KR940012170A - Finite field inverse calculation method and apparatus - Google Patents

Finite field inverse calculation method and apparatus Download PDF

Info

Publication number
KR940012170A
KR940012170A KR1019920022937A KR920022937A KR940012170A KR 940012170 A KR940012170 A KR 940012170A KR 1019920022937 A KR1019920022937 A KR 1019920022937A KR 920022937 A KR920022937 A KR 920022937A KR 940012170 A KR940012170 A KR 940012170A
Authority
KR
South Korea
Prior art keywords
value
multiplier
output
finite field
inverse
Prior art date
Application number
KR1019920022937A
Other languages
Korean (ko)
Other versions
KR950010452B1 (en
Inventor
이종환
Original Assignee
윤종용
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤종용, 삼성전자 주식회사 filed Critical 윤종용
Priority to KR1019920022937A priority Critical patent/KR950010452B1/en
Priority to US08/125,269 priority patent/US5448510A/en
Priority to GB9320086A priority patent/GB2272983B/en
Priority to DE4333382A priority patent/DE4333382A1/en
Priority to FR9311657A priority patent/FR2698703B1/en
Priority to JP5253294A priority patent/JPH06230991A/en
Publication of KR940012170A publication Critical patent/KR940012170A/en
Application granted granted Critical
Publication of KR950010452B1 publication Critical patent/KR950010452B1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/60Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
    • G06F7/72Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic
    • G06F7/724Finite field arithmetic
    • G06F7/726Inversion; Reciprocal calculation; Division of elements of a finite field
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Computing Systems (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Algebra (AREA)
  • Error Detection And Correction (AREA)
  • Detection And Correction Of Errors (AREA)
  • Complex Calculations (AREA)

Abstract

본 발명은 유한체상에서 역수를 굿하는 방법 및 장치에 관한 것으로, 방법은 유한체GF(2n)내에서 비트로 표현된 임의의 수 (ak)를 이용하여 비트로 표현된 그의 역수(a-k)를 구하는 방법에 있어서, 상기 유한체GF(2n)의 원시원을 a라할 때, 상기 ak가 a0인 경우에 a0를 a-k로서 구하는 과정과;ak≠a0인 경우에는 A 및 A-1에 a0를 대입한 후 상기 A 값이 상기 ak갑과 동일한 값을 가질때까지 상기 A 및 A-1에 상기 유한체의 원시원 a및 a-1을 각각 승산하는 과정과; 상기 A-1의 값을 a-1로서 구하는 과정을 포함하여 구성되며 이를 구현하기 위한 장치는 a곱셈기와 a-1곱셈기와 비교기 및 랫치수단을 포함하여 구성되는 것으로, 특업테이블방식이 아닌 하드웨어로 구현할 수 있는 유한체상의 역수를 구하는 알고리즘을 새로이 제시함과 동시에 이를 수행할 수 있는 장치를 제공하며 종래의 유한체상의 역수를 구하는 장치보다 그 크기가 줄어드는 효과가 있다.The present invention relates to a method and apparatus for a good inverse on the finite field, the method finite field GF (2 n) can be any of the bits in the representation of its reciprocal expression bits using a (a k) (a -k In the method for obtaining), when the source of the finite field GF (2 n ) is a, obtaining a 0 as a -k when a k is a 0 ; and a k ≠ a 0 . It is then substituted for a 0 on the a and a -1 a process of the value is multiplied by the a k handcuffs up when you have a value equal to the primitive root of a finite field for the a and a -1 and a -1 a, respectively and ; And comprising: a process of obtaining the value of the A -1 -1 as a device for implementing this, as a multiplier and a -1 multiplier and being configured to include a comparator, and latch means, the hardware than the method table teukeop While presenting a new algorithm for calculating the inverse of the finite field that can be implemented, the present invention provides a device capable of performing the same, and its size is reduced compared to the device for obtaining the inverse of the conventional finite field.

Description

유한체상의 역수 산출방법 및 장치Finite field inverse calculation method and apparatus

본 내용은 요부공개 건이므로 전문내용을 수록하지 않았음As this is a public information case, the full text was not included.

제2도는 본 발명에 일실시예에 따른 유한체상의 역수 산출방법의 순서도이고,2 is a flow chart of a method for calculating the inverse of the finite body according to an embodiment of the present invention,

제3도는 본 발명의 일실시예에 따른 유한체상의 역수 산출장치의 블럭도이고,3 is a block diagram of a finite body inverse calculating apparatus according to an embodiment of the present invention,

제4도는 a곱셈기 및 a-1곱셈기의 일실시예에 따른 블럭도이다.4 is a block diagram according to one embodiment of a multiplier and a- 1 multiplier.

Claims (5)

유한체GF(2n)내에서 비트로 표현된 임의의 수 (ak)를 이용하여 비트로 표현된 그의 역수 (a-k)를 구하는 방법에 있어서, 상기 유한체GF(2n) 의 원시원을 a라 할 때, 상기 ak가 a0인 경우에 a0를 a-k로서 구하는 과정과; ak≠a0인 경우에는 A 및 A-1에 a0를 대입한 후 상기 A값이 상기 ak값과 동일한 값을 가질때까지 상기 A 및 A-1에 상기 유한체의 원시원 a 및 a-1을 각각 승산하는 과정과; 상기 A-1의 값을 ak로서 구하는 과정을 구비하는 것을 특징으로 하는 유한체상의 역수 산출방법.Finite Field GF (2nAny number expressed in bits within)kIts inverse expressed as a bit using-kIn the method for obtaining), the finite body GF (2nWhen the source of a) is a, the akHave a0If is a0A-kObtaining as; ak≠ a0If A and A-OneOn a0After A is substituted, the A value is the akA and A until the same value as the value-OneSources of the finite bodies a and a-OneMultiplying each; A above-OneValue of akA process for calculating the reciprocal of the finite body, characterized in that it comprises a process of obtaining as. 제1항에 있어서, 상기 A 및 A-1에 상기 유한체의 원시원 a 및 a-1을 각각 승산하는 과정은 상기 A값이 상기 ak값과 동일한 값을 가지거나 또는 상기 A-1의 값이 상기 ak값과 동일한 값을 가질때까지 수행되며; A값이 ak값과 동일한 경우에는 A-1의 값을 a-k로서 구하고, A-1의 값이 ak값과 동일한경우에는 A의 값을 a-k로서 구하게 되는것을 특징으로 하는 유한테상의 역수 산출방법.2. The method of claim 1, wherein A and A -1 primitive root a, and the process of multiplying each of the A a -1 value of the finite field has the same value and the k value for a, or of the A -1 Is performed until the value has the same value as the a k value; If the A value equal to a k value of finding a value of A -1 as a -k, if the value of A -1 is the same as a k value, characterized in that the oil seek the value of A as a -k How to calculate the inverse of an award. 유한체GF(2n)내에서 비트로 표현된 임의의 수 (ak)를 이용하여 비트로 표현된 그의 역수 (a-k)를 구하는 장치에 있어서, 상기 유한체GF(2n) 의 원시원을 a라 할 때, 초기값으로 a0를 로딩하고 클럭이 인가될 때마다 그 자신이 가지고 있는 값에 a를 곱셈하는 a곱셈기와; 초기값으로 a0를 로딩하고 클럭이 인가될 때마다 그 자신이 가지고 있는 값에 a-1를 곱셈하는 a-1곱셈기와; 상기 ak와 상기 a 곱셈기의 출력을 비교하여 동일한 경우에 인에이블되는 신호를 출력하는 비교기; 및 상기 비교기의 출력이 인에이블되는 경우에 상기 a-1곱셈기의 출력을 랫치하는 랫치수단을 구비하여 랫치수단의 울력이 a-k가 되는것을 특징으로 하는 유한체상의 역수 산출장치.In the finite field GF (2 n) to obtain the number of random bits in the representation (a k) its inverse (a -k) bits can be described using a device, a primitive root of a finite field GF (2 n) a multiplier that loads a 0 as an initial value and multiplies a by its own value each time a clock is applied; Each time the initial value loaded to a 0 and applies this clock a -1 multiplier for multiplying a -1 to the value that he has with; A comparator for comparing the a k and the output of the a multiplier and outputting a signal that is enabled in the same case; And latching means for latching the output of the a -1 multiplier when the output of the comparator is enabled, so that the force of the latching means becomes a -k . 유한체GF(2n)내에서 비트로 표현된 임의의 수 (ak)를 이용하여 비트로 표현된 그의 역수 (a-k)를 구하는 장치에 있어서, 상기 유한체 GF(2n)의 원시원을 a라 할 때, 초기값으로 a0를 로딩하고 클럭이 인가될 때마다 그 자신이 가지고 있는 값에 a를 곱셈하는 a곱셈기와; 초기값으로 a0를 로딩하고 클럭이 인가될 때마다 그 자신이 가지고 있는 값에 a-1를 곱셈하는 a-1곱셈기와; 상기 ak와 상기 a 곱셈기의 출력을 비교하여 동일한 경우에 인에이블되는 신호를 출력하는 제1비교기와; 상기 ak와 상기 a-1곱셈기의 출력을 비교여 동일한 경우에 인에이블되는 신호를 출력하는 제2비교기; 및 상기 제2비교기의 출력이 인에이블인 경우에는 상기 a 곱셈기의 출력을 선택하고 상기 제1비교기의 출력이 인에이블인 경우에는 상기 a-1곱셈기의 출력을 선택하게 되는 선택기를 구비하여 선택기의 출력이 임의의 수 (ak)의 역수 (a-k)가 되는 것을 특징으로 하는 유한체상의 역수 산출장치.In the finite field GF (2 n) to obtain the number of random bits in the representation (a k) its inverse (a -k) bits can be described using a device, a primitive root of a finite field GF (2 n) a multiplier that loads a 0 as an initial value and multiplies a by its own value each time a clock is applied; Each time the initial value loaded to a 0 and applies this clock a -1 multiplier for multiplying a -1 to the value that he has with; A first comparator for comparing the a k and the outputs of the a multiplier and outputting a signal that is enabled in the same case; A second comparator comparing the outputs of the a k and the a- 1 multiplier and outputting a signal that is enabled when the same is the same; And a selector for selecting the output of the a multiplier when the output of the second comparator is enabled and selecting an output of the a- 1 multiplier when the output of the first comparator is enabled. output any number of (a k) the inverse (a -k) is the inverse calculation unit on the finite field characterized in that a. 오류정정부호의 복호시, 유한체GF(2n)내에서 연산이 수행되며, 오류위치다항식의 계수를 구하기 위하여 n비트로 구성되는 오증들(S)을 이용하여 그의 역수(S-1)를 산출하기 위한 장치에 있어서, 상기 유한테 GF(2n)의 원시원을 a라 할 때, 초기값으로 a0(100…0)를 로딩하고 클럭이 인가될 때마다 그 자신이 가지고 있는 값에 a를 곱셈하는 a 곱셈기와; 초기값으로 a0(100…0)를 로딩하고 클럭이 인가될 때마다 그 자신이 가지고 있는 값에 a-1곱셈하는 a-1곱셈기와; 상기 오중 S와 상기 a곱셈기의 출력을 비교하여 동일한 경우에 인에이블되는 신호를 출력하는 비교기; 및 상기 비교기의 출력이 인에이블되는 경우에 상기 a-1곱셈기의 출력을 랫치하는 랫치수단을 구비하여 랫치수단의 출력이 오중의 역수 S-1이 되는 것을 특징으로 하는 유한체상의 오증역수 산출장치.When decoding an error correcting code, an operation is performed in the finite field GF (2 n ), and its inverse (S -1 ) is calculated using the negatives S composed of n bits to obtain the coefficient of the error position polynomial. In the apparatus for doing this, when the source of the finite element GF (2 n ) is a, it loads a 0 (100... 0) as an initial value and the value a has to its own value whenever a clock is applied. A multiplier for multiplying; An a- 1 multiplier that loads a 0 (100... 0) as an initial value and multiplies its own value by a -1 each time a clock is applied; A comparator for comparing the output of the error S and the output of the a multiplier and outputting a signal that is enabled in the same case; And a latch means for latching the output of the a -1 multiplier when the output of the comparator is enabled, so that the output of the latch means is the reciprocal of the reciprocal S -1. Device. ※ 참고사항 : 최초출원 내용에 의하여 공개하는 것임.※ Note: The disclosure is based on the initial application.
KR1019920022937A 1992-11-30 1992-11-30 Method and apparatus for generating inverse data on a finite field KR950010452B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1019920022937A KR950010452B1 (en) 1992-11-30 1992-11-30 Method and apparatus for generating inverse data on a finite field
US08/125,269 US5448510A (en) 1992-11-30 1993-09-23 Method and apparatus for producing the reciprocal of an arbitrary element in a finite field
GB9320086A GB2272983B (en) 1992-11-30 1993-09-29 Method and apparatus for producing the reciprocal of an arbitrary element in a finite field
DE4333382A DE4333382A1 (en) 1992-11-30 1993-09-30 Method and apparatus for forming the reciprocal of any element in a finite field
FR9311657A FR2698703B1 (en) 1992-11-30 1993-09-30 Method and device for producing the inverse of an arbitrary element in a finite field.
JP5253294A JPH06230991A (en) 1992-11-30 1993-10-08 Method and apparatus for computation of inverse number of arbitrary element in finite field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019920022937A KR950010452B1 (en) 1992-11-30 1992-11-30 Method and apparatus for generating inverse data on a finite field

Publications (2)

Publication Number Publication Date
KR940012170A true KR940012170A (en) 1994-06-22
KR950010452B1 KR950010452B1 (en) 1995-09-18

Family

ID=19344410

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019920022937A KR950010452B1 (en) 1992-11-30 1992-11-30 Method and apparatus for generating inverse data on a finite field

Country Status (6)

Country Link
US (1) US5448510A (en)
JP (1) JPH06230991A (en)
KR (1) KR950010452B1 (en)
DE (1) DE4333382A1 (en)
FR (1) FR2698703B1 (en)
GB (1) GB2272983B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100653675B1 (en) * 2005-12-06 2006-12-05 엠텍비젼 주식회사 Apparatus and method for calculating reciprocal number

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5974582A (en) * 1997-10-14 1999-10-26 Lsi Logic Corporation High-speed chien search logic
US6052704A (en) * 1998-01-12 2000-04-18 National Science Council Exponentiation circuit and inverter based on power-sum circuit for finite field GF(2m)
JP3659320B2 (en) * 2000-06-21 2005-06-15 インターナショナル・ビジネス・マシーンズ・コーポレーション Multiplication module, multiplication inverse element operation circuit, multiplication inverse element operation control system, device using the multiplication inverse element operation, encryption device, error correction decoder
JP4935367B2 (en) * 2007-01-19 2012-05-23 富士通株式会社 RAID device and Galois field product operation processing method
US10020932B2 (en) * 2015-11-13 2018-07-10 Nxp B.V. Split-and-merge approach to protect against DFA attacks

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5880768A (en) * 1981-11-06 1983-05-14 Mitsubishi Electric Corp Dividing device for galois field
EP0096163B1 (en) * 1982-06-15 1988-06-01 Kabushiki Kaisha Toshiba Apparatus for dividing the elements of a galois field
SU1312568A1 (en) * 1985-12-18 1987-05-23 Ленинградский электротехнический институт Device for determining binary character of elements of finite field
US4975867A (en) * 1987-06-26 1990-12-04 Digital Equipment Corporation Apparatus for dividing elements of a Galois Field GF (2QM)
DE3855497T2 (en) * 1988-10-18 1997-03-13 Philips Electronics Nv Data processing device for calculating a multiplicatively inverted element of a finite body
US4994995A (en) * 1990-03-14 1991-02-19 International Business Machines Corporation Bit-serial division method and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100653675B1 (en) * 2005-12-06 2006-12-05 엠텍비젼 주식회사 Apparatus and method for calculating reciprocal number

Also Published As

Publication number Publication date
GB2272983B (en) 1996-08-14
KR950010452B1 (en) 1995-09-18
JPH06230991A (en) 1994-08-19
DE4333382A1 (en) 1994-06-01
FR2698703A1 (en) 1994-06-03
US5448510A (en) 1995-09-05
GB2272983A (en) 1994-06-01
FR2698703B1 (en) 1995-03-31
GB9320086D0 (en) 1993-11-17

Similar Documents

Publication Publication Date Title
Pratt et al. Hadamard transform image coding
JP2005524889A5 (en)
Formanek A question of B. Plotkin about the semigroup of endomorphisms of a free group
Palleschi et al. Numerical solution of the Fokker-Planck equation: A fast and accurate algorithm
JP2842389B2 (en) Random number generator
KR940012170A (en) Finite field inverse calculation method and apparatus
KR960020022A (en) Computation Circuit of Error Location and Estimated Polynomial and Reed-Solomon Decoder
Fan et al. Effects of limited computational precision on the discrete chaotic sequences and the design of related solutions
Palacios-Luengas et al. Digital noise produced by a non discretized tent chaotic map
Fu et al. A two-stage angle-rotation architecture and its error analysis for efficient digital mixer implementation
Farran et al. The second Feng-Rao number for codes coming from inductive semigroups
KR20040000060A (en) Method for decoding error correction codes using approximate function
JP4126584B2 (en) Code generator
Cénac et al. Uncommon suffix tries
JPH1032497A (en) Error evaluation polynomial coefficient computing device
US20100054391A1 (en) Method and system for advancing a linear feedback shift register
JP6900441B2 (en) PAM3 signal generator and PAM3 signal generation method
PRISTLEY The positive and nearly conservative Lagrange-Galerkin method
KR960024904A (en) Linear shift random number generator
JPS5840769B2 (en) random number generator
US7599826B2 (en) System and method for generating various simulation conditions for simulation analysis
KR940017139A (en) Digital Sine Wave Generator
Grothaus et al. On regular generalized functions in white noise analysis and their applications
Wheeler Problems with Mitchell's nonlinear key generators
KR950012215A (en) Error Position Calculator for Single Reed-Solomon Decoder and Its Calculation Method

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19980827

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee