KR20190055700A - Cathode Active Material for Lithium Secondary Battery and Lithium Secondary Battery Comprising the Same - Google Patents
Cathode Active Material for Lithium Secondary Battery and Lithium Secondary Battery Comprising the Same Download PDFInfo
- Publication number
- KR20190055700A KR20190055700A KR1020180058622A KR20180058622A KR20190055700A KR 20190055700 A KR20190055700 A KR 20190055700A KR 1020180058622 A KR1020180058622 A KR 1020180058622A KR 20180058622 A KR20180058622 A KR 20180058622A KR 20190055700 A KR20190055700 A KR 20190055700A
- Authority
- KR
- South Korea
- Prior art keywords
- active material
- cathode active
- particles
- secondary battery
- lithium secondary
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/006—Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0471—Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
본 발명은 리튬이차전지용 양극 활물질 조성물 및 이를 포함하는 리튬 이차전지에 관한 것으로, 더욱 상세하게는 Ni 조성 및 크기가 다르지만 열처리 온도를 동일하게 제조한 입자의 혼합물로 이루어진 리튬이차전지용 양극 활물질 조성물 및 이를 포함하는 리튬 이차전지에 관한 것이다.The present invention relates to a cathode active material composition for a lithium secondary battery and a lithium secondary battery comprising the same, and more particularly, to a cathode active material composition for a lithium secondary battery comprising a mixture of particles having different Ni composition and size, And more particularly, to a lithium secondary battery including the lithium secondary battery.
이차전지, 이 중에서 리튬이차전지는 모바일 기기, 노트북 컴퓨터 등의 소형 첨단 전자기기분야에서 널리 사용되고 있다. 중·대형 전지개발 또한 이루어지고 있는데, 특히 전기자동차(EV)의 보급으로 인해 고용량의 전기화학적으로 안정한 리튬이차전지의 개발이 진행 중이다. Among them, lithium secondary batteries are widely used in small-sized high-end electronic devices such as mobile devices and notebook computers. Development of mid- and large-sized batteries is also being carried out. Especially, development of high capacity electrochemically stable lithium secondary batteries is under development due to the spread of electric vehicles (EV).
리튬 이차전지의 구성요소들 중에서 양극 활물질은 전지 내에서 전지의 용량 및 성능을 좌우하는데 중요한 역할을 한다.Among the components of the lithium secondary battery, the cathode active material plays an important role in determining the capacity and performance of the battery in the battery.
이차전지 제조업체에서는 양극 활물질의 평균 입도 및 입도 분포 최적화를 기반으로 하여, 양극 극판의 합제 밀도를 향상시켜 이차전지의 용량을 높여가고 있다.Secondary battery manufacturers are increasing the capacity of secondary batteries by improving the density of the positive electrode plates, based on optimization of average particle size and particle size distribution of the cathode active material.
양극 활물질로는 우수한 사이클 특성 등 제반 물성이 상대적으로 우수한 리튬 코발트 산화물(LiCoO2)이 주로 사용되고 있으나, LiCoO2에 이용되는 코발트는 소위 희귀 금속이라고 불리는 금속으로 매장량이 적고 생산지가 편재되어 있어서 공급 면에서 불안정한 문제가 있다. 또한, 이러한 코발트의 공급 불안정 및 리튬 이차전지의 수요 증가로 인해 LiCoO2는 고가라는 문제가 있다. Lithium cobalt oxide (LiCoO 2 ), which has excellent physical properties such as excellent cycle characteristics, is mainly used as a cathode active material. However, since cobalt used in LiCoO 2 is a metal called a rare metal, There is an unstable problem in. In addition, LiCoO 2 has a problem of high cost due to unstable supply of cobalt and increased demand of lithium secondary batteries.
이러한 배경에서, LiCoO2를 대체할 수 있는 양극 활물질에 대한 연구가 꾸준히 진행되어 왔고, LiMnO2, 스피넬 결정구조의 LiMn2O4 등의 리튬 함유 망간 산화물과, 리튬 함유 니켈 산화물(LiNiO2)의 사용도 고려되었으나, LiNiO2는 그것의 제조방법에 따른 특성상, 합리적인 비용으로 실제 양산공정에 적용하기에 어려움이 있고, LiMnO2, LiMn2O4 등의 리튬 망간 산화물은 사이클 특성 등이 나쁘다는 단점을 가지고 있다.In this background, studies on a cathode active material capable of replacing LiCoO 2 have been progressing steadily, and studies have been made on a lithium-containing manganese oxide such as LiMnO 2 , LiMn 2 O 4 having a spinel crystal structure, and a lithium-containing nickel oxide (LiNiO 2 ) It is difficult to apply LiNiO 2 to actual mass production process at a reasonable cost due to the characteristics of LiNiO 2 according to its production method, and lithium manganese oxides such as LiMnO 2 and LiMn 2 O 4 have disadvantages such as poor cycle characteristics Lt; / RTI >
이에, 최근에는 대표적인 대체 물질로서 니켈(Ni), 망간(Mn), 코발트(Co) 중 2종 이상의 전이금속을 포함하는 리튬 복합 전이금속 산화물 또는 리튬 전이금속 인산화물을 양극 활물질로서 이용하는 방법이 연구되고 있고, 특히 Ni, Mn, Co의 3성분계 층상 산화물을 사용하는 것에 대한 연구가 꾸준히 진행되어 왔다.Recently, a method using a lithium-transition metal oxide or a lithium transition metal phosphate containing two or more transition metals among nickel (Ni), manganese (Mn), and cobalt (Co) In particular, studies on the use of three-component layered oxides of Ni, Mn, and Co have been carried out steadily.
한편, 양극 활물질의 에너지 밀도를 높이기 위해서는 대립자와 소립자를 적절히 혼합하여 밀도를 증가시키는 것이 유리하다. 대립자와 소립자는 니켈(Ni)의 함량에 따라 각각의 최적 열처리 온도를 가지고 있는데, 소립자는 비표면적이 대립자보다 넓기 때문에 상대적으로 낮은 열처리 온도에서도 많은 리튬(Li)을 흡수할 수 있다. 하지만, 소립자의 최적 용량을 발현하는 온도 구간은 대립자보다 낮을 수 밖에 없게 된다.On the other hand, in order to increase the energy density of the cathode active material, it is advantageous to increase the density by appropriately mixing the major particles and the minor particles. The major and minor particles have the optimal heat treatment temperature according to the content of nickel. Since the specific surface area is larger than that of the major particles, it can absorb a large amount of lithium Li even at a relatively low heat treatment temperature. However, the temperature range that expresses the optimum capacity of the particles is inevitably lower than that of the opponent.
또한, 혼합 조성물에서 최적의 성능을 내는 온도구간은 혼합비율이 높은 대립자의 온도에 의존하기 때문에 상대적으로 혼합비율이 낮은 소립자는 혼합 조성물에서 최적의 성능을 내기 어려웠다. In addition, since the temperature range for optimum performance of the mixed composition depends on the temperature of the allergic mixture having a high mixing ratio, it is difficult for the fine particles having a relatively low mixing ratio to achieve optimal performance in the mixed composition.
따라서, 대립자와 소립자의 최적온도를 동시에 만족시킬 수 있는 양극 활물질의 개발이 필요한 실정이다.Therefore, it is necessary to develop a cathode active material capable of simultaneously satisfying the optimum temperatures of the large particles and the large particles.
이에, 본 발명자들은 상기 종래기술들의 문제점들을 극복하기 위하여 예의 연구노력한 결과, 대립자 및 소립자의 Ni 조성과 혼합 조성물에서 소립자의 비율을 조절한 리튬 이차전지용 양극 활물질 조성물의 경우, 대립자 및 소립자의 Ni의 조성을 조절하여 열처리 온도를 최적화함으로써 출력 및 수명이 향상된 혼합 조성물을 제조할 수 있음을 확인하고, 본 발명을 완성하게 되었다.As a result, the present inventors have made intensive studies to overcome the problems of the prior art. As a result, in the case of a cathode active material composition for a lithium secondary battery in which the Ni composition of the major and minor particles and the ratio of the small particles in the mixed composition are controlled, It is possible to prepare a mixed composition having improved output and lifetime by adjusting the composition of Ni to optimize the heat treatment temperature, thereby completing the present invention.
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 크기가 다른 입자가 혼합된 양극 활물질 조성물에 있어서, 입자의 크기에 따라 조성을 다르게 하는 새로운 양극 활물질 조성물을 제공하는 것을 목적으로 한다.Disclosure of Invention Technical Problem [8] Accordingly, the present invention has been made to solve the above problems occurring in the prior art, and it is an object of the present invention to provide a novel cathode active material composition having particles of different sizes mixed therein.
본 발명은 또한, 상기 양극 활물질을 포함하는 리튬 이차전지를 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a lithium secondary battery including the positive electrode active material.
본 발명은 상기와 같은 과제를 해결하기 위하여,In order to solve the above problems,
하기 화학식 1로 표시되는 입자 1 및 Particles 1 represented by the following formula (1) and
하기 화학식 2로 표시되는 입자 2로 구성된 양극 활물질 조성물에 있어서, 1. A cathode active material composition comprising particles 2 represented by the following formula (2)
[화학식 1]Lia1Nix1Coy1Mnz1M1-x1-y1-z1O2 Li a1 Ni x1 Co y1 Mn z1 M 1-x1-y1-z1 O 2
[화학식 2]Lia2Nix2Coy2Mnz2M1-x2-y2-z2O2 Li a 2 Ni x 2 Co y 2 Mn z 2 M 1-x 2-y 2 -z 2 O 2
(상기 화학식 1 및 2 에서 0.6≤x1≤0.99, 0.59≤x2≤0.98 이고, 0.5≤a1≤1.5, 0.5≤a2≤1.5, 0.0≤y1≤0.3, 0.0≤y2≤0.3, 0.0≤z1≤0.3, 0.0≤z2≤0.3, 0.0≤1-x1-y1-z1≤0.3, 0.0≤1-x2-y2-z2≤0.3 이고, 0.5? A1? 1.5, 0.5? A2? 1.5, 0.0? Y1? 0.3, 0.0? Y2? 0.3, 0.0? Z1? 0.3, 0.5? 0.0? 1? Z? 1? 0.3, 0.0? 1-x2-y2-z2? 0.3,
M은 B, Ba, Ce, Cr, F, Mg, Al, Cr, V, Ti, Fe, Zr, Zn, Si, Y, Nb, Ga, Sn, Mo, W, P, Sr 및 이들의 조합으로 이루어진 군에서 선택되는 1종 이상의 원소이다.)M is selected from the group consisting of B, Ba, Ce, Cr, F, Mg, Al, Cr, V, Ti, Fe, Zr, Zn, Si, Y, Nb, Ga, Sn, Mo, W, One or more elements selected from the group consisting of
상기 x1, x2는 0.01≤x1-x2≤0.4의 조건을 만족하는 양극 활물질을 제공한다.X1 and x2 satisfy the following condition: 0.01? X1-x2? 0.4.
종래 대립자 및 소립자 혼합 조성물에서 대립자 및 소립자가 최적 용량을 발현하는 온도 구간이 다르고, 혼합 비율이 높은 대립자의 온도 구간에 의존하기 때문에 혼합 조성물에서 소립자의 최적의 성능을 발휘하기 어려웠다. It is difficult to exhibit the optimal performance of the particles in the mixed composition because the temperature range in which the major and minor particles exhibit the optimum capacity is different in the conventional large particle and small particle mixture and depends on the temperature interval of the large particle having a high mixing ratio.
이에, 본 발명자들은 대립자와 소립자의 니켈(Ni) 조성을 조절하여 대립자 및 소립자의 최적 용량을 조절하면서, 대립자 및 소립자의 열처리 온도도 동일하게 할 수 있도록 하여 이에 따라 출력 및 수명이 향상된 리튬 이차전지를 제조할 수 있음을 확인하고, 본 발명을 완성하게 되었다.Accordingly, the present inventors have found that by controlling the nickel (Ni) composition of the major and minor particles, the optimum capacity of the major and minor particles can be controlled and the heat treatment temperatures of the major and minor particles can be made to be the same, The secondary battery can be manufactured, and the present invention has been completed.
본 발명의 리튬 이차전지용 양극 활물질 조성물에 있어서, 상기 x1, x2 는 0.01≤x1-x2≤0.4의 조건을 만족하는 것을 특징으로 한다. In the cathode active material composition for a lithium secondary battery of the present invention, x1 and x2 satisfy the condition of 0.01? X1-x2? 0.4.
즉, 본 발명의 리튬 이차전지용 양극 활물질 조성물에 있어서, 상기 입자 2의 Ni 조성은 입자 1의 Ni 조성보다 1 내지 40 % 낮은 것을 특징으로 하며, 바람직하게는 5 내지 40% 낮은 것을 특징으로 한다.That is, in the cathode active material composition for a lithium secondary battery of the present invention, the Ni composition of the particles 2 is 1 to 40% lower than the Ni composition of the particles 1, and is preferably 5 to 40% lower.
본 발명의 리튬 이차전지용 양극 활물질 조성물에 있어서, 상기 입자 2의 비율이 혼합 조성물 총 중량 대비 1 내지 40중량%인 것을 특징으로 하며, 바람직하게는 5 내지 40중량%인 것을 특징으로 한다.In the cathode active material composition for a lithium secondary battery of the present invention, the ratio of the particles 2 is 1 to 40 wt%, preferably 5 to 40 wt%, based on the total weight of the mixed composition.
본 발명의 일 실험예에 따르면, 혼합 조성물에서 소립자의 비율에 따른 최적 용량 발현을 확인한 결과, 소립자의 Ni 조성이 대립자 보다 5% 낮고, 소립자의 비율이 20 내지 40%일 때 최적의 용량이 발현된 것에 반해 소립자의 비율이 20몰% 일지라도 소립자의 Ni 조성이 대립자와 동일하거나 10몰% 낮을 경우에는 최적의 용량이 발현되지 못하였다.According to one experimental example of the present invention, the optimum capacity of the mixed composition was observed according to the ratio of the small particles. As a result, when the Ni composition of the small particles was 5% lower than that of the large particles and the ratio of the small particles was 20 to 40% The optimum dose was not expressed when the Ni content of the fine particles was equal to or lower than 10% by mole of the major particle, even though the proportion of the fine particles was 20 mol%.
또한, 소립자의 Ni 조성이 대립자 보다 5% 낮고, 소립자의 비율이 20%일 때 출력 특성 및 수명 특성이 향상된 것을 확인하였다. 이러한 결과는, 대립자 대비 소립자의 Ni 조성과 전체 입자에서 혼합되는 소립자의 비율이 모두 충족되어야 혼합 조성물에서 최적의 용량을 발휘할 수 있고, 출력 특성 및 수명 특성이 개선될 수 있음을 의미한다.Further, it was confirmed that the output characteristics and the life characteristics were improved when the Ni composition of the fine particles was 5% lower than that of the major particles and the proportion of the minor particles was 20%. These results indicate that both the Ni composition of the minor particles and the proportion of the minor particles mixed in the total particles can be exerted in the mixed composition and the output characteristics and the life characteristics can be improved.
본 발명의 리튬 이차전지용 양극 활물질 조성물에 있어서, 상기 화학식 1로 표시되는 입자 1의 크기는 6um 내지 30um 이며, 상기 화학식 2로 표시되는 입자 2의 크기는 1um 내지 6um 인 것을 특징으로 한다.In the cathode active material composition for a lithium secondary battery of the present invention, the particle 1 represented by Formula 1 has a size of 6 um to 30 um, and the particle 2 represented by Formula 2 has a size of 1 um to 6 um.
상기 본원 발명에 따른 화학식 1로 표시되는 입자 1의 크기와 화학식 2로 표시되는 입자 2의 크기는 입도측정기에서 분석된 D50 값을 나타낸다.The size of Particle 1 represented by Formula 1 and the size of Particle 2 represented by Formula 2 according to the present invention indicate D50 values analyzed by a particle size analyzer.
본 발명의 리튬 이차전지용 양극 활물질 조성물에 있어서, 상기 리튬이차전지용 양극 활물질 조성물의 전체 평균 Ni 의 몰분율이 60 내지 99% 인 것을 특징으로 한다. In the cathode active material composition for a lithium secondary battery of the present invention, the mole fraction of the total average Ni of the cathode active material composition for a lithium secondary battery is 60 to 99%.
본 발명의 리튬 이차전지용 양극 활물질 조성물에 있어서, 본 발명에 따른 양극 활물질의 대립자 및 소립자의 최적용량 발현온도는 860 내지 720℃인 것을 특징으로 한다.In the cathode active material composition for a lithium secondary battery according to the present invention, the optimum capacity of the major and minor particles of the cathode active material according to the present invention is in the range of 860 to 720 ° C.
본 발명의 일 실험예에 따르면, 1차 열처리품의 니켈 함량에 따른 최적 용량 발현 온도를 확인한 결과, 니켈의 함량에 따라 1차 열처리품의 최적 성능을 발현하는 온도가 변하는 것을 확인하였다. 또한, 소립자의 니켈 함량이 대립자의 니켈 함량보다 5% 낮을 때, 대립자 및 소립자의 최적 용량 발현 온도가 유사해지는 것을 확인하였다. 이러한 결과는, 소립자의 니켈 함량을 조절하여 최적 용량 발현 온도를 대립자의 최적 용량 발현 온도가 유사해지도록 함으로써 제 1 열처리 온도를 동일하게 하고, 결과적으로 소립자의 최적 성능을 최대한 발휘할 수 있음을 의미한다.According to one experimental example of the present invention, it was confirmed that the temperature at which the optimal performance of the first heat treatment was exhibited varied according to the content of nickel, as a result of checking the optimum capacity expression temperature according to the nickel content of the first heat treatment product. It was also confirmed that when the nickel content of the small particles is 5% lower than the nickel content of the major particles, the optimum capacity expression temperatures of the major and minor particles are similar. These results indicate that by adjusting the nickel content of the fine particles, the optimal capacity expression temperature is made to be similar to the optimum capacity expression temperature of the allergen, thereby making the first heat treatment temperature the same and consequently maximizing the optimum performance of the small particles .
본 발명은 또한, 상기 양극 활물질 조성물을 포함하는 리튬 이차전지를 제공한다.The present invention also provides a lithium secondary battery comprising the cathode active material composition.
본 발명은 또한, The present invention also relates to
아래 화학식 3 으로 표시되는 제 1 전구체 및 화학식 4로 표시되는 제 2 전구체를 제조하고 혼합하여 전구체 조성물을 제조하는 단계; Preparing and mixing a first precursor represented by Formula 3 below and a second precursor represented by Formula 4 to prepare a precursor composition;
[화학식 3]Nix1Coy1Mnz1M1-x1-y1-z1(OH)2 ???????? Ni x1 Co y1 Mn z1 M 1-x1-y1-z1 (OH) 2 ?????
[화학식 4]Nix2Coy2Mnz2M1-x2-y2-z2(OH)2 ???????? Ni x2 Co y2 Mn z2 M 1-x2-y2-z2 (OH) 2 ?????
(상기 화학식 3 및 4 에서 0.6≤x1≤0.99, 0.59≤x2≤0.98, 0.0≤y1≤0.3, 0.0≤z1≤0.3, 0.0≤1-x1-y1-z1≤0.3, 0.0≤y2≤0.3, 0.0≤z2≤0.3, 0.0≤1-x2-y2-z2≤0.3 이고, X1-y1-z1? 0.3, 0.0? Y2? 0.3, 0.0, 0.0? Y1? 0.3, 0.0? Y1? 0.3, 0.0? Lt; z2 < 0.3, 0.0 < = x2-y2-
M은 B, Ba, Ce, Cr, F, Mg, Al, Cr, V, Ti, Fe, Zr, Zn, Si, Y, Nb, Ga, Sn, Mo, W, P, Sr 및 이들의 조합으로 이루어진 군에서 선택되는 1종 이상의 원소이다.)M is selected from the group consisting of B, Ba, Ce, Cr, F, Mg, Al, Cr, V, Ti, Fe, Zr, Zn, Si, Y, Nb, Ga, Sn, Mo, W, One or more elements selected from the group consisting of
리튬 화합물과 상기 전구체 조성물을 혼합하고 제 1 온도에서 제1 열처리하는 단계;Mixing the lithium compound and the precursor composition and conducting a first heat treatment at a first temperature;
상기 혼합물에 B, Ba, Ce, Cr, F, Mg, Al, Cr, V, Ti, Fe, Zr, Zn, Si, Y, Nb, Ga, Sn, Mo, W, P, Sr 및 이들의 조합으로 이루어진 군에서 선택되는 1종 이상의 원소를 혼합하고 제 2 온도에서 제2 열처리하는 단계;를 포함하는 본 발명에 의한 양극 활물질 조성물의 제조 방법을 제공한다.The above mixture is mixed with B, Ba, Ce, Cr, F, Mg, Al, Cr, V, Ti, Fe, Zr, Zn, Si, Y, Nb, Ga, Sn, Mo, W, And a second heat treatment at a second temperature. The present invention also provides a method for preparing the cathode active material composition according to the present invention.
본 발명에 의한 양극 활물질 조성물의 제조 방법은 상기 2차 열처리한 혼합물을 증류수로 수세 및 건조하는 단계; 를 더 포함하는 것이 가능하다. The method for preparing a cathode active material composition according to the present invention comprises the steps of washing and rinsing a mixture obtained by the second heat treatment with distilled water; As shown in FIG.
본 발명에 의한 양극 활물질 조성물의 제조 방법은 입자 크기 및 Ni 함량이 다른 제1 전구체 및 제 2 전구체를 각각 제조하고, 상기 제1 전구체 및 제 2 전구체를 혼합한 후, 제1 전구체 및 제 2 전구체를 같은 온도에서 제 1 열처리하는 것을 특징으로 한다. The method for preparing a cathode active material composition according to the present invention comprises the steps of preparing a first precursor and a second precursor which are different in particle size and Ni content from each other and mixing the first precursor and the second precursor and then mixing the first precursor and the second precursor Is subjected to a first heat treatment at the same temperature.
본 발명의 리튬 이차전지용 양극 활물질 조성물에 있어서, 본 발명에 따른 양극 활물질의 대립자 및 소립자의 최적용량 발현온도는 860 내지 720℃인 것을 특징으로 한다.In the cathode active material composition for a lithium secondary battery according to the present invention, the optimum capacity of the major and minor particles of the cathode active material according to the present invention is in the range of 860 to 720 ° C.
본 발명에 있어서 양극 활물질의 니켈 함량에 따른 최적 용량 발현 온도를 확인한 결과, 니켈의 함량에 따라 열처리품의 최적 성능을 발현하는 온도가 변하며, 크기가 작은 입자의 니켈 함량이 크기가 큰 입자의 니켈 함량보다 5% 낮을 때, 크기가 큰 입자 및 크기가 작은 입자의 최적 용량 발현 온도가 유사해지는 것을 확인하였다. As a result of examining the optimal capacity expression temperature according to the nickel content of the positive electrode active material in the present invention, the temperature at which the optimum performance of the heat treatment product is exhibited changes depending on the content of nickel, and the nickel content of the small- It was confirmed that the optimum capacity expression temperatures of the large-sized particles and the small-sized particles became similar to each other.
이로부터 본 발명은 크기가 작은 입자의 니켈 함량을 조절하여 최적 용량 발현 온도를 크기가 큰 입자의 최적 용량 발현 온도가 유사해지도록 함으로써 제1 전구체 및 제 2 전구체를 같은 온도에서 제 1 열처리하고, 크기가 작은 입자도 최적 용량을 발휘하여 양극 활물질 조성물이 최적 성능을 최대한 발휘하도록 하는 것을 특징으로 한다. The present invention provides a method of controlling the nickel content of particles having a small size by first heat treating the first precursor and the second precursor at the same temperature by causing the optimal capacity expression temperature to be similar to the optimum capacity expression temperature of particles having a large size, The particles having a small size exhibit an optimum capacity so that the cathode active material composition can maximally exhibit the optimum performance.
본 발명에 의한 양극 활물질 조성물의 제조 방법에 있어서, 상기 x1, x2 는 0.01≤x1-x2≤0.4의 조건을 만족하는 것을 특징으로 한다. In the method for producing a cathode active material composition according to the present invention, x1 and x2 are characterized by satisfying the condition of 0.01? X1-x2? 0.4.
본 발명에 의한 양극 활물질 조성물의 제조 방법에 있어서, 상기 전구체 조성물을 혼합하는 단계에서는 상기 제 2 전구체는 전구체 조성물 총 중량 대비 5 내지 40 중량%의 비율로 혼합되는 것을 특징으로 한다. In the method of preparing a cathode active material composition according to the present invention, in the step of mixing the precursor composition, the second precursor is mixed at a ratio of 5 to 40% by weight based on the total weight of the precursor composition.
본 발명에 의한 양극 활물질 조성물의 제조 방법에 있어서, 상기 화학식 3으로 표시되는 제 1 전구체 입자의 크기는 6um 내지 30um 이며, 상기 화학식 4로 표시되는 제 2 전구체 입자의 크기는 1um 내지 6um 인 것을 특징으로 한다. In the method of preparing a cathode active material composition according to the present invention, the size of the first precursor particles represented by Formula 3 is 6 袖 m to 30 袖 m, and the size of the second precursor particles represented by Formula 4 is 1 袖 m to 6 袖 m .
본 발명에 따른 리튬 이차전지용 양극 활물질 조성물은 크기가 다른 입자의 혼합물로 이루어지고, 크기가 큰 입자의 Ni 조성 대비 크기가 작은 입자의 Ni 조성 및 혼합물 전체 조성물에 대한 크기가 작은 입자의 혼합 비율을 조절함으로써 최적 용량 발현 온도를 유사하게 조절할 수 있으며, 이에 따라 출력 및 수명이 향상된 리튬 이차전지를 제조할 수 있다.The cathode active material composition for a lithium secondary battery according to the present invention is composed of a mixture of particles having different sizes. The Ni composition of the particles having a smaller size than the Ni composition of the larger particles and the mixing ratio of the smaller particles The optimum capacity expression temperature can be similarly controlled, thereby making it possible to produce a lithium secondary battery having improved output and lifetime.
도 1은 열처리 온도에 따른 본 발명의 양극 활물질의 방전 용량을 확인한 결과를 나타내는 도면이다.
도 2는 본 발명의 양극 활물질(실시예 1)을 SEM으로 촬영한 사진이다.
도 3은 본 발명의 혼합 조성물을 포함하는 리튬 이차전지의 최적 용량 발현을 확인한 결과를 나타내는 도면이다.
도 4는 본 발명의 혼합 조성물을 포함하는 리튬 이차전지의 출력 특성을 확인한 결과를 나타내는 도면이다.
도 5는 본 발명의 혼합 조성물을 포함하는 리튬 이차전지의 수명 특성을 확인한 결과를 나타내는 도면이다.1 is a graph showing the results of checking the discharge capacity of the cathode active material according to the heat treatment temperature.
2 is a SEM photograph of the cathode active material of the present invention (Example 1).
3 is a graph showing the results of confirming optimal capacity expression of a lithium secondary battery comprising the mixed composition of the present invention.
4 is a graph showing the output characteristics of a lithium secondary battery including the mixed composition of the present invention.
5 is a graph showing the results of confirming the life characteristics of a lithium secondary battery including the mixed composition of the present invention.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것이므로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다.Hereinafter, the present invention will be described in more detail with reference to Examples. These embodiments are only for illustrating the present invention, and thus the scope of the present invention is not construed as being limited by these embodiments.
제조예: 양극 활물질의 제조Production Example: Preparation of cathode active material
양극 활물질을 제조하기 위하여 먼저 공침반응에 의하여 NiCoMn(OH)2 로 표시되는 전구체를 제조하였다. 전구체의 Ni 조성은 하기 표 1과 같이 하여 제조하였다.To prepare the cathode active material, a precursor represented by NiCoMn (OH) 2 was first prepared by coprecipitation reaction. The Ni composition of the precursor was prepared as shown in Table 1 below.
제조된 전구체에 LiOH 또는 Li2CO3의 리튬 화합물을 첨가하여 N2, O2/(1~100 LPM) 존재하에 1℃/min ~ 20℃/min의 승온 속도로 4~20시간 동안(유지 구간 기준) 1차 열처리 후, Al을 포함하는 화합물을 0 내지 10 mol % 혼합하여 2차 열처리하여 리튬 이차 전지용 양극 활물질을 제조하였다. The lithium compound of LiOH or Li 2 CO 3 is added to the prepared precursor and the mixture is maintained at a rate of 1 ° C / min to 20 ° C / min in the presence of N 2 , O 2 / (1 to 100 LPM) After the first heat treatment, 0 to 10 mol% of a compound containing Al was mixed and subjected to a second heat treatment to prepare a cathode active material for a lithium secondary battery.
그 다음, 증류수를 준비하고, 증류수를 5~40℃로 일정하게 유지한 후, 상기 제조된 리튬 이차 전지용 양극 활물질을 증류수에 투입하여 온도를 유지시키면서 0.1 시간 내지 10시간 동안 수세하였다.Then, distilled water was prepared, and the distilled water was kept constant at 5 to 40 캜. The prepared cathode active material for lithium secondary battery was put into distilled water and was rinsed for 0.1 to 10 hours while maintaining the temperature.
수세된 양극 활물질을 filter press 후, 50 내지 300℃로 3 내지 24시간 동안 건조를 하였다.The washed cathode active material was filtered and then dried at 50 to 300 DEG C for 3 to 24 hours.
실험예 1: 최적 용량 발현 온도 및 방전 용량의 확인Experimental Example 1: Determination of Optimum Capacity Expression Temperature and Discharge Capacity
제조예 1 내지 12의 입자에 대한 최적 용량을 발현하는 1차 열처리 온도를 확인하는 실험을 진행하였다. Experiments were conducted to confirm the primary heat treatment temperature expressing the optimum capacity for the particles of Production Examples 1 to 12.
또한, 제조된 입자를 포함하는 전지를 제조하여 용량을 측정하고, 그 결과는 하기 표 2 및 도 1에 나타내었다.In addition, a battery containing the produced particles was prepared and the capacity was measured. The results are shown in Table 2 and FIG.
그 결과, 상기 표 2 및 도 1에서 확인할 수 있는 바와 같이, 소립자의 Ni 함량이 대립자보다 약 5% 낮을 때 소립자의 최적 용량을 발현하는 1차 열처리 온도가 대립자와 유사해지는 것을 알 수 있다.As a result, as shown in Table 2 and FIG. 1, it can be seen that when the Ni content of the small particles is about 5% lower than that of the major particles, the primary heat treatment temperature that expresses the optimum capacity of the small particles becomes similar to the major particles .
비교예 1 내지 4, 및 실시예 1 내지 6: 혼합 양극 활물질 조성물의 제조Comparative Examples 1 to 4 and Examples 1 to 6: Preparation of mixed cathode active material composition
하기 표 3의 Ni 조성에 따라 전구체를 먼저 제조하였다. 그 다음, 상기에서 제조된 전구체에 LiOH 또는 Li2CO3의 리튬 화합물을 첨가하여 N2, O2/(1~100 LPM) 존재하에 1℃/min ~ 20℃/min의 승온 속도로 4~20시간 동안(유지 구간 기준) 1차 열처리 후, Al을 포함하는 화합물을 0 내지 10 mol % 혼합하여 2차 열처리하여 리튬 이차 전지용 양극 활물질을 제조하였다. The precursors were first prepared according to the Ni composition in Table 3 below. Next, a lithium compound of LiOH or Li 2 CO 3 is added to the precursor thus prepared, and the mixture is heated at a rate of 1 ° C / min to 20 ° C / min in the presence of N 2 , O 2 / (1 to 100 LPM) After the primary heat treatment for 20 hours (based on the maintenance period), the compound containing Al was mixed with 0 to 10 mol% and subjected to a secondary heat treatment to prepare a cathode active material for a lithium secondary battery.
그 다음, 증류수를 준비하고, 증류수를 5~40℃로 일정하게 유지한 후, 상기 제조된 리튬 이차 전지용 양극 활물질을 증류수에 투입하여 온도를 유지시키면서 0.1 시간 내지 10시간 동안 수세하였다.Then, distilled water was prepared, and the distilled water was kept constant at 5 to 40 캜. The prepared cathode active material for lithium secondary battery was put into distilled water and was rinsed for 0.1 to 10 hours while maintaining the temperature.
수세된 양극 활물질을 filter press 후, 50 내지 300℃로 3 내지 24시간 동안 건조를 하였다.The washed cathode active material was filtered and then dried at 50 to 300 DEG C for 3 to 24 hours.
비율ratio
실험예 2: 양극 활물질의 SEM 측정Experimental Example 2: SEM measurement of the cathode active material
상기 실시예에서 제조된 모든 양극 활물질(실시예 1)의 입자 크기를 확인하기 위하여 전자 주사현미경(SEM)으로 입자를 관찰하여 그 결과를 도 2에 나타내었다.Particles were observed with a scanning electron microscope (SEM) to confirm the particle size of all the cathode active materials prepared in the above examples (Example 1), and the results are shown in FIG.
제조예: 전지의 제조Production Example: Preparation of Cell
하기 혼합 양극 활물질 조성물을 포함하는 전지를 제조하였다. A battery comprising the following mixed cathode active material composition was prepared.
1) 양극 슬러리 제조 [5g 기준] 및 극판 제작 1) Preparation of positive electrode slurry [based on 5g] and electrode plate production
활물질 94wt.%, 도전제(super-P) 3wt.%, Binder(PVDF) 3wt.%를 4.7g : 0.15g : 0.15g 비율로 Auto Mixer를 이용하여 1900rpm/10min 혼합한다. 그 다음, Al-foil[15um]에 도포 후, Micro film-applicator로 밀어 제작한다. 제작한 다음, 135℃ Dry-oven에서 4시간 동안 건조한다.Mix 19 wt% of the active material, 3 wt% of the conductive agent (super-P) and 3 wt% of the binder (PVDF) at a ratio of 4.7 g: 0.15 g: 0.15 g at 1900 rpm / 10 min using an Auto Mixer. Then, it is applied to Al-foil [15 μm] and then pressed with a Micro film-applicator. And then dried in a 135 ° C dry-oven for 4 hours.
2) Coin-cell 제작2) Coin-cell fabrication
양극으로서 Coating 극판을 단위 면적 2cm2로 punching하여 준비하고, 음극으로서 lithium metal foil을, 분리막으로서 W-Scope-20um 폴리프로필렌을, 전해액으로서 in EC/EMC=7/3의 조성을 가지는 1.15M LiPF6을 사용한다. 또한, Coin-cell size는 CR2016, CR2032 type을 사용하여 통상의 방법으로 Argon-filled glove box 에서 조립 제작한다.Lithium metal foil was used as a cathode, W-Scope-20um polypropylene was used as a separator, and 1.15M LiPF 6 having an EC / EMC = 7/3 composition as an electrolyte was prepared by punching a coating electrode plate as a positive electrode with a unit area of 2 cm 2 . Lt; / RTI > Coin-cell size is assembled in an argon-filled glove box using the CR2016 and CR2032 types.
실험예 3: 혼합 조성물에서 소립자의 비율에 따른 최적 용량 발현 확인EXPERIMENTAL EXAMPLE 3: Determination of Optimal Capacity Expression According to Particle Size in Mixture Composition
상기 실시예 1 내지 6 및, 비교예 1 및 4의 코인 셀의 최적 용량 발현을 확인하고, 그 결과를 하기 표 4 및 도 3에 나타내었다.The optimum capacity expressions of the coin cells of Examples 1 to 6 and Comparative Examples 1 and 4 were confirmed, and the results are shown in Table 4 and FIG.
상기 표 4 및 도 3에서 확인할 수 있는 바와 같이, 소립의 Ni 조성이 대립자 보다 5% 낮고, 혼합 조성물에서 소립자의 비율이 20%일 때 최적의 용량이 발현되는 것을 확인하였다.As can be seen from Table 4 and FIG. 3, it was confirmed that the optimal dose was expressed when the Ni composition of the granules was 5% lower than that of the major particles and the ratio of the minor particles was 20% in the mixed composition.
실험예 4: 대소립 혼합 조성물의 출력 특성 확인EXPERIMENTAL EXAMPLE 4: Confirmation of Output Characteristics of Large Mixture Composition
상기 실시예 1 내지 6 및 비교예 1 및 4의 코인 셀의 출력 특성을 확인하고 그 결과를 하기 표 5 및 도 4에 나타내었다. The output characteristics of the coin cells of Examples 1 to 6 and Comparative Examples 1 and 4 were confirmed and the results are shown in Table 5 and FIG.
실험예 5: 대소립 혼합 조성물의 수명특성EXPERIMENTAL EXAMPLE 5: Life characteristics of large premixed composition
상기 실시예 1 내지 6 및, 비교예 1 및 4의 코인 셀의 수명 특성을 확인하고, 그 결과를 하기 표 6 및 도 5에 나타내었다. The life characteristics of the coin cells of Examples 1 to 6 and Comparative Examples 1 and 4 were confirmed, and the results are shown in Table 6 and FIG.
(50 cycle, %)(50 cycles,%)
그 결과, 상기 표 6 및 도 5에서 확인할 수 있는 바와 같이, 실시예 2의 수명이 가장 높다는 것을 알 수 있다.As a result, as shown in Table 6 and FIG. 5, it can be seen that the lifetime of Embodiment 2 is the highest.
Claims (8)
하기 화학식 2로 표시되는 입자 2로 구성된 양극 활물질 조성물에 있어서,
[화학식 1]Lia1Nix1Coy1Mnz1M1-x1-y1-z1O2
[화학식 2]Lia2Nix2Coy2Mnz2M1-x2-y2-z2O2
(상기 화학식 1 및 2 에서 0.6≤x1≤0.99, 0.59≤x2≤0.98 이고, 0.5≤a1≤1.5, 0.5≤a2≤1.5, 0.0≤y1≤0.3, 0.0≤y2≤0.3, 0.0≤z1≤0.3, 0.0≤z2≤0.3, 0.0≤1-x1-y1-z1≤0.3, 0.0≤1-x2-y2-z2≤0.3 이고,
M은 B, Ba, Ce, Cr, F, Mg, Al, Cr, V, Ti, Fe, Zr, Zn, Si, Y, Nb, Ga, Sn, Mo, W, P, Sr 및 이들의 조합으로 이루어진 군에서 선택되는 1종 이상의 원소이다.)
상기 x1, x2 는 0.01≤x1-x2≤0.4 의 조건을 만족하는 것인
양극 활물질 조성물.
Particles 1 represented by the following formula (1) and
1. A cathode active material composition comprising particles 2 represented by the following formula (2)
Li a1 Ni x1 Co y1 Mn z1 M 1-x1-y1-z1 O 2
Li a 2 Ni x 2 Co y 2 Mn z 2 M 1-x 2-y 2 -z 2 O 2
0.5? A1? 1.5, 0.5? A2? 1.5, 0.0? Y1? 0.3, 0.0? Y2? 0.3, 0.0? Z1? 0.3, 0.5? 0.0? 1? Z? 1? 0.3, 0.0? 1-x2-y2-z2? 0.3,
M is selected from the group consisting of B, Ba, Ce, Cr, F, Mg, Al, Cr, V, Ti, Fe, Zr, Zn, Si, Y, Nb, Ga, Sn, Mo, W, One or more elements selected from the group consisting of
X1 and x2 satisfy the condition of 0.01? X1-x2? 0.4,
Cathode active material composition.
상기 입자 2는 양극 활물질 조성물 총 중량 대비 5 내지 40중량%의 비율로 혼합되는 것인
리튬이차전지용 양극 활물질 조성물.
The method according to claim 1,
And the particles 2 are mixed in a proportion of 5 to 40% by weight based on the total weight of the cathode active material composition
Cathode active material composition for lithium secondary battery.
상기 화학식 1로 표시되는 입자 1의 크기는 6um 내지 30um 이며, 상기 화학식 2로 표시되는 입자 2의 크기는 1um 내지 6um 인 것인
리튬이차전지용 양극 활물질 조성물.
The method according to claim 1,
The size of the particle 1 represented by the formula 1 is 6 탆 to 30 탆, and the size of the particle 2 represented by the formula 2 is 1 탆 to 6 탆.
Cathode active material composition for lithium secondary battery.
A lithium secondary battery comprising the cathode active material composition according to any one of claims 1 to 3.
[화학식 3]Nix1Coy1Mnz1M1-x1-y1-z1(OH)2
[화학식 4]Nix2Coy2Mnz2M1-x2-y2-z2(OH)2
(상기 화학식 3 및 4 에서 0.6≤x1≤0.99, 0.59≤x2≤0.98, 0.0≤y1≤0.3, 0.0≤y2≤0.3, 0.0≤z1≤0.3, 0.0≤z2≤0.3, 0.0≤1-x1-y1-z1≤0.3, 0.0≤1-x2-y2-z2≤0.3 이고,
M은 B, Ba, Ce, Cr, F, Mg, Al, Cr, V, Ti, Fe, Zr, Zn, Si, Y, Nb, Ga, Sn, Mo, W, P, Sr 및 이들의 조합으로 이루어진 군에서 선택되는 1종 이상의 원소이다.)
리튬 화합물과 상기 전구체 조성물을 혼합하고 제 1 온도에서 제1 열처리하는 단계;
상기 리튬 화합물과 상기 전구체 조성물 혼합물에 B, Ba, Ce, Cr, F, Mg, Al, Cr, V, Ti, Fe, Zr, Zn, Si, Y, Nb, Ga, Sn, Mo, W, P, Sr 및 이들의 조합으로 이루어진 군에서 선택되는 1종 이상의 원소를 혼합하고 제 2 온도에서 제2 열처리하는 단계; 및
상기 2차 열처리한 혼합물을 증류수로 수세 및 건조하는 단계; 를 포함하는
제 1 항에 의한 양극 활물질 조성물의 제조 방법.
Preparing a first precursor represented by Formula 3 below and a second precursor represented by Formula 4;
???????? Ni x1 Co y1 Mn z1 M 1-x1-y1-z1 (OH) 2 ?????
???????? Ni x2 Co y2 Mn z2 M 1-x2-y2-z2 (OH) 2 ?????
(In the above formulas 3 and 4, 0.6? X1? 0.99, 0.59? X2? 0.98, 0.0? Y1? 0.3, 0.0? Y2? 0.3, 0.0? Z1? 0.3, -z1? 0.3, 0.0? 1-x2-y2-z2? 0.3,
M is selected from the group consisting of B, Ba, Ce, Cr, F, Mg, Al, Cr, V, Ti, Fe, Zr, Zn, Si, Y, Nb, Ga, Sn, Mo, W, One or more elements selected from the group consisting of
Mixing the lithium compound and the precursor composition and conducting a first heat treatment at a first temperature;
Wherein the lithium compound and the precursor composition mixture contain at least one element selected from the group consisting of B, Ba, Ce, Cr, F, Mg, Al, Cr, V, Ti, Fe, Zr, Zn, Si, Y, Nb, Ga, , Sr, and a combination thereof, and performing a second heat treatment at a second temperature; And
Washing the second heat-treated mixture with distilled water and drying; Containing
A method for producing a cathode active material composition according to claim 1.
상기 x1, x2 는 0.01≤x1-x2≤0.4 의 조건을 만족하는 것인
양극 활물질 조성물의 제조 방법.
6. The method of claim 5,
X1 and x2 satisfy the condition of 0.01? X1-x2? 0.4,
A method for producing a cathode active material composition.
상기 전구체 조성물을 혼합하는 단계에서는 상기 제 2 전구체는 전구체 조성물 총 중량 대비 5 내지 40중량% 의 비율로 혼합되는 것인
양극 활물질 조성물의 제조 방법.
6. The method of claim 5,
And the second precursor is mixed in a proportion of 5 to 40% by weight based on the total weight of the precursor composition in the step of mixing the precursor composition
A method for producing a cathode active material composition.
상기 화학식 3으로 표시되는 제 1 전구체 입자의 크기는 6um 내지 30um 이며, 상기 화학식 4로 표시되는 제 2 전구체 입자의 크기는 1um 내지 6um 인 것인
양극 활물질 조성물의 제조 방법.
6. The method of claim 5,
The size of the first precursor particle represented by Formula 3 is 6 um to 30 um, and the size of the second precursor particle represented by Formula 4 is 1 um to 6 um.
A method for producing a cathode active material composition.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
HUE18206564A HUE052396T2 (en) | 2017-11-15 | 2018-11-15 | Cathode active material for lithium secondary battery and lithium secondary battery including the same |
PL18206564T PL3486220T3 (en) | 2017-11-15 | 2018-11-15 | Cathode active material for lithium secondary battery and lithium secondary battery including the same |
EP18206564.9A EP3486220B1 (en) | 2017-11-15 | 2018-11-15 | Cathode active material for lithium secondary battery and lithium secondary battery including the same |
CN201811359367.7A CN109786729B (en) | 2017-11-15 | 2018-11-15 | Anode active material composition for lithium secondary battery and lithium secondary battery comprising same |
JP2018214371A JP6810120B2 (en) | 2017-11-15 | 2018-11-15 | Positive electrode active material composition for lithium secondary battery and lithium secondary battery containing it |
US16/191,920 US11063250B2 (en) | 2017-11-15 | 2018-11-15 | Cathode active material for lithium secondary battery and lithium secondary battery comprising the same |
KR1020200080824A KR102279132B1 (en) | 2017-11-15 | 2020-07-01 | Cathode Active Material for Lithium Secondary Battery and Lithium Secondary Battery Comprising the Same |
JP2020162601A JP7216059B2 (en) | 2017-11-15 | 2020-09-28 | Positive electrode active material composition for lithium secondary battery and lithium secondary battery including the same |
JP2023006606A JP7566942B2 (en) | 2017-11-15 | 2023-01-19 | Positive electrode active material composition for lithium secondary battery and lithium secondary battery including the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170152435 | 2017-11-15 | ||
KR20170152435 | 2017-11-15 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200080824A Division KR102279132B1 (en) | 2017-11-15 | 2020-07-01 | Cathode Active Material for Lithium Secondary Battery and Lithium Secondary Battery Comprising the Same |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20190055700A true KR20190055700A (en) | 2019-05-23 |
Family
ID=66681329
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020180058622A KR20190055700A (en) | 2017-11-15 | 2018-05-23 | Cathode Active Material for Lithium Secondary Battery and Lithium Secondary Battery Comprising the Same |
KR1020200080824A KR102279132B1 (en) | 2017-11-15 | 2020-07-01 | Cathode Active Material for Lithium Secondary Battery and Lithium Secondary Battery Comprising the Same |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200080824A KR102279132B1 (en) | 2017-11-15 | 2020-07-01 | Cathode Active Material for Lithium Secondary Battery and Lithium Secondary Battery Comprising the Same |
Country Status (4)
Country | Link |
---|---|
JP (3) | JP6810120B2 (en) |
KR (2) | KR20190055700A (en) |
CN (1) | CN109786729B (en) |
HU (1) | HUE052396T2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12119491B2 (en) | 2020-05-29 | 2024-10-15 | Lg Chem, Ltd. | Positive electrode active material precursor and preparation method of positive electrode active material precursor |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102339985B1 (en) | 2019-10-31 | 2021-12-17 | 주식회사 에코프로비엠 | Lithium complex oxide |
KR102392379B1 (en) * | 2020-06-30 | 2022-04-29 | 삼성에스디아이 주식회사 | Nickel-based lithium metal composite oxide, preparing method thereof, and lithium secondary battery including a positive electrode including the same |
KR102473536B1 (en) * | 2020-10-30 | 2022-12-02 | 삼성에스디아이 주식회사 | Nickel-based lithium metal composite oxide, preparing method thereof, and lithium secondary battery including a positive electrode including the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140098433A (en) | 2013-01-31 | 2014-08-08 | 주식회사 엘지화학 | Cathode Active Material for Secondary Battery of Improved Durability and Lithium Secondary Battery Comprising the Same |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09231963A (en) * | 1996-02-20 | 1997-09-05 | Fuji Photo Film Co Ltd | Nonaqueous secondary battery |
KR101027764B1 (en) * | 2002-01-08 | 2011-04-07 | 소니 주식회사 | Cathode active material and non-aqueous electrolyte secondary battery using the same |
JP2004031165A (en) | 2002-06-26 | 2004-01-29 | Sony Corp | Nonaqueous electrolyte battery |
US9666862B2 (en) | 2005-02-23 | 2017-05-30 | Lg Chem, Ltd. | Secondary battery of improved lithium ion mobility and cell capacity |
WO2008084679A1 (en) * | 2006-12-28 | 2008-07-17 | Agc Seimi Chemical Co., Ltd. | Lithium-containing composite oxide and method for production thereof |
JP4972624B2 (en) * | 2008-09-30 | 2012-07-11 | 日立ビークルエナジー株式会社 | Positive electrode material for lithium secondary battery and lithium secondary battery using the same |
JP5389620B2 (en) * | 2009-11-27 | 2014-01-15 | 株式会社日立製作所 | Positive electrode material for lithium ion secondary battery and lithium ion secondary battery using the same |
US8871113B2 (en) * | 2010-03-31 | 2014-10-28 | Samsung Sdi Co., Ltd. | Positive active material, and positive electrode and lithium battery including positive active material |
EP2421077B1 (en) * | 2010-08-17 | 2013-10-23 | Umicore | Positive electrode materials combining high safety and high power in a Li rechargeable battery |
JP2012142156A (en) | 2010-12-28 | 2012-07-26 | Sony Corp | Lithium ion secondary battery, positive electrode active material, positive electrode, power tool, electric vehicle, and power storage system |
WO2013137509A1 (en) * | 2012-03-13 | 2013-09-19 | 주식회사 엘앤에프신소재 | Method for manufacturing anode active material for lithium secondary battery, anode active material for lithium secondary battery, and lithium secondary battery |
CN103493257B (en) * | 2012-04-24 | 2017-03-22 | 株式会社Lg 化学 | Active material for composite electrode of lithium secondary battery for increased output, and lithium secondary battery including same |
KR101567039B1 (en) * | 2012-12-13 | 2015-11-10 | 주식회사 에코프로 | Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same |
US10069140B2 (en) * | 2012-12-14 | 2018-09-04 | Umicore | Bimodal lithium transition metal based oxide powder for use in a rechargeable battery |
EP2940761B1 (en) * | 2012-12-26 | 2019-12-18 | IUCF-HYU (Industry-University Cooperation Foundation Hanyang University) | Cathode active material for lithium secondary batteries |
JP6101583B2 (en) * | 2013-07-05 | 2017-03-22 | 日立マクセル株式会社 | Nonaqueous electrolyte secondary battery |
KR101785262B1 (en) * | 2013-07-08 | 2017-10-16 | 삼성에스디아이 주식회사 | Positive electrode active material, preparing method thereof, positive electrode including the same, and lithium secondary battery employing the positive electrode |
WO2015084026A1 (en) * | 2013-12-02 | 2015-06-11 | 주식회사 엘앤에프신소재 | Cathode active material for lithium secondary battery, method for producing same, and lithium secondary battery containing same |
KR102152366B1 (en) * | 2013-12-30 | 2020-09-04 | 삼성에스디아이 주식회사 | cathode active material for lithium secondary battery, a method for preparing the same, and lithium secondary batteries including the same |
US10230107B2 (en) * | 2015-12-31 | 2019-03-12 | Ecopro Bm Co., Ltd. | Method of manufacturing cathode active material and cathode active material manufactured by the same |
EP3349276A3 (en) * | 2017-01-17 | 2018-09-26 | Samsung Electronics Co., Ltd. | Electrode active material, lithium secondary battery containing the electrode active material, and method of preparing the electrode active material |
JP6957257B2 (en) * | 2017-07-31 | 2021-11-02 | パナソニック株式会社 | Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery |
KR102698845B1 (en) * | 2017-12-27 | 2024-08-26 | 주식회사 엘지에너지솔루션 | Cathode active material for lithium rechargeable battery, manufacturing method thereof, cathode including the same, and lithium rechargeable battery including the same |
KR20190013674A (en) * | 2018-08-30 | 2019-02-11 | 주식회사 에코프로비엠 | Lithium composite oxide precursor, process for producing the same, and lithium complex oxide prepared using the same |
-
2018
- 2018-05-23 KR KR1020180058622A patent/KR20190055700A/en not_active IP Right Cessation
- 2018-11-15 CN CN201811359367.7A patent/CN109786729B/en active Active
- 2018-11-15 HU HUE18206564A patent/HUE052396T2/en unknown
- 2018-11-15 JP JP2018214371A patent/JP6810120B2/en active Active
-
2020
- 2020-07-01 KR KR1020200080824A patent/KR102279132B1/en active IP Right Grant
- 2020-09-28 JP JP2020162601A patent/JP7216059B2/en active Active
-
2023
- 2023-01-19 JP JP2023006606A patent/JP7566942B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140098433A (en) | 2013-01-31 | 2014-08-08 | 주식회사 엘지화학 | Cathode Active Material for Secondary Battery of Improved Durability and Lithium Secondary Battery Comprising the Same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12119491B2 (en) | 2020-05-29 | 2024-10-15 | Lg Chem, Ltd. | Positive electrode active material precursor and preparation method of positive electrode active material precursor |
Also Published As
Publication number | Publication date |
---|---|
KR102279132B1 (en) | 2021-07-20 |
JP2020202196A (en) | 2020-12-17 |
JP6810120B2 (en) | 2021-01-06 |
CN109786729B (en) | 2022-03-18 |
KR102279132B9 (en) | 2021-11-12 |
JP2019091691A (en) | 2019-06-13 |
JP7216059B2 (en) | 2023-01-31 |
CN109786729A (en) | 2019-05-21 |
JP7566942B2 (en) | 2024-10-15 |
KR20200085693A (en) | 2020-07-15 |
HUE052396T2 (en) | 2021-04-28 |
JP2023041746A (en) | 2023-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11955633B2 (en) | Positive electrode material and preparation method and usage thereof | |
EP2715856B1 (en) | Positive electrode material having a size dependent composition | |
KR102279132B1 (en) | Cathode Active Material for Lithium Secondary Battery and Lithium Secondary Battery Comprising the Same | |
KR20170075596A (en) | Positive electrode active material for rechargeable lithium battery, method for menufacturing the same, and rechargeable lithium battery including the same | |
KR101458676B1 (en) | Positive active material for lithium secondary battery, method of preparing the same, and lithium secondary battery using the same | |
KR101875868B1 (en) | Lithium complex oxide for lithium secondary battery positive active material and a method of preparing the same | |
KR101977995B1 (en) | Positive electrode active material coated with boron compounds for lithium secondary battery and preparation method thereof | |
US20130299735A1 (en) | Method of producing nanocomposite cathode active material for lithium secondary battery | |
US11677065B2 (en) | Cathode active material of lithium secondary battery | |
KR101874340B1 (en) | Lithium complex oxide for lithium secondary battery positive active material and a method of preparing the same | |
KR101934853B1 (en) | Lithium complex oxide for lithium rechargeable battery positive active material and preparing method of the same | |
JP2020004506A (en) | Positive electrode active substance for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery | |
KR101912202B1 (en) | Lithium complex oxide for lithium secondary battery positive active material and a method of preparing the same | |
KR101190226B1 (en) | Cathode active material for a lithium secondary battery, preparation thereof, and a lithium secondary battery containing the same | |
CN115036474A (en) | Positive electrode material, positive plate comprising positive electrode material and battery | |
US11063250B2 (en) | Cathode active material for lithium secondary battery and lithium secondary battery comprising the same | |
KR100872370B1 (en) | Spinel type Cathode Active Material for Lithium Secondary Batteries and Manufacturing Method for the Same | |
JP7163624B2 (en) | Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the positive electrode active material | |
KR101632887B1 (en) | Cathode active material precursor for lithium rechargeable battery and preparation method thereof, cathode active material for lithium rechargeable battery and lithium rechargeable battery comprising the same | |
KR20130078571A (en) | Nickel-contained metal oxide for cathode active materials of lithium secondary batteries with enhanced properties and cathodes of lithium secondary batteries containing the same | |
KR20220026284A (en) | Composite positive electrode active material with strong superstructure, preparing method for the same, positive electrtode including the same, and lithium ion battery including the same | |
KR101934848B1 (en) | Lithium complex oxide for lithium secondary battery positive active material and a method of preparing the same | |
KR20190083424A (en) | Elemental coating on oxide materials for lithium rechargeable battery | |
KR102214599B1 (en) | Preparation method of lithium-nikel composite oxide for secondary battery positive electrode active material | |
JP2020167014A (en) | Material of positive electrode for lithium ion secondary battery, additive for material of positive electrode for lithium ion secondary battery, lithium ion secondary battery and production method of material of positive electrode for lithium ion secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
X601 | Decision of rejection after re-examination |