KR20230036643A - Flowable concrete composition with excellent workability and resistance to material separation - Google Patents
Flowable concrete composition with excellent workability and resistance to material separation Download PDFInfo
- Publication number
- KR20230036643A KR20230036643A KR1020210119382A KR20210119382A KR20230036643A KR 20230036643 A KR20230036643 A KR 20230036643A KR 1020210119382 A KR1020210119382 A KR 1020210119382A KR 20210119382 A KR20210119382 A KR 20210119382A KR 20230036643 A KR20230036643 A KR 20230036643A
- Authority
- KR
- South Korea
- Prior art keywords
- resistance
- material separation
- concrete composition
- reducing agent
- excellent workability
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 47
- 239000000463 material Substances 0.000 title claims abstract description 25
- 238000000926 separation method Methods 0.000 title claims abstract description 24
- 230000009969 flowable effect Effects 0.000 title 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 46
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 38
- 239000004568 cement Substances 0.000 claims abstract description 25
- 229920002678 cellulose Polymers 0.000 claims abstract description 16
- 239000001913 cellulose Substances 0.000 claims abstract description 16
- 239000002562 thickening agent Substances 0.000 claims abstract description 14
- 239000011230 binding agent Substances 0.000 claims abstract description 11
- 239000002253 acid Substances 0.000 claims abstract description 10
- 239000000654 additive Substances 0.000 claims description 26
- 230000000996 additive effect Effects 0.000 claims description 22
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 claims description 16
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Substances [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 claims description 16
- 150000001412 amines Chemical class 0.000 claims description 15
- 239000000440 bentonite Substances 0.000 claims description 14
- 229910000278 bentonite Inorganic materials 0.000 claims description 14
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 claims description 14
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 claims description 13
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 12
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 claims description 11
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 claims description 11
- 229920002472 Starch Polymers 0.000 claims description 10
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 claims description 10
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 claims description 10
- 239000008107 starch Substances 0.000 claims description 10
- 235000019698 starch Nutrition 0.000 claims description 10
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 claims description 8
- 239000000347 magnesium hydroxide Substances 0.000 claims description 8
- 229910001862 magnesium hydroxide Inorganic materials 0.000 claims description 8
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 claims description 3
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 claims description 3
- COBPKKZHLDDMTB-UHFFFAOYSA-N 2-[2-(2-butoxyethoxy)ethoxy]ethanol Chemical compound CCCCOCCOCCOCCO COBPKKZHLDDMTB-UHFFFAOYSA-N 0.000 claims description 3
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 claims description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 3
- 239000002202 Polyethylene glycol Substances 0.000 claims description 3
- 229920001515 polyalkylene glycol Polymers 0.000 claims description 3
- 229920001223 polyethylene glycol Polymers 0.000 claims description 3
- JLGLQAWTXXGVEM-UHFFFAOYSA-N triethylene glycol monomethyl ether Chemical compound COCCOCCOCCO JLGLQAWTXXGVEM-UHFFFAOYSA-N 0.000 claims description 3
- 239000011575 calcium Substances 0.000 claims description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims 1
- 229910052791 calcium Inorganic materials 0.000 claims 1
- 239000010440 gypsum Substances 0.000 claims 1
- 229910052602 gypsum Inorganic materials 0.000 claims 1
- 230000007423 decrease Effects 0.000 abstract description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 20
- 239000002893 slag Substances 0.000 description 13
- 238000005336 cracking Methods 0.000 description 11
- 238000000034 method Methods 0.000 description 11
- 239000004576 sand Substances 0.000 description 11
- 230000007774 longterm Effects 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 238000001035 drying Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 230000001603 reducing effect Effects 0.000 description 8
- 239000011398 Portland cement Substances 0.000 description 7
- 238000002156 mixing Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 229910001415 sodium ion Inorganic materials 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 238000006703 hydration reaction Methods 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 229920005646 polycarboxylate Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 239000013589 supplement Substances 0.000 description 3
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000001856 Ethyl cellulose Substances 0.000 description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 2
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 229920001249 ethyl cellulose Polymers 0.000 description 2
- 235000019325 ethyl cellulose Nutrition 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000010881 fly ash Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- CLAHOZSYMRNIPY-UHFFFAOYSA-N 2-hydroxyethylurea Chemical compound NC(=O)NCCO CLAHOZSYMRNIPY-UHFFFAOYSA-N 0.000 description 1
- 229910021532 Calcite Inorganic materials 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229920000896 Ethulose Polymers 0.000 description 1
- 239000001859 Ethyl hydroxyethyl cellulose Substances 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 239000004909 Moisturizer Substances 0.000 description 1
- 208000002740 Muscle Rigidity Diseases 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910000805 Pig iron Inorganic materials 0.000 description 1
- 241000350481 Pterogyne nitens Species 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 240000003307 Zinnia violacea Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 229920006318 anionic polymer Polymers 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 229920003064 carboxyethyl cellulose Polymers 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000011083 cement mortar Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000010883 coal ash Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 235000019326 ethyl hydroxyethyl cellulose Nutrition 0.000 description 1
- 235000010944 ethyl methyl cellulose Nutrition 0.000 description 1
- 239000010433 feldspar Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000010438 granite Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 229940031575 hydroxyethyl urea Drugs 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000004579 marble Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229920003087 methylethyl cellulose Polymers 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000001333 moisturizer Effects 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- AKEJUJNQAAGONA-UHFFFAOYSA-N sulfur trioxide Inorganic materials O=S(=O)=O AKEJUJNQAAGONA-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/02—Granular materials, e.g. microballoons
- C04B14/04—Silica-rich materials; Silicates
- C04B14/10—Clay
- C04B14/104—Bentonite, e.g. montmorillonite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/10—Coating or impregnating
- C04B20/1055—Coating or impregnating with inorganic materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B22/00—Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
- C04B22/06—Oxides, Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B22/00—Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
- C04B22/06—Oxides, Hydroxides
- C04B22/066—Magnesia; Magnesium hydroxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B22/00—Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
- C04B22/08—Acids or salts thereof
- C04B22/14—Acids or salts thereof containing sulfur in the anion, e.g. sulfides
- C04B22/142—Sulfates
- C04B22/147—Alkali-metal sulfates; Ammonium sulfate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/02—Alcohols; Phenols; Ethers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/24—Macromolecular compounds
- C04B24/26—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B24/2641—Polyacrylates; Polymethacrylates
- C04B24/2647—Polyacrylates; Polymethacrylates containing polyether side chains
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/24—Macromolecular compounds
- C04B24/28—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C04B24/32—Polyethers, e.g. alkylphenol polyglycolether
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/24—Macromolecular compounds
- C04B24/38—Polysaccharides or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/24—Macromolecular compounds
- C04B24/38—Polysaccharides or derivatives thereof
- C04B24/383—Cellulose or derivatives thereof
- C04B24/386—Cellulose or derivatives thereof containing polyether side chains
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/0068—Ingredients with a function or property not provided for elsewhere in C04B2103/00
- C04B2103/0082—Segregation-preventing agents; Sedimentation-preventing agents
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/30—Water reducers, plasticisers, air-entrainers, flow improvers
- C04B2103/302—Water reducers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/44—Thickening, gelling or viscosity increasing agents
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/56—Opacifiers
- C04B2103/58—Shrinkage reducing agents
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/34—Non-shrinking or non-cracking materials
- C04B2111/343—Crack resistant materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/34—Non-shrinking or non-cracking materials
- C04B2111/346—Materials exhibiting reduced plastic shrinkage cracking
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Civil Engineering (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
본 발명은 작업성 및 재료분리에 대한 저항성이 동시에 만족됨은 물론 수축저감제의 첨가에 의해 균열저항성을 향상시키면서도 강도저하를 제어할 수 있는 콘크리트 조성물에 관한 것이다. The present invention relates to a concrete composition that can simultaneously satisfy workability and resistance to material separation, and can control strength reduction while improving crack resistance by adding a shrinkage reducing agent.
콘크리트 또는 시멘트 모르타르 등과 같은 시멘트 조성물은 시멘트와 물과의 반응으로 경화되는 수경성 반응물로서 물의 사용량에 따라 경화 후 압축강도 등의 물성이 바뀔 수 있다. 일반적으로 물의 첨가량이 증가하면 작업성이 향상되나 압축강도 등을 저하시키고 균열 발생을 초래할 수 있으므로, 시멘트 조성물에 대한 물의 사용량이 제한되며, 이러한 물성의 약화를 극복하기 위해 혼화제를 더 첨가하기도 한다.A cement composition such as concrete or cement mortar is a hydraulic reactant hardened by a reaction between cement and water, and physical properties such as compressive strength after hardening may change depending on the amount of water used. In general, increasing the amount of water added improves workability, but decreases compressive strength and may cause cracking. Therefore, the amount of water used in cement compositions is limited, and admixtures are additionally added to overcome the weakening of physical properties.
일반적으로 혼화제는 크게 AE제(air entraining admixture), 감수제(water reducing admixture), 고성능 감수제(high range water reducing admixture) 등이 사용된다. 이 중 AE제는 감수제 또는 고성능 감수제와 혼합되어 AE 감수제 및 고성능 AE 감수제로 분류되어 있다.In general, as admixtures, AE agents (air entraining admixture), water reducing agents (water reducing admixture), and high range water reducing admixture (high range water reducing admixture) are used. Among them, the AE water reducing agent is mixed with a water reducing agent or a high performance water reducing agent and is classified into an AE water reducing agent and a high performance AE water reducing agent.
한편 시멘트 경화체의 수축에 영향을 미치는 메커니즘은 표면자유에너지, 모세관 장력, 수분의 이동 및 분리압으로 크게 4종류를 들 수 있다. 이들 이론 중 건조수축에서 가장 많은 지지를 받고 있는 이론은 모세관 장력이론과 수분의 이동이론이다. 이러한 건조수축 진행과정은, 콘크리트가 건조 조건에 놓이면 표면부에 수분이동 발생하고, 표면부가 건조함에 따라 표면장력에 의한 내부수분이 표면부로 이동하며, 콘크리트 모세관내 압력 발생에 따른 수분의 이동 가속화가 진행되고, 내부수분이 차지하고 있는 체적이 감소되며, 이에 콘크리트내의 인장응력 유발되고 허용응력 초과시 건조수축균열 발생하게 되는 것이다. On the other hand, there are four major mechanisms that affect the shrinkage of cement hardened bodies: surface free energy, capillary tension, water movement and separation pressure. Among these theories, the most supported theories in drying shrinkage are the capillary tension theory and the water transport theory. In this drying shrinkage process, when the concrete is placed under dry conditions, moisture movement occurs on the surface, and as the surface becomes dry, internal moisture moves to the surface due to surface tension, and moisture movement is accelerated due to pressure in the concrete capillaries. As the process progresses, the volume occupied by the internal moisture is reduced, which causes tensile stress in the concrete, and when the allowable stress is exceeded, drying shrinkage cracks occur.
이러한 건조수축균열에 대한 저항성을 향상시키기 위한 기술의 예로로서 대한민국 특허등록 제1568765호에서는 시멘트, 모래 및 물에 트레할로스(trehalose)를 첨가하되, 상기 시멘트 : 30 ~ 40 중량% 및 모래 : 60 ~ 70 중량%를 포함하는 결합재와, 상기 결합재 100 중량부에 대하여, 10 ~ 20 중량부로 첨가된 물 및 0.1 ~ 0.6 중량부로 첨가된 트레할로스를 포함하고, 상기 시멘트는, 포틀랜드 시멘트 : 25 ~ 30 중량%, 규사 : 35 ~ 45 중량%, 탄산칼슘 : 15 ~ 25 중량%, 소포제 : 0.05 ~ 0.10중량%, 수축저감제 : 0.1 ~ 5 중량%, 메틸셀룰로우즈(methyl cellulose) : 0.1 ~ 0.3 중량% 및 메틸에틸셀룰로우즈(methyl ethyl cellulose) : 0.1 ~ 0.2 중량%를 포함하며, 상기 규사는 0.01 ~ 0.3mm의 평균 직경을 가지는 것을 특징으로 하는 건조수축 및 균열 방지용 콘크리트 조성물을 제시하고 있다. As an example of a technology for improving resistance to drying shrinkage cracking, Korean Patent Registration No. 1568765 adds trehalose to cement, sand and water, but the cement: 30 to 40% by weight and sand: 60 to 70 A binder containing % by weight, water added at 10 to 20 parts by weight and trehalose added at 0.1 to 0.6 parts by weight based on 100 parts by weight of the binder, the cement, Portland cement: 25 to 30% by weight, Silica sand: 35 to 45% by weight, calcium carbonate: 15 to 25% by weight, antifoaming agent: 0.05 to 0.10% by weight, shrinkage reducing agent: 0.1 to 5% by weight, methyl cellulose: 0.1 to 0.3% by weight, and Methyl ethyl cellulose: contains 0.1 to 0.2% by weight, and the silica sand has an average diameter of 0.01 to 0.3 mm, and proposes a concrete composition for preventing drying shrinkage and cracking.
그러나 건조수축균열 등 균열저항성을 향상시키기 위해 수축저감제를 첨가하는 경우 초기 강도는 물론 장기강도에 있어서도 불리한 효과가 발현되는 문제가 있으며, 상기 기술에 의해서 근래에 요구되는 높은 감수성과 충분한 유동성 및 재료분리에 대한 저항성을 만족하기가 용이하지 않은 문제가 있다. However, when a shrinkage reducing agent is added to improve crack resistance such as drying shrinkage cracking, there is a problem in that unfavorable effects are expressed in terms of initial strength as well as long-term strength. There is a problem that it is not easy to satisfy the resistance to separation.
따라서, 본 발명은 작업성, 재료분리에 대한 저항성을 향상시키는 것은 물론 균열에 대한 저항성을 향상시키기 위해 수축저감제의 적용에도 강도가 저하되는 것을 제어할 수 있는 콘크리트 조성물을 제공하고자 함이다. Therefore, the present invention is to provide a concrete composition capable of controlling the decrease in strength even when a shrinkage reducing agent is applied in order to improve workability and resistance to material separation as well as resistance to cracking.
상기 목적을 달성하기 위해 본 발명의 작업성 및 재료분리에 대한 저항성이 우수한 저수축 중유동 콘크리트 조성물(이하 "본 발명의 조성물"이라함)은, 시멘트를 포함하는 결합재, 물, 폴리칼본산계 감수제, 셀룰로스 증점제, 수축저감제가 포함되는 것을 특징으로 한다. In order to achieve the above object, the low shrinkage medium flow concrete composition (hereinafter referred to as the "composition of the present invention") excellent in workability and resistance to material separation of the present invention is a binder containing cement, water, and a polycarboxylic acid-based water reducing agent. , A cellulose thickener, and a shrinkage reducing agent are included.
하나의 예로 상기 수축저감제는 부틸디글리콜, 부틸트라이글리콜, 메틸디글리콜, 부틸폴리글리콜, 에틸폴리글리콜, 메틸트라이글리콜, 에틸글리콜, 모노에틸렌글리콜, 폴리에틸렌글리콜, 폴리알킬렌글리콜 중 하나 또는 둘이상의 혼합물인 것을 특징으로 한다. As an example, the shrinkage reducing agent is one or two of butyldiglycol, butyltriglycol, methyldiglycol, butylpolyglycol, ethylpolyglycol, methyltriglycol, ethylglycol, monoethylene glycol, polyethylene glycol, and polyalkylene glycol. Characterized in that it is a mixture of phases.
하나의 예로 아민계 첨가제 및 과황산나트륨이 더 포함되는 것을 특징으로 한다. One example is characterized in that an amine-based additive and sodium persulfate are further included.
하나의 예로 폴리에틸렌옥사이드, 마그네슘알루미늄실리케이트가 더 포함되는 것을 특징으로 한다. As an example, polyethylene oxide and magnesium aluminum silicate are further included.
하나의 예로 소듐 폴리아크릴레이트 스타치가 더 포함되는 것을 특징으로 한다. One example is characterized in that sodium polyacrylate starch is further included.
하나의 예로 수산화마그네슘이 더 포함되는 것을 특징으로 한다. One example is characterized in that magnesium hydroxide is further included.
하나의 예로 이타콘산이 표면에 코팅된 벤토나이트가 더 포함되는 것을 특징으로 한다. As an example, bentonite coated with itaconic acid on the surface is further included.
본 발명의 콘크리트 조성물은 작업성 및 재료분리에 대한 저항성이 향상되며 특히 수축저감제의 첨가에 의해 균열저항성을 향상시키면서도 강도 저감이 없는 장점이 있다. The concrete composition of the present invention has improved workability and resistance to material separation, and in particular, has the advantage of not reducing strength while improving crack resistance by adding a shrinkage reducing agent.
이하 본 발명의 실시 예 및 실험 예를 첨부되는 도면을 통해 보다 상세히 설명하도록 한다.Hereinafter, embodiments and experimental examples of the present invention will be described in more detail with reference to the accompanying drawings.
본 발명의 조성물은, 시멘트를 포함하는 결합재, 물, 폴리칼본산계 감수제, 셀룰로오스 증점제, 수축저감제가 포함되는 것을 특징으로 한다. The composition of the present invention is characterized in that it includes a cement-containing binder, water, a polycarboxylic acid-based water reducing agent, a cellulose thickening agent, and a shrinkage reducing agent.
본 발명은 이하에서 설명하는 폴리칼본산계 감수제, 셀룰로스 증점제, 수축저감제가 포함되는 혼화제에 시멘트를 포함하는 결합재, 물을 포함하는데, 여기서 결합재에는 시멘트 외에 플라이애시, 고로슬래그 등이 포함될 수 있다. The present invention includes a binder containing cement and water in an admixture containing a polycarboxylic acid-based water reducing agent, a cellulose thickener, and a shrinkage reducing agent described below, wherein the binder may include fly ash, blast furnace slag, etc. in addition to cement.
상기 시멘트는 당업계에서 모르타르 또는 콘크리트 등에 포함되는 것이라면 종류에 한정하지 않으며, 바람직하게는 일반 포틀랜드 시멘트, 조강 포틀랜드 시멘트, 초조강 포틀랜드 시멘트, 중용열 포틀랜드 시멘트, 내황산염 포틀랜드 시멘트, 백색 포틀랜드 시멘트 및 초속경 시멘트 중 어느 하나 또는 이들의 혼합물을 사용할 수 있으나 이에 한정하는 것은 아니며, 시멘트 분말형태 뿐만 아니라 클링커 형태도 사용 가능하다. 다만 시멘트 클링커를 사용하는 경우 전처리로 소성 및 분쇄과정을 거친 것을 사용하는 것이 바람직하다. The cement is not limited to the type as long as it is included in mortar or concrete in the art, and is preferably general Portland cement, early-strength Portland cement, ultra-high-strength Portland cement, medium heat Portland cement, sulfate-resistant Portland cement, white Portland cement, and zinnia Any one of hard cement or a mixture thereof may be used, but is not limited thereto, and cement powder form as well as clinker form may be used. However, when using cement clinker, it is preferable to use a cement clinker that has undergone a firing and grinding process as a pretreatment.
상기 물은 종류에 한정하지 않으나, 불순물이 없고 깨끗하게 정제된 물을 사용하는 것이 좋다. 또한 물과 결합재(W/B)는 설계기준강도 및 배합강도와 같은 콘크리트의 강도와 내구성 등을 결정하는 수치로서, W/B가 30 내지 55 중량%가 되도록 하는 것이 콘크리트의 건조수축, 재료 분리 등이 일어나지 않는 조건으로 바람직하다.The water is not limited to the type, but it is preferable to use purified water without impurities. In addition, water and binder (W/B) are values that determine the strength and durability of concrete, such as design standard strength and mixing strength. It is preferable under the condition that the etc. do not occur.
상기 고로슬래그는 선철 제조 공정의 부산물인 수재슬래그를 미분쇄한 것으로 시멘트의 장기강도를 높여주고, 수밀성, 내해수성을 증대시키는 역할을 하게 된다. 상기 고로슬래그는 분말도 2,000 내지 15,000㎠/g, 바람직하게는 4,000 내지 8,000㎠/g 을 사용하는 것이 콘크리트 조성물의 유동성을 유지시키면서 콘크리트 조성물의 강도발현이 저하되지 않아 좋다. 또한 상기 고로슬래그는 전체 100 중량% 중에서 2 내지 6 중량%의 무수황산(SO3)을 포함하는 것이 좋으며, 바람직하게는 2 내지 3 중량% 첨가하는 것이 좋다. 상기 무수황산은 고로슬래그를 미분쇄할 때 첨가되는 것이며, 보조자극제의 역할을 수행하게 된다.The blast furnace slag is finely pulverized granulated slag, which is a by-product of the pig iron manufacturing process, and serves to increase the long-term strength of cement and increase water tightness and seawater resistance. The blast furnace slag has a powder degree of 2,000 to 15,000 cm 2 / g, preferably 4,000 to 8,000 cm 2 / g, so that the strength development of the concrete composition is not reduced while maintaining the fluidity of the concrete composition. In addition, the blast furnace slag preferably contains 2 to 6% by weight of sulfuric anhydride (SO 3 ) out of 100% by weight, preferably 2 to 3% by weight. The anhydrous sulfuric acid is added when blast furnace slag is pulverized, and serves as a co-stimulant.
상기 플라이애시는 포졸란 반응에 의하여 콘크리트의 장기 강도를 증진시키고 콘크리트 조직의 수밀성, 내구성, 내화학성을 강화시키는 역할을 하는 것으로, 화력발전소에서 석탄을 사용하고 남은 석탄재로서 완전히 연소되어 비중이 2.0 내지 2.4, 바람직하게는 2.1 내지 2.2 범위에 드는 것을 사용하는 것이 바람직하며, 분말도는 3,500 내지 4,500㎠/g, 강열 감량은 5% 미만인 것을 사용하는 것이 바람직하다.The fly ash serves to enhance the long-term strength of concrete by a pozzolanic reaction and to enhance the watertightness, durability, and chemical resistance of the concrete structure, and is completely burned as coal ash remaining after using coal in a thermal power plant and has a specific gravity of 2.0 to 2.4 , Preferably it is preferable to use one in the range of 2.1 to 2.2, and it is preferable to use one with a fineness of 3,500 to 4,500 cm 2 / g and an ignition loss of less than 5%.
또한 본 발명의 조성물에는 상기에서 언급한 바는 없으나 굵은 골재와 잔 골재가 더 포함되는데, 상기 굵은 골재는 일반적으로 자갈(gravels)로도 불리며, 당업계에서 일반적으로 사용하는 것이라면 종류에 한정하지 않는다. 상기 굵은 골재는 부순 골재 또는 천연골재를 사용하는 것이 좋으며, 바람직하게는 KS F 2502 또는 KS F 2527을 만족하는 것을 사용하는 것이 좋다.In addition, although not mentioned above, the composition of the present invention further includes coarse aggregate and fine aggregate. The coarse aggregate is generally referred to as gravels, and is not limited to the type as long as it is commonly used in the art. It is preferable to use crushed aggregate or natural aggregate as the coarse aggregate, preferably one that satisfies KS F 2502 or KS F 2527.
상기 잔골재는 일반적으로 모래라고 통칭되는 것으로 미세골재, 거친골재 모두 사용이 가능하다. 상기 미세골재는 4번 체(ASTM C125, 4.75mm)를 거의 완전하게 통과하는 물질이 좋으며, 실리카 모래 등을 사용하는 것이 좋다. 상기 거친 골재는 4번 채(ASTM C125, 4.75mm)에 주로 남아있는 물질, 예를 들어 실리카 모래, 석영, 대리석, 화강암, 석회석, 방해석, 장석, 충적사, 기타 모래 등 다른 내구성 골재 또는 이들의 혼합물이 좋다. 또한 본 발명에서는 콘크리트의 유동성을 결정하기 위하여 잔골재율(S/a)이 35 내지 55 부피%를 만족하는 것이 좋은데, 이는 전체 골재(모래+자갈, a)체적에 대한 모래(S)의 체적비로 계산할 수 있다.The fine aggregate is generally referred to as sand, and both fine aggregate and coarse aggregate can be used. The fine aggregate is preferably a material that passes almost completely through the No. 4 sieve (ASTM C125, 4.75 mm), and it is preferable to use silica sand or the like. The coarse aggregate is a material mainly remaining in sieve No. 4 (ASTM C125, 4.75mm), for example, other durable aggregates such as silica sand, quartz, marble, granite, limestone, calcite, feldspar, alluvial sand, and other sand, or their The mixture is good. In addition, in the present invention, in order to determine the fluidity of concrete, it is preferable that the fine aggregate ratio (S / a) satisfies 35 to 55% by volume, which is the volume ratio of sand (S) to the total aggregate (sand + gravel, a) volume can be calculated
상기 폴리칼본산계 감수제의 경우 기존에 사용하던 혼화제에 비하여 우수한 감수성능을 발휘할 뿐만 아니라, 슬럼프 로스가 적고, 또한 우수한 혼련성을 가지는 특징이 있다. 이러한 폴리칼본산계는 1개의 주쇄와 측쇄로 구성되어 주쇄는 시멘트 입자의 간격을 넓혀 혼합수가 효과적으로 시멘트와 접촉하여 수화반응을 원활하게 하는 기능을 하여 주로 콘크리트의 감수효과를 높이는 역할을 하고, 측쇄는 시간에 따라 감소하는 콘크리트의 유동특성을 지연시켜 작업성 즉 유동성을 높이는 역할을 하는 것이다. In the case of the polycarboxylic acid-based water reducing agent, it not only exhibits excellent water reducing performance compared to previously used admixtures, but also has a small slump loss and has excellent kneading properties. This polycarboxylate system is composed of one main chain and side chains, and the main chain serves to increase the water reducing effect of concrete by widening the interval between cement particles so that the mixing water effectively contacts cement and facilitates the hydration reaction. It serves to increase workability, that is, fluidity, by delaying the flow characteristics of concrete, which decrease over time.
또한 상기 셀룰로오스 증점제는 재료분리에 대한 저항성을 향상시키도록 하는 것이다. 폴리칼본산계 감수제의 첨가에 의해 작업성이 향상되나 재료분리에 취약할 수 있는 바, 본 발명에서는 셀룰로오스 증점제가 더 첨가되도록 하는 것이다. 여기서 셀룰로오스 증점제는 그 종류를 한정하지 않으나 예로 메틸셀룰로오스, 히드록시메틸셀룰로오스, 카복시메틸셀룰로오스와 같은 메틸계 셀룰로오스; 에틸셀룰로오스, 히드록시에틸셀룰로오스, 카복시에틸셀룰로오스와 같은 에틸계 셀룰로오스; 히드록시프로필셀룰로오스와 같은 프로필계 셀룰로오스에서 선택되는 셀룰로오스계 증점제를 사용할 수 있다. In addition, the cellulose thickener is to improve resistance to material separation. Workability is improved by the addition of a polycarboxylate-based water reducing agent, but it may be vulnerable to material separation, so in the present invention, a cellulose thickener is further added. Here, the cellulose thickener is not limited in its type, but examples thereof include methyl-based cellulose such as methyl cellulose, hydroxymethyl cellulose, and carboxymethyl cellulose; ethyl cellulose such as ethyl cellulose, hydroxyethyl cellulose, and carboxyethyl cellulose; A cellulose-based thickener selected from propyl-based cellulose such as hydroxypropyl cellulose may be used.
상기 수축저감제는 물의 물리적 특성을 바꾸는 것을 특징으로 하는 유기계의 혼화제로서 수축을 지배하는 모세관 응축수에 용해하여 표면장력을 저감시킴으로써 건조시에 모세관 장력을 작게 하여 수축을 저감시키는 기능이 발현되도록 하는 것이다. The shrinkage reducing agent is an organic admixture characterized in that it changes the physical properties of water, and dissolves in the capillary condensate that governs shrinkage to reduce the surface tension, thereby reducing the capillary tension during drying so that the function of reducing shrinkage is expressed. .
상기 수축저감제는 부틸디글리콜, 부틸트라이글리콜, 메틸디글리콜, 부틸폴리글리콜, 에틸폴리글리콜, 메틸트라이글리콜, 에틸글리콜, 모노에틸렌글리콜, 폴리에틸렌글리콜, 폴리알킬렌글리콜 중 하나 또는 둘이상의 혼합물인 것을 특징으로 한다. The shrinkage reducing agent is one or a mixture of two or more of butyldiglycol, butyltriglycol, methyldiglycol, butylpolyglycol, ethylpolyglycol, methyltriglycol, ethylglycol, monoethylene glycol, polyethylene glycol, and polyalkylene glycol. characterized by
한편 상기 수축저감제는 콘크리트의 Ca2 + 농도에 영향을 주어 초기 및 장기강도가 저하되는 문제가 있을 수 있다. On the other hand, the shrinkage reducing agent may have a problem in that initial and long-term strength is lowered by affecting the Ca 2+ concentration of concrete.
이에 본 발명에서는 수축저감제 등의 첨가에 따라 초기 및 장기강도가 저하되는 것을 제어하기 위해 과황산나트륨 및 아민계 첨가제의 혼합물이 더 첨가되는 예가 제시된다. Accordingly, in the present invention, an example in which a mixture of sodium persulfate and an amine-based additive is further added is presented in order to control the decrease in initial and long-term strength according to the addition of a shrinkage reducing agent or the like.
상기 과황산나트륨은 조강첨가제로 작용하게 된다. 상기 조강첨가제는 결합재에 고로슬래그가 포함되는 경우 고로슬래그의 표면에 형성된 불투수성 피막을 깨뜨리는 자극제 역할을 수행하며, 시멘트의 반응을 활성화시키는 효과가 있다. 이를 상세히 설명하면, 열분해 시 발생하는 이온 및 반응형 라디칼이 시멘트의 주성분과 반응하여 반응성을 크게 향상시키게 된다. 그 결과, 초기 수화 및 응결 반응이 촉진되며, 콘크리트의 조강성을 향상시킬 수 있다. The sodium persulfate acts as an early strength additive. The early-strength additive serves as a stimulus to break the impermeable film formed on the surface of the blast furnace slag when blast furnace slag is included in the binder, and has an effect of activating the reaction of cement. Describing this in detail, ions and reactive radicals generated during thermal decomposition react with the main component of cement to greatly improve reactivity. As a result, initial hydration and setting reactions are promoted, and the early strength of concrete can be improved.
이에 더하여 상기 아민계 첨가제는 상기에서 언급한 바와 같이 수축저감제의 첨가에 따라 저하될 수 있는 초기 및 장기강도를 보완하기 위한 것이다. 상기 아민계 첨가제는 콘크리트 내부의 수화반응을 촉진시켜 줌에 따라 수축저감제의 첨가에 따라 수반될 수 있는 초기 및 장기강도 저하를 방지하게 되는 것이다. 이러한 아민계 첨가제는 이하에서 설명하는 과황산나트륨보다는 강도발현 효과는 떨어지지만 강도발현 안정성이 뛰어나다. 그 이유는 과황산나트륨은 콘크리트 내부 조건에 영향을 많이 받지만, 아민계 첨가제는 영향이 상대적으로 적게 받기 때문이다. 따라서 과황산나트륨에 의해 초기강도 저하를 방지하되 아민계 첨가제를 더 배합함으로써 콘크리트가 안정되게 초기 및 장기강도를 발휘할 수 있도록 하는 것이다. 상기 아민계 첨가제는 특별히 한정할 필요는 없으나, 바람직하게는 TIPA, TEA, 포름 우레아, 하이드록시에틸 우레아로 이루어진 그룹에서 선택된 1종 또는 2종 이상을 혼합물을 사용할 수 있다.In addition to this, the amine-based additive is to compensate for the initial and long-term strength that can be reduced according to the addition of the shrinkage reducing agent, as mentioned above. As the amine-based additive promotes the hydration reaction inside the concrete, it prevents deterioration in initial and long-term strength that may accompany the addition of the shrinkage reducing agent. These amine-based additives have a lower strength development effect than sodium persulfate described below, but have excellent strength development stability. The reason is that sodium persulfate is greatly affected by the internal conditions of concrete, but amine-based additives are relatively less affected. Therefore, the reduction in initial strength by sodium persulfate is prevented, but by further mixing amine-based additives, concrete can stably exhibit initial and long-term strength. The amine-based additive is not particularly limited, but preferably, one or a mixture of two or more selected from the group consisting of TIPA, TEA, form urea, and hydroxyethyl urea may be used.
즉 본 발명은 강도보강제로 과황산나트륨과 아민계 첨가제의 혼합물이 첨가되도록 하는데, 과황산나트륨은 고로슬래그의 첨가에 의해 저하될 수 있는 초기강도를 보완하기 위한 것이고, 아민계 첨가제는 수축저감제의 첨가에 의해 저하될 수 있는 초기 및 장기강도 저하를 보완하기 위한 것이다. That is, the present invention is to add a mixture of sodium persulfate and amine-based additives as a strength enhancer, sodium persulfate is to supplement the initial strength that can be reduced by the addition of blast furnace slag, and the amine-based additive is added It is to compensate for the initial and long-term strength degradation that can be reduced by
그런데 저분체 콘크리트에서 고유동성을 확보하기 위해 폴리칼본산계를 다량 첨가하는 경우 재료분리가 발생되어 상기에서 언급한 바와 같이 셀룰로오스계 증점제가 더 첨가되도록 하나, 셀룰로오스계 증점제는 결합재로 고로슬래그를 사용하는 경우 셀룰로오스계 증점제가 시멘트 입자를 잡아주는 것과는 달리 고로슬래그를 잡지 못해 현탁물질의 량이 증가하게 되는 문제가 있다. However, when a large amount of polycarboxylic acid is added to secure high fluidity in low-powder concrete, material separation occurs, and as mentioned above, a cellulose-based thickener is further added, but the cellulose-based thickener uses blast furnace slag as a binder In this case, there is a problem in that the amount of suspended matter increases because the cellulose-based thickener does not catch the blast furnace slag, unlike the cement particles.
이에 본 발명에서는 시멘트 입자는 물론 고로슬래그 입자의 경우도 재료분리에 대한 저항성 등을 향상시키기 위해 폴리에틸렌옥사이드가 더 포함되도록 하는 예를 제시하고 있다. Accordingly, the present invention suggests an example in which polyethylene oxide is further included in order to improve the resistance to material separation in the case of cement particles as well as blast furnace slag particles.
그런데 첨가제로 폴리에틸렌옥사이드만을 첨가하는 경우 재료분리방지에는 효과가 발현되나 이러한 혼화제를 콘크리트 조성에 배합하여 사용하는 경우 카르복시메틸 반응에서 물이 생성되는데 이렇게 생성된 물이 입자간 응집력을 강화시켜 덩어리지게 하는 현상이 발생되는 바, 이러한 현상에 의해 작업성이 저하되는 문제가 발생되는 경우가 있다. However, when only polyethylene oxide is added as an additive, it is effective in preventing material separation, but when such an admixture is mixed and used in a concrete composition, water is generated in the carboxymethyl reaction. Since a phenomenon occurs, there is a case where a problem in which workability is deteriorated due to such a phenomenon occurs.
이에 본 발명에서는 첨가제로 폴리에틸렌옥사이드에 더하여 마그네슘알루미늄실리케이트가 더 포함되도록 하는 예를 제시하고 있는데, 상기 마그네슘알루미늄실리케이트는 혼화제로서 콘크리트 조성물에 첨가되어 배합될 시에 카르복시메틸 반응에서 생성되는 물을 흡수, 제거함으로써 반응물이 덩어리지는 것을 방지하는 역할을 수행하게 되어 폴리에틸렌옥사이드의 첨가에 의해 재료분리가 방지되도록 하면서 이에 더하여 마그네슘알루미늄실리케이트의 첨가에 의해 작업성이 저하되는 것을 방지토록 하기 위한 것이다.Accordingly, in the present invention, an example is provided in which magnesium aluminum silicate is further included in addition to polyethylene oxide as an additive. The magnesium aluminum silicate is added to the concrete composition as an admixture to absorb water generated in the carboxymethyl reaction when mixed, By removing it, it serves to prevent the reactants from clumping, so that material separation is prevented by the addition of polyethylene oxide, and in addition, workability is prevented from being deteriorated by the addition of magnesium aluminum silicate.
이에 더하여 상기 첨가제에 마그네슘알루미늄실리케이트가 첨가됨에 의해 상기에서 언급한 바와 같이 카르복시메틸 반응에서 생성되는 물을 흡수함에 따라 보습제로서 기능도 발현되도록 하는 것이다. 즉 균열저항성의 기능도 발현되는 것이다. In addition to this, as magnesium aluminum silicate is added to the additive, as mentioned above, it absorbs water generated in the carboxymethyl reaction, so that the function as a moisturizer is also expressed. That is, the function of crack resistance is also expressed.
또한 상기 조성들 외에도 소듐 폴리아크릴레이트 스타치가 더 포함되는 예를 제시한다. 이는 상기에서 언급한 바와 같이 혼화제에 있어 첨가제로 폴리에틸렌옥사이드가 포함되어 재료분리를 방지토록 하는데 폴리에틸렌옥사이드에 의해 점성이 너무 일찍 발현되는 경우 충분한 작업성 및 충진성이 확보되지 않는 문제가 있다. In addition to the above compositions, an example in which sodium polyacrylate starch is further included is presented. As mentioned above, polyethylene oxide is included as an additive in the admixture to prevent material separation, but when viscosity is expressed too early by polyethylene oxide, there is a problem in that sufficient workability and filling properties are not secured.
이에 상기 첨가제에는 상기 조성들 외에도 소듐 폴리아크릴레이트 스타치가 더 포함되도록 하는데 소듐 폴리아크릴레이트 스타치가 포함됨에 의해 배합후 타설과정에까지 작업성이 유지되도록 하는 것이다. 즉 폴리에틸렌옥사이드에 의해 배합물이 젤(Gel) 형태가 되는데 소듐 폴리아크릴레이트 스타치의 첨가에 의해 이러한 배합물이 배합과정 등에서 기계적 충돌에 의해 졸(Sol) 형태로 변하여 작업성이 시간적 경과에도 불구 유지되도록 하는 것이며 이후 타설후에 기계적 충돌 등 에너지가 제거되면 다시 젤(Gel) 형태가 되도록 하는 것이다. Accordingly, the additive includes sodium polyacrylate starch in addition to the above compositions, so that workability is maintained until the pouring process after mixing by including sodium polyacrylate starch. In other words, the formulation is in the form of a gel by polyethylene oxide, and by the addition of sodium polyacrylate starch, this formulation is changed to a sol form by mechanical collision during the mixing process so that workability is maintained over time After that, when the energy such as mechanical collision is removed after casting, it is to be in the form of gel again.
한편 본 발명의 조성물이 특히 대형 구조물 등의 용도로 사용될 시 상기에서 언급한 바와 같이 마그네슘알루미늄실리케이트의 작용에 의해 수분증발 등에 의한 균열은 제어할 수 있으나 경화과정에서 온도수축에 의한 균열은 제어할 수 없는데 상기 첨가제에는 이러한 온도균열을 제어하기 위한 조성으로서 상기 첨가제에 상기 조성들 외에 수산화마그네슘이 더 포함되는 예를 제시하고 있다. 상기 수산화마그네슘의 경우 페이스트의 경화과정에서 발생되는 경화열을 흡수하여 온도균열을 제어토록 하기 위한 것이다. On the other hand, when the composition of the present invention is used for purposes such as particularly large structures, cracks due to moisture evaporation, etc., can be controlled by the action of magnesium aluminum silicate as mentioned above, but cracks due to temperature contraction during the curing process cannot be controlled. However, as a composition for controlling such temperature cracking, an example in which magnesium hydroxide is further included in the additive in addition to the above compositions is presented. In the case of the magnesium hydroxide, it is to absorb the curing heat generated during the curing process of the paste to control the temperature crack.
바람직하게 상기 혼화제에는 폴리칼본산계 감수제 100중량부에 대해, 셀룰로스 증점제 20 내지 80중량부, 수축저감제 20 내지 80중량부, 아민계 첨가제 및 과황산나트륨 혼합물 1 내지 10중량부, 폴리에틸렌옥사이드 1 내지 10중량부, 마그네슘알루미늄실리케이트 1 내지 10중량부, 소듐 폴리아크릴레이트 스타치 1 내지 10중량부, 수산화마그네슘 1 내지 10중량부가 포함되도록 하는 것이 타당하다. 바람직하게 아민계 첨가제 및 과황산나트륨 혼합물은 중량비로 (7:3) 내지 (9:1)로 배합됨이 타당하다. Preferably, the admixture contains 20 to 80 parts by weight of a cellulose thickener, 20 to 80 parts by weight of a shrinkage reducing agent, 1 to 10 parts by weight of a mixture of an amine additive and sodium persulfate, and 1 to 10 parts by weight of polyethylene oxide, based on 100 parts by weight of a polycarboxylic acid water reducing agent. It is reasonable to include 1 to 10 parts by weight of magnesium aluminum silicate, 1 to 10 parts by weight of sodium polyacrylate starch, and 1 to 10 parts by weight of magnesium hydroxide. Preferably, the amine-based additive and the sodium persulfate mixture are formulated in a weight ratio of (7:3) to (9:1).
한편 상기 혼화제의 첨가에 의해 상기에서 본 바와 같이 건조수축균열, 온도균열은 제어할 수 있으나, 조기강도 확보에 수반하는 페이스트 수축에 따른 균열 등 다양한 원인에 의한 균열의 제어에 부족함이 있을 수 있는 바, 상기 첨가제에는 상기 조성들 외에도 이타콘산이 표면에 코팅된 벤토나이트가 더 포함되도록 하는 예를 제시한다. 이타콘산이 표면에 코팅된 벤토나이트는 폴리칼본산계 감수제 100중량부에 대해 1 내지 10중량부가 배합되도록 하는 것이 타당하다. On the other hand, although drying shrinkage cracks and temperature cracks can be controlled as described above by the addition of the admixture, there may be a lack of control of cracks caused by various causes such as cracks due to paste shrinkage accompanying securing early strength. , In addition to the above compositions, the additive presents an example in which bentonite coated on the surface of itaconic acid is further included. It is appropriate to mix 1 to 10 parts by weight of bentonite coated with itaconic acid based on 100 parts by weight of the polycarboxylate-based water reducing agent.
벤토나이트는 수분을 흡수하여 체적을 팽창시킴에 의해 경화과정에서 페이스트의 수축을 보상하여 균열에 대한 저항성을 향상시키기 위한 것이다. Bentonite is intended to improve resistance to cracking by compensating for shrinkage of the paste during curing by absorbing moisture and expanding its volume.
여기에 더하여 상기 벤토나이트는 이타콘산이 표면에 코팅되도록 하여 상기 벤토나이트의 수분흡수 과정에서 나트륨이온 등 양이온만이 선택적으로 흡착되도록 하기 위한 것이다. In addition to this, the bentonite is coated with itaconic acid on the surface so that only cations such as sodium ions are selectively adsorbed in the water absorption process of the bentonite.
이는 본 발명의 조성물에 있어 조강성을 확보하기 위해 혼화제의 조성으로 과황산나트륨이 함유되는데 과황산나트륨이 첨가되어 모세관현상에 의해 표면으로 나트륨이온이 용출되거나 페이스트에 존재하는 금속이온이 모세관현상에 의해 표면으로 용출되어 표면에 공극을 형성하며 이러한 표면공극은 표면균열의 포인트로서 작용하게 되는 바, 본 발명에서는 이타콘산이 표면에 코팅된 벤토나이트가 첨가되도록 하여 벤토나이트의 수분흡수에 의한 팽창과정에서 페이스트에 존재하는 나트륨이온 등을 선택적으로 흡착하여 표면균열을 제어토록 하기 위한 것이다. In the composition of the present invention, sodium persulfate is included in the composition of the admixture to secure early rigidity. When sodium persulfate is added, sodium ions are eluted to the surface by capillarity or metal ions present in the paste are removed from the surface by capillarity. eluted to form voids on the surface, and these surface voids act as points of surface cracks. This is to control surface cracking by selectively adsorbing sodium ions.
팽창작용만을 위해 벤토나이트만을 첨가하는 경우에는 수분흡수과정에서 양이온은 물론 음이온도 흡착이 되는데, 이 경우 시멘트 수화반응에서 수산화칼슘을 생성하기 위한 OH-가 흡착되어 수화반응을 저해할 수 있으므로 본 발명에서는 이타콘산이 표면에 코팅된 벤토나이트가 첨가되도록 하여 나트륨이온 등 양이온만 선택적으로 흡착되도록 하는 것이다. When only bentonite is added for expansion, both positive and negative ions are adsorbed during the water absorption process. By adding conic acid-coated bentonite to the surface, only cations such as sodium ions are selectively adsorbed.
상기 이타콘산은 음이온성 고분자로서 벤토나이트 표면에 이타콘산이 코팅되도록 하는 방법은 (-)전하를 띠는 이타콘산 수용액에 벤토나이트를 함침시킨 후 건조시켜 제조될 수 있는 것이다. The itaconic acid is an anionic polymer, and a method for coating the surface of bentonite with itaconic acid may be prepared by impregnating bentonite in an aqueous solution of itaconic acid having a (-) charge and then drying it.
이하 실험예를 통해 본 발명의 실시예를 설명한다. Examples of the present invention will be described through experimental examples below.
본 실험에서의 각 시료는 하기 표 1에서 보는 바와 같은 배합에 의해 제조되었다. 각 시료에 있어 혼화제(AD)의 조성을 달리 하였는 바, 실시예 1은 혼화제에 폴리칼본산계 감수제 100중량부에 대해, 셀룰로스 증점제 20중량부, 수축저감제 20중량부, 폴리에틸렌옥사이드 5중량부가 포함된 예이며, 실시예 2는 실시예 1과 동일하되 아민계 첨가제 및 과황산나트륨 혼합물(중량비로 8 : 2) 5중량부가 더 포함된 예이며, 실시예 3은 실시예2와 동일하되 마그네슘알루미늄실리케이트 5중량부가 더 포함된 예이고, 실시예 4는 실시예 3과 동일하되 소듐 폴리아크릴레이트 스타치 5중량부가 더 포함된 예이고, 실시예 5는 실시예 4와 동일하되 수산화마그네슘 3중량부가 더 포함된 예이며, 실시예 6은 실시예 5와 동일하되 이타콘산이 표면에 코팅된 벤토나이트가 5 중량비가 더 포함된 예이다. Each sample in this experiment was prepared by the formulation shown in Table 1 below. The composition of the admixture (AD) was varied in each sample, and Example 1 contained 20 parts by weight of a cellulose thickener, 20 parts by weight of a shrinkage reducing agent, and 5 parts by weight of polyethylene oxide based on 100 parts by weight of a polycarboxylic acid-based water reducing agent in the admixture. Example, Example 2 is the same as Example 1, but further includes 5 parts by weight of an amine-based additive and a sodium persulfate mixture (8: 2 in weight ratio), Example 3 is the same as Example 2, but magnesium aluminum silicate 5 An example in which parts by weight are further included, and Example 4 is the same as Example 3 but further includes 5 parts by weight of sodium polyacrylate starch, and Example 5 is the same as Example 4 but further includes 3 parts by weight of magnesium hydroxide. Example 6 is the same as Example 5, but an example in which 5 weight ratio of bentonite coated on the surface of itaconic acid is further included.
구분combination
division
(%)W/B
(%)
(%)S/a
(%)
(%/B)AD
(%/B)
구분division
(%)(%)
Slump flowSlump flow
(mm)(mm)
압축강도(Compressive strength (
MpaMPa
))
상기 표 2에 도시된 바는 없으나 실험결과 실시예 1 내지 6 공히 물질량 기준(대한토목학회 기준으로 150mg/l를 초과하지 못하도록 하고 있음)에 비추어 재료분리에 대한 저항성을 만족하고 있는 것으로 판단된다. Although not shown in Table 2, it is determined that the resistance to material separation is satisfied in light of the material amount standard (the Korean Society of Civil Engineers standard does not exceed 150 mg / l) as a result of the experiment.
길이변화율면에서 실시예 2가 실시예 1보다 다소 불리한 효과가 발현되는 것을 알 수 있는데, 이는 실시예 2의 경우 첨가제로 과황산나트륨이 더 포함됨에 따라 조강성이 발현되면서 균열저항성이 다소 저하되는 것을 알 수 있다. It can be seen that Example 2 exhibits a slightly disadvantageous effect compared to Example 1 in terms of the length change rate. Able to know.
또한 실시예 3의 경우가 실시예 1 및 실시예 2보다 유리한 것을 알 수 있는데 이는 상기에서 언급한 바와 같이 마그네슘알루미늄실리케이트가 수분증발에 의한 균열을 제어함에 기인한 것으로 보인다. In addition, it can be seen that the case of Example 3 is more advantageous than Examples 1 and 2, and this seems to be due to the magnesium aluminum silicate controlling cracks caused by moisture evaporation as mentioned above.
또한 실시예 5의 경우가 타 실시예에 비해 길이변화율면에서 유리한 효과가 발현되는 것을 알 수 있는데, 이는 실시예 5의 경우 수산화마그네슘의 더 첨가됨에 의해 온도균열에 대한 저항성의 향상에 기인한 것으로 판단된다. 또한 실시예 6이 가장 유리한 효과를 발현하는 것을 알 수 있는데, 이는 실시예 6에서 이타콘산이 표면에 코팅된 벤토나이트가 더 첨가되어 페이스트의 팽창과 표면균열을 제어함에 기인한 것으로 판단된다. In addition, it can be seen that Example 5 exhibits an advantageous effect in terms of length change rate compared to other Examples, which is due to the improvement of resistance to temperature cracking by the addition of magnesium hydroxide in Example 5. judged In addition, it can be seen that Example 6 exhibits the most advantageous effect, which is determined to be due to the addition of bentonite coated with itaconic acid on the surface in Example 6 to control the expansion and surface cracking of the paste.
한편 실시예 2의 경우가 실시예 1에 비해 다소 유동성면에서 불리한 효과가 발현되는 것을 알 수 있는데 이는 실시예 2의 경우 첨가제로 과황산나트륨이 더 포함됨에 따라 하기에서 보는 바와 같이 조강성이 발현되면서 유동성이 다소 저하되는 것을 알 수 있다. On the other hand, it can be seen that the case of Example 2 exhibits a somewhat disadvantageous effect in terms of fluidity compared to Example 1. It can be seen that the fluidity is slightly lowered.
또한 실시예 3의 경우가 실시예 1은 물론 실시예 2의 경우보다 시간경과(60분)후 유동성에서 유리한 결과가 도출되는 것을 알 수 있는데 이는 실시예 3의 경우 첨가제로 폴리에틸렌옥사이드에 더하여 마그네슘알루미늄실리케이트가 첨가됨에 기인한 것으로 사료되는 바, 상기에서 언급한 바와 같이 마그네슘알루미늄실리케이트가 카르복시메틸 반응에서 생성되는 물을 흡수, 제거함으로써 반응물이 덩어리지는 것을 방지하는 역할을 수행하게 되어 작업성이 저하되는 것을 방지토록 하는 기능이 발현됨에 기인한 것으로 판단된다. 실시예 2에서 보는 바와 같이 과황산나트륨의 첨가에 의해 다소 작업성이 저하되나 실시예 3에서 보는 바와 같이 마그네슘알루미늄실리케이트가 더 첨가되어 조강성이 확보되면서도 작업성이 확보되는 효과가 발현되는 것을 알 수 있다. In addition, it can be seen that in the case of Example 3, more favorable results were obtained in fluidity after time elapsed (60 minutes) than in Example 1 as well as in Example 2. This is because in Example 3, magnesium aluminum was added to polyethylene oxide as an additive. It is believed that this is due to the addition of silicate, and as mentioned above, magnesium aluminum silicate absorbs and removes water generated in the carboxymethyl reaction, thereby preventing the reactant from clumping, resulting in a decrease in workability. It is judged to be due to the expression of the function to prevent it. As shown in Example 2, workability is somewhat deteriorated by the addition of sodium persulfate, but as shown in Example 3, magnesium aluminum silicate is further added to ensure early strength and workability. there is.
또한 실시예 4의 경우가 실시예 3의 경우보다도 시간경과(60분)후 유동성에서 더 유리한 결과가 도출되는 것을 알 수 있는데 이는 실시예 4의 경우 첨가제로 소듐 폴리아크릴레이트 스타치가 더 첨가됨에 기인한 것으로 판단되는 바, 상기에서 언급한 바와 같이 소듐 폴리아크릴레이트 스타치의 첨가에 의해 배합물이 배합과정 등에서 기계적 충돌에 의해 졸(Sol) 형태로 변하여 작업성이 시간적 경과에도 불구 유지됨에 기인한 것으로 판단된다. In addition, it can be seen that in the case of Example 4, more favorable results are obtained in fluidity after time elapsed (60 minutes) than in the case of Example 3, which is due to the addition of sodium polyacrylate starch as an additive in the case of Example 4. As mentioned above, it is judged that the addition of sodium polyacrylate starch is due to the change in the form of sol by mechanical collision in the mixing process, etc., and workability is maintained despite the passage of time. do.
한편 강도면에서 보면 실시예 2가 실시예 1보다 초기강도 등에서 다소 유리한 효과가 발현되는 것을 알 수 있는데, 이는 실시예 2가 강도보강제로 과황산나트륨과 아민계 첨가제의 혼합물이 더 첨가됨에 기인한 것으로, 과황산나트륨에 의해 고로슬래그의 첨가에 의해 저하될 수 있는 초기강도를 보완하는 것이며, 아민계 첨가제에 의해 수축저감제의 첨가에 의해 저하될 수 있는 초기 및 장기강도 저하를 보완하게 되는 것이다. On the other hand, in terms of strength, it can be seen that Example 2 exhibits a somewhat advantageous effect in terms of initial strength, etc. , It is to supplement the initial strength that can be reduced by the addition of blast furnace slag by sodium persulfate, and to supplement the initial and long-term strength deterioration that can be reduced by the addition of a shrinkage reducing agent by the amine additive.
또한 실시예 5의 경우가 실시예 1 내지 실시예 4보다 비교적 강도면에서 유리한 것을 알 수 있는데 이 경우도 상기에서 언급한 바와 같이 수산화마그네슘의 더 첨가됨에 의해 각종 균열에 대한 저항성의 향상에 기인한 것으로 판단된다. 또한 강도면에서 실시예 6이 가장 유리한 효과를 발현하는 것을 알 수 있는데, 이 경우도 이타콘산이 표면에 코팅된 벤토나이트가 더 첨가되어 페이스트의 팽창과 표면균열을 제어함에 기인한 것으로 판단된다. In addition, it can be seen that the case of Example 5 is relatively advantageous in terms of strength compared to Examples 1 to 4. In this case, as mentioned above, the addition of magnesium hydroxide resulted in the improvement of resistance to various cracks. It is judged to be In addition, it can be seen that Example 6 exhibits the most advantageous effect in terms of strength, which is also believed to be due to the addition of bentonite coated with itaconic acid on the surface to control the expansion and surface cracking of the paste.
이상 설명한 내용을 통해 당업자라면 본 발명의 기술사상을 일탈하지 아니하는 범위에서 다양한 변경 및 수정이 가능함을 알 수 있을 것이다. 따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허 청구의 범위에 의해 정하여 져야만 할 것이다. Through the above description, those skilled in the art will understand that various changes and modifications are possible without departing from the spirit of the present invention. Therefore, the technical scope of the present invention should not be limited to the contents described in the detailed description of the specification, but should be determined by the claims.
Claims (7)
A low-shrinkage, medium-flow concrete composition with excellent workability and resistance to material separation, characterized in that it contains a binder containing cement, water, a polycarboxylic acid-based water reducing agent, a cellulose thickener, and a shrinkage reducing agent.
상기 수축저감제는 부틸디글리콜, 부틸트라이글리콜, 메틸디글리콜, 부틸폴리글리콜, 에틸폴리글리콜, 메틸트라이글리콜, 에틸글리콜, 모노에틸렌글리콜, 폴리에틸렌글리콜, 폴리알킬렌글리콜 중 하나 또는 둘이상의 혼합물인 것을 특징으로 하는 작업성 및 재료분리에 대한 저항성이 우수한 저수축 중유동 콘크리트 조성물.
According to claim 1,
The shrinkage reducing agent is one or a mixture of two or more of butyldiglycol, butyltriglycol, methyldiglycol, butylpolyglycol, ethylpolyglycol, methyltriglycol, ethylglycol, monoethylene glycol, polyethylene glycol, and polyalkylene glycol. Low shrinkage medium flow concrete composition with excellent workability and resistance to material separation, characterized in that.
아민계 첨가제 및 과황산나트륨이 더 포함되는 것을 특징으로 하는 작업성 및 재료분리에 대한 저항성이 우수한 저수축 중유동 콘크리트 조성물.
According to claim 1,
Low shrinkage medium flow concrete composition with excellent workability and resistance to material separation, characterized in that it further contains an amine-based additive and sodium persulfate.
폴리에틸렌옥사이드, 마그네슘알루미늄실리케이트가 더 포함되는 것을 특징으로 하는 작업성 및 재료분리에 대한 저항성이 우수한 저수축 중유동 콘크리트 조성물.
According to claim 1,
Low shrinkage medium flow concrete composition with excellent workability and resistance to material separation, characterized in that it further contains polyethylene oxide and magnesium aluminum silicate.
소듐 폴리아크릴레이트 스타치가 더 포함되는 것을 특징으로 하는 작업성 및 재료분리에 대한 저항성이 우수한 저수축 중유동 콘크리트 조성물.
According to claim 3,
Low shrinkage medium flow concrete composition with excellent workability and resistance to material separation, characterized in that it further contains sodium polyacrylate starch.
수산화마그네슘이 더 포함되는 것을 특징으로 하는 작업성 및 재료분리에 대한 저항성이 우수한 저수축 중유동 콘크리트 조성물.
According to claim 4,
Low shrinkage medium flow concrete composition with excellent workability and resistance to material separation, characterized in that magnesium hydroxide is further included.
칼슘설포알루미네이트, 석고, 이타콘산이 표면에 코팅된 벤토나이트가 더 포함되는 것을 특징으로 하는 작업성 및 재료분리에 대한 저항성이 우수한 저수축 중유동 콘크리트 조성물.
According to claim 1,
Low shrinkage medium flow concrete composition with excellent workability and resistance to material separation, characterized in that it further comprises calcium sulfoaluminate, gypsum, and bentonite coated on the surface of itaconic acid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210119382A KR102662384B1 (en) | 2021-09-07 | 2021-09-07 | Flowable concrete composition with excellent workability and resistance to material separation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210119382A KR102662384B1 (en) | 2021-09-07 | 2021-09-07 | Flowable concrete composition with excellent workability and resistance to material separation |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20230036643A true KR20230036643A (en) | 2023-03-15 |
KR102662384B1 KR102662384B1 (en) | 2024-05-02 |
Family
ID=85642051
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210119382A KR102662384B1 (en) | 2021-09-07 | 2021-09-07 | Flowable concrete composition with excellent workability and resistance to material separation |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102662384B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102606777B1 (en) * | 2023-06-28 | 2023-11-29 | 상상시티(주) | Construction method of multi curved surface structure for skateboard using crack control shotcrete composition |
KR102640408B1 (en) * | 2023-06-28 | 2024-02-23 | 우상디앤씨 주식회사 | Construction method of multi curved surface structure for skateboard using self-healing shotcrete composition |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06256056A (en) * | 1993-03-02 | 1994-09-13 | Nippon Zeon Co Ltd | Bleeding-reducing agent for cement-based grout |
KR100769853B1 (en) * | 2006-06-02 | 2007-10-24 | 주식회사 웸 | Self-leveling mortar composition |
KR20150023184A (en) * | 2013-08-23 | 2015-03-05 | 동남기업 주식회사 | Admixtures composition and mortar and concrete composition for revealing high early strength including the same |
KR101568765B1 (en) | 2013-11-13 | 2015-11-13 | 주식회사 케미콘 | Concrete composite for preventing drying shrinkage and crack |
KR20210055280A (en) * | 2019-11-07 | 2021-05-17 | 동남기업 주식회사 | Admixture Composition for General Strength High Flowing Concrete |
-
2021
- 2021-09-07 KR KR1020210119382A patent/KR102662384B1/en active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06256056A (en) * | 1993-03-02 | 1994-09-13 | Nippon Zeon Co Ltd | Bleeding-reducing agent for cement-based grout |
KR100769853B1 (en) * | 2006-06-02 | 2007-10-24 | 주식회사 웸 | Self-leveling mortar composition |
KR20150023184A (en) * | 2013-08-23 | 2015-03-05 | 동남기업 주식회사 | Admixtures composition and mortar and concrete composition for revealing high early strength including the same |
KR101568765B1 (en) | 2013-11-13 | 2015-11-13 | 주식회사 케미콘 | Concrete composite for preventing drying shrinkage and crack |
KR20210055280A (en) * | 2019-11-07 | 2021-05-17 | 동남기업 주식회사 | Admixture Composition for General Strength High Flowing Concrete |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102606777B1 (en) * | 2023-06-28 | 2023-11-29 | 상상시티(주) | Construction method of multi curved surface structure for skateboard using crack control shotcrete composition |
KR102640408B1 (en) * | 2023-06-28 | 2024-02-23 | 우상디앤씨 주식회사 | Construction method of multi curved surface structure for skateboard using self-healing shotcrete composition |
Also Published As
Publication number | Publication date |
---|---|
KR102662384B1 (en) | 2024-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102152603B1 (en) | Concrete composition comprising 3 components using ferro-nickel slag powder and concrete structures manufactured using the same | |
KR101720504B1 (en) | A high early strength cement concrete composition having the improved durability for road pavement and a repairing method of road pavement using the same | |
MX2013013755A (en) | Admixtures for shrink crack reduction of portland cement-based mortars and concretes. | |
KR102424551B1 (en) | Concrete composition for revealing early strength | |
KR102662384B1 (en) | Flowable concrete composition with excellent workability and resistance to material separation | |
KR20220053079A (en) | Repair and Reinforcement Mortar Constructions for Chloride Invasion Resistance and Construction Methods Using them | |
KR101963579B1 (en) | High Early Strength Concrete Composition and Constructing Methods using Thereof | |
KR101612113B1 (en) | Binder compositions for concrete and concrete compositions using the same | |
KR20030036392A (en) | Crack retardant mixture made from flyash and its application to concrete | |
KR101664273B1 (en) | cement mortar compositon and cement mortar comprising the same, method thereof | |
KR101503841B1 (en) | Environment-friendly geopolymer composition for stabilization of soft ground and strength enhancement and the method using thereof | |
KR102655981B1 (en) | Ultra fastening high performance grout composition and grout construction method using the same | |
JP2002068804A (en) | Concrete composition | |
JP5403321B2 (en) | Cement-based material | |
KR102589585B1 (en) | Concrete composition with excellent workability and resistance to material separation | |
KR101217059B1 (en) | Concrete Composition Containing Large Amounts Of Admixture | |
JP6985547B1 (en) | Grout material, grout mortar composition and cured product | |
KR100516758B1 (en) | High strength cement composition and method of high strength cement panel | |
JP4516530B2 (en) | Explosion resistant hardened cement and method for producing the same | |
KR102709083B1 (en) | Early strength concrete composition | |
KR102681389B1 (en) | High Performance Concrete Composition Having Improved Early-Strength Characteristics for Shortening of Period | |
KR101797350B1 (en) | High strength conctete composition for psc girder | |
KR102353380B1 (en) | High Durability Injection Mortar Composition | |
KR102526519B1 (en) | Composition of high-flowing concrete that is effective in noise between floors and improves flat performance by utilizing high-weight aggregates | |
KR102412570B1 (en) | Acid-resistant injection mortar composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |