laminate
US7588818B2 (en) * 2002-12-16 2009-09-15 Invista North America S.A R.L. High bulk composite sheets
US6878238B2 (en) * 2002-12-19 2005-04-12 Kimberly-Clark Worldwide, Inc. Non-woven through air dryer and transfer fabrics for tissue making
US6875315B2 (en) * 2002-12-19 2005-04-05 Kimberly-Clark Worldwide, Inc. Non-woven through air dryer and transfer fabrics for tissue making
US7045211B2 (en) * 2003-07-31 2006-05-16 Kimberly-Clark Worldwide, Inc. Crimped thermoplastic multicomponent fiber and fiber webs and method of making
US20050066463A1 (en) * 2003-09-25 2005-03-31 Brunner Michael S. Substrates and devices for applying a lip care formulation
US7141142B2 (en) 2003-09-26 2006-11-28 Kimberly-Clark Worldwide, Inc. Method of making paper using reformable fabrics
US20050139505A1 (en) * 2003-12-15 2005-06-30 Miller Mark R. Child-resistant blister package
US20050241089A1 (en) * 2004-04-30 2005-11-03 Kimberly-Clark Worldwide, Inc. Device for treating surfaces
US20050245162A1 (en) * 2004-04-30 2005-11-03 Kimberly-Clark Worldwide, Inc. Multi-capable elastic laminate process
US20050241088A1 (en) * 2004-04-30 2005-11-03 Kimberly-Clark Worldwide, Inc. Device for treating surfaces
WO2006007154A2 (en) * 2004-06-22 2006-01-19 Dow Global Technologies Inc. Elastomeric monoalkenyl arene-conjugated diene block copolymers
US7846530B2 (en) * 2004-09-27 2010-12-07 Kimberly-Clark Worldwide, Inc. Creped electret nonwoven wiper
US7381296B2 (en) * 2004-11-03 2008-06-03 Kimberly-Clark Worldwide, Inc. Method of forming decorative tissue sheets
CA2821528C (en) 2004-11-05 2016-11-29 Donaldson Company, Inc. Filter medium and structure
US8021457B2 (en) 2004-11-05 2011-09-20 Donaldson Company, Inc. Filter media and structure
US8057567B2 (en) 2004-11-05 2011-11-15 Donaldson Company, Inc. Filter medium and breather filter structure
US20060157210A1 (en) * 2004-12-23 2006-07-20 Kimberly-Clark Worldwide, Inc. Method of making tissue sheets with textured woven fabrics having highlighted design elements
US20060140902A1 (en) * 2004-12-23 2006-06-29 Kimberly-Clark Worldwide, Inc. Odor control substrates
US7624765B2 (en) * 2004-12-23 2009-12-01 Kimberly-Clark Worldwide, Inc. Woven throughdrying fabric having highlighted design elements
WO2006084282A2 (en) 2005-02-04 2006-08-10 Donaldson Company, Inc. Aerosol separator
EP1858618B1 (en) 2005-02-22 2009-09-16 Donaldson Company, Inc. Aerosol separator
US7416627B2 (en) * 2005-08-31 2008-08-26 Kimberly-Clark Worldwide, Inc. Films and film laminates having cushioning cells and processes of making thereof
US20070098953A1 (en) * 2005-10-27 2007-05-03 Stabelfeldt Sara J Fastening systems utilizing combinations of mechanical fasteners and foams
US8034430B2 (en) 2005-10-27 2011-10-11 Kimberly-Clark Worldwide, Inc. Nonwoven fabric and fastening system that include an auto-adhesive material
US20070099531A1 (en) 2005-10-27 2007-05-03 Efremova Nadezhda V Foam fastening system that includes a surface modifier
US20070122603A1 (en) * 2005-11-29 2007-05-31 Kajander Richard E Nonwoven fibrous mats and methods
US7320341B2 (en) * 2006-05-17 2008-01-22 3M Innovative Properties Company Protective liner for slurry pipelines
US20070284280A1 (en) * 2006-06-12 2007-12-13 Patrick Henry Young Child-resistant blister package
US20070298208A1 (en) * 2006-06-27 2007-12-27 Aseere Lester M Process of preparing carpet backing using nonwoven material
US20080067099A1 (en) * 2006-09-14 2008-03-20 Patrick Henry Young Child resistant blister package
US7979946B2 (en) 2006-12-15 2011-07-19 Kimberly-Clark Worldwide, Inc. Polish and polishing mitts
EP2117674A1 (en) 2007-02-22 2009-11-18 Donaldson Company, Inc. Filter element and method
EP2125149A2 (en) 2007-02-23 2009-12-02 Donaldson Company, Inc. Formed filter element
US9221963B2 (en) * 2008-11-27 2015-12-29 Speciality Fibres And Materials Ltd. Absorbent material
US8267681B2 (en) 2009-01-28 2012-09-18 Donaldson Company, Inc. Method and apparatus for forming a fibrous media
CN103038414A (en) 2010-01-12 2013-04-10 纤维网公司 Surface-treated non-woven fabrics
EP2524075A1 (en) 2010-01-12 2012-11-21 The Procter & Gamble Company Treated laminates
JP5203515B1 (en) * 2012-01-16 2013-06-05 北越紀州製紙株式会社 Nonwoven fabric for semipermeable membrane support
CN104520394B (en) 2012-06-15 2016-10-26 3M创新有限公司 Curable forms the compositions of polyureas, preparation method and composite article
US10369564B2 (en) 2013-03-20 2019-08-06 Northwestern University Minimally-invasive collection system for collecting biological samples for quantifying heavy metals, other toxicants, pathogens, and biomarkers
WO2014152894A1 (en) * 2013-03-20 2014-09-25 Northwestern University Detection of heavy metals in dried blood
ITMI20131114A1 (en) 2013-07-03 2015-01-04 Politex S A S Di Freudenberg Polit Ex S R L SUPPORT SUBSTRATE FOR BITUMINOUS MEMBRANE AND ITS PREPARATION PROCEDURE.
US10030322B2 (en) * 2013-07-15 2018-07-24 Hills, Inc. Method of forming a continuous filament spun-laid web
CN103789925B (en) * 2014-03-11 2016-06-22 南通斯得福纺织装饰有限公司 A kind of production method of home textile PE Foam
US11052338B2 (en) 2015-01-23 2021-07-06 Kirk S. Morris Systems and methods of filtering particulate matter from a fluid
US20160214045A1 (en) * 2015-01-23 2016-07-28 Kirk S. Morris Filter media for filtering matter from a fluid
US10889932B2 (en) * 2015-02-09 2021-01-12 Dsm Ip Assets B.V. Method for manufacturing a laminated textile product, a primary backing for use in this method and a method to manufacture this primary backing
US10012482B1 (en) * 2016-05-18 2018-07-03 Blake Terence Williams Sheet material for use as a curtain for capturing and retaining firearm-discharged pellets and method for recovery of firearm-discharged pellets therewith
CN107794643B (en) * 2017-08-31 2020-04-28 盐城恒天无纺布科技有限公司 Composite non-woven fabric and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2277049A (en) * 1939-11-06 1942-03-24 Kendall & Co Textile fabric and method of making same
GB640411A (en) * 1948-03-04 1950-07-19 Courtauds Ltd Improvements in and relating to the manufacture of sheets or webs of fibrous textilematerials
DE818582C (en) * 1948-10-02 1951-10-25 Telefunken Gmbh Process for the production of a fabric-like or felt-like material
DE953425C (en) * 1953-06-26 1956-11-29 Trikotfabriken J Schiesser A G Fur or felt-like textile structure and method and device for its production
UST859640I4 (en) * 1959-12-15 1900-01-01

Also Published As

Publication number Publication date
LU45367A1 (en) 1964-04-14
GB1073183A (en) 1967-06-21
AT296211B (en) 1972-02-10
NL6400932A (en) 1964-08-06
SE327687B (en) 1970-08-31
CH448006A (en) 1967-12-15
FR1392034A (en) 1965-03-12
SE327688B (en) 1970-08-31
GB1073181A (en) 1967-06-21
FI44052C (en) 1971-08-10
BE643421A (en) 1964-08-05
DK120531B (en) 1971-06-14
LU45363A1 (en) 1964-04-06
US3595731A (en) 1971-07-27
CH514013A (en) 1971-11-30
AT291922B (en) 1971-08-10
ES296121A1 (en) 1964-08-16
DE1560653B1 (en) 1971-12-16
CH135564A4 (en) 1967-10-31
FI44052B (en) 1971-04-30
DK116125B (en) 1969-12-15
BE643420A (en) 1964-08-05
ES296120A1 (en) 1964-07-16
NL6400929A (en) 1964-08-06
FR1392035A (en) 1965-03-12

Similar Documents

Publication Publication Date Title
NO124547B (en)
US3511747A (en) Bonded textile materials
US2910763A (en) Felt-like products
US4304817A (en) Polyester fiberfill blends
US3064329A (en) Molded nonwoven fabric articles
JPS62500391A (en) Stitch-stitched insulating fabric
US3348993A (en) Fabrics
KR20000010731A (en) Durable spunlaced fabric structures
TWI467069B (en) Thermoadhesive conjugate fiber and production method thereof,and fiber assembly
US4908263A (en) Nonwoven thermal insulating stretch fabric
JP2012162840A (en) Nonwoven fabric and method for producing the same
CA2525315C (en) Molded non-woven fabrics and methods of molding
US20010000585A1 (en) Durable, absorbent spunlaced fabric structures
US3394047A (en) Process of forming water-laid felts containing hollow-viscose, textile, and synthetic fibers
US2459803A (en) Feltlike products
JP2014083843A (en) Three-layer laminate and production method of the same
NO151828B (en) POLYSILOXAN MASSES WHICH CAN BE DISNECTED TO ELASTOMERS
JPH0819611B2 (en) High-fitting non-woven fabric and its manufacturing method
US3449486A (en) Method for producing a thermally selfbonded low density nonwoven product
JPS6316504B2 (en)
JPS62236731A (en) Fabric and knitted good-like clothing
JP2976081B2 (en) Molding material using composite fiber and molding method thereof
JP2553218B2 (en) Laminated cloth and method for manufacturing molded article made of the cloth
JPS60139879A (en) Production of artificial leather sheet
JP2001001437A (en) Nonwoven fabric composite and production thereof