KR950008966B1 - Method of preparing polydichlorophosphagen - Google Patents

Method of preparing polydichlorophosphagen Download PDF

Info

Publication number
KR950008966B1
KR950008966B1 KR1019920016603A KR920016603A KR950008966B1 KR 950008966 B1 KR950008966 B1 KR 950008966B1 KR 1019920016603 A KR1019920016603 A KR 1019920016603A KR 920016603 A KR920016603 A KR 920016603A KR 950008966 B1 KR950008966 B1 KR 950008966B1
Authority
KR
South Korea
Prior art keywords
catalyst
yield
chloride
reaction
polydichlorophosphazene
Prior art date
Application number
KR1019920016603A
Other languages
Korean (ko)
Other versions
KR940006919A (en
Inventor
손연수
조양하
Original Assignee
한국과학기술연구원
서정욱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원, 서정욱 filed Critical 한국과학기술연구원
Priority to KR1019920016603A priority Critical patent/KR950008966B1/en
Publication of KR940006919A publication Critical patent/KR940006919A/en
Application granted granted Critical
Publication of KR950008966B1 publication Critical patent/KR950008966B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/097Compounds containing nitrogen and non-metals and optionally metals containing phosphorus atoms
    • C01B21/098Phosphonitrilic dihalides; Polymers thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/10Halides or oxyhalides of phosphorus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

The polydichlorophosphagen is prepared by the catalytic molt-fusion polymerization of a hexachlorocyclotriphosphagen of (N=PCl2)3 with a catalyst of an organic tin halide of R2SnX2(R=CH3, C2H5, n-C3H7, n-C4H9 or C6H5; X=Cl or Br), or a cocatalyst of the organic tin halide and an aluminium chloride(AlCl3) at 230-270 deg.C. The organic tin halide is pref. diethyl tin chloride, dimethyl tin chloride, dinormal butyl tin chloride or diphenyl tin chloride.

Description

폴리디클로로포스파젠의 제조방법Method for preparing polydichlorophosphazene

본 발명은 헥사클로로시클로트러포스파젠 단량체로부터 촉매 용융 중합법에 의하여 폴리디클로로포스파젠을 제조하는 방법에 관한 것이다.The present invention relates to a process for producing polydichlorophosphazene from hexachlorocyclotrappaspene monomer by catalytic melt polymerization.

구체적으로는 헥사클로로시클로트리포스파젠 단량체로부터 촉매 용융중합법에 의해 폴리디클로로포스파젠을 제조할 때 유기주석 화합물과 알루미늄 화합물을 공촉매로 사용하여 목적물질의 수율을 놓이고 생성고분자의 물성을 향상시키는 폴리디클로로포스파젠의 제조방법에 관한 것이다.Specifically, when polydichlorophosphazene is prepared from hexachlorocyclotriphosphazene monomers by catalytic melt polymerization, an organic tin compound and an aluminum compound are used as cocatalysts to improve the yield of the target substance and to improve the physical properties of the resulting polymer. It relates to a method for producing polydichlorophosphazene.

폴리디클로로포스파젠은 인과 질소가 결합하여 기본 골격을 이루는 최첨단 무기고분자 재료의 출발물질로서 일반적으로 헥사클로로시클로크리포스파젠으로부터 용융중합, 용액중합, 고체상중합의 세가지 방법Polydichlorophosphazene is the starting material of the advanced inorganic polymer material in which phosphorus and nitrogen combine to form a basic skeleton. Generally, polydichlorophosphazene has three methods of melt polymerization, solution polymerization and solid phase polymerization from hexachlorocyclochlorophosphazene.

으로 제조할 수 있다. 이 세가지 방법중에서 폴리디클로로포스파젠의 수율, 중합도등 여러면에서 용융중합법이 유리하여 가장 널리 사용되고 있으나 이 방법도 수율이 최대 40% 내외이고 반응시간이 250℃에서 20시간이상 걸리는 등 실용상 문제점이 많았다. 따라서 반응온도를 낮추고 반응시간을 단축하며 수율을 높일수 있는 촉매를 사용한 촉매 용융중합에 관한 많은 연구가 이루어졌다.It can be prepared by. Among the three methods, polydichlorophosphazene has the most widely used melt polymerization method in terms of yield and degree of polymerization, but this method also has a practical problem such as yield of up to 40% and reaction time of more than 20 hours at 250 ℃. There were a lot. Therefore, many studies have been conducted on catalyst melt polymerization using a catalyst which can lower the reaction temperature, shorten the reaction time and increase the yield.

특히 이들중에서 루이스산인 알루미늄 화합물들, 예를들면 AlCl3, (C2H5)AlCl2, (C2H5)3Al2Cl3등을 촉매로 사용할 경우(Firestone Tire & Rubber Co., Netherland Appl. 7609,253(1977)) 중합반응시간을 크게 단축시킬 수 있을뿐만 아니라 (4∼5)시간 폴리디클로로포스파젠의 수율을 최고 78%까지 올릴 수 있다고 보고되었다. 그러나 이 경우에도 불용성 물질이 일부 생성되며 특히 중합고분자 물질의 중합도(분자량 Mw<106)가 낮아 물성이 떨어지는 단점이 있다. 특히 중합반응후 불용성 물질이 부산될 경우 정제, 회수과정이 어러워지므로 대량생산 규모에서는 큰 문제가 되고 있다. 따라서 본 발명자들은 불용성 물질이 생성되지 않고 수율도 높으며 중합고분자의 물성도 우수한 촉매 중합반응공정을 찾기 위하여 연구하던 중 알루미늄 화합물 대신 유기주석 화합물 R2SnX2(R=CH3, C2H5, n-C3H7, n-C4H9, C6H5; X=Cl, Br)을 단독 또는 알루미늄 화합물들과 병용하면 위의 목적을 달성할 수 있음을 발견하였다.In particular, aluminum compounds which are Lewis acids, such as AlCl 3 , (C 2 H 5 ) AlCl 2 , (C 2 H 5 ) 3 Al 2 Cl 3, etc. are used as catalysts (Firestone Tire & Rubber Co., Netherland Appl. 7609,253 (1977)) It is reported that not only can significantly shorten the polymerization time, but also increase the yield of polydichlorophosphazene (4-5 hours) by up to 78%. However, even in this case, some insoluble materials are generated, and in particular, the polymerization degree (molecular weight Mw <10 6 ) of the polymerized polymer material is low, so that the physical properties are inferior. In particular, when the insoluble material is banned after the polymerization reaction, the purification and recovery process becomes difficult, which is a big problem in mass production scale. Therefore, the present inventors have water-insoluble substance is not generated a high degree yield instead of aluminum while trying to study also the physical properties of the polymerization the polymer in order to find an excellent catalyst polymerization process compound an organotin compound R 2 SnX 2 (R = CH 3, C 2 H 5, It was found that the above object can be achieved by using nC 3 H 7 , nC 4 H 9 , C 6 H 5 ; X = Cl, Br) alone or in combination with aluminum compounds.

본 발명의 내용을 좀 더 상세히 설명하면 출발물질인 삼합체 즉 헥사클로로시클로트리포스파젠(N=PCl2)3를 진공승화법으로 정제한 후 0.2∼1.0%에 해당되는 유기주석할라이드 R2SnX2(R=CH3, C2H5, n-C3H7, n-C4H9, C6H5; X=Cl, Br)를 촉매로 함께 유리앰플에 넣고 진공하에서 탈공기한 다음 240∼300℃의 오븐내에서 회전시키며 반응시킨다. 유리앰플내의 반응물이 녹은 상태에서 반응이 진행되다가어느정도 반응이 진행되면 반응물의 점성이 증가하여 흐름이 멈추게 된다. 일반적으로 촉매를 사용하지 않거나 또는 종래의 촉매를 사용할 경우에는 이시점에서 반응을 종결시키는 것이 상례이다. 왜냐하면 이 용융중합반응은 반응물의 흐름이 멈춘 후 부터는 원하는 선형 고분자의 생성보다는 가교결합이 가속화됨으로서 불용성 물질의 생성이 급격히 증가하는 것으로 알려져 있기 때문이다.The content of the present invention will be described in more detail. After trituration of the starting material trimer, that is, hexachlorocyclotriphosphazene (N = PCl 2 ) 3 by vacuum sublimation, the organotin halide R 2 SnX corresponding to 0.2 to 1.0%. 2 (R = CH 3 , C 2 H 5 , nC 3 H 7 , nC 4 H 9 , C 6 H 5 ; X = Cl, Br) were put together in a glass ampoule as a catalyst and de-aired under vacuum, then 240-300 The reaction is rotated in an oven at ℃. When the reaction proceeds while the reactant in the glass ampoule is dissolved, the reaction is increased to some extent and the viscosity of the reactant is increased to stop the flow. In general, when no catalyst is used or when a conventional catalyst is used, it is usual to terminate the reaction at this point. Because this melt polymerization reaction is known to accelerate the crosslinking rather than the production of the desired linear polymer after the flow of the reactant is known to increase the production of insoluble material rapidly.

보통 촉매를 사용하지 않을 경우 이러한 용융중합반응을 시작한 후 흐름이 멈출때까지 걸리는 시간은 반응온도에 따라 다른데 예를들면 250℃에서는 약 20∼25시간, 265℃에서는 1∼2시간 소요되며 수율은 모두 약 30∼40%가 최대이다. 흐름이 멈춘 후 반응을 계속시키면 불용성 가교결합물만 증가할뿐 선형 고분자의 수율은 떨어진다. 그러나 촉매로 위에서 설명한 유기주석 할라이드를 0.2∼0.5% 첨가하고, 256℃에서 반응시키면 반응물의 흐름이 멈추는 시간은 오히려 7∼9시간, 256℃에서 2∼3시간으로 촉매를 넣지 않았을 때보다 약간 늘어나며 이후 반응을 계속시켜도 가교결합 반응이 일어나지 않는다. 예를들어 디에틸염화주석을 촉매로 첨가하고 반응시킬경우 256℃에서는 흐름이 멈춘 후 27시간까지, 그리고 265℃에서는 12시간까지 반응을 계속해도 가교결합 반응이 일어나지 않으며 따라서 선형 곡분자의 수율도 65∼70%까지 올릴 수 있다. 이때의 수율은 종래의 알루미늄계 촉매를 썼을때와 비슷하지만 생성고분자의 물성은 알루미늄계 촉매를 썼을때의 분자량(Mw<106)보다 훨씬 커서 촉매를 사용하지 않았을때의 분자량(Mw≡1.2∼1.6×106)과 동일하게 얻어졌다.In general, when the catalyst is not used, the time required to stop the flow after starting the melt polymerization reaction depends on the reaction temperature. For example, it takes about 20 to 25 hours at 250 ° C and 1 to 2 hours at 265 ° C. In all, about 30-40% is the maximum. If the reaction is continued after the flow stops, only the insoluble crosslinker increases but the yield of the linear polymer decreases. However, when 0.2 to 0.5% of the organotin halide described above is added as a catalyst and reacted at 256 ° C., the reaction time of the reactants is rather increased to 7 to 9 hours and 2 to 3 hours at 256 ° C. Thereafter, even if the reaction is continued, no crosslinking reaction occurs. For example, when diethyltin chloride is added as a catalyst and reacted, the crosslinking reaction does not occur even if the reaction is continued up to 27 hours after stopping the flow at 256 ° C and 12 hours at 265 ° C. You can raise it by 65-70%. The yield is similar to that of the conventional aluminum catalyst, but the physical properties of the resulting polymer are much higher than the molecular weight of the aluminum catalyst (Mw <10 6 ). 1.6 × 10 6 ).

촉매로 유기주석 화합물 대신 유기주석 할라이드와 알루미늄 화합물을 공촉매로 사용하는 경우 더 좋은결과를 얻을 수 있었다. 즉, 이러한 경우, 불용물이 생성되는 가교결합반응이 전혀 일어나지 않아 수율을 거의 95%이상 획기적으로 개선하고 반응시간도 단축할 수 있어 용융중합반응의 실용화를 기할 수 있음을 발견하였다. 즉 출발물질인 삼합체(N=PCl2)3를 진공승화법으로 정제한 후 5g당 0.01∼0.05g의 염화알루미늄과 0.01∼0.05g의 유기주석 할라이드 R2SnX2(R=CH3, C2H5, n-C3H7, n-C4H9, C6H5; X=Cl, Br)을 공촉매로 첨가하여 유리앰플에 넣고 진공하에서 탈공기한 다음 230∼270℃ 사이에서 4∼9시간 반응시킨 결과 선형 고분자의 수율은 90% 이상이고 불용성 물질이 생성되지 않았으며 고분자 물질의 분자량(Mw)도 1O6이상으로 물성도 크게 개선되었다. 상술한 유기주석 할라이드와 알루미늄 화합물 공촉매를 사용하는 본 발명은 수율을 90% 이상으로 높임으로서 미반응 삼합체의 회수나 불용성 가교결합물의 제거를 위한 정제공정등이 필요없어 용융중합공정의 실용화를 가능케 하였을뿐 아니라 일반적으로 촉매반응에 의하여 제조되는 생성고분자의 물성저하를 방지할 수 있다는 점에 장점이 있다.Better results were obtained when organotin halides and aluminum compounds were used as cocatalysts instead of organotin compounds. That is, in this case, it was found that the crosslinking reaction in which insoluble matters do not occur at all, the yield can be dramatically improved by more than 95%, and the reaction time can be shortened, thereby enabling the practical use of the melt polymerization reaction. In other words, the starting material trimer (N = PCl 2 ) 3 was purified by vacuum sublimation and then 0.01 to 0.05g of aluminum chloride and 0.01 to 0.05g of organotin halide R 2 SnX 2 (R = CH 3 , C per 5g). 2 H 5 , nC 3 H 7 , nC 4 H 9 , C 6 H 5 ; X = Cl, Br) were added as a cocatalyst, placed in a glass ampoule and de-aired under vacuum, then 4 to 9 between 230 and 270 ° C. As a result of the reaction time, the yield of the linear polymer was more than 90%, insoluble materials were not produced, and the molecular weight (Mw) of the polymer material was also improved to 10 6 or more. The present invention using the above-described organotin halide and aluminum compound cocatalyst increases the yield to 90% or more, thereby eliminating the need for a purification process for recovery of unreacted trimers or removal of insoluble crosslinked materials. In addition to making it possible, there is an advantage in that it is possible to prevent the deterioration of physical properties of the produced polymer, which is generally produced by a catalytic reaction.

위에서 합성된 폴리디클로로포스파젠은 공기중의 수분과도 아주 민감하게 반응할 정도로 수분에 불안정한 P-Cl 결합을 갖고 있기 때문에 다음 반응식에 따라 가수분해에 안정하면서 중합체의 기본성질을 그대로 유지하는 트리플로로에톡시 유도체로 치환한 다음 수율 및 분자량 등 물성을 측정하였다.Since the polydichlorophosphazene synthesized above has a P-Cl bond which is unstable to moisture to react very sensitively with moisture in the air, it is a triple that is stable to hydrolysis and maintains the basic properties of the polymer according to the following reaction formula. Substituted with a roethoxy derivative, the physical properties such as yield and molecular weight were measured.

[실시예 1]Example 1

직경 23mm, 길이 240mm의 잘 건조된 파이렉스앰플에 5g의 헥사클로로시클로트리포스파젠(NPCl2)3과 촉매로 0.02g의 디에틸염화주석(C2H5)2SnCl2를 함께 넣고 진공선에 연결시켰다. 이 시료앰플을 얼음탕속에 담근채 1시간동안 진공(<0.1mmHg)을 유지시키며 탈공기 시킨 다음 앰플을 밀봉하였다. 이 앰플을 256℃로 조절된 오븐내에서 1rpm의 속도로 회전하는 회전축에 클램프로 고정시키고 34시간동안 용융반응을 시켰다. 반응이 끝나면 앰플을 실온으로 식힌 후 아르곤으로 채워진 글러브 박스안에서 깬 다음 건조된 벤젠 50ml에 녹여 다음과 같이 치환반응시킨 후 물성을 측정하였다.In a well-dried pyrex ampoule of 23 mm diameter and 240 mm length, 5 g of hexachlorocyclotriphosphazene (NPCl 2 ) 3 and 0.02 g of diethyltin chloride (C 2 H 5 ) 2 SnCl 2 were added together with a catalyst and placed in a vacuum line. Connected. The sample ampoule was soaked in an ice bath and deaerated while maintaining a vacuum (<0.1 mmHg) for 1 hour, and then the ampoule was sealed. The ampoule was clamped to a rotating shaft rotating at a speed of 1 rpm in an oven controlled at 256 ° C. and melted for 34 hours. After the reaction, the ampoule was cooled to room temperature, and broken in an argon-filled glove box, and dissolved in 50 ml of dried benzene.

즉 냉각기가 장치된 500ml 플라스크에 나트륨 2.98g과 테트라히드로퓨란 100ml를 넣고 질소기류하에서 저어주면서 CF3CH2OH 21.6g을 2시간에 걸쳐 서서히 가하였다. 나트륨이 다 녹으면 여기에 위에서 만든 중합체의 벤젠용액을 1시간에 걸쳐 가한 다음 질소기류하에서 24시간 환류시켰다. 반응액을 실온으로 석힌다음 60℃의 증류수 1ℓ에 붓고 염산으로 중화시킨 후 밤새 저어주었다. 침전물을 여과하여 건조시킨 후 다시 약 1OOml의 아세톤에 녹이고 불용성 침전물을 여과, 분리하고 여과액을 다시 1ℓ의 증류수에 부어 침전시켰다. 침전물을 여과, 건조한 후 다시 100ml의 아세톤에 녹였다. 이 용액을 약 500ml의 벤젠에 부어 침전시켜 출발물질인 삼합체 또는 올리고머 등을 제거한 후 침전물을 여과하여 에탄올로 2∼3회 씻고 건조시킨 다음 무게를 재어 수율을 계산한 결과 수율은 67%이었다. 이렇게 얻은 고분자 유도체를 겔투과 크로마토그래프(GPC)에 의해 분자량을 측정한 결과 Mw=1.58×106이었고 원소분석 및31P-NMR 측정결과는다음과 같았다That is, 2.98 g of sodium and 100 ml of tetrahydrofuran were added to a 500 ml flask equipped with a cooler, and 21.6 g of CF 3 CH 2 OH was slowly added over 2 hours while stirring under a nitrogen stream. When the sodium was dissolved, the benzene solution of the above polymer was added to the mixture for 1 hour, and then refluxed under nitrogen stream for 24 hours. The reaction solution was stirred at room temperature, poured into 1 L of distilled water at 60 ° C., neutralized with hydrochloric acid, and then stirred overnight. The precipitate was filtered and dried, and then dissolved in about 100 ml of acetone. The insoluble precipitate was filtered and separated, and the filtrate was poured into 1 liter of distilled water to precipitate. The precipitate was filtered off, dried and dissolved in 100 ml of acetone. The solution was poured into about 500 ml of benzene and precipitated to remove the starting material trimers or oligomers. The precipitate was filtered, washed 2-3 times with ethanol, dried and weighed to yield a yield of 67%. The molecular weight of the thus obtained polymer derivative was measured by gel permeation chromatography (GPC), and the molecular weight was Mw = 1.58 × 10 6. The results of elemental analysis and 31 P-NMR were as follows.

시 성 식 : [NP(OCH2CF3)2]Formula: [NP (OCH 2 CF 3 ) 2 ]

원소분석결과(%) : C;19.8, H;1.62, N;5.75, P;13.0, F;4.68Elemental Analysis Result (%): C; 19.8, H; 1.62, N; 5.75, P; 13.0, F; 4.68

이 론 치(%) : C;19.77, H;1.66, N;5.76, P;12.7, F;49.9This theory (%): C; 19.77, H; 1.66, N; 5.76, P; 12.7, F; 49.9

31P-NMR : -6.3ppm(V.S. 85% H3PO4) 31 P-NMR: -6.3 ppm (VS 85% H 3 PO 4 )

lR(KBr) : v(P-N)=1285cm-1 lR (KBr): v (PN) = 1285cm -1

[실시예 2]Example 2

실시예 1에서와 같은 촉매를 사용하여 (NPCl2)3를 같은 방법으로 265℃에서 15시간 반응시킨 결과 폴리디클로로포스파젠 중합체를 65%의 수율로 얻었으며 이때 분자량 측정결과 Mw=1.69×106이었다.Using the same catalyst as in Example 1, (NPCl 2 ) 3 was reacted at 265 ° C. for 15 hours in the same manner to obtain a polydichlorophosphazene polymer in a yield of 65%, wherein the molecular weight measurement result Mw = 1.69 × 10 6 It was.

[실시예 3]Example 3

디에틸염화주석 대신 디에틸염화주석 (CH3)2SnCl20.02g을 촉매로 사용하여 (NPCl2)3을 실시예 1과 같은 방법으로 265℃에서 30시간 반응시킨결과 동일한 폴리디클로로포스파젠 중합체를 67% 수율로 얻었으며 분자량 측정졀과 Mw=1.50×106이었다.The same polydichlorophosphazene polymer was obtained by reacting (NPCl 2 ) 3 at 265 ° C. for 30 hours using the same method as Example 1, using 0.02 g of diethyltin chloride (CH 3 ) 2 SnCl 2 instead of diethyltin chloride as a catalyst. Was obtained in 67% yield and the molecular weight was measured 졀 and Mw = 1.50 × 10 6 .

[실시예 4]Example 4

(NPCl2)35g에 촉매로 디노르말부틸염화주석 (n-C4H9)2SnCl20.02g을 첨가한 다음 265℃에서 실시예 1과 같은 방법으로 25시간 중합반응 시킨 결과 폴리디클로르포스파젠 중합체를 60%의 수율을 얻었으여 분자량 측정결과 Mw=1.23×1046이었다.(NCl 4 ) 3 nOg of dinormal butyltin chloride (nC 4 H 9 ) 2 SnCl 2 was added as a catalyst, followed by polymerization for 25 hours in the same manner as in Example 1 at 265 ° C. The ethylene polymer had a yield of 60%, and the molecular weight was measured as Mw = 1.23 x 10 &lt; 6 & gt ;.

[실시예 5]Example 5

(NPCl2)35g에 촉매로 디페닐염화주석 (C6H5)2SnCl20.02g을 첨가한 다음 265℃에서 실시예 1과 같은방법으로 10시간 중합반응 시킨 결과 폴리디클로로포스파젠 중합체를 58%의 수율을 얻었으며 분자량 측정결과 Mw=1.56×106이었다.To dichlorotin (C 6 H 5 ) 2 SnCl 2 was added to 5 g of (NPCl 2 ) 3 as a catalyst, and the resultant was polymerized at 265 ° C. for 10 hours in the same manner as in Example 1 to obtain a polydichlorophosphazene polymer. A yield of 58% was obtained, and the molecular weight was measured as Mw = 1.56 × 10 6 .

[실시예 6]Example 6

(NPCl2)35g에 촉매로 디에틸염화주석 0.02g과 무수염화 알루미늄 0.01g을 첨가하여 240℃에서 실시예 1과 같은 방법으로 8시간 중합 반응시킨 결과 폴리디클로로포스파젠 중합체를 93%의 수율을 얻었으며 분자량 측정결과 Mw=1.38×106이었다.To 5 g of (NPCl 2 ) 3 as a catalyst, 0.02 g of diethyltin chloride and 0.01 g of anhydrous aluminum chloride were added, and the polymerization reaction was carried out at 240 ° C. for 8 hours in the same manner as in Example 1 to obtain 93% yield of the polydichlorophosphazene polymer. Molecular weight measurement result was Mw = 1.38 × 10 6 .

[실시예 7]Example 7

(NPCl2)35g에 촉매로 디에틸염화주석 0.02g과 무수염화 알루미늄 0.02g을 첨가한 다음 240℃에서 실시예 4와 같은 방법으로 중합시킨 결과 폴리디클로로포스파젠 중합체를 95%의 수율로 얻었으며 분자량 측정결과 Mw=1.36×106이었다.To 5 g of (NPCl 2 ) 3 , 0.02 g of diethyltin chloride and 0.02 g of anhydrous aluminum chloride were added as a catalyst, followed by polymerization in the same manner as in Example 4 at 240 ° C. to obtain a polydichlorophosphazene polymer in a yield of 95%. The molecular weight was measured as Mw = 1.36 × 10 6 .

[실시예 8]Example 8

(NPCl2)35g에 촉매로 디에틸염화주석 0.05g과 무수염화 알루미늄 0.01g을 첨가한 다음 240℃에서 실시예 4와 같은 방법으로 7시간 중합시킨 결과 폴리디클로로포스파젠 중합체를 92%의 수율로 얻었으며 분자량측정결과 Mw=1.83×106이었다.To 5 g of (NPCl 2 ) 3 as a catalyst, 0.05 g of diethyltin chloride and 0.01 g of anhydrous aluminum chloride were added, and the polymerization was carried out at 240 ° C. for 7 hours in the same manner as in Example 4. The polydichlorophosphazene polymer was obtained in 92% yield. Molecular weight measurement result was Mw = 1.83 × 10 6 .

[실시예 9]Example 9

(NPCl2)35g에 촉매로 디메틸염화주석 0.02g과 무수염화 알루미늄 0.01g을 첨가한 다음 240℃에서 실시예 4와 같은 방법으로 10시간 반응시킨 결과 폴리디클로로포스파젠 중합체를 93%의 수율로 얻었으며 분자량 측정결과 Mw=1.64×106이었다.To 5 g of (NPCl 2 ) 3 , 0.02 g of dimethyl tin chloride and 0.01 g of anhydrous aluminum chloride were added as a catalyst, and the resultant was reacted at 240 ° C. for 10 hours in the same manner as in Example 4 to obtain a polydichlorophosphazene polymer in a yield of 93%. The molecular weight was measured and Mw was 1.64 x 10 6 .

Claims (5)

헥사클로로시클로트리포스파렌을 용융중합하여 폴리디클로로포스파젠을 제조하는 방법에 있어서, R2SnX2를 촉매로 사용하는 것을 특징으로 하는 제조방법.A method for producing polydichlorophosphazene by melt polymerization of hexachlorocyclotriphospharene, wherein R 2 SnX 2 is used as a catalyst. 단, R은 CH3, C2H5, n-C3H7, n-C4H9, 또는 C6H5이고 X는 할로겐 원소이다.With the proviso that R is CH 3 , C 2 H 5 , nC 3 H 7 , nC 4 H 9 , or C 6 H 5 and X is a halogen element. 헥사클로로시클로트리포스파젠을 용융중합하여 폴리디클로로포스파젠을 제조하는 방법에 있어서, R2SnX2로 표시되는 화합물과 AlCl3를 공 촉매로 사용하는 것을 특징으로 하는 제조방법. 단, R은 CH3, C2H5, n-C3H7, n-C4H9, C6H5이고 X는 할로겐 원소이다.A method for producing polydichlorophosphazene by melt polymerizing hexachlorocyclotriphosphazene, wherein the compound represented by R 2 SnX 2 and AlCl 3 are used as a co-catalyst. With the proviso that R is CH 3 , C 2 H 5 , nC 3 H 7 , nC 4 H 9 , C 6 H 5 and X is a halogen element. 제1항 또는 제2항에 있어서, 반응온도를 230∼270℃로 하는 것을 특징으로 하는 제조방법.The production method according to claim 1 or 2, wherein the reaction temperature is 230 to 270 ° C. 제1항에 있어서, 출발물질에 대하여 R2SnX2를 0.2∼1.0%를 사용하는 것을 특징으로 하는 제조방법.The method according to claim 1, wherein 0.2 to 1.0% of R 2 SnX 2 is used for the starting material. 제2항에 있어서, 출발물질에 대하여 R2SnX2를 0.2∼1.0% AlCl3를 0.2∼1.0%를 사용하는 것을 특징으로 하는 제조방법.The process according to claim 2, wherein R 2 SnX 2 is used in an amount of 0.2-1.0% AlCl 3 in an amount of 0.2-1.0% based on the starting material.
KR1019920016603A 1992-09-09 1992-09-09 Method of preparing polydichlorophosphagen KR950008966B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019920016603A KR950008966B1 (en) 1992-09-09 1992-09-09 Method of preparing polydichlorophosphagen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019920016603A KR950008966B1 (en) 1992-09-09 1992-09-09 Method of preparing polydichlorophosphagen

Publications (2)

Publication Number Publication Date
KR940006919A KR940006919A (en) 1994-04-26
KR950008966B1 true KR950008966B1 (en) 1995-08-10

Family

ID=19339411

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019920016603A KR950008966B1 (en) 1992-09-09 1992-09-09 Method of preparing polydichlorophosphagen

Country Status (1)

Country Link
KR (1) KR950008966B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100428643B1 (en) * 2001-09-13 2004-04-30 주식회사 엘지화학 Covering compound for gate insulation film of tft-lcd and method for preparing thereof

Also Published As

Publication number Publication date
KR940006919A (en) 1994-04-26

Similar Documents

Publication Publication Date Title
US4946938A (en) A process for the catalytic synthesis of polyphosphazenes
US3393218A (en) Polymeric silazane compounds
GB1503752A (en) Catalytic preparation of soluble poly-(dihalophosphazenes
RU2180664C2 (en) Compound containing element of group iii of mendeleev&#39;s periodic system binding with mono- or dianionic tridentate ligand, method of their synthesis and use as catalysts of polymerization
US3259607A (en) Preparation of high molecular weight polyesters
EP1775301A1 (en) Novel supported phosphazene catalysts, novel compounds for the catalysts, and use thereof
KR950008966B1 (en) Method of preparing polydichlorophosphagen
US4226840A (en) Process for the polymerization of cyclic polyhalophosphazenes using a catalyst composition of boron trihalide and oxygenated phosphorus compounds
US4080432A (en) Dissolution of polydihalophosphazenes
US3024219A (en) Polymerization of terminal epoxyalkyl ethers
US3305530A (en) Aldehyde polymerisation process
Rose 111. Cationic polymerisation of oxa cyclo butanes. Part I
US3513151A (en) Reaction product of metal oxides and hydrocarbylcyclosiloxanes and method of polymerization using same
US2670333A (en) Process for the manufacture of new polyalkylidenes by condensation of diazoalkanes
US4093790A (en) Polyphenylene resins
US3770661A (en) Aryleneisopropylidene copolymers
CA1215211A (en) Borate chloride polymerization catalysts
US3136746A (en) Process for preparing linear high polymers of nu-vinyl carbazole having a regular structure
Nomura et al. Unusual addition of the indium-butyl bond to organotin oxides. Preparation and characterization of novel dibutylindio-or butyl (propionyloxy) indio-substituted stannoxanes
US3314930A (en) Butene-1 polymerization catalyst
US4242316A (en) Sulfamic acid as a catalyst for the polymerization of chlorocyclophosphazenes
AU705536B2 (en) A process for the preparation of a linear alternating copolymer of carbon monoxide with ethene and another olefinically unsaturated compound
US3642757A (en) Poly-cis-1 2-divinylcyclohexane and method for preparing the same
US3502640A (en) Catalytic process for the polymerization of olefins
JPH0446890B2 (en)

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19970829

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee