KR840001030B1 - Preparation of para chloro alkybenzene - Google Patents
Preparation of para chloro alkybenzene Download PDFInfo
- Publication number
- KR840001030B1 KR840001030B1 KR1019830001581A KR830001581A KR840001030B1 KR 840001030 B1 KR840001030 B1 KR 840001030B1 KR 1019830001581 A KR1019830001581 A KR 1019830001581A KR 830001581 A KR830001581 A KR 830001581A KR 840001030 B1 KR840001030 B1 KR 840001030B1
- Authority
- KR
- South Korea
- Prior art keywords
- catalyst
- alkylbenzene
- chloride
- group
- electron
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/90—Regeneration or reactivation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/584—Recycling of catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Catalysts (AREA)
Abstract
Description
본 발명은 선택성 좋게 알킬벤젠의 p-위의 핵염소화물을 연속적으로 제조하는 방법에 관한 것이다.The present invention relates to a process for the continuous production of nucleochlorides on p-selectivity of alkylbenzenes with good selectivity.
알킬벤젠의 핵염소화물은, 의약, 농약을 비롯해서 각종 유기합성 화학의 원료로서 유용하다. 특히 p-클로로톨루엔등의 알킬벤젠의 p-위의 핵염소화물의 수요량이 많다.Nucleochlorides of alkylbenzenes are useful as raw materials for various organic synthetic chemistries, including medicines and pesticides. In particular, the demand amount of the nucleochloride on p- of alkylbenzenes, such as p-chlorotoluene, is large.
본 발명자는, 이미 알킬벤젠의 p-위의 핵염소화물을 선택성 좋게 제조하는 방법으로서, 알킬벤젠을 루이스산 및 일반식MEANS TO SOLVE THE PROBLEM The present inventors have already made the method of preparing the nucleochloride on p-position of alkylbenzene with good selectivity.
(식중의 X1,X2,X3, 및 X4는 각각 동일하거난 상이한 수소원자, 전자흡인성기 또는 공어성기를 나타낸다)(Wherein X 1 , X 2 , X 3 , and X 4 each represent the same or different hydrogen atom, electron withdrawing group or emulsifying group)
로 표시되는 페노키사틴 화합물로 이루어진 촉매의 존재하에 염소에 의해서 핵염소화 하는 방법을 개발하였다.A method of nucleating with chlorine in the presence of a catalyst consisting of a phenochisatin compound represented by
이 방법은, 촉매의 안정성이 좋으므로, 촉매를 추가하거나 교환하는 일없이 알킬벤젠의 핵염소화를 5~6 반복해서 수득을 좋게 행하는 것이 가능하나, 이 이상 알킬벤젠의 핵염소화의 회수를 거듭하면 p-위에 대한 염소화의 선택성이 악화한다. 이것은 알킬벤젠의 알킬기에 대한 o-위의 핵염소화물과 p-핵염소물과의 비소위 o/p비가 증대하므로서 나타내어 진다.In this method, since the stability of the catalyst is good, it is possible to obtain a good yield by repeating the nucleation of alkylbenzene by 5 to 6 without adding or exchanging the catalyst. The selectivity of chlorination for the p- stomach worsens. This is indicated by the increase in the non-so-called o / p ratio of the o-top nucleochloride and the p-nucleochloride to the alkyl group of the alkylbenzene.
본 발명자는 상기 촉매를 사용해서 알킬벤젠의 핵염소화를 다시 반복해서 행하여도, p-위의 핵염소의 선택성이 저하하지 않는 방법을 개발하기 위해서 예의 연구를 거듭한 결과, 핵염소화를 행한 후, 목적 생성물인 핵염소화물을 예를 들면 증류등에 의해서 분리한 뒤의 촉매를 함유한 잔류물을 할로겐화수소로 처리했을 경우에는 이 촉매를 사용해서 다시 반복해서 알킬벤젠의 핵염소화를 행하여도 o/p비는 증대하지 않고 높은 수득율로 p-염소화물을 제조할 수 있는 것을 발견하고, 이식견에 따라서 본 발명을 하기에 이르렀다.MEANS TO SOLVE THE PROBLEM As a result of earnestly researching in order to develop the method which the selectivity of the nucleus of p-position does not fall even if it repeats nucleochlorination of alkylbenzene again using the said catalyst, after carrying out nucleation, In the case where the residue containing the catalyst after separation of the desired product of chlorine by distillation or the like is treated with hydrogen halide, the alkyl benzene may be nucleated again using this catalyst. It has been found that p-chlorine can be produced at high yields without increasing the ratio, and the present invention has been made in accordance with transplant dogs.
즉 본 발명은 알킬벤젠을 루이스산 및 일반식[Ⅰ]That is, the present invention is an alkyl benzene Lewis acid and a general formula [I]
(식중의 X1,X2,X3및 X4는 각각 동일하거나 혹은 상이한 수소원자, 전자 흡인성기 또는 전자 공여성기를 나타낸다).(Wherein X 1 , X 2 , X 3 and X 4 each represent the same or different hydrogen atom, electron withdrawing group or electron donating group).
으로 표시되는 페노키사틴 화합물로 이루어지는 촉매의 존재하에 핵염소화 하고, 이어서 목적 생성물인 핵염소화물을 분리하고, 촉매를 함유한 잔류물에 새로히 알킬벤젠을 가해서 염소에 의해서 핵염소화를 행하므로서 알킬벤젠의 핵염소화물을 연속적으로 제조함에 있어서, 임의의 단계에서 상기 촉매를 함유한 잔류물에 할로겐화수소를 도입하여 촉매를 활성화하는 것을 특징으로 하는 알킬벤젠의 핵염소화물의 제조방법을 제공하는 것이다.Nucleochlorination in the presence of a catalyst consisting of a phenochisatin compound represented by In the continuous preparation of the nucleochloride of, to provide a method for producing a nucleated chloride of alkylbenzene characterized in that the catalyst is activated by introducing hydrogen halide to the residue containing the catalyst in any step.
본 발명에 있어서 염소화되는 알킬벤젠으로서는, 각종의 직쇄상 및 분지쇄상 알킬벤젠 및 치환 알킬벤젠을 들수가 있으나, 특히 알킬기의 탄소수가 1~4의 것이 적당하다.Examples of the alkylbenzene to be chlorinated in the present invention include various linear and branched alkylbenzenes and substituted alkylbenzenes, but particularly preferably those having 1 to 4 carbon atoms in the alkyl group.
본 발명에 있어서 사용되는 루이스산은, 통상의 의미의 루이스산 뿐만이 아니라, 핵염소화 반응중에 루이스산을 형성하든가, 혹은, 루이산으로서의 기능을 하는 금속 또는 화합물을 포함하는 것으로서 예를 들면 안티몬, 철, 주석, 납, 알루미늄, 몰리브덴, 텔루르 등의 금속, 이들의 할로겐화물, 산화물, 황화물, 카르보닐화합물 등을 들 수 있고, 특히 바람직한 예로서는, 3염화아티몬, 염화 제1철 염화 제2철, 4염화텔루르, 옥시염화안티몬, 3산화 안티몬, 4산화안티몬, 5산화 안티몬, 산화 제2철 황화납 황화 제1철, 황2화철, 몰리브덴헥사카르보닐, 철펜타카르보닐등을 들 수가 있다.The Lewis acid used in the present invention includes not only Lewis acid in the usual sense but also a metal or compound which forms Lewis acid during nucleating reaction or functions as a Lewis acid, for example, antimony, iron, Metals such as tin, lead, aluminum, molybdenum, tellurium, halides, oxides, sulfides and carbonyl compounds thereof, and the like, and particularly preferred examples thereof include: trimonium trichloride, ferrous chloride and ferric chloride; Tellurium chloride, antimony oxychloride, antimony trioxide, antimony tetraoxide, antimony pentoxide, ferric iron oxide sulfide ferric sulfide, ferric sulfide, molybdenum hexacarbonyl, iron pentacarbonyl, and the like.
또, 일반식[Ⅰ]에서 표시되는 페노키사틴 화합물로서 일반식[Ⅰ]에 있어서의 X1,X2,X3및 X4는 수소원자 전자 흡입성기 또는 전자 공여성기로서, 이들은 각각 동일하거나 또는 상이한 것이어도 된다. 여기서 전자 흡인성기로서는, 염소원자, 브롬원자, 플루오르원자와 같은 할로겐원자 아세틸기와 같은 알카노일기벤조일기와 같은 알로일기, 티트로기, 술포닐기, 시아노기, 트리플루오로메틸기 등을 들 수가 있고, 전자여공성기로서는, 알킬기, 알콕시기등을 들 수가 있다.In addition, as the phenoxystatin compound represented by the general formula [I], X 1 , X 2 , X 3 and X 4 in the general formula [I] are hydrogen atom electron inhalable groups or electron donor groups, each of which is the same or Or may be different. Examples of the electron withdrawing group include an aloyl group, a titro group, a sulfonyl group, a cyano group, a trifluoromethyl group, and the like, such as an alkanoyl group and a benzoyl group, such as a halogen atom acetyl group such as a chlorine atom, a bromine atom, and a fluorine atom. As an electron-porous group, an alkyl group, an alkoxy group, etc. are mentioned.
본 발명에 있어서, 루이스산과 페노키사린 화합물은 단독으로 사용해도 혼합해서 사용해도 된다.In the present invention, the Lewis acid and the phenokisarin compound may be used alone or in combination.
또, 본 발명에 의해서 알킬벤젠의 핵염소화를 행하는데는, 루이산과 페노키사틴 화합물의 총량으로, 알킬벤젠의 양의 0.001~5.0중량%, 바람직하기는 0.01~1.0중량%의 비율로 촉매를 존재시키고, 반응혼합물의 비점 이하의 온도에서 염소화제를 도입한다. 온도가 너무높을 경우에는, 다염소화물의 생성량이 많아지고, p-염소화물의 수득율이 감소되어 바람하지 못하다. 한펜, 영하 10℃ 이하의 저온에서도 반응은 행할 수 있어, p-염소화물의 선택율은 높아지나, 반응속도가 늦어져서 경제적이 못되므로, 통상은 0~80℃의 온도에서 공업적으로는 20~70℃의 온도로 행하는 것이 적절하다. 이때의 염소화제로서는 염화티오닐, 차아염소산염 등의 관용되고 있는 염소화제를 사용할 수가 있으나, 특히 바람직한 것은 염소가스이다. 이 염소가스를 사용할 경우에는, 감압, 가압의 어느것이라도 되나 통상은 상압에서 행한다.In the present invention, in the nucleochlorination of alkylbenzene, the catalyst is present in a total amount of leunic acid and phenoxysatin compound in an amount of 0.001 to 5.0% by weight, preferably 0.01 to 1.0% by weight of the amount of alkylbenzene. The chlorinating agent is introduced at a temperature below the boiling point of the reaction mixture. If the temperature is too high, the amount of polychloride produced increases, and the yield of p-chloride decreases, which is unfavorable. The reaction can be carried out even at a low temperature of 1 pen or less than -10 ° C, and the selectivity of p-chlorine increases, but the reaction rate is slow and economical. Therefore, it is usually industrially at a temperature of 0 to 80 ° C. It is appropriate to carry out at the temperature of 70 degreeC. As the chlorinating agent at this time, commonly used chlorinating agents such as thionyl chloride and hypochlorite can be used, but chlorine gas is particularly preferable. When this chlorine gas is used, either pressure reduction or pressurization may be used, but usually at normal pressure.
본 발명에 있어서, 촉매의 활성화는 목적 생성물인 핵염소화물을 예를 들면 증류등에 의해서 분리한 후의 촉매를 함유한 잔류물에 임의의 단계에서 할로겐화수소를 도입해서 처리하므로서 행한다. 여기서 사용하는 할로겐화수소로서는, 플루오르수소, 염화수소, 브롬화수소 등을 들수 있다. 또, 할로겐화수소의 도입량 및 도입시간에 특히 제한은 없으나, 바람직하기는 20~1000㎖/min으로 10분~24시간의 범위이다.In the present invention, activation of the catalyst is performed by introducing hydrogen halide at any stage into the residue containing the catalyst after the nucleated chlorine which is the desired product is separated, for example, by distillation or the like. Hydrogen fluoride, hydrogen chloride, hydrogen bromide etc. are mentioned as hydrogen halide used here. There is no restriction | limiting in particular in the introduction amount and introduction time of hydrogen halide, Preferably it is the range of 10 to 24 hours at 20-1000 ml / min.
본 발명에 있어서, 핵염소화반응 및 촉매의 활성화를 함에 있어서 용매를 특히 사용할 필요는 없으나, 반응을 원활하게 행할 목적으로 불활성 용매를 사용해도 되고, 원료인 알킬벤젠을 용매로서 사용해도 된다. 또 촉매를 활성화 시킴에 있어서, 염소화 되어야할 알킬벤젠의 잔존하고 있어도 된다.In the present invention, a solvent is not particularly used in the nucleation reaction and activation of the catalyst, but an inert solvent may be used for the purpose of smoothly reacting, or alkylbenzene as a raw material may be used as the solvent. Moreover, in activating a catalyst, the alkylbenzene which should be chlorinated may remain.
본 발명에 있어서, 촉매의 활성화에 사용하는 활로겐화수소는, 알킬벤젠의 핵염소화에 있어서 부생하는 염화수소를 사용할 수가 있으므로 매우 경제적이다.In the present invention, the hydrogen halide used for the activation of the catalyst is very economical because hydrogen chloride which is a byproduct in the nucleation of alkylbenzene can be used.
본 발명에 의해서, p-클로로알킬벤젠을 선택성 좋게 반복해서 제조할 수가 있고, m-클로로체 및 폴리클로로체의 생성을 극히 적게할 수가 있다. 또, 촉매를 반복해서 사용할 수 있으므로, 생성 p-클로로알킬벤젠당의 촉매량을 대폭 감소할 수 있을 뿐만이 아니라, 폐액 및 찌꺼기의 양을 경감할 수 있으므로 폐기물 처리의 면에서도 바람직하고, 본 발명의 공업적가치는 극히 높다.According to the present invention, p-chloroalkylbenzene can be produced repeatedly with good selectivity, and production of m-chloro bodies and polychloro bodies can be extremely reduced. In addition, since the catalyst can be used repeatedly, not only can the catalyst amount of the produced p-chloroalkylbenzene sugar be significantly reduced, but also the amount of waste liquid and waste can be reduced, which is preferable in terms of waste treatment. The value is extremely high.
다음에, 실시예에 의해서 본 발명을 더욱 상세히 설명한다.Next, the present invention will be described in more detail with reference to Examples.
[실시예 1]Example 1
교반기, 온도계, 가스취입관 및 환류콘덴서를 구비한 1ℓ 4구 플라스크에, 톨루엔 368g, 3염화안티몬 0.1g 및 2,3,7,8-테트라클로로 페노키사린 0.14g을, 혼합하여 교반하면서 온도가 50℃가 될 때까지 가열하고, 온도를 50~55℃로 유지하면서 염소가스를 300㎖/min의 속도로 도입해서 5시간 반응시켰다. 반응종료 후, 증류해서 톨루엔의 핵염소화물을 분리하고, 촉매를 함유한 잔류물에 새로이 톨루엔을 가해서 재차 염소가스를 도입해서 상기와 마찬가지로 염소화반응을 행하였다. 이와 같이해서 염소화반응을 6회 반복해서 행하였다. 6회째의 반응 혼합물로부터, 톨루엔의 핵염소화물을 분리한 뒤, 촉매를 함유한 잔류물에 교반하면서 염화수소를 100㎖/min로 1시간 도입해서 처리하였다. 이어서, 새로히 톨루엔을 가해서 상기와 마찬가지의 염소화 반응을 반복해서 다시 7회, 합계 13회 행하였다.To a 1 L four-necked flask equipped with a stirrer, a thermometer, a gas blowing tube, and a reflux condenser, 368 g of toluene, 0.1 g of antimony trichloride, and 0.14 g of 2,3,7,8-tetrachlorophenoxysarin were mixed and stirred while stirring Heated until it became 50 degreeC, chlorine gas was introduce | transduced at the rate of 300 ml / min, and it was made to react for 5 hours, keeping temperature at 50-55 degreeC. After completion of the reaction, distillation was carried out to separate the nucleated chloride of toluene, new toluene was added to the residue containing the catalyst, chlorine gas was introduced again, and the chlorination reaction was carried out as above. Thus, the chlorination reaction was repeated 6 times. After the nucleated toluene was separated from the sixth reaction mixture, hydrogen chloride was introduced at 100 ml / min for 1 hour while stirring the residue containing the catalyst and treated. Subsequently, toluene was newly added and the same chlorination reaction was repeated 7 times and 13 times in total again.
생성된 모노클로로톨루엔은 어느회도 o/p비는 0.85~0.87로, 핵염소화물은 확인되지 않았다. 또, 6회째 종류후의 잔류물을 분석한 바, 사용한 2,3,7,8-테트라클로로페노키사틴의 52%가 10-옥시체에 산화되고 있었으나, 염화수소로 처리한 뒤에는 그 80%가 2,3,7,8-테트라클로로페노키사틴으로 되어있는 것을 알았다.The produced monochlorotoluene had an o / p ratio of 0.85 to 0.87 no time, and no nucleated chloride was identified. In addition, after analyzing the residue after the sixth kind, 52% of the used 2,3,7,8-tetrachlorophenokistine was oxidized to 10-oxygen, but after treatment with hydrogen chloride, the 80% was 2%. It turned out that it was 3,7,8-tetrachloro phenoxysatin.
또, 2,3,7,8-테트라클로로페노키사틴의 절대량은, 첫회부터 13회째까지 변화가 없고, 10-옥시체에 산화되는 이외는 분해등의 화학변화를 받고 있지 않는 것이 판명되었다. 7회째의 염소화 반응전에 염화수소 처리를 행하지 않는 이외에는 실시예 1과 같이 해서 톨루엔의 염소화반응을 9회 반복해서 행하였다.In addition, it was found that the absolute amount of 2,3,7,8-tetrachlorophenoxysatin did not change from the first to the 13th time, and was not subjected to chemical changes such as decomposition except being oxidized to a 10-oxygen. The chlorination reaction of toluene was repeated nine times in the same manner as in Example 1 except that the hydrogen chloride treatment was not performed before the seventh chlorination reaction.
생성된 모노클로로톨루엔의 o/p비는 첫회부터 6회째 까지는 0.86으로 변화가 없고 핵염소화물도 확인되지 않었으나, 7회 째에서는 o/p비는 1.5이며, 핵염소화물도 다량으로 검출되었다. 또, 9회째 종류후에는, 2,3,7,8-테트라클로로페노키사틴은 10%밖에 존재하지 않고, 나머지는 10-옥시체이었다.The o / p ratio of the produced monochlorotoluene was 0.86 from the first to the sixth time, and there was no change of nucleated chloride, but the o / p ratio was 1.5 in the seventh time and a large amount of nucleated chloride was also detected. . After the ninth kind, only 10% of 2,3,7,8-tetrachlorophenokistine was present, and the rest was 10-oxygen.
[실시예 2]Example 2
톨루엔의 염소화를 촉매의 종류 및 촉매량을 변화시키는 이외는 실시예 1와 마찬가지로 행하였다. 염화수소처리도 실시예 1와 같이 7회째의 반응을 시작하기 전에 행하였다.Chlorination of toluene was carried out in the same manner as in Example 1 except for changing the type of catalyst and the amount of catalyst. Hydrogen chloride treatment was also performed before starting the seventh reaction as in Example 1.
결과를 제1표에 나타낸다.The results are shown in the first table.
[ 제 1 표][Table 1]
[실시예 3]Example 3
톨루엔 368g의 대신에 에틸벤젠 424g을 혼합하는 이외는 실시예 1과 같이해서, 13회 반복하여 에틸벤젠의 염소화반응을 행하였다. 7회째의 반응을 행하기 전에 실시예 1과 같이 잔류물의 염화수소처리를 행하였다.A chlorination reaction of ethylbenzene was repeated 13 times in the same manner as in Example 1 except that 424 g of ethylbenzene was mixed instead of 368 g of toluene. Before performing the seventh reaction, hydrogen chloride treatment of the residue was carried out as in Example 1.
생성된 모노클로로에틸벤젠은 어느회도 O/P비는 0.60~0.64로, 핵염소화물은 확인되지 않았다.The produced monochloroethylbenzene had no O / P ratio of 0.60 to 0.64 at any time, and no nucleated chloride was identified.
[실시예 4]Example 4
톨록엔 368g의 대신에 큐멘 480g을 혼합하는 이외는 실시예 1과 같이해서, 13회 반복해서 큐멘의 염소화를 행하였다. 7회째의 반응을 행하기 전에 실시예 1과 같이 잔류물의 염화수소처리를 행하였다. 생성된 모노클로로 큐멘은 어느회도 O/P비는 0.45~0.48이며, 핵염소화물은 확인할 수 없었다.The cumene was chlorinated 13 times in the same manner as in Example 1 except that 480 g of cumene was mixed instead of 368 g of toloene. Before performing the seventh reaction, hydrogen chloride treatment of the residue was carried out as in Example 1. The produced monochloro cumene had an O / P ratio of 0.45 to 0.48 at any time, and no nucleated chloride could be confirmed.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019830001581A KR840001030B1 (en) | 1980-05-24 | 1983-04-14 | Preparation of para chloro alkybenzene |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019800002037A KR830001290B1 (en) | 1980-05-24 | 1980-05-24 | Catalyst for Nucleochlorination of Alkylbenzene |
KR1019830001581A KR840001030B1 (en) | 1980-05-24 | 1983-04-14 | Preparation of para chloro alkybenzene |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019800002037A Division KR830001290B1 (en) | 1980-05-24 | 1980-05-24 | Catalyst for Nucleochlorination of Alkylbenzene |
Publications (2)
Publication Number | Publication Date |
---|---|
KR840001030B1 true KR840001030B1 (en) | 1984-07-26 |
KR840004661A KR840004661A (en) | 1984-10-22 |
Family
ID=19216587
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019800002037A KR830001290B1 (en) | 1980-05-24 | 1980-05-24 | Catalyst for Nucleochlorination of Alkylbenzene |
KR1019830001581A KR840001030B1 (en) | 1980-05-24 | 1983-04-14 | Preparation of para chloro alkybenzene |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019800002037A KR830001290B1 (en) | 1980-05-24 | 1980-05-24 | Catalyst for Nucleochlorination of Alkylbenzene |
Country Status (1)
Country | Link |
---|---|
KR (2) | KR830001290B1 (en) |
-
1980
- 1980-05-24 KR KR1019800002037A patent/KR830001290B1/en active
-
1983
- 1983-04-14 KR KR1019830001581A patent/KR840001030B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR840004661A (en) | 1984-10-22 |
KR830001290B1 (en) | 1983-07-06 |
KR830002662A (en) | 1983-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4289916A (en) | Process for producing p-chloroalkylbenzene | |
US4724269A (en) | Process for producing p-chlorobenzenes | |
EP0118851B1 (en) | Process for producing a chlorohalobenzene | |
JPH0425065B2 (en) | ||
KR970015581A (en) | Process for preparing substituted thiazole | |
US4190609A (en) | Process for the directed chlorination of xylenes | |
JPS6026772B2 (en) | Alkylbenzene chlorination method | |
US4250122A (en) | Process and catalyst mixture for the para-directed chlorination of alkylbenzenes | |
KR840001030B1 (en) | Preparation of para chloro alkybenzene | |
EP0299330A1 (en) | Process for making decabromodiphenyl oxide | |
JP3572619B2 (en) | Method for producing difluoromethane | |
US5210343A (en) | Process for the preparation of p-dichlorobenzene | |
US2123857A (en) | Manufacture of 1,3-dichloro-and 1, 3, 5-trichlorobenzenes | |
US4898996A (en) | Process for producing 3-chloro-4-fluoronitrobenzene | |
US4691066A (en) | Process of preparing metachlorobenzotrifluoride | |
JPS6242655B2 (en) | ||
US4444983A (en) | Process for the nuclear chlorination of toluene | |
JPS649297B2 (en) | ||
EP0155093B1 (en) | Method for production of fluorine-containing aromatic derivative | |
US4183873A (en) | Liquid phase fluorination process | |
US4306102A (en) | P-Tert.butylbenzotribromide and p-tert.butylbenzoyl bromide and process for their manufacture | |
US4990705A (en) | Preparation of 4-bromobiphenyl | |
JPS60125251A (en) | Catalyst for halogenating nucleus of alkylbenzene | |
JPS6242656B2 (en) | ||
JPH04305544A (en) | Method of preparing paradichlorobenzene |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
E902 | Notification of reason for refusal | ||
G160 | Decision to publish patent application | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 19871109 Year of fee payment: 11 |
|
EXPY | Expiration of term |