KR20240098869A - Cold rolled steel sheet for hot press forming and hot presse forming part having excellent surface quality and manufacturing method thereof - Google Patents
Cold rolled steel sheet for hot press forming and hot presse forming part having excellent surface quality and manufacturing method thereof Download PDFInfo
- Publication number
- KR20240098869A KR20240098869A KR1020220181029A KR20220181029A KR20240098869A KR 20240098869 A KR20240098869 A KR 20240098869A KR 1020220181029 A KR1020220181029 A KR 1020220181029A KR 20220181029 A KR20220181029 A KR 20220181029A KR 20240098869 A KR20240098869 A KR 20240098869A
- Authority
- KR
- South Korea
- Prior art keywords
- hot
- steel sheet
- rolled steel
- weight
- cold
- Prior art date
Links
- 239000010960 cold rolled steel Substances 0.000 title claims abstract description 52
- 238000004519 manufacturing process Methods 0.000 title claims description 32
- 239000002344 surface layer Substances 0.000 claims abstract description 17
- 229910001567 cementite Inorganic materials 0.000 claims abstract description 16
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910001562 pearlite Inorganic materials 0.000 claims abstract description 15
- 239000012535 impurity Substances 0.000 claims abstract description 12
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 8
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 7
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 7
- 238000001816 cooling Methods 0.000 claims description 50
- 229910000831 Steel Inorganic materials 0.000 claims description 46
- 239000010959 steel Substances 0.000 claims description 46
- 229910000734 martensite Inorganic materials 0.000 claims description 22
- 238000000137 annealing Methods 0.000 claims description 21
- 238000010438 heat treatment Methods 0.000 claims description 15
- 238000005098 hot rolling Methods 0.000 claims description 15
- 238000005097 cold rolling Methods 0.000 claims description 14
- 230000009466 transformation Effects 0.000 claims description 10
- 229910052750 molybdenum Inorganic materials 0.000 claims description 9
- 238000005096 rolling process Methods 0.000 claims description 9
- 229910052718 tin Inorganic materials 0.000 claims description 9
- 229910052721 tungsten Inorganic materials 0.000 claims description 9
- 229910052758 niobium Inorganic materials 0.000 claims description 8
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- 229910052720 vanadium Inorganic materials 0.000 claims description 8
- 229910052726 zirconium Inorganic materials 0.000 claims description 8
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 230000009467 reduction Effects 0.000 claims description 6
- 238000004804 winding Methods 0.000 claims description 4
- 230000001186 cumulative effect Effects 0.000 claims description 3
- 230000000694 effects Effects 0.000 description 23
- 238000005452 bending Methods 0.000 description 14
- 238000000034 method Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 239000000463 material Substances 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 229910000859 α-Fe Inorganic materials 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 229910001566 austenite Inorganic materials 0.000 description 3
- 229910001563 bainite Inorganic materials 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 241001269524 Dura Species 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910001021 Ferroalloy Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C47/00—Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
- B21C47/02—Winding-up or coiling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/003—Cementite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/009—Pearlite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
중량%로, C: 0.25~0.45%, Si: 0.01~3.0%, Mn: 0.01~4.0%, Al: 0.001~0.4%, P: 0.001~0.05%, S: 0.0001~0.02%, Cr: 0.1% 이상 5.0% 미만, N: 0.001~0.02%, 나머지 Fe 및 기타 불가피한 불순물을 포함하며,
하기 [관계식 1]로 표시되는 조직비율의 값이 0.2 이상 1.3 이하인 열간성형용 냉연강판.
[관계식 1] 조직비율 =
(상기 식의 및 는 각각 표층부의 펄라이트 및 시멘타이트의 면적비율을 나타내며, 및 는 각각 중심부의 펄라이트 및 시멘타이트의 면적비율을 나타낸다.)In weight percent, C: 0.25-0.45%, Si: 0.01-3.0%, Mn: 0.01-4.0%, Al: 0.001-0.4%, P: 0.001-0.05%, S: 0.0001-0.02%, Cr: 0.1% Not less than 5.0%, N: 0.001~0.02%, including the remaining Fe and other inevitable impurities;
A cold-rolled steel sheet for hot forming with a tissue ratio value of 0.2 or more and 1.3 or less, as expressed by [Relational Equation 1] below.
[Relation 1] Organizational ratio =
(of the above formula and represents the area ratio of pearlite and cementite in the surface layer, respectively, and represents the area ratio of pearlite and cementite in the center, respectively.)
Description
본 발명은 굽힘성이 우수한 열간성형용 냉연강판, 열간성형부재 및 그들의 제조방법에 관한 것이다. The present invention relates to cold rolled steel sheets for hot forming with excellent bendability, hot forming members, and methods for manufacturing them.
열간성형 초고강도 부재는 최근에 자동차 경량화를 통한 연비 향상 및 승객 보호 등의 목적으로 자동차의 구조 부재에 많이 적용되고 있다. Hot-formed ultra-high-strength members have recently been widely used in structural members of automobiles for purposes such as improving fuel efficiency and protecting passengers by reducing the weight of automobiles.
이러한 열간성형에 관한 대표적인 기술로서 특허문헌 1이 제안되어 있다. 특허문헌 1 은 강판을 850℃ 이상으로 가열한 후 프레스에 의한 열간성형 및 급냉에 의해 부재의 조직을 마르텐사이트로 형성시킴으로써, 인장강도가 1600MPa을 넘는 초고강도를 확보하는 기술을 제안하고 있다. 특허문헌 1에서 제안된 기술의 경우, 고온에서 성형하기 때문에 복잡한 형상도 쉽게 성형이 가능하며, 금형내 급랭에 따른 강도 상승을 통해 고강도화에 따른 경량화 효과를 기대할 수 있다. Patent Document 1 is proposed as a representative technology for such hot forming. Patent Document 1 proposes a technology for securing ultra-high strength with a tensile strength exceeding 1600MPa by heating a steel sheet to 850°C or higher and then forming the structure of the member into martensite through hot forming and rapid cooling using a press. In the case of the technology proposed in Patent Document 1, complex shapes can be easily formed because they are molded at high temperatures, and a weight reduction effect due to high strength can be expected through an increase in strength due to rapid cooling in the mold.
승객 보호 등의 목적으로 사용되는 HPF 형성 부재의 내충돌특성을 평가하는 대표적인 지표는 굽힘성으로 여겨지고 있다. 예를 들어, 자동차 B-pillar와 같은 경우, 차량 측면 충돌을 받아 HPF 성형 부재가 굽을 경우 특정 거리(각도) 이상까지 파단 없이 버틸 수 있는 특성(굽힘성)이 요구된다.The representative index for evaluating the crash resistance characteristics of HPF forming members used for purposes such as passenger protection is considered to be bendability. For example, in the case of an automobile B-pillar, when the HPF molded member is bent when subjected to a side collision of the vehicle, characteristics (bendability) that can withstand over a certain distance (angle) without fracture are required.
따라서 특허문헌 2과 같이 TWB(Tailor Welded Blank)를 통해 서로 다른 강도의 강종을 HPF 형성함으로써 부분적 굽힘성 개선을 통한 충돌 에너지 흡수능을 향상하는 등 HPF 강재 및 부재의 내충돌특성을 개선하기 위한 다양한 연구들이 진행되었다.Therefore, as shown in Patent Document 2, various studies have been conducted to improve the collision resistance characteristics of HPF steel materials and members, such as improving the collision energy absorption ability through partial bendability improvement by forming HPF of steel types of different strengths through TWB (Tailor Welded Blank). progressed.
그러나, TWB를 통한 내충돌특성 개선에 있어서도 용접부의 열화로 인해 굽힘성이 오히려 열위해지는 등 내충돌특성이 요구되는 부품의 특성 향상에 있어서 한계를 보여왔다.However, even in improving crash resistance through TWB, there have been limitations in improving the properties of parts that require crash resistance, such as bendability becoming inferior due to deterioration of the weld zone.
본 발명의 일 측면은, 부재에 높은 강도를 가지면서도 우수한 굽힘성을 부여할 수 있는 열간성형용 강재, 열간성형 부재 및 이들의 제조방법을 제공하고자 하는 것이다.One aspect of the present invention is to provide a steel material for hot forming, a hot forming member, and a manufacturing method thereof that can provide the member with high strength and excellent bendability.
본 발명의 과제는 상술한 내용에 한정되지 아니한다. 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명 명세서의 전반적인 사항으로부터 본 발명의 추가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.The object of the present invention is not limited to the above-described content. Anyone skilled in the art to which the present invention pertains will have no difficulty in understanding the additional problems of the present invention from the overall details of the present invention specification.
본 발명의 일 측면은, 중량%로, C: 0.25~0.45%, Si: 0.01~3.0%, Mn: 0.01~4.0%, Al: 0.001~0.4%, P: 0.001~0.05%, S: 0.0001~0.02%, Cr: 0.1% 이상 5.0% 미만, N: 0.001~0.02%, 나머지 Fe 및 기타 불가피한 불순물을 포함하며,One aspect of the present invention is, in weight percent, C: 0.25-0.45%, Si: 0.01-3.0%, Mn: 0.01-4.0%, Al: 0.001-0.4%, P: 0.001-0.05%, S: 0.0001- 0.02%, Cr: 0.1% or more but less than 5.0%, N: 0.001-0.02%, including the remaining Fe and other inevitable impurities;
하기 [관계식 1]로 표시되는 조직비율의 값이 0.2 이상 1.3 이하인 열간성형용 냉연강판을 제공한다.Provided is a cold-rolled steel sheet for hot forming having a structure ratio value of 0.2 or more and 1.3 or less, expressed by [Relational Equation 1] below.
[관계식 1] 조직비율 = [Relation 1] Organizational ratio =
(상기 식의 및 는 각각 표층부의 펄라이트 및 시멘타이트의 면적비율을 나타내며, 및 는 각각 중심부의 펄라이트 및 시멘타이트의 면적비율을 나타낸다.)(of the above formula and represents the area ratio of pearlite and cementite in the surface layer, respectively, and represents the area ratio of pearlite and cementite in the center, respectively.)
상기 열간성형용 냉연강판은, 하기 a) 및 f) 중에서 선택된 1 이상을 더 포함할 수 있다.The cold rolled steel sheet for hot forming may further include one or more selected from a) and f) below.
a) Ti, Nb, Zr 및 V 함량의 합: 0.001%~0.4중량%,a) Sum of Ti, Nb, Zr and V contents: 0.001% to 0.4% by weight,
b) B: 0.0001~0.01중량%,b) B: 0.0001~0.01% by weight,
c) Mo 및 W 함량의 합: 0.001~1.0중량%,c) Sum of Mo and W contents: 0.001 to 1.0% by weight;
d) Cu와 Ni의 함량의 합: 0.005~2.0중량%,d) Sum of Cu and Ni contents: 0.005~2.0% by weight,
e) Sb 및 Sn의 함량의 합: 0.001~1.0중량%e) Sum of Sb and Sn contents: 0.001~1.0% by weight
f) REM: 0.0001~0.02중량%f) REM: 0.0001~0.02% by weight
본 발명의 다른 일 측면은, 상술한 합금조성을 가지는 강 슬라브를 1000~1300℃로 가열하는 단계; 상기 가열된 슬라브를 Ar3~1000℃의 마무리 압연 온도로 열간압연하여 열연강판을 얻는 단계; 상기 열간압연 된 열연강판을 400℃/s 이상 750℃/s 이하의 냉각 속도로 냉각하는 단계; 상기 열연강판을 Ms 초과 750℃이하의 온도범위에서 권취하는 단계; 상기 권취된 열연강판을 냉간압연하여 냉연강판을 얻는 단계; 및 상기 냉연강판을 연속소둔하는 단계를 포함하는 열간성형용 냉연강판의 제조방법을 제공한다. Another aspect of the present invention includes heating a steel slab having the above-described alloy composition to 1000-1300°C; Obtaining a hot rolled steel sheet by hot rolling the heated slab at a finish rolling temperature of Ar3 to 1000°C; Cooling the hot rolled hot rolled steel sheet at a cooling rate of 400°C/s or more and 750°C/s or less; Winding the hot-rolled steel sheet at a temperature range above Ms and below 750°C; Obtaining a cold rolled steel sheet by cold rolling the coiled hot rolled steel sheet; And it provides a method of manufacturing a cold rolled steel sheet for hot forming, including the step of continuously annealing the cold rolled steel sheet.
상기 강 슬라브는 상기 슬라브는 하기 a) 내지 f) 중에서 선택된 1 이상을 더 포함할 수 있다.The steel slab may further include one or more selected from a) to f) below.
a) Ti, Nb, Zr 및 V 함량의 합: 0.001%~0.4중량%,a) Sum of Ti, Nb, Zr and V contents: 0.001% to 0.4% by weight,
b) B: 0.0001~0.01중량%,b) B: 0.0001~0.01% by weight,
c) Mo 및 W 함량의 합: 0.001~1.0중량%,c) Sum of Mo and W contents: 0.001 to 1.0% by weight;
d) Cu와 Ni의 함량의 합: 0.005~2.0중량%,d) Sum of Cu and Ni contents: 0.005~2.0% by weight,
e) Sb 및 Sn의 함량의 합: 0.001~1.0중량%e) Sum of Sb and Sn contents: 0.001~1.0% by weight
f) REM: 0.0001~0.02중량%f) REM: 0.0001~0.02% by weight
상기 냉간압연은 30~80%의 누적 압하율로 행할 수 있다. The cold rolling can be performed at a cumulative reduction rate of 30 to 80%.
상기 연속소둔은 700~900℃의 온도범위에서 1~1000초동안 행할 수 있다. The continuous annealing can be performed for 1 to 1000 seconds at a temperature range of 700 to 900°C.
본 발명의 또다른 일 측면은 상기 열간성형용 냉연강판의 제조방법에 따라 냉연강판을 제조하는 단계; 상기 냉연강판을 700℃ 이상의 온도까지 1~1000℃/초의 승온 속도로 가열하는 단계; 상기 가열된 냉연강판을 열간성형하는 단계; 및 상기 열간성형된 강판을 10~1000℃/초의 냉각속도로 냉각하는 단계를 포함하는 열간성형 부재의 제조방법을 제공한다. Another aspect of the present invention includes manufacturing a cold-rolled steel sheet according to the method for manufacturing a cold-rolled steel sheet for hot forming; Heating the cold-rolled steel sheet at a temperature increase rate of 1 to 1000°C/sec to a temperature of 700°C or higher; Hot forming the heated cold rolled steel sheet; and cooling the hot-formed steel sheet at a cooling rate of 10 to 1000° C./sec.
상기 냉각은 냉각정지온도를 Mf(마르텐사이트 변태 종료 온도) 이하로 하여 행할 수 있다. 다만, 상기 냉각은 냉각정지온도를 Mf(마르텐사이트 변태 종료 온도) 이상 Ms(마르텐사이트 변태 개시 온도) 이하로 하여 행할 수도 있으며, 이 경우 냉각 이후, 냉각종료온도에서 온도를 유지하거나 Ac1 이하로 다시 가열하는 단계를 더 포함할 수 있다.The cooling can be performed by setting the cooling stop temperature to Mf (martensite transformation end temperature) or lower. However, the cooling may be performed by setting the cooling stop temperature to Mf (martensite transformation end temperature) or more or Ms (martensite transformation start temperature) or less. In this case, after cooling, the temperature is maintained at the cooling end temperature or returned to Ac1 or below. A heating step may be further included.
본 발명의 또다른 일 측면은, 중량%로, C: 0.25~0.45%, Si: 0.01~3.0%, Mn: 0.01~4.0%, Al: 0.001~0.4%, P: 0.001~0.05%, S: 0.0001~0.02%, Cr: 0.1% 이상 5.0% 미만, N: 0.001~0.02%, 나머지 Fe 및 기타 불가피한 불순물을 포함하며,Another aspect of the present invention is, in weight percent, C: 0.25-0.45%, Si: 0.01-3.0%, Mn: 0.01-4.0%, Al: 0.001-0.4%, P: 0.001-0.05%, S: 0.0001~0.02%, Cr: 0.1% or more but less than 5.0%, N: 0.001~0.02%, including the remaining Fe and other unavoidable impurities;
하기의 [관계식 2]로 표시되는 경도비율의 값이 0.1 이상 10 이하인 열간성형 부재를 제공한다. Provided is a hot-formed member having a hardness ratio value of 0.1 or more and 10 or less, expressed by [Relational Equation 2] below.
[관계식 2] 경도비율 = [Relationship 2] Hardness ratio =
(상기 식 1에서 는 표층부 경도의 표준편차를 나타내며, 는 중심부의 경도의 표준편차이다.)(In equation 1 above, represents the standard deviation of the surface hardness, is the standard deviation of the hardness of the center.)
상기 열간성형 부재는 하기 a) 및 f) 중에서 선택된 1 이상을 더 포함할 수 있다.The hot forming member may further include one or more selected from a) and f) below.
a) Ti, Nb, Zr 및 V 함량의 합: 0.001%~0.4중량%,a) Sum of Ti, Nb, Zr and V contents: 0.001% to 0.4% by weight,
b) B: 0.0001~0.01중량%,b) B: 0.0001~0.01% by weight,
c) Mo 및 W 함량의 합: 0.001~1.0중량%,c) Sum of Mo and W contents: 0.001 to 1.0% by weight;
d) Cu와 Ni의 함량의 합: 0.005~2.0중량%,d) Sum of Cu and Ni contents: 0.005~2.0% by weight,
e) Sb 및 Sn의 함량의 합: 0.001~1.0중량%e) Sum of Sb and Sn contents: 0.001~1.0% by weight
f) REM: 0.0001~0.02중량%f) REM: 0.0001~0.02% by weight
상기 열간성형 부재는 인장강도가 1800MPa 이상이며, 항복강도는 1200MPa 이상일 수 있다. The hot formed member may have a tensile strength of 1800 MPa or more and a yield strength of 1200 MPa or more.
덧붙여 상기한 과제의 해결수단은, 본 발명의 특징을 모두 열거한 것은 아니다. 본 발명의 다양한 특징과 그에 따른 장점과 효과는 아래의 구체적인 실시 형태를 참조하여 보다 상세하게 이해될 수 있다.In addition, the means for solving the above problems do not enumerate all the features of the present invention. The various features of the present invention and its advantages and effects can be understood in more detail by referring to the specific embodiments below.
본 발명의 일 측면에 따르면, 인장강도 기준 1800MPa 이상의 고강도를 가지면서도, 높은 굽힘성을 확보할 수 있는 열간성형용 강재, 이를 이용한 열간성형 부재 및 이들의 제조방법을 제공할 수 있다.According to one aspect of the present invention, a steel material for hot forming that can secure high bendability while having a high strength of 1800 MPa or more based on tensile strength, a hot forming member using the same, and a method of manufacturing the same can be provided.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시 형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.The various and beneficial advantages and effects of the present invention are not limited to the above-described content, and may be more easily understood through description of specific embodiments of the present invention.
도 1은 냉연강판의 표층 및 중심부의 펄라이트/시멘타이트의 면적비율 측정예를 나타내었다.Figure 1 shows an example of measuring the area ratio of pearlite/cementite in the surface layer and center of a cold rolled steel sheet.
이하, 본 발명의 바람직한 실시 형태들을 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시 형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, preferred embodiments of the present invention will be described. However, the embodiments of the present invention may be modified into various other forms, and the scope of the present invention is not limited to the embodiments described below. Additionally, the embodiments of the present invention are provided to more completely explain the present invention to those with average knowledge in the relevant technical field.
또한, 본 발명의 명세서에서 특별히 달리 규정하지 아니하는 한 각각의 원소들의 함량 단위는 중량을 기준으로 하며, 조직의 비율 단위는 면적을 기준으로 한다.Additionally, unless otherwise specified in the specification of the present invention, the unit of content of each element is based on weight, and the unit of tissue ratio is based on area.
본 발명자는 열간성형용 비도금 초고강도 냉연강판의 경우, 통상의 열연조건으로는 열간성형 공정 후 굽힘성이 낮아져 우수한 굽힘성을 확보하기 어려운 문제가 있음을 인지하고, 이를 해결하기 위하여 깊이 연구하였다.The present inventor recognized that in the case of non-plated ultra-high-strength cold-rolled steel sheets for hot forming, the bendability decreases after the hot forming process under normal hot rolling conditions, making it difficult to secure excellent bendability, and conducted in-depth research to solve this problem. .
그 결과, 열연공정 시 냉각구간의 냉각속도를 제어하면 소둔 후 냉연강판의 표층과 중심부의 펄라이트/시멘타이트의 면적비율을 조절할 수 있으며, 이로 인하여 열간성형 후 표층 및 중심부의 마르텐사이트 간 경도의 편차를 줄일 수 있어 우수한 굽힘성 확보가 가능함을 확인하고, 본 발명을 완성하기에 이르렀다.As a result, by controlling the cooling rate of the cooling section during the hot rolling process, the area ratio of pearlite/cementite in the surface layer and center of the cold rolled steel sheet after annealing can be adjusted, which reduces the hardness deviation between the surface layer and martensite in the center after hot forming. It was confirmed that it was possible to secure excellent bending properties by reducing the size, and the present invention was completed.
이하, 본 발명의 일 측면에 따른 열간성형용 냉연강판에 대하여 상세히 설명한다.Hereinafter, a cold rolled steel sheet for hot forming according to one aspect of the present invention will be described in detail.
본 발명의 일 측면에 따른 표면 품질이 우수한 열간성형용 냉연강판은 중량%로, C: 0.25~0.45%, Si: 0.01~3.0%, Mn: 0.01~4.0%, Al: 0.001~0.4%, P: 0.001~0.05%, S: 0.0001~0.02%, Cr: 0.1% 이상 5.0% 미만, N: 0.001~0.02%, 나머지 Fe 및 기타 불가피한 불순물을 포함할 수 있다.The cold-rolled steel sheet for hot forming with excellent surface quality according to one aspect of the present invention has the following weight percentage: C: 0.25-0.45%, Si: 0.01-3.0%, Mn: 0.01-4.0%, Al: 0.001-0.4%, P : 0.001~0.05%, S: 0.0001~0.02%, Cr: 0.1% to less than 5.0%, N: 0.001~0.02%, may contain remaining Fe and other unavoidable impurities.
먼저, 본 발명의 일 측면에 따른 표면품질이 우수한 열간성형용 냉연강판의 합금조성에 대하여 상세히 설명한다. First, the alloy composition of the cold rolled steel sheet for hot forming with excellent surface quality according to one aspect of the present invention will be described in detail.
C: 0.25~0.45%C: 0.25~0.45%
C는 열처리 부재의 강도를 증가시키기 위해 필수적인 원소로서 적정하게 첨가되어야 한다. C is an essential element to increase the strength of heat-treated members and must be added appropriately.
C 함량이 0.25% 미만인 경우에는 충분한 강도를 확보하기 곤란하기 때문에 0.25% 이상 첨가되는 것이 바람직하다. 보다 바람직한 하한은 0.26%이고, 보다 더 바람직한 하한은 0.27% 이다. 반면에 그 함량이 0.45% 초과인 경우에는 열연재를 냉간압연할 때 열연재 강도가 너무 높아 냉간압연성이 크게 열위하게 될 뿐만 아니라, 점용접성을 크게 저하시키기 때문에 0.45% 이하인 것이 바람직하다. 보다 바람직한 상한은 0.42%이고, 보다 더 바람직한 상한은 0.40% 이다. If the C content is less than 0.25%, it is difficult to secure sufficient strength, so it is preferable to add 0.25% or more. A more preferable lower limit is 0.26%, and an even more preferable lower limit is 0.27%. On the other hand, if the content exceeds 0.45%, the strength of the hot rolled material is too high when cold rolling the hot rolled material, which not only significantly deteriorates cold rolling properties, but also significantly reduces spot weldability, so it is preferable to be 0.45% or less. A more preferable upper limit is 0.42%, and an even more preferable upper limit is 0.40%.
Si: 0.01~3.0%Si: 0.01~3.0%
Si는 냉연강판을 연속소둔 라인에서 소둔 시 표면으로 농화되어 Si계 비정질 산화층을 형성하는 중요한 역할을 할 뿐만 아니라, 열간성형 공정에서 (Fe, Mn, Cr) 산화물층 형성을 억제하여 부재의 점용접성을 확보하는 역할을 한다. Si not only plays an important role in forming a Si-based amorphous oxide layer by concentrating on the surface when cold-rolled steel sheets are annealed in a continuous annealing line, but also suppresses the formation of (Fe, Mn, Cr) oxide layers during the hot forming process, thereby improving the spot weldability of the member. It plays a role in securing.
Si 함량이 0.01% 미만인 경우에는 상술한 효과가 불충분하므로 그 하한은 0.01%인 것이 바람직하다. 보다 바람직한 하한은 0.1%이다. 반면에, 그 함량이 3.0% 초과인 경우에는 너무 두꺼운 Si계 비정질 산화층을 형성하여 점용접성이 오히려 저하되는 문제점이 있다. 보다 바람직한 상한은 2.8%이고, 보다 더 바람직한 상한은 2.5% 이다.If the Si content is less than 0.01%, the above-described effect is insufficient, so the lower limit is preferably 0.01%. A more preferable lower limit is 0.1%. On the other hand, if the content is more than 3.0%, there is a problem in that a too thick Si-based amorphous oxide layer is formed, which reduces spot weldability. A more preferable upper limit is 2.8%, and an even more preferable upper limit is 2.5%.
Cr: 0.1% 이상 5.0% 미만Cr: 0.1% or more but less than 5.0%
Cr은 강판의 경화능을 향상시킬 뿐만 아니라, Si와 적절한 반응을 통하여 표층 Si계 비정질 산화물층 형성을 안정적으로 도와주는 역할을 할 수 있다. Cr not only improves the hardenability of steel sheets, but also plays a role in stably forming a surface Si-based amorphous oxide layer through an appropriate reaction with Si.
Cr 함량이 0.1% 미만인 경우에는 상술한 효과가 불충분하다. 보다 바람직한 하한은 0.15%이고, 보다 더 바람직한 하한은 0.2% 이다. 반면에, Cr 함량이 5.0% 이상인 경우에는 그 효과가 포화되고, 제조비용이 상승하는 문제점이 있다. 보다 바람직한 상한은 4.5%이고, 보다 더 바람직한 상한은 4.0% 이다.If the Cr content is less than 0.1%, the above-mentioned effect is insufficient. A more preferable lower limit is 0.15%, and an even more preferable lower limit is 0.2%. On the other hand, when the Cr content is 5.0% or more, the effect is saturated and the manufacturing cost increases. A more preferable upper limit is 4.5%, and an even more preferable upper limit is 4.0%.
Mn: 0.01~4.0%Mn: 0.01~4.0%
Mn은 고용강화 효과를 확보할 수 있을 뿐만 아니라, 열간성형부재에 있어서 마르텐사이트를 확보하기 위한 임계냉각속도를 낮추기 위하여 첨가될 필요가 있다. Mn needs to be added not only to secure the solid solution strengthening effect, but also to lower the critical cooling rate to secure martensite in hot formed members.
Mn 함량이 0.01% 미만인 경우에는 상술한 효과가 불충분하다. 보다 바람직한 하한은 0.05%이고, 보다 더 바람직한 하한은 0.1% 이다. 반면에 Mn 함량이 4.0% 초과인 경우에는 열간성형 공정 전 강판의 강도가 너무 높게 올라가기 때문에 블랭킹 작업이 어려워질 뿐만 아니라 과다한 합금철 첨가에 따른 원가상승 및 점용접성을 열위하게 하는 단점이 있다. 보다 바람직한 상한은 3.0%이고, 보다 더 바람직한 상한은 2.5%이다. If the Mn content is less than 0.01%, the above-mentioned effect is insufficient. A more preferable lower limit is 0.05%, and an even more preferable lower limit is 0.1%. On the other hand, if the Mn content exceeds 4.0%, the strength of the steel sheet before the hot forming process increases too high, which not only makes blanking work difficult, but also increases the cost due to the addition of excessive iron alloy and deteriorates spot weldability. A more preferable upper limit is 3.0%, and an even more preferable upper limit is 2.5%.
Al: 0.001~0.4%Al: 0.001~0.4%
Al은 Si과 더불어 제강에서 탈산 작용을 하여 강의 청정도를 높일 수 있다. Al, along with Si, can increase the cleanliness of steel by acting as a deoxidizer in steelmaking.
Al 함량이 0.001% 미만인 경우에는 상술한 효과가 불충분하다. 보다 바람직한 하한은 0.002%이고, 보다 더 바람직한 하한은 0.003% 이다. 그 함량이 0.4% 초과인 경우에는 Ac3 온도가 과다하게 상승하여 가열온도를 높여야 하는 문제점이 있다. 보다 바람직한 상한은 0.3%이고, 보다 더 바람직한 상한은 0.2%이다. If the Al content is less than 0.001%, the above-mentioned effect is insufficient. A more preferable lower limit is 0.002%, and an even more preferable lower limit is 0.003%. If the content is more than 0.4%, there is a problem that the Ac3 temperature rises excessively and the heating temperature must be increased. A more preferable upper limit is 0.3%, and an even more preferable upper limit is 0.2%.
P: 0.001~0.05%P: 0.001~0.05%
P는 불순물이며, 그 함량을 0.001% 미만으로 제어하기 위해서는 많은 제조비용이 들고, 그 함량이 0.05% 초과인 경우에는 열간성형 부재의 용접성을 크게 저하시킬 수 있다. 보다 바람직한 상한은 0.03%이다. P is an impurity, and controlling its content to less than 0.001% requires a lot of manufacturing costs, and if its content exceeds 0.05%, it can significantly reduce the weldability of hot-formed members. A more preferable upper limit is 0.03%.
S: 0.0001~0.02%S: 0.0001~0.02%
S는 불순물이며, 그 함량을 0.0001% 미만으로 제어하기 위해서는 많은 제조비용이 들고, 그 함량이 0.02% 초과인 경우에는 부재의 연성, 충격특성 및 용접성을 저해한다. 보다 바람직한 상한은 0.01%이다. S is an impurity, and it costs a lot of manufacturing cost to control its content to less than 0.0001%, and if its content exceeds 0.02%, it impairs the ductility, impact characteristics, and weldability of the member. A more preferable upper limit is 0.01%.
N: 0.001~0.02%N: 0.001~0.02%
N은 불순물이며, 그 함량을 0.001% 미만으로 제어하기 위해서는 많은 제조비용이 들고, 그 함량이 0.02% 초과인 경우에는 슬라브 연주 시 크랙 발생에 민감해질 뿐만 아니라, 충격특성이 나빠질 수 있다. 보다 바람직한 상한은 0.01%이다. N is an impurity, and it costs a lot of manufacturing cost to control its content to less than 0.001%. If the content is more than 0.02%, not only does it become susceptible to cracks when playing the slab, but its impact characteristics may deteriorate. A more preferable upper limit is 0.01%.
본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.The remaining component of the present invention is iron (Fe). However, in the normal manufacturing process, unintended impurities from raw materials or the surrounding environment may inevitably be mixed, so this cannot be ruled out. Since these impurities are known to anyone skilled in the ordinary manufacturing process, all of them are not specifically mentioned in this specification.
상기 성분 조성 외에, 본 발명에서는 하기 a) 내지 f) 중에서 선택된 1 이상을 더 포함할 수 있다. 이들 원소를 임의로 첨가함으로써, 표면 품질 및 열간성형성 등의 특성을 추가로 향상시킬 수 있다.In addition to the above component composition, the present invention may further include one or more selected from a) to f) below. By arbitrarily adding these elements, properties such as surface quality and hot formability can be further improved.
a) Ti, Nb, Zr 및 V 함량의 합: 0.001%~0.4%a) Sum of Ti, Nb, Zr and V contents: 0.001%~0.4%
Ti, Nb, Zr 및 V은 미세 석출물 형성으로 열처리 부재의 강도 향상과, 결정립 미세화에 의해 잔류 오스테나이트 안정화 및 충격인성 향상에 효과가 있다. 그 함량(2종 이상이 추가된 경우에는 그들의 합계를 의미함)이 0.001% 미만에서는 상술한 효과가 불충분할 수 있으며, 보다 바람직한 하한은 0.005%이고, 보다 더 바람직한 하한은 0.008% 이다. 그 함량이 0.4%를 초과하면 그 효과가 포화될 뿐만 아니라 과다한 합금철 첨가에 따른 원가상승을 초래할 수 있다. 보다 바람직한 상한은 0.38%이고, 보다 더 바람직한 상한은 0.35% 이다.Ti, Nb, Zr, and V are effective in improving the strength of heat-treated members by forming fine precipitates, stabilizing retained austenite, and improving impact toughness by refining grains. If the content (meaning the total of two or more types when added) is less than 0.001%, the above-mentioned effect may be insufficient, and the more preferable lower limit is 0.005%, and the more preferable lower limit is 0.008%. If the content exceeds 0.4%, the effect is not only saturated but also may result in an increase in cost due to excessive addition of ferroalloy. A more preferable upper limit is 0.38%, and an even more preferable upper limit is 0.35%.
b) B: 0.0001~0.01%b) B: 0.0001~0.01%
B은 소량의 첨가로도 경화능을 향상시킬 수 있을 뿐만 아니라, 구오스테나이트 결정립계에 편석되어 P 및/또는 S의 입계 편석에 의한 열간성형 부재의 취성을 억제할 수 있는 원소이다. B is an element that can not only improve hardenability even with a small amount of addition, but can also suppress the embrittlement of hot-formed members due to grain boundary segregation of P and/or S by segregating at prior austenite grain boundaries.
B 함량이 0.0001% 미만인 경우에는 상술한 효과가 불충분하다. 보다 바람직한 하한은 0.00012%이고, 보다 더 바람직한 하한은 0.00015% 이다. 0.01%를 초과하는 경우에는 그 효과가 포화될 뿐만 아니라, 열간압연시 열간 취성을 초래할 수 있다. 보다 바람직한 상한은 0.005%이다.If the B content is less than 0.0001%, the above-mentioned effect is insufficient. A more preferable lower limit is 0.00012%, and an even more preferable lower limit is 0.00015%. If it exceeds 0.01%, not only will the effect be saturated, but it may also cause hot brittleness during hot rolling. A more preferable upper limit is 0.005%.
c) Mo 및 W 함량의 합: 0.001~1.0중량%c) Sum of Mo and W contents: 0.001~1.0% by weight
Mo 및 W은 경화능 향상과, 석출강화 효과를 통한 강도 향상 및 결정립 미세화를 위하여 첨가할 수 있다. 그 함량(Mo 및 W가 모두 첨가된 경우에는 그 합계를 의미함)이 0.001% 미만인 경우에는 상술한 효과가 불충분하고, 보다 바람직한 하한은 0.0015%이고, 보다 더 바람직한 하한은 0.002% 이다. 1.0% 초과인 경우에는 그 효과가 포화될 뿐만 아니라 비용 상승의 문제가 있다. 보다 바람직한 상한은 0.95%이고, 보다 더 바람직한 상한은 0.9% 이다.Mo and W can be added to improve hardenability, improve strength through precipitation strengthening effect, and refine grains. If the content (meaning the total when both Mo and W are added) is less than 0.001%, the above-mentioned effect is insufficient, and the more preferable lower limit is 0.0015%, and the more preferable lower limit is 0.002%. If it exceeds 1.0%, not only is the effect saturated, but there is also a problem of increased costs. A more preferable upper limit is 0.95%, and an even more preferable upper limit is 0.9%.
d) Cu와 Ni의 함량의 합: 0.005~2.0중량%d) Sum of Cu and Ni contents: 0.005~2.0% by weight
Cu는 미세 석출물을 형성시켜 강도를 향상시키는 원소로서 첨가될 수 있다. 또한 Ni은 Cu 단독으로 첨가될 때 열간 취성을 초래할 수 있으므로 필요에 따라 첨가된다. 그러나 이들 성분의 합이 0.005% 미만에서는 상술한 효과가 불충분할 수 있고, 보다 바람직한 하한은 0.006%이고, 보다 더 바람직한 하한은 0.007% 이다. 2.0%를 초과하면 과다한 비용 상승을 초래할 수 있다. 보다 바람직한 상한은 1.95%이고, 보다 더 바람직한 상한은 1.9% 이다.Cu can be added as an element to improve strength by forming fine precipitates. Additionally, Ni may cause hot embrittlement when added alone to Cu, so it is added as needed. However, if the sum of these components is less than 0.005%, the above-described effect may be insufficient, and a more preferable lower limit is 0.006%, and an even more preferable lower limit is 0.007%. Exceeding 2.0% may result in excessive cost increases. A more preferable upper limit is 1.95%, and an even more preferable upper limit is 1.9%.
e) Sb 및 Sn의 함량의 합: 0.001~1.0중량%e) Sum of Sb and Sn contents: 0.001~1.0% by weight
상기 Sb와 Sn은 Si가 첨가된 강재의 열연재 표층 결정립계에 생성될 수 있는 산화물 생성을 억제하는 효과를 가져, 냉연재 소둔 시 표층 결정립계 탈락에 의한 덴트(dent) 결함을 억제할 수 있다. 이와 같은 효과를 얻기 위해서는 0.001% 이상 첨가하는 것이 바람직하다. 보다 바람직한 하한은 0.002%이고, 보다 더 바람직한 하한은 0.03% 이다.The Sb and Sn have the effect of suppressing the formation of oxides that may be generated at the surface grain boundaries of hot rolled steels to which Si is added, and can suppress dent defects caused by the surface grain boundaries falling out during annealing of cold rolled steels. To achieve this effect, it is desirable to add 0.001% or more. A more preferable lower limit is 0.002%, and an even more preferable lower limit is 0.03%.
반면에, 그 함량(Sb 및 Sn이 모두 첨가된 경우에는 그 합계를 의미함)이 1.0%를 초과하면 과다하게 비용이 상승할 수 있을 뿐만 아니라 슬라브 입계에 고용되어 열간압연 시 코일 에지(edge) 크랙이 유발될 수 있다. 보다 바람직한 상한은 0.95%이고, 보다 더 바람직한 상한은 0.9% 이다.On the other hand, if the content (meaning the total when both Sb and Sn are added) exceeds 1.0%, not only may the cost increase excessively, but it may also be dissolved in the grain boundaries of the slab and form a coil edge during hot rolling. Cracks may occur. A more preferable upper limit is 0.95%, and an even more preferable upper limit is 0.9%.
f) REM: 0.0001~0.02%f) REM: 0.0001~0.02%
REM 원소는 강내 Fe의 활동도를 제어하여 열간성형 시 표층 Fe 스케일의 형성 두께를 제어할 수 있다. 이러한 효과를 얻기 위해서는 0.0001% 이상의 REM 원소의 첨가가 필요하다. 보다 바람직한 하한은 0.00015%이고, 보다 더 바람직한 하한은 0.0002% 이다. 반면, 0.02%를 초과하게 되면 Fe 활동도의 제어능을 상실하여 표면 품질이 열위해 질 수 있다. 그 때문에 0.02% 이하로 제어하는 것이 바람직하며, 보다 바람직하게는 0.01% 이하로 제어한다. The REM element can control the formation thickness of surface Fe scale during hot forming by controlling the activity of Fe in the steel. To obtain this effect, addition of 0.0001% or more of REM element is required. A more preferable lower limit is 0.00015%, and an even more preferable lower limit is 0.0002%. On the other hand, if it exceeds 0.02%, control of Fe activity may be lost and surface quality may be deteriorated. Therefore, it is preferable to control it to 0.02% or less, and more preferably, it is controlled to 0.01% or less.
본 발명의 일 측면에 따른 열간성형용 냉연강판은 상술한 합금조성을 만족할 뿐만 아니라, 하기 [관계식 1]로 표시되는 조직비율의 값이 0.2 이상 1.3 이하일 수 있다.The cold rolled steel sheet for hot forming according to one aspect of the present invention not only satisfies the above-described alloy composition, but also may have a structure ratio value of 0.2 or more and 1.3 or less, as expressed by [Relational Equation 1] below.
[관계식 1] 조직비율 = [Relation 1] Organizational ratio =
(상기 식의 및 는 각각 표층부의 펄라이트 및 시멘타이트의 면적비율을 나타내며, 및 는 각각 중심부의 펄라이트 및 시멘타이트의 면적비율을 나타낸다.)(of the above formula and represents the area ratio of pearlite and cementite in the surface layer, respectively, and represents the area ratio of pearlite and cementite in the center, respectively.)
본 발명에서의 표층부는 표면으로부터 두께 방향으로 100μm이내의 영역을 의미할 수 있으며, 본 발명에서의 중심부는 표면으로부터 두께 방향으로 1/2t±50μm의 영역(여기서, t는 강재 두께(mm)를 의미함)을 의미할 수 있다.In the present invention, the surface layer part may refer to an area within 100 μm in the thickness direction from the surface, and the central part in the present invention is an area of 1/2t ± 50 μm in the thickness direction from the surface (where t is the steel thickness (mm)). can mean).
[관계식 1]로 표시되는 조직비율이 1.3을 초과할 경우 열간성형 후 표층에 형성되는 마르텐사이트 간의 경도의 편차가 커져 보다 강한 마르텐사이트에 굽힘으로 인한 응력이 집중될 수 있고, 두께 방향 경도 편차의 차이에 의해 두께 방향의 응력 불균일이 커져 굽힘성이 열위해 질 수 있다. 보다 바람직하게 조직비율은 1.15 이하일 수 있으며, 보다 더 바람직하게 0.95 이하일 수 있다. 반면, 조직비율이 본 특허가 제안하는 0.2 미만일 경우 열간성형 후 강도를 확보하지 못하여 인장강도가 1800MPa 이하가 될 수 있다. 보다 바람직한 하한은 0.25이며, 보다 더 바람직한 하한은 0.3이다. If the structure ratio expressed in [Relational Equation 1] exceeds 1.3, the hardness deviation between martensite formed in the surface layer after hot forming increases, so the stress due to bending may be concentrated in the stronger martensite, and the hardness deviation in the thickness direction may increase. Due to the difference, stress unevenness in the thickness direction may increase and bendability may deteriorate. More preferably, the tissue ratio may be 1.15 or less, and even more preferably 0.95 or less. On the other hand, if the tissue ratio is less than 0.2 as suggested by this patent, the strength after hot forming cannot be secured and the tensile strength may be less than 1800MPa. A more preferable lower limit is 0.25, and an even more preferable lower limit is 0.3.
또한, 본 발명에 따른 냉연강판의 미세조직은 페라이트 및 시멘타이트를 포함할 수 있다. 특별히 그 면적비율을 한정할 필요는 없으나, 예를 들어 페라이트 및 시멘타이트의 합계가 면적비율로 5% 이상일 수 있다.Additionally, the microstructure of the cold rolled steel sheet according to the present invention may include ferrite and cementite. There is no need to specifically limit the area ratio, but for example, the total of ferrite and cementite may be 5% or more in area ratio.
냉연강판을 열간 성형 부재를 제조하기 위하여 블랭크(blank)를 만들 때, 그 강도가 과도하면 금형 마모가 쉽게 발생할 수 있어 상기 미세조직을 확보하여야 한다. 이를 고려하지 않는 경우에는 베이나이트, 마르텐사이트 등을 포함할 수 있으며, 이를 배제하는 것은 아니다.When making a blank from a cold-rolled steel sheet to manufacture a hot-formed member, if the strength is excessive, mold wear can easily occur, so the above-mentioned microstructure must be secured. If this is not taken into consideration, bainite, martensite, etc. may be included and are not excluded.
이하에서는, 본 발명의 부재에 대해 자세히 설명한다.Below, the elements of the present invention will be described in detail.
본 발명의 부재는 하기의 [관계식 2]로 표시되는 경도비율의 값이 0.1 이상이며, 10 이하를 만족할 수 있다. The member of the present invention may satisfy a hardness ratio value of 0.1 or more and 10 or less, as expressed by [Relational Equation 2] below.
[관계식 2] 경도비율 = [Relationship 2] Hardness ratio =
(상기 식 1에서 는 표층부 경도의 표준편차를 나타내며, 는 중심부의 경도의 표준편차이다.)(In equation 1 above, represents the standard deviation of the surface hardness, is the standard deviation of the hardness of the center.)
표층부 경도의 표준편차가 커져 [관계식 2]로 표시되는 경도비율이 10을 초과할 경우 마르텐사이트 간의 경도 편차에 의한 응력집중 현상 및 두께 방향 응력 불균형으로 인해 굽힘성이 열위해 질 수 있으며, 반면 10 이하인 경우 경도 편차가 양호하여 굽힘성이 개선될 수 있다. 다만, 경도비율이 0.1 미만일 경우 상대적으로 두께 방향 중심부의 경도 편차가 심해져 굽힘성이 열위해 질 수 있다 If the standard deviation of the hardness of the surface layer increases and the hardness ratio expressed in [Relational Equation 2] exceeds 10, the bendability may be deteriorated due to the stress concentration phenomenon and stress imbalance in the thickness direction due to the hardness deviation between martensite. In the case below, the hardness deviation is good and bendability can be improved. However, if the hardness ratio is less than 0.1, the hardness deviation in the center of the thickness direction becomes relatively large, which may result in poor bendability.
본 발명에 따른 부재의 소지강판의 조성은 상술한 냉연강판의 조성과 동일하므로 별도로 설명하지 않는다.Since the composition of the base steel sheet of the member according to the present invention is the same as the composition of the cold rolled steel sheet described above, it will not be described separately.
이하에서는, 본 발명의 부재 미세조직에 대해 자세히 설명한다.Below, the microstructure of the member of the present invention will be described in detail.
본 발명의 일 측면에 따른 열간 성형 부재는 고강도를 확보하기 위하여 마르텐사이트 또는 베이나이트를 주상으로 포함할 수 있다. 본 발명에서 주상은 미세조직을 이루는 여러 상(phase) 중에서 가장 큰 면적비율을 가지는 상을 의미할 수 있다. 특별히 그 면적비율을 한정하지 않으나, 보다 바람직하게는 면적비율로 50% 이상일 수 있다.The hot formed member according to one aspect of the present invention may include martensite or bainite as the main phase to ensure high strength. In the present invention, the main phase may refer to the phase with the largest area ratio among several phases that make up the microstructure. The area ratio is not particularly limited, but more preferably, the area ratio may be 50% or more.
이하, 본 발명의 다른 일 측면인 열간성형용 냉연강판의 제조방법에 대하여 상세히 설명한다. Hereinafter, a method for manufacturing a cold rolled steel sheet for hot forming, which is another aspect of the present invention, will be described in detail.
본 발명의 다른 일 측면인 열간성형용 냉연강판의 제조방법은 상술한 합금조성을 만족하는 슬라브를 1000~1300℃로 가열하는 단계; 상기 가열된 슬라브를 Ar3~1000℃의 마무리 압연 온도로 열간압연하여 열연강판을 얻는 단계; 상기 열간압연 된 열연강판을 400℃/s 이상 750℃/s 이하의 냉각 속도로 냉각하는 단계; 상기 열연강판을 Ms 초과 750℃이하의 온도범위에서 권취하는 단계; 상기 권취된 열연강판을 30~80%의 누적 압하율로 냉간압연하여 냉연강판을 얻는 단계; 및 상기 냉연강판을 700~900℃의 온도범위에서 1~1000초동안 연속소둔하는 단계를 포함할 수 있다.Another aspect of the present invention, a method of manufacturing a cold rolled steel sheet for hot forming, includes heating a slab satisfying the above-described alloy composition to 1000-1300°C; Obtaining a hot rolled steel sheet by hot rolling the heated slab at a finish rolling temperature of Ar3 to 1000°C; Cooling the hot rolled hot rolled steel sheet at a cooling rate of 400°C/s or more and 750°C/s or less; Winding the hot-rolled steel sheet at a temperature range above Ms and below 750°C; Obtaining a cold-rolled steel sheet by cold-rolling the coiled hot-rolled steel sheet at a cumulative reduction rate of 30 to 80%; And it may include the step of continuously annealing the cold rolled steel sheet for 1 to 1000 seconds at a temperature range of 700 to 900°C.
슬라브 가열 단계Slab heating stage
상술한 합금조성을 만족하는 슬라브를 1000~1300℃로 가열한다. A slab satisfying the above-described alloy composition is heated to 1000-1300°C.
상기 가열온도가 1000℃ 미만인 경우에는 슬라브 조직을 균질화하기 어렵고, 1300℃를 초과하면 과다한 산화물 형성 및 제조비용 상승이 발생할 수 있다.If the heating temperature is less than 1000°C, it is difficult to homogenize the slab structure, and if it exceeds 1300°C, excessive oxide formation and increased manufacturing costs may occur.
열간압연 단계hot rolling stage
상기 가열된 슬라브를 Ar3~1000℃의 마무리 압연 온도에서 열간압연하여 열연강판을 얻는다. The heated slab is hot rolled at a finish rolling temperature of Ar3 to 1000°C to obtain a hot rolled steel sheet.
마무리 압연온도가 Ar3 온도 미만인 경우에는 이상역 압연이 되기 쉬어 표층에 혼립 조직이 발생하고, 열연강판의 형상 제어에 어려움이 있다. 마무리 압연온도가 1000℃를 초과하게 되면 열연강판의 결정립이 조대화가 되기 쉽다.If the finish rolling temperature is lower than the Ar3 temperature, abnormal rolling is likely to occur, a mixed structure is generated in the surface layer, and there is difficulty in controlling the shape of the hot rolled steel sheet. When the finish rolling temperature exceeds 1000°C, the crystal grains of the hot rolled steel sheet tend to become coarse.
열간압연 냉각단계Hot rolling cooling stage
상기 열간압연 된 열연강판을 냉각 속도 400℃/s 이상 750℃/s 이하의 냉각 속도로 냉각을 진행한다.The hot-rolled hot-rolled steel sheet is cooled at a cooling rate of 400°C/s or more and 750°C/s or less.
열간압연 시 냉각속도의 상한을 초과하여 냉각될 경우 소둔 후 표층에 과도한 면적비율의 펄라이트와 시멘타이트가 형성되어, 열간성형 후 표층 마르텐사이트 간의 경도 편차가 커지게 되고, 이로써 우수한 굽힘성을 확보하지 못한다. 냉각속도 하한을 미달하여 냉각될 경우 표층 펄라이트와 시멘타이트의 형성이 미미하여 냉간강판의 열간성형 후 충분한 강도를 확보하지 못한다.If cooling exceeds the upper limit of the cooling rate during hot rolling, an excessive area ratio of pearlite and cementite is formed in the surface layer after annealing, and the hardness deviation between surface layer martensite increases after hot forming, thereby failing to secure excellent bendability. . If the steel sheet is cooled below the lower cooling rate limit, the formation of surface pearlite and cementite is minimal, making it impossible to secure sufficient strength after hot forming of the cold steel sheet.
권취 단계winding step
상기 열연강판을 Ms 초과 750℃이하의 온도범위에서 권취한다. The hot-rolled steel sheet is wound in a temperature range above Ms and below 750°C.
권취 온도가 Ms(마르텐사이트 변태개시 온도) 이하인 경우에는 열연강판의 강도가 너무 높게 되어 냉간압연성을 저하시킨다. 권취 온도가 750℃ 초과인 경우에는 산화층의 두께 증가 및 표층 입계산화를 야기시켜 산세성이 열위해질 뿐만 아니라 연속소둔로에서 소둔 시 표층 입계가 탈락되는 문제점이 발생할 수 있다. When the coiling temperature is below Ms (martensite transformation onset temperature), the strength of the hot rolled steel sheet becomes too high, which reduces cold rolling properties. If the coiling temperature exceeds 750°C, the thickness of the oxide layer increases and oxidation of surface grain boundaries occurs, which not only deteriorates pickling properties, but also causes the surface grain boundaries to fall off during annealing in a continuous annealing furnace.
냉간압연 단계cold rolling stage
상기 권취된 열연강판을 냉간압연하여 냉연강판을 얻는다. 보다 정밀하게 강판의 두께를 제어하기 위함이며, 냉간압연 전 산세를 실시할 수 있다. The coiled hot-rolled steel sheet is cold-rolled to obtain a cold-rolled steel sheet. This is to control the thickness of the steel sheet more precisely, and pickling can be performed before cold rolling.
이때, 상기 냉간압연의 압하율은 특별히 한정할 필요는 없으나, 소정의 목표 두께를 확보하기 위하여 압하율 30~80%로 행할 수 있다. At this time, the reduction rate of the cold rolling does not need to be particularly limited, but may be performed at a reduction rate of 30 to 80% in order to secure a predetermined target thickness.
연속소둔 단계Continuous annealing stage
상기 냉연강판을 상기 연속소둔은 700~900℃의 온도범위에서 행한다.The continuous annealing of the cold rolled steel sheet is performed in a temperature range of 700 to 900°C.
소둔 온도가 700℃ 미만에서는 냉간압연에 의해 생성된 압연조직이 회복 및 재결정이 일어나기 어려우며, 900℃를 초과하는 경우에는 소둔 설비를 열화시킬 수 있어 설비의 잦은 교체 등으로 공정비용이 상승하는 요인이 될 수 있다.If the annealing temperature is less than 700℃, it is difficult for the rolling structure created by cold rolling to recover and recrystallize, and if it exceeds 900℃, the annealing equipment may deteriorate, which increases process costs due to frequent replacement of equipment. It can be.
또한, 소둔시간은 1~1000초일 수 있다. 소둔시간이 1초 미만인 경우에는 소둔 효과를 얻기 어렵고, 소둔시간이 1000초 초과인 경우에는 생산성이 저하될 수 있다.Additionally, the annealing time may be 1 to 1000 seconds. If the annealing time is less than 1 second, it is difficult to obtain an annealing effect, and if the annealing time is more than 1000 seconds, productivity may decrease.
이하, 본 발명의 또 다른 일 측면인 열간성형부재의 제조방법에 대하여 상세히 설명한다.Hereinafter, a method for manufacturing a hot formed member, which is another aspect of the present invention, will be described in detail.
본 발명의 또 다른 일 측면인 열간성형부재의 제조방법은 상술한 본 발명에 따른 냉연강판의 제조방법에 의해 제조된 냉연강판을 700℃ 이상의 온도까지 1~1000℃/초의 승온 속도로 가열하는 단계; 상기 가열된 냉연강판을 열간성형하는 단계; 및 상기 열간성형된 강판을 10~1000℃/초의 냉각속도로 냉각하는 단계를 포함한다.Another aspect of the present invention, a method for manufacturing a hot-formed member, includes heating the cold-rolled steel sheet manufactured by the method for manufacturing a cold-rolled steel sheet according to the present invention described above at a temperature increase rate of 1 to 1000°C/sec to a temperature of 700°C or higher. ; Hot forming the heated cold rolled steel sheet; And cooling the hot formed steel sheet at a cooling rate of 10 to 1000°C/sec.
가열 단계heating step
상술한 본 발명에 따른 냉연강판의 제조방법에 의해 제조된 냉연강판을 700℃ 이상의 온도까지 1~1000℃/초의 승온 속도로 가열한다. The cold-rolled steel sheet manufactured by the cold-rolled steel sheet manufacturing method according to the present invention described above is heated at a temperature increase rate of 1 to 1000°C/sec to a temperature of 700°C or higher.
가열온도가 700℃ 미만일 경우 페라이트의 재결정이 충분하지 못하여, 열간성형 후 굽힘의 이방성이 커지는 문제가 있을 수 있다. If the heating temperature is less than 700°C, recrystallization of ferrite may not be sufficient, and there may be a problem of increased anisotropy in bending after hot forming.
승온속도가 1℃/초 미만인 경우에는 생산성을 충분히 확보하기 어려우며, 승온속도가 1000℃/초 초과인 경우에는 과다한 비용이 드는 설비를 필요로 한다.If the temperature increase rate is less than 1°C/sec, it is difficult to secure sufficient productivity, and if the temperature increase rate is more than 1000°C/sec, excessively expensive equipment is required.
열간성형 및 냉각 단계Hot forming and cooling steps
상기 가열된 냉연강판을 열간성형한 후, 10~1000℃/초의 냉각속도로 냉각한다. After hot forming the heated cold rolled steel sheet, it is cooled at a cooling rate of 10 to 1000°C/sec.
상기 냉각속도가 10℃/초 미만인 경우에는 원치 않는 페라이트 및 펄라이트가 형성되어 인장강도를 확보하기 어렵다. 반면에 냉각속도를 1000℃/초 초과로 제어하기 위해서는 고가의 특별한 냉각설비가 필요하다.If the cooling rate is less than 10°C/sec, it is difficult to secure tensile strength because unwanted ferrite and pearlite are formed. On the other hand, controlling the cooling rate to exceed 1000°C/sec requires expensive special cooling equipment.
이때, 상기 냉각하는 단계의 냉각정지온도는 Mf(마르텐사이트 변태 종료 온도)이하일 수 있다. Mf 초과에서 냉각을 정지한 후 다시 상온까지 냉각할 경우 열간성형 부재의 형상동결성을 확보하기 어려울 수 있기 때문이다. At this time, the cooling stop temperature of the cooling step may be below M f (martensite transformation end temperature). This is because if cooling is stopped above M f and then cooled to room temperature again, it may be difficult to secure the shape freezing of the hot formed member.
다만, 열간성형 부재에서 보다 우수한 연신율과 충격특성을 확보하기 위하여 Mf(마르텐사이트 변태 종료 온도)와 Ms(마르텐사이트 변태 개시 온도) 사이에서 냉각을 정지한 후, 냉각 종료온도에서 유지하거나 Ac1 이하로 다시 가열하여 마르텐사이트를 템퍼링을 시키고 잔류 오스테나이트를 안정화시킬 수도 있다.However, in order to secure better elongation and impact properties in hot forming members, cooling is stopped between M f (martensite transformation end temperature) and M s (martensite transformation start temperature) and then maintained at the cooling end temperature or Ac1. It is possible to temper the martensite and stabilize the retained austenite by heating again below the temperature.
또한, 상기 열간성형부재는 고강도를 확보하기 위해서 마르텐사이트 또는 베이나이트를 주상으로 할 수 있다. 여기서 주상이란 미세조직을 이루는 여러 상(phase) 중에서 가장 큰 면적비율을 갖는 상을 의미한다. 특별히 그 면적비율을 한정할 필요는 없으나, 예를 들어 면적비율로 50% 이상일 수 있다.Additionally, the hot formed member may have martensite or bainite as the main phase to ensure high strength. Here, the main phase refers to the phase with the largest area ratio among the various phases that make up the microstructure. There is no need to specifically limit the area ratio, but for example, the area ratio may be 50% or more.
한편, 상기 열간성형부재는 1800MPa 이상의 인장강도를 가질 수 있다. 1800MPa 이상의 고강도를 확보함으로써 내충돌성이 요구되는 자동차 구조 부재 또는 보강재 등에 바람직하게 적용될 수 있다. Meanwhile, the hot formed member may have a tensile strength of 1800 MPa or more. By securing a high strength of 1800 MPa or more, it can be preferably applied to automobile structural members or reinforcement materials that require crash resistance.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.Hereinafter, the present invention will be described in more detail through examples. However, it should be noted that the following examples are only for illustrating and explaining the present invention in more detail, and are not intended to limit the scope of the present invention. This is because the scope of rights of the present invention is determined by matters stated in the patent claims and matters reasonably inferred therefrom.
(실시예)(Example)
하기 표 1에 나타낸 성분조성을 갖는 두께 40mm 슬라브를 진공 용해하고, 가열로에서 1200℃, 1시간 동안 가열한 후 Ar3 이상 1000℃ 이하의 마무리 압연 온도에서 열간압연하여 최종 두께 3mm 열연강판을 제조하였다. 상기 열연강판을 하기 표 2에 나타낸 냉각속도로 냉각한 후 Ms 초과 750℃이하의 온도범위에서 권취하였다. 이어 상기 열연강판을 산세 후 냉간압하율 50%로 냉간압연을 실시하였다. 또한, 상기 냉간압연 후 700~900℃의 온도범위에서 1~1000초동안 연속소둔을 행함으로써 열간성형용 냉연강판을 제조하였다.A 40 mm thick slab with the composition shown in Table 1 below was vacuum melted, heated in a furnace at 1200°C for 1 hour, and then hot rolled at a finish rolling temperature of Ar3 to 1000°C to produce a hot rolled steel sheet with a final thickness of 3 mm. The hot-rolled steel sheet was cooled at the cooling rate shown in Table 2 below and then coiled at a temperature ranging from Ms to 750°C. Next, the hot rolled steel sheet was pickled and then cold rolled at a cold rolling reduction rate of 50%. In addition, a cold rolled steel sheet for hot forming was manufactured by performing continuous annealing for 1 to 1000 seconds at a temperature range of 700 to 900°C after the cold rolling.
그 후, 상기 제조된 냉연강판을 1~1000℃/초의 승온 속도로 가열한 후, 900℃에서 6분간 열처리하였으며, 상기 가열된 냉연강판을 열간성형하였다. 이어 열간성형된 강판을 상온까지 10~1000℃/초의 냉각속도로 냉각하여 열간성형 부재를 제조하였다.Thereafter, the manufactured cold-rolled steel sheet was heated at a temperature increase rate of 1 to 1000°C/sec, then heat-treated at 900°C for 6 minutes, and the heated cold-rolled steel sheet was hot formed. Then, the hot-formed steel sheet was cooled to room temperature at a cooling rate of 10 to 1000°C/sec to manufacture a hot-formed member.
제조된 열간성형용 냉연강판의 표층부 및 중심부 조직의 면적비율 및 [관계식 1]의 조직비율을 표 2에 나타내었다. 두께 방향 위치별 조직의 면적비율을 측정하기 위해서, 광학현미경(OM, Optical Microscopy)을 활용하여 500배의 배율로 나이탈 에칭 후 조직의 단면을 관찰하였다. 광학사진 측정 후 CLEMEX Vision PE를 소프트웨어를 이용하여 표층부 및 중심부 조직의 면적비율을 각각 3번씩 측정하였고, 이들의 평균값을 표 2에 나타내었다. 이렇게 관찰된 조직의 예를 도 1에 나타내었다. 도 1에서 청색 부분은 펄라이트 및 시멘타이트 영역을 나타내며, 백색 부분은 페라이트 영역을 나타낸다. The area ratio of the surface layer and the central structure of the manufactured cold rolled steel sheet for hot forming and the tissue ratio of [Relational Equation 1] are shown in Table 2. In order to measure the area ratio of the tissue at each location in the thickness direction, the cross-section of the tissue after nital etching was observed at 500x magnification using an optical microscope (OM). After optical photo measurement, the area ratio of the superficial and central tissues was measured three times each using CLEMEX Vision PE software, and the average values are shown in Table 2. An example of the tissue observed in this way is shown in Figure 1. In Figure 1, the blue portion represents the pearlite and cementite regions, and the white portion represents the ferrite region.
또한, 열간 성형 후 제조된 열간성형 부재의 표층부와 중심부 경도의 표준편차의 비인 경도비율을 [관계식 2]에 의거하여 표 2에 나타내었다. 인장강도 및 최대굽힘각도 나타내었다. 경도는 비커스 경도계(Vikckers Hardness tester, Dura Scan 80G5)를 이용하여 10kgf 하중을 적용하여 최소 10포인트 이상을 1mm의 간격으로 측정하였으며, 인장강도 값은 JIS-5호 시편으로 ISO6892 규격에 의거 상온 인장시험을 통하여 측정하였다. 최대굽힘각도는 VDA238-100 규격에 따른 굽힘성 평가 방법에 따라 규격 내 명시되어 있는 최대 굽힘 강도에서 환산된 굽힘 외각의 값으로 기재하였다. 또한, 굽힘각 변화율은 본 발명에서 제안된 제조조건으로 제조된 시편의 굽힘각과 제안된 제조조건을 벗어나서 제조된 시편 간의 굽힘각 편차비를 나타낸다.In addition, the hardness ratio, which is the ratio of the standard deviation of the hardness of the surface layer and the center of the hot formed member manufactured after hot forming, is shown in Table 2 based on [Relational Equation 2]. Tensile strength and maximum bending angle were also shown. Hardness was measured at intervals of 1 mm at least 10 points by applying a load of 10 kgf using a Vikckers Hardness tester (Dura Scan 80G5), and tensile strength was measured at room temperature according to ISO6892 standard using JIS-5 specimen. It was measured through. The maximum bending angle was described as the value of the bending outer angle converted from the maximum bending strength specified in the standard according to the bendability evaluation method according to the VDA238-100 standard. In addition, the bending angle change rate represents the bending angle deviation ratio between the bending angle of a specimen manufactured under the manufacturing conditions proposed in the present invention and the specimen manufactured outside the proposed manufacturing conditions.
냉각속도hot rolling
Cooling speed
변화율bending angle
rate of change
표 2에 보여지는 바와 같이 본 발명에서 제한하는 냉각 속도의 상한을 초과하여 열간압연 진행된 비교예 1 및 3 내지 6의 경우, 소둔 후 [관계식 1]로 표시되는 조직비율이 1.3를 초과하여, 열간성형 후 표층부 경도의 표준편차가 중심부 경도의 표준편차 대비 커졌고, 이로써 [관계식 2]로 표시되는 경도비율이 10을 초과하여, 굽힘각이 열위하였다. As shown in Table 2, in the case of Comparative Examples 1 and 3 to 6 in which hot rolling was performed exceeding the upper limit of the cooling rate limited in the present invention, the structure ratio expressed by [Relational Equation 1] after annealing exceeded 1.3, and hot rolling After molding, the standard deviation of the surface hardness increased compared to the standard deviation of the central hardness, and as a result, the hardness ratio expressed in [Relational Equation 2] exceeded 10, resulting in an inferior bending angle.
열간압연 시 냉각속도를 본 특허가 제안하는 범위를 충족시키지 못하여 하한을 미달한 비교예 2 및 7의 경우 냉연강판의 열간성형 후 최대굽힘각은 개선됨을 보였으나, 표층에 연질의 마르텐사이트가 과다 형성되어 충분한 강도를 확보하지 못하였다.In Comparative Examples 2 and 7, in which the cooling rate during hot rolling did not meet the range suggested by this patent and did not reach the lower limit, the maximum bending angle was improved after hot forming of the cold rolled steel sheet, but soft martensite was excessive in the surface layer. It was formed and did not secure sufficient strength.
발명예 1 내지 5의 경우 열간 압연 후 냉각속도가 본 발명에서 제한하는 범위 내로 제어되어, 냉연강판의 조직비율이 0.2 이상 1.3 이하의 범위를 만족함과 동시에 경도비율이 10 이하가 되었으며, 이로써 제조된 열간성형 부재는 양호한 굽힘성을 보였다. In the case of Invention Examples 1 to 5, the cooling rate after hot rolling was controlled within the range limited by the present invention, so that the structure ratio of the cold rolled steel sheet satisfied the range of 0.2 to 1.3 and at the same time, the hardness ratio was 10 or less. The hot formed member showed good bendability.
Claims (12)
하기 [관계식 1]로 표시되는 조직비율의 값이 0.2 이상 1.3 이하인 열간성형용 냉연강판.
[관계식 1] 조직비율 =
(상기 식의 및 는 각각 표층부의 펄라이트 및 시멘타이트의 면적비율을 나타내며, 및 는 각각 중심부의 펄라이트 및 시멘타이트의 면적비율을 나타낸다.)
In weight percent, C: 0.25-0.45%, Si: 0.01-3.0%, Mn: 0.01-4.0%, Al: 0.001-0.4%, P: 0.001-0.05%, S: 0.0001-0.02%, Cr: 0.1% Not less than 5.0%, N: 0.001~0.02%, including the remaining Fe and other unavoidable impurities;
A cold-rolled steel sheet for hot forming with a tissue ratio value of 0.2 or more and 1.3 or less, as expressed by [Relational Equation 1] below.
[Relation 1] Organizational ratio =
(of the above formula and represents the area ratio of pearlite and cementite in the surface layer, respectively, and represents the area ratio of pearlite and cementite in the center, respectively.)
하기 a) 및 f) 중에서 선택된 1 이상을 더 포함하는 열간성형용 냉연강판.
a) Ti, Nb, Zr 및 V 함량의 합: 0.001%~0.4중량%,
b) B: 0.0001~0.01중량%,
c) Mo 및 W 함량의 합: 0.001~1.0중량%,
d) Cu와 Ni의 함량의 합: 0.005~2.0중량%,
e) Sb 및 Sn의 함량의 합: 0.001~1.0중량%
f) REM: 0.0001~0.02중량%
According to paragraph 1,
A cold rolled steel sheet for hot forming further comprising one or more selected from a) and f) below.
a) Sum of Ti, Nb, Zr and V contents: 0.001% to 0.4% by weight,
b) B: 0.0001~0.01% by weight,
c) Sum of Mo and W contents: 0.001 to 1.0% by weight;
d) Sum of Cu and Ni contents: 0.005~2.0% by weight,
e) Sum of Sb and Sn contents: 0.001~1.0% by weight
f) REM: 0.0001~0.02% by weight
상기 가열된 슬라브를 Ar3~1000℃의 마무리 압연 온도로 열간압연하여 열연강판을 얻는 단계;
상기 열간압연 된 열연강판을 400℃/s 이상 750℃/s 이하의 냉각 속도로 냉각하는 단계;
상기 열연강판을 Ms 초과 750℃ 이하의 온도범위에서 권취하는 단계;
상기 권취된 열연강판을 냉간압연하여 냉연강판을 얻는 단계; 및
상기 냉연강판을 연속소둔하는 단계를 포함하는 열간성형용 냉연강판의 제조방법.
In weight percent, C: 0.25-0.45%, Si: 0.01-3.0%, Mn: 0.01-4.0%, Al: 0.001-0.4%, P: 0.001-0.05%, S: 0.0001-0.02%, Cr: 0.1% Heating the slab containing more than 5.0%, N: 0.001-0.02%, the remainder Fe and other inevitable impurities to 1000-1300°C;
Obtaining a hot rolled steel sheet by hot rolling the heated slab at a finish rolling temperature of Ar3 to 1000°C;
Cooling the hot rolled hot rolled steel sheet at a cooling rate of 400°C/s or more and 750°C/s or less;
Winding the hot-rolled steel sheet in a temperature range of more than Ms and less than 750°C;
Obtaining a cold rolled steel sheet by cold rolling the coiled hot rolled steel sheet; and
A method of manufacturing a cold-rolled steel sheet for hot forming, comprising the step of continuously annealing the cold-rolled steel sheet.
상기 강 슬라브는 하기 a) 및 f) 중에서 선택된 1 이상을 더 포함하는 열간성형용 냉연강판의 제조방법.
a) Ti, Nb, Zr 및 V 함량의 합: 0.001%~0.4중량%,
b) B: 0.0001~0.01중량%,
c) Mo 및 W 함량의 합: 0.001~1.0중량%,
d) Cu와 Ni의 함량의 합: 0.005~2.0중량%,
e) Sb 및 Sn의 함량의 합: 0.001~1.0중량%
f) REM: 0.0001~0.02중량%
According to paragraph 3,
A method of manufacturing a cold rolled steel sheet for hot forming, wherein the steel slab further includes one or more selected from a) and f) below.
a) Sum of Ti, Nb, Zr and V contents: 0.001% to 0.4% by weight,
b) B: 0.0001~0.01% by weight,
c) Sum of Mo and W contents: 0.001 to 1.0% by weight;
d) Sum of Cu and Ni contents: 0.005~2.0% by weight,
e) Sum of Sb and Sn contents: 0.001~1.0% by weight
f) REM: 0.0001~0.02% by weight
상기 냉간압연은 30~80%의 누적 압하율로 행하는 것인 열간성형용 냉연강판의 제조방법
According to clause 3 or 4,
A method of manufacturing a cold rolled steel sheet for hot forming, wherein the cold rolling is performed at a cumulative reduction rate of 30 to 80%.
상기 연속소둔은 700~900℃의 온도범위에서 1~1000초동안 행하는 것인 열간성형용 냉연강판의 제조방법
According to clause 3 or 4,
A method of manufacturing a cold-rolled steel sheet for hot forming, wherein the continuous annealing is performed for 1 to 1000 seconds in a temperature range of 700 to 900 ° C.
상기 냉연강판을 700℃ 이상의 온도까지 1~1000℃/초의 승온 속도로 가열하는 단계;
상기 가열된 냉연강판을 열간성형하는 단계; 및
상기 열간성형된 강판을 10~1000℃/초의 냉각속도로 냉각하는 단계를 포함하는 열간성형 부재의 제조방법.
Manufacturing a cold rolled steel sheet according to claim 3 or 4;
Heating the cold-rolled steel sheet at a temperature increase rate of 1 to 1000°C/sec to a temperature of 700°C or higher;
Hot forming the heated cold rolled steel sheet; and
A method of manufacturing a hot-formed member comprising cooling the hot-formed steel sheet at a cooling rate of 10 to 1000° C./sec.
상기 냉각은 냉각정지온도를 Mf(마르텐사이트 변태 종료 온도) 이하로 하여 행하는 것인 열간성형 부재의 제조방법.
In clause 7,
A method of manufacturing a hot formed member, wherein the cooling is performed by setting the cooling stop temperature to Mf (martensite transformation end temperature) or lower.
상기 냉각은 냉각정지온도를 Mf(마르텐사이트 변태 종료 온도) 이상 Ms(마르텐사이트 변태 개시 온도) 이하로 하여 행하며,
상기 냉각 이후, 냉각종료온도에서 온도를 유지하거나 Ac1 이하로 다시 가열하는 단계를 더 포함하는 열간성형 부재의 제조방법.
In clause 7,
The cooling is performed by setting the cooling stop temperature to Mf (martensite transformation end temperature) or more and Ms (martensite transformation start temperature) or less.
After the cooling, the method of manufacturing a hot formed member further includes the step of maintaining the temperature at the cooling end temperature or heating again to Ac1 or lower.
하기의 [관계식 2]로 표시되는 경도비율의 값이 0.1 이상 10 이하인 열간성형 부재.
[관계식 2] 경도비율 =
(상기 식 1에서 는 표층부 경도의 표준편차를 나타내며, 는 중심부의 경도의 표준편차이다.)
In weight percent, C: 0.25-0.45%, Si: 0.01-3.0%, Mn: 0.01-4.0%, Al: 0.001-0.4%, P: 0.001-0.05%, S: 0.0001-0.02%, Cr: 0.1% Not less than 5.0%, N: 0.001~0.02%, including the remaining Fe and other unavoidable impurities;
A hot formed member having a hardness ratio value of 0.1 or more and 10 or less, expressed by [Relational Equation 2] below.
[Relationship 2] Hardness ratio =
(In Equation 1 above, represents the standard deviation of the surface hardness, is the standard deviation of the hardness of the center.)
하기 a) 및 f) 중에서 선택된 1 이상을 더 포함하는 열간성형 부재.
a) Ti, Nb, Zr 및 V 함량의 합: 0.001%~0.4중량%,
b) B: 0.0001~0.01중량%,
c) Mo 및 W 함량의 합: 0.001~1.0중량%,
d) Cu와 Ni의 함량의 합: 0.005~2.0중량%,
e) Sb 및 Sn의 함량의 합: 0.001~1.0중량%
f) REM: 0.0001~0.02중량%
According to clause 10,
A hot forming member further comprising one or more selected from a) and f) below.
a) Sum of Ti, Nb, Zr and V contents: 0.001% to 0.4% by weight,
b) B: 0.0001~0.01% by weight,
c) Sum of Mo and W contents: 0.001 to 1.0% by weight;
d) Sum of Cu and Ni contents: 0.005~2.0% by weight,
e) Sum of Sb and Sn contents: 0.001~1.0% by weight
f) REM: 0.0001~0.02% by weight
인장강도가 1800MPa 이상이며, 항복강도는 1200MPa 이상인 열간성형 부재.According to claim 10 or 11,
A hot-formed member with a tensile strength of 1800 MPa or more and a yield strength of 1200 MPa or more.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220181029A KR20240098869A (en) | 2022-12-21 | 2022-12-21 | Cold rolled steel sheet for hot press forming and hot presse forming part having excellent surface quality and manufacturing method thereof |
PCT/KR2023/020585 WO2024136287A1 (en) | 2022-12-21 | 2023-12-13 | Cold-rolled steel sheet for hot forming with excellent bendability, hot-formed member, and manufacturing methods therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220181029A KR20240098869A (en) | 2022-12-21 | 2022-12-21 | Cold rolled steel sheet for hot press forming and hot presse forming part having excellent surface quality and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20240098869A true KR20240098869A (en) | 2024-06-28 |
Family
ID=91589436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020220181029A KR20240098869A (en) | 2022-12-21 | 2022-12-21 | Cold rolled steel sheet for hot press forming and hot presse forming part having excellent surface quality and manufacturing method thereof |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20240098869A (en) |
WO (1) | WO2024136287A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6296805B1 (en) | 1998-07-09 | 2001-10-02 | Sollac | Coated hot- and cold-rolled steel sheet comprising a very high resistance after thermal treatment |
KR20210080239A (en) | 2019-12-20 | 2021-06-30 | 주식회사 포스코 | Steel material for hot press forming, hot pressed member and manufacturing method theerof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI468534B (en) * | 2012-02-08 | 2015-01-11 | Nippon Steel & Sumitomo Metal Corp | High-strength cold rolled steel sheet and manufacturing method thereof |
EP3211106B1 (en) * | 2014-10-20 | 2020-05-06 | Nippon Steel Corporation | Steel wire rod for bearings having excellent drawability and coil formability after drawing |
EP3309273B1 (en) * | 2015-06-11 | 2021-05-26 | Nippon Steel Corporation | Galvannealed steel sheet and method for manufacturing same |
KR101830527B1 (en) * | 2016-09-26 | 2018-02-21 | 주식회사 포스코 | Cold rolled steel sheet for hot press forming and hot presse forming part having excellent corrosion property and spot weldability, and manufacturing method thereof |
JP7311808B2 (en) * | 2019-12-19 | 2023-07-20 | 日本製鉄株式会社 | Steel plate and its manufacturing method |
-
2022
- 2022-12-21 KR KR1020220181029A patent/KR20240098869A/en unknown
-
2023
- 2023-12-13 WO PCT/KR2023/020585 patent/WO2024136287A1/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6296805B1 (en) | 1998-07-09 | 2001-10-02 | Sollac | Coated hot- and cold-rolled steel sheet comprising a very high resistance after thermal treatment |
KR20210080239A (en) | 2019-12-20 | 2021-06-30 | 주식회사 포스코 | Steel material for hot press forming, hot pressed member and manufacturing method theerof |
Also Published As
Publication number | Publication date |
---|---|
WO2024136287A1 (en) | 2024-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102020412B1 (en) | High-strength steel sheet having excellent crash worthiness and formability, and method for manufacturing thereof | |
JP6700398B2 (en) | High yield ratio type high strength cold rolled steel sheet and method for producing the same | |
KR101353787B1 (en) | Ultra high strength colde rolled steel sheet having excellent weldability and bendability and method for manufacturing the same | |
KR102109265B1 (en) | Ultra high strength and high ductility steel sheet having excellent yield ratio and manufacturing method for the same | |
KR102469278B1 (en) | Steel material for hot press forming, hot pressed member and manufacturing method theerof | |
KR102098482B1 (en) | High-strength steel sheet having excellent impact resistant property and method for manufacturing thereof | |
KR20140047960A (en) | Ultra high strength cold rolled steel sheet having excellent weldability and bendability and method for manufacturinf the same | |
KR102440772B1 (en) | High strength steel sheet having excellent workability and manufacturing method for the same | |
KR101166995B1 (en) | Method for Manufacturing of High Strength and High Formability Galvanized Steel Sheet with Dual Phase | |
KR101988760B1 (en) | Ultra-high strength steel sheet having excellent formability, and method for manufacturing thereof | |
US20240052468A1 (en) | Ultra-high-strength cold-rolled steel sheet having excellent yield strength and bending properties and method for manufacturing same | |
KR102557845B1 (en) | Cold-rolled steel sheet and method of manufacturing the same | |
KR100946066B1 (en) | Method for Manufacturing Ultra High Strength Cold-rolled Steel Sheets for Automotive Bumper Reinforcements | |
KR20230056822A (en) | Ultra-high strength steel sheet having excellent ductility and mathod of manufacturing the same | |
KR20150001469A (en) | High strength cold-rolled steel sheet and method of manufacturing the cold-rolled steel sheet | |
JP2621744B2 (en) | Ultra-high tensile cold rolled steel sheet and method for producing the same | |
KR20240098869A (en) | Cold rolled steel sheet for hot press forming and hot presse forming part having excellent surface quality and manufacturing method thereof | |
KR20220083905A (en) | High strength plated steel sheet having excellent formability and surface property, and manufacturing method for the same | |
KR100573587B1 (en) | Method for manufacturing Ultra High Strength Steel Sheet Having Excellent Bending Formability | |
KR20230043353A (en) | High strength cold rolled steel sheet having excellent surface quality and low mechanical property deviation and manufacturing method of the same | |
KR20230087773A (en) | Steel sheet having excellent strength and ductility, and manufacturing method thereof | |
KR20240098674A (en) | Steel sheet and method for manufacturing the same | |
KR20240027174A (en) | Cold rolled steel sheet for hot press forming and hot press forming part having excellent surface quality and manufacturing method thereof | |
KR20230094376A (en) | High strength and high formability steel sheet having excellent spot weldability, and method for manufacturing the same | |
KR20230044048A (en) | High strength cold rolled steel sheet having excellent surface quality and low mechanical property deviation and manufacturing method of the same |