KR940012170A - Finite field inverse calculation method and apparatus - Google Patents
Finite field inverse calculation method and apparatus Download PDFInfo
- Publication number
- KR940012170A KR940012170A KR1019920022937A KR920022937A KR940012170A KR 940012170 A KR940012170 A KR 940012170A KR 1019920022937 A KR1019920022937 A KR 1019920022937A KR 920022937 A KR920022937 A KR 920022937A KR 940012170 A KR940012170 A KR 940012170A
- Authority
- KR
- South Korea
- Prior art keywords
- value
- multiplier
- output
- finite field
- inverse
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/60—Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
- G06F7/72—Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic
- G06F7/724—Finite field arithmetic
- G06F7/726—Inversion; Reciprocal calculation; Division of elements of a finite field
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Pure & Applied Mathematics (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Mathematical Physics (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Computing Systems (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- Algebra (AREA)
- Error Detection And Correction (AREA)
- Detection And Correction Of Errors (AREA)
- Complex Calculations (AREA)
Abstract
본 발명은 유한체상에서 역수를 굿하는 방법 및 장치에 관한 것으로, 방법은 유한체GF(2n)내에서 비트로 표현된 임의의 수 (ak)를 이용하여 비트로 표현된 그의 역수(a-k)를 구하는 방법에 있어서, 상기 유한체GF(2n)의 원시원을 a라할 때, 상기 ak가 a0인 경우에 a0를 a-k로서 구하는 과정과;ak≠a0인 경우에는 A 및 A-1에 a0를 대입한 후 상기 A 값이 상기 ak갑과 동일한 값을 가질때까지 상기 A 및 A-1에 상기 유한체의 원시원 a및 a-1을 각각 승산하는 과정과; 상기 A-1의 값을 a-1로서 구하는 과정을 포함하여 구성되며 이를 구현하기 위한 장치는 a곱셈기와 a-1곱셈기와 비교기 및 랫치수단을 포함하여 구성되는 것으로, 특업테이블방식이 아닌 하드웨어로 구현할 수 있는 유한체상의 역수를 구하는 알고리즘을 새로이 제시함과 동시에 이를 수행할 수 있는 장치를 제공하며 종래의 유한체상의 역수를 구하는 장치보다 그 크기가 줄어드는 효과가 있다.The present invention relates to a method and apparatus for a good inverse on the finite field, the method finite field GF (2 n) can be any of the bits in the representation of its reciprocal expression bits using a (a k) (a -k In the method for obtaining), when the source of the finite field GF (2 n ) is a, obtaining a 0 as a -k when a k is a 0 ; and a k ≠ a 0 . It is then substituted for a 0 on the a and a -1 a process of the value is multiplied by the a k handcuffs up when you have a value equal to the primitive root of a finite field for the a and a -1 and a -1 a, respectively and ; And comprising: a process of obtaining the value of the A -1 -1 as a device for implementing this, as a multiplier and a -1 multiplier and being configured to include a comparator, and latch means, the hardware than the method table teukeop While presenting a new algorithm for calculating the inverse of the finite field that can be implemented, the present invention provides a device capable of performing the same, and its size is reduced compared to the device for obtaining the inverse of the conventional finite field.
Description
본 내용은 요부공개 건이므로 전문내용을 수록하지 않았음As this is a public information case, the full text was not included.
제2도는 본 발명에 일실시예에 따른 유한체상의 역수 산출방법의 순서도이고,2 is a flow chart of a method for calculating the inverse of the finite body according to an embodiment of the present invention,
제3도는 본 발명의 일실시예에 따른 유한체상의 역수 산출장치의 블럭도이고,3 is a block diagram of a finite body inverse calculating apparatus according to an embodiment of the present invention,
제4도는 a곱셈기 및 a-1곱셈기의 일실시예에 따른 블럭도이다.4 is a block diagram according to one embodiment of a multiplier and a- 1 multiplier.
Claims (5)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019920022937A KR950010452B1 (en) | 1992-11-30 | 1992-11-30 | Method and apparatus for generating inverse data on a finite field |
US08/125,269 US5448510A (en) | 1992-11-30 | 1993-09-23 | Method and apparatus for producing the reciprocal of an arbitrary element in a finite field |
GB9320086A GB2272983B (en) | 1992-11-30 | 1993-09-29 | Method and apparatus for producing the reciprocal of an arbitrary element in a finite field |
DE4333382A DE4333382A1 (en) | 1992-11-30 | 1993-09-30 | Method and apparatus for forming the reciprocal of any element in a finite field |
FR9311657A FR2698703B1 (en) | 1992-11-30 | 1993-09-30 | Method and device for producing the inverse of an arbitrary element in a finite field. |
JP5253294A JPH06230991A (en) | 1992-11-30 | 1993-10-08 | Method and apparatus for computation of inverse number of arbitrary element in finite field |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019920022937A KR950010452B1 (en) | 1992-11-30 | 1992-11-30 | Method and apparatus for generating inverse data on a finite field |
Publications (2)
Publication Number | Publication Date |
---|---|
KR940012170A true KR940012170A (en) | 1994-06-22 |
KR950010452B1 KR950010452B1 (en) | 1995-09-18 |
Family
ID=19344410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019920022937A KR950010452B1 (en) | 1992-11-30 | 1992-11-30 | Method and apparatus for generating inverse data on a finite field |
Country Status (6)
Country | Link |
---|---|
US (1) | US5448510A (en) |
JP (1) | JPH06230991A (en) |
KR (1) | KR950010452B1 (en) |
DE (1) | DE4333382A1 (en) |
FR (1) | FR2698703B1 (en) |
GB (1) | GB2272983B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100653675B1 (en) * | 2005-12-06 | 2006-12-05 | 엠텍비젼 주식회사 | Apparatus and method for calculating reciprocal number |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5974582A (en) * | 1997-10-14 | 1999-10-26 | Lsi Logic Corporation | High-speed chien search logic |
US6052704A (en) * | 1998-01-12 | 2000-04-18 | National Science Council | Exponentiation circuit and inverter based on power-sum circuit for finite field GF(2m) |
JP3659320B2 (en) * | 2000-06-21 | 2005-06-15 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Multiplication module, multiplication inverse element operation circuit, multiplication inverse element operation control system, device using the multiplication inverse element operation, encryption device, error correction decoder |
JP4935367B2 (en) * | 2007-01-19 | 2012-05-23 | 富士通株式会社 | RAID device and Galois field product operation processing method |
US10020932B2 (en) * | 2015-11-13 | 2018-07-10 | Nxp B.V. | Split-and-merge approach to protect against DFA attacks |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5880768A (en) * | 1981-11-06 | 1983-05-14 | Mitsubishi Electric Corp | Dividing device for galois field |
EP0096163B1 (en) * | 1982-06-15 | 1988-06-01 | Kabushiki Kaisha Toshiba | Apparatus for dividing the elements of a galois field |
SU1312568A1 (en) * | 1985-12-18 | 1987-05-23 | Ленинградский электротехнический институт | Device for determining binary character of elements of finite field |
US4975867A (en) * | 1987-06-26 | 1990-12-04 | Digital Equipment Corporation | Apparatus for dividing elements of a Galois Field GF (2QM) |
DE3855497T2 (en) * | 1988-10-18 | 1997-03-13 | Philips Electronics Nv | Data processing device for calculating a multiplicatively inverted element of a finite body |
US4994995A (en) * | 1990-03-14 | 1991-02-19 | International Business Machines Corporation | Bit-serial division method and apparatus |
-
1992
- 1992-11-30 KR KR1019920022937A patent/KR950010452B1/en not_active IP Right Cessation
-
1993
- 1993-09-23 US US08/125,269 patent/US5448510A/en not_active Expired - Lifetime
- 1993-09-29 GB GB9320086A patent/GB2272983B/en not_active Expired - Fee Related
- 1993-09-30 DE DE4333382A patent/DE4333382A1/en not_active Ceased
- 1993-09-30 FR FR9311657A patent/FR2698703B1/en not_active Expired - Fee Related
- 1993-10-08 JP JP5253294A patent/JPH06230991A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100653675B1 (en) * | 2005-12-06 | 2006-12-05 | 엠텍비젼 주식회사 | Apparatus and method for calculating reciprocal number |
Also Published As
Publication number | Publication date |
---|---|
GB2272983B (en) | 1996-08-14 |
KR950010452B1 (en) | 1995-09-18 |
JPH06230991A (en) | 1994-08-19 |
DE4333382A1 (en) | 1994-06-01 |
FR2698703A1 (en) | 1994-06-03 |
US5448510A (en) | 1995-09-05 |
GB2272983A (en) | 1994-06-01 |
FR2698703B1 (en) | 1995-03-31 |
GB9320086D0 (en) | 1993-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pratt et al. | Hadamard transform image coding | |
JP2005524889A5 (en) | ||
Formanek | A question of B. Plotkin about the semigroup of endomorphisms of a free group | |
Palleschi et al. | Numerical solution of the Fokker-Planck equation: A fast and accurate algorithm | |
JP2842389B2 (en) | Random number generator | |
KR940012170A (en) | Finite field inverse calculation method and apparatus | |
KR960020022A (en) | Computation Circuit of Error Location and Estimated Polynomial and Reed-Solomon Decoder | |
Fan et al. | Effects of limited computational precision on the discrete chaotic sequences and the design of related solutions | |
Palacios-Luengas et al. | Digital noise produced by a non discretized tent chaotic map | |
Fu et al. | A two-stage angle-rotation architecture and its error analysis for efficient digital mixer implementation | |
Farran et al. | The second Feng-Rao number for codes coming from inductive semigroups | |
KR20040000060A (en) | Method for decoding error correction codes using approximate function | |
JP4126584B2 (en) | Code generator | |
Cénac et al. | Uncommon suffix tries | |
JPH1032497A (en) | Error evaluation polynomial coefficient computing device | |
US20100054391A1 (en) | Method and system for advancing a linear feedback shift register | |
JP6900441B2 (en) | PAM3 signal generator and PAM3 signal generation method | |
PRISTLEY | The positive and nearly conservative Lagrange-Galerkin method | |
KR960024904A (en) | Linear shift random number generator | |
JPS5840769B2 (en) | random number generator | |
US7599826B2 (en) | System and method for generating various simulation conditions for simulation analysis | |
KR940017139A (en) | Digital Sine Wave Generator | |
Grothaus et al. | On regular generalized functions in white noise analysis and their applications | |
Wheeler | Problems with Mitchell's nonlinear key generators | |
KR950012215A (en) | Error Position Calculator for Single Reed-Solomon Decoder and Its Calculation Method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
G160 | Decision to publish patent application | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 19980827 Year of fee payment: 4 |
|
LAPS | Lapse due to unpaid annual fee |