KR20180097610A - Polymer emulsion as binder for conductive compositions - Google Patents
Polymer emulsion as binder for conductive compositions Download PDFInfo
- Publication number
- KR20180097610A KR20180097610A KR1020187019269A KR20187019269A KR20180097610A KR 20180097610 A KR20180097610 A KR 20180097610A KR 1020187019269 A KR1020187019269 A KR 1020187019269A KR 20187019269 A KR20187019269 A KR 20187019269A KR 20180097610 A KR20180097610 A KR 20180097610A
- Authority
- KR
- South Korea
- Prior art keywords
- composition
- polymer
- emulsion
- average particle
- particle diameter
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/52—Electrically conductive inks
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F120/00—Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
- C08F120/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F120/10—Esters
- C08F120/12—Esters of monohydric alcohols or phenols
- C08F120/14—Methyl esters, e.g. methyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/38—Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/10—Metal compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/16—Halogen-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/32—Phosphorus-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/02—Halogenated hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/09—Carboxylic acids; Metal salts thereof; Anhydrides thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
- C08L101/02—Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
- C08L101/04—Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing halogen atoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/02—Printing inks
- C09D11/03—Printing inks characterised by features other than the chemical nature of the binder
- C09D11/037—Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/02—Printing inks
- C09D11/10—Printing inks based on artificial resins
- C09D11/106—Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C09D11/107—Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from unsaturated acids or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/02—Printing inks
- C09D11/10—Printing inks based on artificial resins
- C09D11/106—Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C09D11/108—Hydrocarbon resins
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C5/00—Alloys based on noble metals
- C22C5/06—Alloys based on silver
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/052—Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
- B22F1/0545—Dispersions or suspensions of nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2410/00—Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
- C08F2410/01—Additive used together with the catalyst, excluding compounds containing Al or B
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/001—Conductive additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/003—Additives being defined by their diameter
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/51—Phosphorus bound to oxygen
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0408—Light metal alloys
- C22C1/0416—Aluminium-based alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0466—Alloys based on noble metals
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Dispersion Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Conductive Materials (AREA)
- Manufacturing Of Electric Cables (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
Abstract
본원에서는 개선된 전도도를 갖는 금속 전도성 조성물을 제공한다. 개선된 전도도는 소결제 및 중합체 에멀젼의 첨가에 기인한다.The present invention provides a metal conductive composition having improved conductivity. Improved conductivity is due to sintering and addition of polymer emulsions.
Description
본원에서는 개선된 전도도를 갖는 전도성 조성물을 제공한다. 개선된 전도도는 금속 입자를 갖는 전도성 조성물에 결합제로서 하나 이상의 중합체 에멀젼 및 하나 이상의 소결제의 첨가에 기인한다.Provided herein are conductive compositions having improved conductivity. The improved conductivity is due to the addition of at least one polymer emulsion and at least one sintering agent as a binder to the conductive composition having metal particles.
전도성 조성물은 공지되어있다. 예로는 인쇄된 전자적 적용에서 사용되는 전도성 잉크이다. 그들 조성물에 전도도를 부여하는데 사용되는 주요 구성성분 중 하나는 은이다. 최근에 은 가격이 크게 변동하여, 제조업자가 그들의 제품 라인을 관리하기 어렵게 만들었다. 따라서 근래에는 전도도에 관련된 연구 및 개발 조사가 보편화되어 왔다.Conductive compositions are known. Examples are conductive inks used in printed electronic applications. One of the major components used to impart conductivity to their compositions is silver. In recent years, silver prices have fluctuated significantly, making it difficult for manufacturers to manage their product lines. Research and development studies related to conductivity have become popular in recent years.
지금까지, 전도성 조성물을 만들어내고 그와 같은 조성물의 전도도를 개선시키기 위해 다양한 접근법이 사용되어 왔다. 예를 들어, 은 착물이 조성물에 도입되고, 그 다음에 조성물은 은 착물을 분해하기 위해 150 ℃ 초과와 같은 승온 조건에 노출된다. 은 착물의 분해 후, 전기 전도도를 향상시킬 수 있는 은 나노입자가 반응계 내에서 형성된다. 그러나, 열에 민감한 많은 적용은 150 ℃ 미만의 처리 온도를 요구한다.To date, various approaches have been used to produce conductive compositions and to improve the conductivity of such compositions. For example, a silver complex is introduced into the composition, and then the composition is exposed to elevated temperature conditions such as above 150 DEG C to decompose the silver complex. After the decomposition of the silver complex, silver nanoparticles capable of improving the electrical conductivity are formed in the reaction system. However, many applications that are sensitive to heat require processing temperatures below 150 ° C.
가요성 전자기기의 개발에 따라, 감열성 기판의 사용은 전자기기 산업에서 더욱 보편화되어, 150 ℃ 미만의 온도에서 처리된 후에 높은 전기 전도도를 갖는 재료에 대한 강한 수요가 발생한다. 예를 들어, 모바일 기술의 진보 및 더 큰 화면 및 더 좁은 베젤(bezel)에 대한 소비자의 열망으로 인해 터치 스크린 센서에서 베젤 너비를 줄이고 베젤 라인의 전기 전도도를 개선시키는 것에 대한 긴급한 필요가 있다.With the development of flexible electronic devices, the use of thermally sensitive substrates is becoming more and more common in the electronics industry, creating a strong demand for materials with high electrical conductivity after processing at temperatures below 150 ° C. For example, there is an urgent need to reduce the bezel width and improve the electrical conductivity of the bezel line in touch screen sensors due to advances in mobile technology and consumer aspirations of larger screens and narrower bezels.
따라서, 공지된 전도성 잉크 조성물을 사용하여 전기 전도도가 달성되는 방식에 의해 부과된 어려움에 대한 대안적인 해결책을 제공하는 것이 바람직할 것이다.Accordingly, it would be desirable to provide an alternative solution to the difficulties imposed by the manner in which electrical conductivity is achieved using known conductive ink compositions.
본 발명은 이와 같은 해결책을 제공한다.The present invention provides such a solution.
대략적으로 말하자면, 본 발명은 하기를 포함하는 소결가능한 전도성 조성물을 제공한다:Broadly speaking, the present invention provides a sinterable conductive composition comprising:
약 5 nm 초과 내지 약 100 ㎛의 평균 입자 직경을 갖는 금속 성분;A metal component having an average particle diameter of greater than about 5 nm to about 100 mu m;
소결제; 및Subpayment; And
물 및 약 5 nm 내지 1000 ㎛의 평균 입자 직경을 갖는 하나 이상의 중합체를 포함하는 에멀젼.An emulsion comprising water and at least one polymer having an average particle diameter of about 5 nm to 1000 mu m.
더 특정한 실시양태에서, 본 발명은 하기를 포함하는 소결가능한 전도성 조성물을 제공한다:In a more particular embodiment, the present invention provides a sinterable conductive composition comprising:
약 5 nm 초과 내지 약 100 ㎛의 평균 입자 직경을 갖는 은, 알루미늄, 금, 게르마늄 또는 이들의 산화물이나 합금으로 제조되거나 도핑된 금속 성분;Metal components made or doped with silver, aluminum, gold, germanium or oxides or alloys thereof having an average particle diameter of greater than about 5 nm to about 100 mu m;
인산, 포스폰산, 포름산, 아세트산, 할로겐화 수소 및 I 및 II 족 금속의 할로겐화물 염으로부터 선택되는 소결제; 및Phosphoric acid, phosphonic acid, formic acid, acetic acid, hydrogen halides and halide salts of metals of Groups I and II; And
물 및 약 5 nm 내지 1000 ㎛의 평균 입자 직경을 갖는 하나 이상의 중합체를 포함하는 에멀젼.An emulsion comprising water and at least one polymer having an average particle diameter of about 5 nm to 1000 mu m.
다른 보다 특정한 측면에서, 본 발명은 하기를 포함하는 소결가능한 전도성 잉크 조성물을 제공한다:In another more particular aspect, the present invention provides a sinterable conductive ink composition comprising:
약 5 nm 초과 내지 약 100 ㎛의 평균 입자 직경을 갖는 금속 성분; 및A metal component having an average particle diameter of greater than about 5 nm to about 100 mu m; And
물 및 약 5 nm 내지 약 100 ㎛의 평균 입자 직경을 갖는 유기할로겐 잔기로 그래프트된(grafted) 하나 이상의 중합체를 포함하는 에멀젼.An emulsion comprising at least one polymer grafted with water and an organohalogen moiety having an average particle diameter of from about 5 nm to about 100 mu m.
또다른 측면에서, 본 발명은 하기 단계를 포함하는, 전도성 조성물의 전기 전도도를 개선시키는 방법을 제공한다:In another aspect, the invention provides a method of improving the electrical conductivity of a conductive composition, comprising the steps of:
물 및 약 5 nm 내지 약 100 ㎛의 평균 입자 직경을 갖는 하나 이상의 중합체를 포함하는 에멀젼을 제공하는 단계;Providing an emulsion comprising water and at least one polymer having an average particle diameter of from about 5 nm to about 100 [mu] m;
에멀젼에 소결제를 제공하는 단계;Providing a sub-settling to the emulsion;
전도성 조성물을 형성하기 위해, 약 5 nm 초과 내지 약 100 ㎛의 평균 입자 직경을 갖는 금속 성분을 에멀젼에 제공하는 단계; 및Providing a metal component to the emulsion having an average particle diameter of greater than about 5 nm to about 100 mu m to form a conductive composition; And
전도성 조성물을 소결시키기에 충분한 시간 동안 실온 내지 약 200 ℃의 온도에 전도성 조성물을 노출시키는 단계.Exposing the conductive composition to a temperature of from room temperature to about 200 < 0 > C for a time sufficient to sinter the conductive composition.
한층 또다른 측면에서, 본 발명은 본 발명의 조성물이 배치된 기판을 제공한다.In yet another aspect, the invention provides a substrate on which a composition of the present invention is disposed.
더 한층 또다른 측면에서, 본 발명은 물 및 유기할로겐 잔기로 그래프트된 하나 이상의 중합체를 포함하는 에멀젼을 제공한다.In yet another aspect, the present invention provides an emulsion comprising at least one polymer grafted with water and an organohalogen moiety.
이들 실시양태 또는 측면 중 어느 하나에서, 중합체는 70 ℃ 초과의 Tg 및/또는 약 200,000 Mw의 분자량을 가질 수 있다.In any of these embodiments or aspects, the polymer may have a molecular weight of Tg and / or from about 200,000 M w of more than 70 ℃.
이 에멀젼은 금속 입자를 보조하여 소결 네트워크를 형성함으로써 조성물에 개선된 전도도를 제공한다.This emulsion provides improved conductivity to the composition by assisting the metal particles to form a sintered network.
또한, 상기 에멀젼은 성분으로서 물을 함유하기 때문에, 유사한 역할을 하는 용매 베이스 에멀젼과 비교하여 건강, 안전 및 환경적 이점을 촉진시킨다.In addition, since the emulsion contains water as a component, it promotes health, safety and environmental benefits as compared to solvent base emulsions that play a similar role.
도 1은 각각 120 ℃의 온도에서 30 분의 시간 동안 가열한 후에 찍은 대조군 1 및 샘플 번호 1의 SEM 이미지를 표현한다. 대조군 1에 나타난 은 나노 입자는 보다 과립 형태로 존재하는 반면, 샘플 번호 1은 보다 3 차원 구조로 응집되어, 간극이 감소되고 따라서 그 사이의 공극이 감소된 것으로 나타난다.Figure 1 depicts SEM images of Control 1 and Sample No. 1 taken after heating for 30 minutes at a temperature of 120 ° C, respectively. The silver nanoparticles shown in Control 1 are present in a more granular form, while Sample No. 1 is more agglomerated into a three-dimensional structure, reducing the gap and thus reducing the voids therebetween.
전술한 바와 같이, 본 발명은 하기를 포함하는 소결가능한 전도성 조성물을 제공한다:As described above, the present invention provides a sinterable conductive composition comprising:
약 5 nm 초과 내지 약 100 ㎛의 평균 입자 직경을 갖는 금속 성분;A metal component having an average particle diameter of greater than about 5 nm to about 100 mu m;
소결제; 및Subpayment; And
물 및 약 5 nm 내지 1000 ㎛의 평균 입자 직경을 갖는 하나 이상의 중합체를 포함하는 에멀젼.An emulsion comprising water and at least one polymer having an average particle diameter of about 5 nm to 1000 mu m.
본 발명에 따라, 적합한 소결가능한 전도성 조성물은 1 × 10-4 이하의 VR을 가져야 한다.In accordance with the present invention, a suitable sinterable conductive composition should have a VR of 1 x 10 < -4 >
보다 특정한 실시양태에서, 본 발명은 하기를 포함하는 소결가능한 전도성 조성물을 제공한다:In a more particular embodiment, the present invention provides a sinterable conductive composition comprising:
약 5 nm 초과 내지 약 100 ㎛의 평균 입자 직경을 갖는 은, 알루미늄, 금, 게르마늄 또는 이들의 산화물이나 합금으로 제조되거나 도핑된 금속 성분;Metal components made or doped with silver, aluminum, gold, germanium or oxides or alloys thereof having an average particle diameter of greater than about 5 nm to about 100 mu m;
인산, 포스폰산, 포름산, 아세트산, 할로겐화 수소 및 I 및 II 족 금속의 할로겐화물 염으로부터 선택되는 소결제; 및Phosphoric acid, phosphonic acid, formic acid, acetic acid, hydrogen halides and halide salts of metals of Groups I and II; And
약 95 % 이하의 물 및 결합제로서 작용하는 약 5 nm 내지 1000 ㎛의 평균 입자 직경을 갖는 하나 이상의 중합체를 포함하는 에멀젼.An emulsion comprising at least about 95% water and at least one polymer having an average particle diameter of from about 5 nm to about 1000 [mu] m serving as a binder.
다른 보다 특정한 실시양태에서, 본 발명은 하기를 포함하는 소결가능한 전도성 잉크 조성물을 제공한다:In another more particular embodiment, the present invention provides a sinterable conductive ink composition comprising:
평균 입자 직경이 약 5 nm 초과 내지 약 100 ㎛인 금속 성분; 및A metal component having an average particle diameter of greater than about 5 nm to about 100 [mu] m; And
물 및 평균 입자 직경이 약 5 nm 내지 1000 ㎛인 유기할로겐 잔기로 그래프트된 하나 이상의 중합체를 포함하는 에멀젼.An emulsion comprising water and at least one polymer grafted with an organohalogen moiety having an average particle diameter of about 5 nm to 1000 mu m.
또다른 측면에서, 본 발명은 하기 단계를 포함하는, 조성물의 전기 전도도를 개선시키는 방법을 제공한다:In another aspect, the invention provides a method of improving the electrical conductivity of a composition, comprising the steps of:
물 및 약 5 nm 내지 1000 ㎛의 평균 입자 직경을 갖는 하나 이상의 중합체를 포함하는 에멀젼을 제공하는 단계;Providing an emulsion comprising water and at least one polymer having an average particle diameter of about 5 nm to 1000 mu m;
에멀젼에 소결제를 제공하는 단계;Providing a sub-settling to the emulsion;
잉크 조성물을 형성하기 위해, 약 5 nm 초과 내지 약 100 ㎛의 평균 입자 직경을 갖는 금속 성분을 에멀젼에 제공하는 단계; 및Providing an emulsion with a metal component having an average particle diameter of greater than about 5 nm to about 100 mu m to form an ink composition; And
잉크 조성물을 소결시키기에 충분한 시간 동안 실온 내지 약 200 ℃의 온도에 조성물을 노출시키는 단계.Exposing the composition to a temperature of from room temperature to about 200 < 0 > C for a time sufficient to sinter the ink composition.
한층 또다른 측면에서, 본 발명은 본 발명의 조성물이 배치된 기판을 제공한다.In yet another aspect, the invention provides a substrate on which a composition of the present invention is disposed.
더 한층 또다른 측면에서, 본 발명은 물 및 유기할로겐 잔기로 그래프트된 하나 이상의 중합체를 포함하는 에멀젼을 제공한다.In yet another aspect, the present invention provides an emulsion comprising at least one polymer grafted with water and an organohalogen moiety.
전도성 조성물에서, 다양한 실시양태에서, 금속 성분은 은, 알루미늄, 금, 게르마늄 또는 이들의 산화물이나 합금으로 제조되거나 도핑된 금속으로부터 선택될 수 있다. 금속 성분의 평균 입자 직경은 약 20 nm 내지 약 1 ㎛ 미만, 예컨대 약 200 내지 약 1000 nm이다.In the conductive composition, in various embodiments, the metal component can be selected from metals made or doped with silver, aluminum, gold, germanium, or their oxides or alloys. The average particle diameter of the metal component is from about 20 nm to less than about 1 탆, for example, from about 200 to about 1000 nm.
금속 성분이 은인 경우, 은은 상업적 적용에 도움이 되는 임의의 모양일 수 있다. 예를 들어, 은의 구형, 직사각형, 분말 및 박편 모양이 유용하다. 은은 적당한 액체 비히클 내의 분산액으로 또는 건조된 형태의 고체로 공급될 수 있다.If the metal component is silver, silver may be of any shape that is useful for commercial application. For example, silver spheres, rectangles, powders, and flakes are useful. Silver may be supplied as a dispersion in a suitable liquid vehicle or as a solid in a dried form.
은은 미국 오하이오 주 메이필드 하이츠 소재의 페로 코포레이션(Ferro Corporation), 코네티컷주 맨체스터 소재의 인프라매트 어드밴스드 머티어리얼즈(Inframat Advanced Materials), 또는 매사추세츠주 노스 애틀보로 소재의 메탈로 테크놀로지 USA 코포레이션(Metalor Technologies USA Corporation)과 같은 다양한 상업적 공급업체로부터 공급받을 수 있다. 페로로부터 입수가능한 11000-25 및 인프라매트로부터 상업적으로 입수가능한 47MR-23S의 혼합물과 같은 상이한 크기의 은 박편의 혼합물이 또한 사용될 수 있다.Silver is commercially available from Ferro Corporation of Mayfield Heights, Ohio, Inframat Advanced Materials of Manchester, Conn., Or Metalor Technologies of North Attleboro, Mass. USA Corporation). ≪ / RTI > Mixtures of different sized silver flakes, such as a mixture of 11000-25 available from Ferro and 47MR-23S commercially available from Infra Mat may also be used.
은은 조성물의 약 40 내지 약 99.5 중량% 범위, 예컨대 조성물의 약 60 내지 약 98 중량%의 범위로 사용될 수 있다.Silver may be used in a range of from about 40 to about 99.5 weight percent of the composition, such as from about 60 to about 98 weight percent of the composition.
중합체는 스티렌, 부타디엔, 아크릴 및 메타크릴 에스테르, 클로로프렌, 비닐 클로라이드, 비닐 아세테이트, 아크릴로니트릴, 아크릴아미드, 에틸렌, 실록산, 에폭시, 비닐 에테르 및 많은 다른 것들로부터 중합 또는 공중합된 단량체로부터 만들어진 것들로부터 선택되어야 한다. 특히 바람직한 중합체는 폴리스티렌 및 폴리메틸메타크릴레이트를 포함한다.The polymer is selected from those made from monomers polymerized or copolymerized from styrene, butadiene, acrylic and methacrylic esters, chloroprene, vinyl chloride, vinyl acetate, acrylonitrile, acrylamide, ethylene, siloxane, epoxy, vinyl ether and many others . Particularly preferred polymers include polystyrene and polymethylmethacrylate.
에멀젼 중의 중합체 입자의 크기는 평균 입자 크기 및 입자 크기 분포를 제공하는 호리바(HORIBA) LA-910으로 불리는 정적 광산란 장치로 측정되었다.The size of the polymer particles in the emulsion was measured with a static light scattering device called HORIBA LA-910, which provides an average particle size and particle size distribution.
중합체 분자량은 겔 투과 크로마토그래피, 워터 1525 펌프, 2414 RI 검출기 및 2487 UV 검출기, 717 오토 샘플러, 엠파워(Empower) 3 소프트웨어에 의해 측정되었다. 선형 및 좁은 분자량 PMMA 표준이 중량 평균 분자량 ("Mw"), 수 평균 분자량 ("Mn") 및 다분산도 ("Mw/Mn")를 결정하기 위한 보정에 사용되었다.The polymer molecular weights were measured by gel permeation chromatography, water 1525 pump, 2414 RI detector and 2487 UV detector, 717 autosampler, Empower 3 software. The linear and narrow molecular weight PMMA standards for calibration was used for determining the weight average molecular weight ( "M w"), number average molecular weight ( "M n") and the polydispersity ( "M w / M n" ).
일부 실시양태에서, 중합체는 유기할로겐 잔기로 그래프트된다.In some embodiments, the polymer is grafted to an organohalogen moiety.
일부 실시양태에서, 중합체는 디아이오도메틸 잔기로 종결된다.In some embodiments, the polymer is terminated with a diiodomethyl moiety.
중합체는 0.5 내지 90 중량%, 바람직하게는 약 10 중량%의 양으로 에멀젼 중에 존재해야 한다.The polymer should be present in the emulsion in an amount of 0.5 to 90% by weight, preferably about 10% by weight.
중합체에 대한 금속 성분의 입자 크기의 비는 약 0.02 내지 약 50, 예컨대 약 1.0 내지 약 0.1이어야 한다.The ratio of the particle size of the metal component to the polymer should be from about 0.02 to about 50, such as from about 1.0 to about 0.1.
에멀젼은 약 95 중량% 이하, 예컨대 약 50 중량% 이하, 바람직하게는 약 10 중량% 이하의 양으로 물을 포함할 수 있다.The emulsion may contain water in an amount up to about 95% by weight, such as up to about 50% by weight, preferably up to about 10% by weight.
상기 조성물은 산 또는 염일 수 있는 소결제를 포함할 수 있거나, 부분적으로 소결제로 작용하는 유기할로겐 잔기가 그 위에 그래프트된 중합체를 포함할 수 있다. 그러나 임의의 산이 만족하는 것은 아니다. 예를 들어, 황산은 개선된 소결 또는 체적 저항률을 나타내지 않을 것이다. 그러나 인산, 포름산, 아세트산 및 플루오린화수소산, 염산, 브로민화수소산 및 아이오딘화수소산과 같은 할로겐화 수소는 나타낼 것이다.The composition may comprise a sintering agent, which may be an acid or a salt, or may comprise a polymer grafted thereon, the organohalogen moiety acting as a sintering agent in part. However, any acid is not satisfactory. For example, sulfuric acid will not exhibit improved sintering or volume resistivity. However, hydrogen halides such as phosphoric acid, formic acid, acetic acid and hydrofluoric acid, hydrochloric acid, hydrobromic acid and iodine hydrobic acid will appear.
소결제로서, 플루오린화나트륨, 염화나트륨, 브로민화나트륨, 아이오딘화나트륨, 플루오린화칼륨, 염화칼륨, 브로민화칼륨, 아이오딘화칼륨 등과 같은 I 족 및 II 족 금속의 할로겐화물 염 또한 사용될 수 있다.As sintering agents, halide salts of Group I and Group II metals such as sodium fluoride, sodium chloride, sodium bromide, sodium iodide, potassium fluoride, potassium chloride, potassium bromide, potassium iodide and the like may also be used.
소결제는 약 0.01 중량% 내지 약 10 중량%의 양으로 존재한다.The sieving is present in an amount from about 0.01% to about 10% by weight.
소결 보조제는 할로겐화물 염과 같은 고체 형태인 경우, 고체 상태로 첨가될 수 있거나 또는 물에 용해된 용액 (약 50 중량% 이하)으로 첨가될 수 있어 본 발명의 잉크는 약 0.1 내지 5 중량%의 소결 보조제 농도를 갖는다.The sintering aid may be added in solid form, such as a halide salt, or may be added in a solution (not more than about 50 wt.%) Dissolved in water so that the ink of the present invention contains about 0.1 to 5 wt% Sintering aid concentration.
상기 전도성 조성물은 계면활성제를 포함할 수 있다. 계면활성제가 존재하는 경우, 그는 술페이트, 술포네이트, 포스페이트 및 카르복실레이트와 같은 그들의 머리에 음이온성 작용기를 함유하는 음이온성 계면활성제로부터 선택될 수 있다. 주요 알킬 술페이트는 암모늄 라우릴 술페이트, 나트륨 라우릴 술페이트 [또는, 나트륨 도데실 술페이트 (SDS)] 및 관련 알킬-에테르 술페이트, 나트륨 라우레스 술페이트 [또는, 나트륨 라우릴 에테르 술페이트 (SLES)] 및 나트륨 마이레스 술페이트를 포함한다. 계면활성제가 존재하는 경우, 계면활성제는 10 중량% 이하의 양으로 사용될 수 있다.The conductive composition may comprise a surfactant. When surfactants are present, they may be selected from anionic surfactants containing anionic functional groups on their heads such as sulfates, sulfonates, phosphates and carboxylates. The major alkyl sulfates include ammonium lauryl sulfate, sodium lauryl sulfate [or sodium dodecyl sulfate (SDS)] and related alkyl-ether sulfates, sodium laureth sulfate [or sodium lauryl ether sulfate (SLES) < / RTI > and sodium maize sulphate. When a surfactant is present, the surfactant may be used in an amount of 10% by weight or less.
또한, 전도성 조성물은 전도성 촉진제로서 유기할로겐 화합물을 포함할 수 있다. 유기할로겐 화합물은 실온에서 액체이다. 유기할로겐 화합물은 약 150 ℃ 미만, 예를 들어 약 120 ℃ 미만, 바람직하게는 약 100 ℃ 미만, 적절하게는 약 70 ℃ 초과와 같은 비등점을 가져야 한다. 유기할로겐 화합물은 바람직하게는 거기에 부착된 하나 이상의 아이오딘 원자를 갖는다. 바람직하게는, 단지 하나의 아이오딘 원자가 유기아이오딘화물 화합물에 부착된다.In addition, the conductive composition may comprise an organohalogen compound as a conductive promoter. Organohalogen compounds are liquid at room temperature. The organohalogen compound should have a boiling point of less than about 150 캜, such as less than about 120 캜, preferably less than about 100 캜, suitably more than about 70 캜. The organohalogen compound preferably has at least one iodine atom attached thereto. Preferably, only one iodine atom is attached to the organic iodide compound.
유기할로겐 화합물의 유기 부분은 알킬 또는 아릴일 수 있다. 그것이 알킬인 경우, 그는 알킬 부분이 12 개 이하의 탄소 원자인 저급 알킬이어야 한다.The organic moiety of the organohalogen compound may be alkyl or aryl. When it is alkyl, it must be lower alkyl wherein the alkyl moiety is 12 carbon atoms or less.
유기할로겐 화합물의 대표적인 예로는 2-아이오도프로판, 1-아이오도프로판, 2-아이오도-2-메틸프로판, 2-아이오도부탄, 2-플루오로벤조트리플루오라이드, 3-플루오로벤조트리플루오라이드, 4-플루오로벤조트리플루오라이드, 플루오로벤젠, 2-플루오로 에탄올, 1-플루오로도데칸, 1-플루오로헥산, 1-플루오로헵탄 및 트리플루오로아세트산을 포함한다. 물론, 임의의 둘 이상의 이들 유기할로겐 화합물의 혼합물 또한 사용될 수 있다.Representative examples of the organic halogen compound include 2-iodopropane, 1-iodopropane, 2-iodo-2-methylpropane, 2-iodobutane, 2-fluorobenzotrifluoride, 3- Fluoride, 4-fluorobenzotrifluoride, fluorobenzene, 2-fluoroethanol, 1-fluorododecane, 1-fluorohexane, 1-fluoroheptane and trifluoroacetic acid. Of course, mixtures of any two or more of these organohalogen compounds may also be used.
유기할로겐 화합물은 약 5 중량% 이하의 양으로 사용되어야 한다. 바람직하게는 약 0.25 중량%가 효과적이라는 것이 입증되었다.The organohalogen compound should be used in an amount of about 5% by weight or less. It has been demonstrated that preferably about 0.25% by weight is effective.
표 A는 전도도 촉진제로서 유용한 유기할로겐 화합물의 목록을 제공한다. 비등점이 약 150 ℃ 미만인 유기할로겐 화합물은 경화된 전도성 잉크의 잔류물을 최소로 조성한다.Table A provides a list of organohalogen compounds useful as conductivity promoters. An organohalogen compound having a boiling point of less than about 150 ° C minimizes the residue of the cured conductive ink.
표 ATable A
유기할로겐 화합물은 조성물의 전기 전도도를 개선시키고 금속 성분의 로딩을 감소시키면서 전기 전도성을 유지하는데 유용하다.Organohalogen compounds are useful for maintaining electrical conductivity while improving electrical conductivity of the composition and reducing loading of metal components.
본 발명의 전도성 조성물을 보다 쉽게 분배할 수 있게 하기 위해, 적절한 용매에서 조성물을 희석시키는 것이 종종 바람직하다. 희석은 조성물의 약 1 부 대 용매 약 5 부이어야 한다. 만일 선택된 용매가 유기할로겐 화합물과 상용성이 있다면, 많은 용매가 본 발명의 조성물에 사용하기에 적합하다.It is often desirable to dilute the composition in a suitable solvent in order to be able to more easily dispense the conductive composition of the present invention. The dilution should be about 1 part of the composition to about 5 parts solvent. If the selected solvent is compatible with the organohalogen compound, many solvents are suitable for use in the compositions of the present invention.
본 발명의 전도성 조성물은 PET 및 PC와 같은 플라스틱 또는 다른 기판상에 높은 전기 전도도가 요구되는 적용에 적합하다.The conductive compositions of the present invention are suitable for applications requiring high electrical conductivity on plastics such as PET and PC or other substrates.
실시예Example
실시예 1Example 1
조성물은 나노-입자 은 (7K-35, 계면활성제 알콜 용매와 함께, 도와놀(DOWANOL)으로 알려짐, 오하이오주 소재 페로 코포레이션 사제)을 폴리메틸 메타크릴레이트 에멀젼 (물 중의 10 % PMMA, 61 nm의 평균 PMMA 입자 크기를 가짐, 캘리포니아주 소재 매그스피어 코포레이션(Magsphere Corporation) 사제)으로 혼합하여 제조되었다. 소결 보조제인 H3PO4 (물 중 10 중량%)를 샘플 번호 1에 첨가한 다음 3000 rpm에서 60 초 동안 혼합하였다. 대조군으로서, 대조군 1을 사용하여 샘플 번호 1에 대한 성능을 비교하였다. 주사 전자 현미경 ("SEM") 이미지는 히타치 전계 방출 SEM 모델 S-4500을 사용하여 얻었고, 도 1에 제시하였다.The composition was prepared by dissolving polymethyl methacrylate emulsion (10% PMMA in water, 61 nm in water) in nano-particles (7K-35, known as DOWANOL with surfactant alcohol solvent, Ferroc Corporation, Ohio) Average particle size of PMMA, manufactured by Magsphere Corporation, Calif.). Sintering aid H 3 PO 4 (10 wt% in water) was added to Sample No. 1 and then mixed at 3000 rpm for 60 seconds. As a control, the performance against Sample No. 1 was compared using Control 1. Scanning electron microscopy ("SEM") images were obtained using Hitachi Field Emission SEM Model S-4500 and are shown in FIG.
표 1Table 1
표 1의 조성물을 각각 유리 슬라이드에 도포하고, 본원에서 기술한 바와 같이 제조하여 체적 저항률 측정을 할 수 있도록 하였다.The compositions of Table 1 were each applied to glass slides and made as described herein to allow volume resistivity measurements.
제조된 조성물의 체적 저항률 ("VR")은 표준 스트립 방법에 의해 측정되었다. 스트립 전기 전도도 시험을 위한 각각의 표본은 먼저 테이프로 마스킹된 유리 슬라이드 상에 얇은 층을 코팅함으로써 제조되었다. 잉크 층은 주변 온도에서 건조되었고 이어서 설정된 시간에 걸쳐 설계된 온도에서 경화되었다. 저항률은 4-프로브 옴(ohm) 미터로 측정하였고, 체적 저항률은 다음 방정식으로부터 계산하였다: VR=(M)(T)(Wi)/D, 여기서 M은 측정된 저항률 (밀리옴 단위), T는 스트립의 두께 (센티미터 단위, cm), Wi는 스트립의 폭 (cm), D는 프로브 사이의 거리 (cm)이다.The volume resistivity ("VR") of the prepared composition was measured by a standard strip method. Each specimen for the strip electrical conductivity test was prepared by first coating a thin layer on a glass slide that was masked with tape. The ink layer was dried at ambient temperature and then cured at the designed temperature over a set period of time. The resistivity was measured with a 4-probe ohm meter and the volume resistivity was calculated from the following equation: VR = (M) (T) (W i ) / D, where M is the measured resistivity (in milliohms) T is the thickness of the strip in centimeters, cm, W i is the width of the strip in cm, and D is the distance between the probes in cm.
표 1A는 각각 상기 표 1에 기술한 대조군 1 및 본 발명의 조성물, 샘플 번호 1에 대한 체적 저항률 (옴·cm 단위) 측정값을 나타낸다. 조성물은 120 ℃의 온도에서 30 분의 시간 동안 제조되었다.Table 1A shows the values of the volume resistivity (ohm-cm) measured for the control 1 described in Table 1 and the composition of the present invention and the sample No. 1, respectively. The composition was prepared at a temperature of 120 캜 for a period of 30 minutes.
표 1ATable 1A
표 1A는 각각 120 ℃의 온도에서 30 분의 시간 동안 가열한 후에 PMMA 에멀젼 및 소결 보조제 (수성 H3PO4)는 체적 저항률을 감소시키는 반면 (샘플 번호 1), 대조군 (나노 은 페이스트만 있음)은 더 높은 체적 저항률을 갖는다는 것을 나타낸다. PMMA 에멀젼 및 H3PO4의 첨가는 은 잉크의 전기 전도도를 10 승 넘게 개선시켰다.The PMMA emulsion and the sintering aid (aqueous H 3 PO 4 ) reduce the volume resistivity (Sample No. 1), the control group (only the nano silver paste is present), after heating for 30 minutes each at a temperature of 120 ° C, Lt; RTI ID = 0.0 > volume resistivity. ≪ / RTI > The addition of PMMA emulsion and H 3 PO 4 improved the electrical conductivity of silver ink by more than 10 times.
저항률 측정 및 SEM 결과 모두를 고려하면, 본 발명의 조성물에 중합체 에멀젼 및 소결 보조제를 첨가하는 것은 나노 은이 소결되고 상호연결된 네트워크를 형성하는 것을 돕고, 따라서 대조군 조성물보다 훨씬 더 전도성이 높아진다는 것을 추론할 수 있다.Taking both the resistivity measurements and the SEM results into account, it is deduced that the addition of the polymer emulsion and sintering aid to the compositions of the present invention helps the nanosilver to form a sintered and interconnected network and thus is much more conductive than the control composition .
실시예 2Example 2
4 종의 조성물은 나노-입자 은 (7K-35, 오하이오주 소재 메이필드 하이츠 페로 코포레이션 사제)을 폴리스티렌 에멀젼 (물 중 10 % PSt, 62 nm, 200 nm 및 600 nm의 여러가지 평균 PSt 입자 크기를 가짐, 캘리포니아주 패서디나 소재 매그스피어 코포레이션 사제)으로 혼합하여 제조되었다. 소결 보조제인 H3PO4 (물 중 10 중량%)를 샘플 번호 3, 4 및 5에 첨가한 다음 3000 rpm에서 60 초의 시간 동안 혼합하였다. 이렇게-형성된 조성물은 시험 표본을 제조하는 데 사용되었다.Four compositions were prepared by mixing nano-particles (7K-35, Mayfield Heights FerroCorporation, Ohio) with polystyrene emulsion (having various mean PSt particle sizes of 10% PSt, 62 nm, 200 nm and 600 nm in water, Manufactured by Magnesia Corporation, Pasadena, Calif.). Sintering aid H 3 PO 4 (10 wt% in water) was added to Sample Nos. 3, 4 and 5 and then mixed at 3000 rpm for 60 seconds. The so-formed composition was used to prepare test specimens.
표 2Table 2
표 2A는 대조군 2 및 상기 표 2에서 각각 기술된 3 종의 본 발명의 조성물, 샘플 번호 2, 3, 및 4에 대한 체적 저항률 (옴·cm 단위) 측정값을 나타낸다. 조성물은 120 ℃의 온도에서 30 분의 시간 동안 가열되었다.Table 2A shows the volume resistivity (in ohm-cm) measurements for the compositions of the present invention, Sample Nos. 2, 3 and 4, as described in Control 2 and Table 3, respectively. The composition was heated at a temperature of 120 DEG C for a period of 30 minutes.
표 2ATable 2A
표 2A는 120 ℃의 온도에서 30 분의 시간 동안 경화된 후에 소결 보조제 (수성 H3PO4)는 PSt 에멀젼 (샘플 번호 2, 3 및 4)으로 제제화된 은 잉크의 체적 저항률을 감소시키는 반면, 대조군 (소결 보조제, H3PO4 없음)은 더 높은 체적 저항률 갖는다는 것을 나타낸다. 소결 보조제 H3PO4의 첨가는 상이한 입자 크기 (즉, 62 nm, 200 nm, 600 nm)를 갖는 각 PSt 에멀젼과 함께 은 잉크 조성물의 전기 전도도를 개선시켰다. 따라서, 본 발명의 조성물은 대조군 조성물보다 우수한 전기 전도도 성능을 갖는다. 이 정의된 샘플링 내에서, 탁월한 체적 저항률 성능을 달성하기 위해서는 에멀젼 중 PSt 입자 크기가 작을 수록 바람직한 것으로 보인다.Table 2A shows that the sintering aid (aqueous H 3 PO 4 ) reduces the volume resistivity of silver ink formulated with PSt emulsions (Sample Nos. 2, 3 and 4) after curing for a time of 30 minutes at a temperature of 120 ° C, The control (no sintering aid, H 3 PO 4 ) shows a higher volume resistivity. The addition of the sintering aid H 3 PO 4 improved the electrical conductivity of the silver ink composition with each PSt emulsion with different particle sizes (i.e., 62 nm, 200 nm, 600 nm). Thus, the compositions of the present invention have better electrical conductivity performance than the control composition. Within this defined sampling, the smaller the PSt particle size of the emulsion appears to be desirable in order to achieve excellent volume resistivity performance.
실시예 3Example 3
2 종의 조성물은 나노-입자 은 (7K-35, 페로 코포레이션 사제)을 폴리메틸 메타크릴레이트 에멀젼 (물 중의 10 % PMMA, 61 nm의 평균 PMMA 입자 크기를 가짐)으로 혼합하여 제조되었다. 2 종의 상이한 소결 보조제 - H3PO4 및 KI (각각 물 중 10 중량%)가 선택되었다. 소결 보조제를 샘플 번호 5, 6에 첨가한 다음 3000 rpm에서 60 초 동안 혼합하였다. 이렇게-형성된 조성물은 시험 표본을 제조하는 데 사용되었다.The two compositions were prepared by mixing the nano-particles (7K-35, manufactured by Ferroc Corporation) with a polymethyl methacrylate emulsion (10% PMMA in water, having an average PMMA particle size of 61 nm). Two different sintering aids - H 3 PO 4 and KI (10 wt% in water, respectively) were selected. Sintering aid was added to Sample Nos. 5 and 6 and then mixed at 3000 rpm for 60 seconds. The so-formed composition was used to prepare test specimens.
표 3Table 3
표 3A는 상기 표 3에서 각각 기술된 2 종의 본 발명 조성물, 샘플 번호 5 및 6에 대한 체적 저항률 (옴·cm 단위) 측정값을 나타낸다. 조성물은 먼저보다 낮은 온도 - 120 ℃ 대신 80 ℃의 온도에서 -- 30 분의 시간 동안 경화되었다.Table 3A shows the volume resistivity (in ohm-cm) measurements for the two inventive compositions, Sample Nos. 5 and 6, respectively, listed in Table 3 above. The composition was first cured at a temperature of 80 DEG C instead of a lower temperature-120 DEG C for a time period of 30 minutes.
표 3ATABLE 3A
표 3A는 대조군 1 (표 1A)과 비교하여 각각의 중합체 에멀젼 및 소결 보조제 조합이 은 나노 입자 코팅 (샘플 번호 5 및 6)의 체적 저항률을 감소시킨다는 것을 나타낸다.Table 3A shows that the combination of each polymer emulsion and sintering aid reduces the volume resistivity of silver nanoparticle coatings (Sample Nos. 5 and 6) as compared to Control 1 (Table 1A).
실시예 4Example 4
아이오딘-그래프트된 폴리메틸 메타크릴레이트의 합성은 하기 반응식에 나타낸 바와 같이 설명되며, 여기서 n은 5 내지 10,000이다.The synthesis of the iodine-grafted polymethylmethacrylate is illustrated as shown in the following scheme, where n is from 5 to 10,000.
130 g의 D.I. 워터, 2.0 g의 Brij 98 계면활성제 [폴리옥시에틸렌 올레일 에테르, C18H35 (OCH2CH2)20OH] 및 0.064 g (1 mmol)의 구리 분말 (<10 마이크로미터)을 기계적 교반기가 장착된 500-ml의 4-구 둥근-바닥 플라스크에 첨가하였다. 0.178 g (1 mmol)의 Me6TREN, 0.394 g (1 mmol)의 아이오도포름 및 20 g (200 mmol)의 메틸 메타크릴레이트를 50 밀리리터 슐렝크(Schlenk) 튜브에 첨가하였다. 두 혼합물은 질소 환경 하에서 6 회 동결-펌프-해동 사이클에 의해 탈기시켰다. 메틸 메타크릴레이트/Me6TREN/CHI3 혼합물을 질소 하에 캐뉼라(cannula)를 통해 둥근-바닥 플라스크로 옮겼다. 중합 반응은 실온에서 5 시간의 시간 동안 계속되었고, 공기의 도입으로 중단되었다.130 g of DI water, of 2.0 g Brij 98 surfactant [polyoxyethylene oleyl ether, C 18 H 35 (OCH 2 CH 2) 20 OH] and 0.064 g (1 mmol), copper powder (<10 microns) of Was added to a 500-ml 4-necked round-bottomed flask equipped with a mechanical stirrer. 0.178 g (1 mmol) of Me 6 TREN, 0.394 g (1 mmol) of iodoform and 20 g (200 mmol) of methyl methacrylate were added to a 50 milliliter Schlenk tube. Both mixtures were degassed by a freeze-pump-thaw cycle six times under a nitrogen atmosphere. The methyl methacrylate / Me 6 TREN / CHI 3 mixture was transferred via cannula to a round-bottomed flask under nitrogen. The polymerization reaction was continued for 5 hours at room temperature and stopped by the introduction of air.
아이오딘-그래프트된 PMMA가 형성되었고 100 ℃의 온도에서 건조되어 47 %의 수율을 얻었다. GPC 분석에 의해, 중량 평균 분자량 Mw는 약 278,600으로, 분자량 분포 또는 다분산도 Mw/Mn은 약 3.3으로 결정되었다.Iodine-grafted PMMA was formed and dried at a temperature of 100 DEG C to yield a yield of 47%. By GPC analysis, the weight average molecular weight M w was determined to be about 278,600, and the molecular weight distribution or polydispersity M w / M n was found to be about 3.3.
에멀젼 입자 크기는 호리바 LA-910 장치로 측정하였고, 중앙값 크기는 약 85 nm로 결정되었다.The emulsion particle size was measured with a Horiba LA-910 instrument and the median size was determined to be about 85 nm.
실시예 5Example 5
실시예 4로부터의 아이오딘-그래프트된 PMMA를 사용하여 나노-입자 은 (7K-35)을 갖는 조성물을 제조하여 에멀젼을 형성하였다. 에멀젼은 조성물의 55 중량%보다 약간 많은 양의 아이오딘-그래프트된 PMMA를 함유하였다. 추가적인 소결 보조제는 첨가되지 않았고; 오히려, 아이오딘-그래프트된 PMMA는 결합제로서 및 소결 보조제로서 모두 작용하였다. 상기 조성물을 3000 rpm에서 60 초의 시간 동안 혼합한 후, 시험 표본을 제조하는 데 사용하였다.Using iodine-grafted PMMA from Example 4, the nano-particles were prepared with a composition having (7K-35) to form an emulsion. The emulsion contained an iodine-grafted PMMA in an amount slightly greater than 55% by weight of the composition. No additional sintering aid was added; Rather, the iodine-grafted PMMA acted both as a binder and as a sintering aid. The composition was mixed at 3000 rpm for 60 seconds and then used to prepare test specimens.
표 4Table 4
표 4A는 본 발명의 조성물, 샘플 번호 5 및 7에 대한 체적 저항률 측정치 (옴·cm 단위)를 나타낸다. 조성물은 상이한 온도 - 실온에서 20 시간의 시간 동안 및 80 ℃에서 30 분의 시간 동안 제조되었다.Table 4A shows the volume resistivity measurements (in ohm · cm) for the compositions of the present invention, Sample Nos. 5 and 7. The compositions were prepared at different temperatures-room temperature for 20 hours and at 80 占 for 30 minutes.
표 4ATable 4A
표 4A는 조성물을 경화시키는 데 사용된 온도 및 시간에 관계없이, 조성물이 대조군 1 (표 1A)과 비교하여 감소된 체적 저항률을 입증함을 나타낸다.Table 4A shows that, regardless of the temperature and time used to cure the composition, the composition demonstrates reduced volume resistivity as compared to control 1 (Table 1A).
실시예 6Example 6
2 종의 조성물은 나노-입자 은 (7K-35, 페로 코포레이션 사제)을 폴리스티렌 에멀젼 (물 중 49 % PSt, 노스캐롤라이나주 캐리 소재 아르케마 인크.(Arkema Inc.) 사제)으로 혼합하여 제조되었다. 소결 보조제인 KI (물 중 3.5 중량%)를 샘플 번호 8에 첨가하고, 반면 대조군 3에는 대신에 D.I 워터를 첨가하고, 그들을 3000 rpm에서 60 초 동안 혼합하였다. 이렇게-형성된 조성물은 시험 표본을 제조하는 데 사용되었다.The two compositions were prepared by mixing nano-particles (7K-35, manufactured by Ferroc Corporation) with polystyrene emulsion (49% PSt in water, Arkema Inc., Carry, NC). Sintering aid KI (3.5 wt% in water) was added to Sample No. 8, whereas D.I. Water was added to Control 3 instead, and they were mixed at 3000 rpm for 60 seconds. The so-formed composition was used to prepare test specimens.
표 5Table 5
표 5A는 상기 표 5에서 각각 기술된 2 종의 조성물, 대조군 3 및 샘플 번호 8에 대한 체적 저항률 (옴·cm 단위) 측정치를 나타낸다. 상기 조성물은 100 ℃의 온도에서 30 분의 시간 동안 가열되었다.Table 5A shows the measurements of the volume resistivity (ohm · cm) for the two compositions, Control 3 and Sample 8, respectively, listed in Table 5 above. The composition was heated at a temperature of 100 DEG C for a period of 30 minutes.
표 5ATable 5A
표 5A는 소결 보조제 KI의 첨가가 대조군 3과 비교하여 샘플 번호 8의 체적 저항률을 감소시킨다는 것을 나타낸다.Table 5A shows that the addition of the sintering aid KI reduces the volume resistivity of Sample No. 8 compared to Control 3. [
실시예 7Example 7
2 종의 조성물은 나노-입자 은 (7K-35, 페로 코포레이션 사제)을 폴리스티렌 에멀젼 (물 중 49 % PSt, 아르케마 인크. 사제)으로 혼합하여 제조되었다. 소결 보조제인 2-아이오도에탄올 (물 중 5.0 중량%) 및 아이오도아세트아미드 (물 중 7.0 중량%)를 샘플 번호 9 및 10에 각각 첨가하고, 그들을 3000 rpm에서 60 초 동안 혼합하였다. 이렇게-형성된 조성물은 시험 표본을 제조하는 데 사용되었다.The two compositions were prepared by mixing nano-particles (7K-35, manufactured by Ferroc Corporation) with a polystyrene emulsion (49% PSt in water, manufactured by Archemain Incorporated). Sintering aid 2-iodoethanol (5.0 wt% in water) and iodoacetamide (7.0 wt% in water) were added to Sample Nos. 9 and 10, respectively, and they were mixed at 3000 rpm for 60 seconds. The so-formed composition was used to prepare test specimens.
표 6Table 6
표 6A는 상기 표 6에서 각각 기술된 2 종의 조성물, 샘플 번호 9 및 10에 대한 체적 저항률 (옴·cm 단위) 측정치를 나타낸다. 상기 조성물은 80 ℃의 온도에서 30 분의 시간 동안 가열되었다.Table 6A shows the measurements of the volume resistivity (in ohm-cm) for the two compositions, Samples Nos. 9 and 10, respectively, The composition was heated at a temperature of 80 DEG C for a period of 30 minutes.
표 6ATable 6A
표 6A는 전도도 촉진제로서의 유기 아이오딘화물 화합물의 첨가가 대조군 3과 비교하여 샘플 번호 9 및 10의 체적 저항률을 감소시킨다는 것을 나타낸다.Table 6A shows that the addition of an organic iodide compound as a conductivity promoter reduces the volume resistivity of Sample Nos. 9 and 10 as compared to Control 3.
Claims (31)
소결제; 및
물 및 약 5 nm 내지 1000 ㎛의 평균 입자 직경을 갖는 하나 이상의 중합체를 포함하는 에멀젼을 포함하는, 소결가능한 전도성 조성물.A metal component having an average particle diameter of greater than about 5 nm to about 100 [mu] m;
Subpayment; And
Water and an emulsion comprising at least one polymer having an average particle diameter of from about 5 nm to about 1000 < RTI ID = 0.0 > um. ≪ / RTI >
인산, 포름산, 아세트산, 할로겐화 수소 및 I 및 II 족 금속의 할로겐화물 염으로부터 선택되는 소결제; 및
물 및 약 5 nm 내지 1000 ㎛의 평균 입자 직경을 갖는 하나 이상의 중합체를 포함하는 에멀젼을 포함하는, 소결가능한 전도성 조성물.Metal components made or doped with silver, aluminum, gold, germanium or oxides or alloys thereof having an average particle diameter of greater than about 5 nm to about 100 mu m;
Phosphoric acid, formic acid, acetic acid, hydrogen halides and halide salts of metals of Groups I and II; And
Water and an emulsion comprising at least one polymer having an average particle diameter of from about 5 nm to about 1000 < RTI ID = 0.0 > um. ≪ / RTI >
에멀젼에 소결제를 제공하는 단계;
전도성 조성물을 형성하기 위해, 약 5 nm 초과 내지 약 100 ㎛의 평균 입자 직경을 갖는 금속 성분을 에멀젼에 제공하는 단계; 및
조성물을 소결시키기에 충분한 시간 동안 실온 내지 약 200 ℃의 온도에 조성물을 노출시키는 단계를 포함하는, 조성물의 전기 전도도를 개선시키는 방법.Providing an emulsion comprising water and at least one polymer having an average particle diameter of about 5 nm to 1000 mu m;
Providing a sub-settling to the emulsion;
Providing a metal component to the emulsion having an average particle diameter of greater than about 5 nm to about 100 mu m to form a conductive composition; And
Lt; RTI ID = 0.0 > 200 C < / RTI > for a time sufficient to sinter the composition.
물 및 약 5 nm 내지 1000 ㎛의 평균 입자 직경을 갖는 유기할로겐 잔기로 그래프트된 하나 이상의 중합체를 포함하는 에멀젼을 포함하는 소결가능한 전도성 조성물.A metal component having an average particle diameter of greater than about 5 nm to about 100 mu m; And
An emulsion comprising water and at least one polymer grafted with an organohalogen moiety having an average particle diameter of about 5 nm to 1000 mu m.
An emulsion comprising at least one polymer grafted with water and an organic halogen moiety.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562387557P | 2015-12-23 | 2015-12-23 | |
US62/387,557 | 2015-12-23 | ||
PCT/US2016/067673 WO2017112628A1 (en) | 2015-12-23 | 2016-12-20 | Polymer emulsion as binder for conductive composition |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20180097610A true KR20180097610A (en) | 2018-08-31 |
KR102524435B1 KR102524435B1 (en) | 2023-04-24 |
Family
ID=59089892
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020187019269A KR102524435B1 (en) | 2015-12-23 | 2016-12-20 | Polymer emulsions as binders for conductive compositions |
Country Status (7)
Country | Link |
---|---|
US (1) | US11339304B2 (en) |
EP (1) | EP3394859B1 (en) |
JP (1) | JP6901486B2 (en) |
KR (1) | KR102524435B1 (en) |
CN (1) | CN108885915B (en) |
TW (1) | TWI733727B (en) |
WO (1) | WO2017112628A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018156938A1 (en) | 2017-02-24 | 2018-08-30 | Hewlett-Packard Development Company, L.P. | Three-dimensional printing |
EP3519125B1 (en) | 2017-02-24 | 2022-02-23 | Hewlett-Packard Development Company, L.P. | Three-dimensional (3d) printing process |
EP3867321A4 (en) * | 2018-10-18 | 2022-05-04 | National Research Council of Canada | Conductive inks with neoprene binder |
CN111243779A (en) * | 2020-03-09 | 2020-06-05 | 广东四维新材料有限公司 | Preparation method for laser cutting conductive silver paste and low-temperature curing superfine spherical silver powder and preparation method for conductive silver paste and low-temperature curing superfine spherical silver powder |
CN111261342B (en) * | 2020-03-09 | 2021-03-30 | 广东四维新材料有限公司 | Preparation method of low-temperature fast-curing roll-to-roll printing conductive silver paste for RFID (radio frequency identification) radio frequency tag |
CN112475310B (en) * | 2020-10-16 | 2022-12-20 | 湖南中伟新银材料科技有限公司 | Preparation method of silver powder with narrow particle size distribution |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3949658B2 (en) * | 2002-04-10 | 2007-07-25 | 株式会社フジクラ | Conductive composition, conductive film and method for forming conductive film |
JP2008156529A (en) * | 2006-12-25 | 2008-07-10 | Mitsui Chemicals Inc | Electroconductive olefinic polymer |
KR20130010101A (en) * | 2009-03-24 | 2013-01-25 | 이슘 리서치 디벨롭먼트 컴퍼니 오브 더 히브루 유니버시티 오브 예루살렘, 엘티디. | Process for sintering nanoparticles at low temperatures |
JP2015505865A (en) * | 2011-12-21 | 2015-02-26 | アグフア−ゲヴエルト | Dispersion system comprising metallic, metal oxide or metal precursor nanoparticles, polymer dispersant and sintering aid |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB674060A (en) * | 1949-04-08 | 1952-06-18 | Arthur William Barnes | Improvements in and relating to polymerisation processes |
DE3018922A1 (en) * | 1980-05-17 | 1981-12-03 | Hoechst Ag, 6000 Frankfurt | SINTERABLE, FINE-PIECE POLYVINYL CHLORIDE MOLDING |
JPS63268774A (en) | 1987-04-24 | 1988-11-07 | Lion Corp | Electrically conductive film-forming material |
US7282260B2 (en) * | 1998-09-11 | 2007-10-16 | Unitech, Llc | Electrically conductive and electromagnetic radiation absorptive coating compositions and the like |
US6576336B1 (en) * | 1998-09-11 | 2003-06-10 | Unitech Corporation, Llc | Electrically conductive and electromagnetic radiation absorptive coating compositions and the like |
DE19914953A1 (en) * | 1999-04-01 | 2000-10-05 | Basf Ag | Radical-initiated emulsion polymerisation for production of aqueous polymer dispersions, for use e.g. as adhesives, carried out in presence of special metal-organic compound which is more soluble in water than in styrene |
US7037447B1 (en) | 2003-07-23 | 2006-05-02 | Henkel Corporation | Conductive ink compositions |
KR20080035562A (en) * | 2005-06-09 | 2008-04-23 | 인도프코 인코포레이티드 디/비/에이 내쇼날 스타치 앤드 케미칼 캄파니 | Aqueous printable electrical conductors |
CN101595534B (en) * | 2006-12-22 | 2012-07-18 | 汉高股份两合公司 | Waterborne conductive compositions |
US7722786B2 (en) * | 2007-02-23 | 2010-05-25 | Henkel Ag & Co. Kgaa | Conductive materials |
US7569160B2 (en) | 2007-04-10 | 2009-08-04 | Henkel Ag & Co. Kgaa | Electrically conductive UV-curable ink |
US7615111B2 (en) | 2007-04-18 | 2009-11-10 | Hewlett-Packard Development Company, L.P. | Metallic inkjet ink and method for forming the same |
US7641728B2 (en) | 2007-04-23 | 2010-01-05 | Hewlett-Packard Development Company, L.P. | Ink composition and method for forming the same |
KR101207363B1 (en) * | 2009-03-04 | 2012-12-04 | 엘에스전선 주식회사 | Composition for Conductive Paste Containing Nanometer-Thick Metal Microplates |
CN102781677B (en) * | 2010-02-26 | 2014-07-09 | 株式会社理光 | Inkjet treatment liquid, inkjet recording apparatus, inkjet recording method and image formation |
JP2011241241A (en) | 2010-05-14 | 2011-12-01 | Seiko Epson Corp | Aqueous ink composition and recorded article using the same |
SG178823A1 (en) * | 2010-08-27 | 2012-05-30 | Dowa Electronics Materials Co Ltd | Low-temperature sintered silver nanoparticle composition and electronic articles formed usingk the same |
JP5886300B2 (en) | 2010-10-05 | 2016-03-16 | ヘレウス プレシャス メタルズ ノース アメリカ コンショホーケン エルエルシー | One-part low temperature curable polymer composition and related methods |
TWI509631B (en) | 2011-02-25 | 2015-11-21 | Henkel IP & Holding GmbH | Sinterable silver flake adhesive for use in electronics |
EP2753668B1 (en) | 2011-09-06 | 2019-03-27 | Henkel IP & Holding GmbH | Conductive material and process |
US9920207B2 (en) * | 2012-06-22 | 2018-03-20 | C3Nano Inc. | Metal nanostructured networks and transparent conductive material |
CN103242465A (en) * | 2012-08-01 | 2013-08-14 | 苏州大学 | Reversible chain transfer catalytic polymerization method of polymerization system under phosphine catalysis |
WO2014030310A1 (en) | 2012-08-23 | 2014-02-27 | バンドー化学株式会社 | Conductive paste |
CN105027690A (en) * | 2013-01-31 | 2015-11-04 | 耶路撒冷希伯来大学伊森姆研究发展有限公司 | Three-dimensional conductive patterns and inks for making same |
US8828503B1 (en) | 2013-02-28 | 2014-09-09 | Eastman Kodak Company | Making multi-layer micro-wire structure |
JP5590260B1 (en) * | 2014-02-04 | 2014-09-17 | 千住金属工業株式会社 | Ag ball, Ag core ball, flux coated Ag ball, flux coated Ag core ball, solder joint, foam solder, solder paste, Ag paste and Ag core paste |
-
2016
- 2016-12-20 WO PCT/US2016/067673 patent/WO2017112628A1/en active Application Filing
- 2016-12-20 JP JP2018533234A patent/JP6901486B2/en active Active
- 2016-12-20 KR KR1020187019269A patent/KR102524435B1/en active IP Right Grant
- 2016-12-20 CN CN201680079568.4A patent/CN108885915B/en active Active
- 2016-12-20 EP EP16879949.2A patent/EP3394859B1/en active Active
- 2016-12-23 TW TW105142988A patent/TWI733727B/en active
-
2018
- 2018-06-20 US US16/012,840 patent/US11339304B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3949658B2 (en) * | 2002-04-10 | 2007-07-25 | 株式会社フジクラ | Conductive composition, conductive film and method for forming conductive film |
JP2008156529A (en) * | 2006-12-25 | 2008-07-10 | Mitsui Chemicals Inc | Electroconductive olefinic polymer |
KR20130010101A (en) * | 2009-03-24 | 2013-01-25 | 이슘 리서치 디벨롭먼트 컴퍼니 오브 더 히브루 유니버시티 오브 예루살렘, 엘티디. | Process for sintering nanoparticles at low temperatures |
JP2015505865A (en) * | 2011-12-21 | 2015-02-26 | アグフア−ゲヴエルト | Dispersion system comprising metallic, metal oxide or metal precursor nanoparticles, polymer dispersant and sintering aid |
Also Published As
Publication number | Publication date |
---|---|
EP3394859B1 (en) | 2023-06-28 |
CN108885915B (en) | 2021-09-10 |
JP6901486B2 (en) | 2021-07-14 |
JP2019503559A (en) | 2019-02-07 |
WO2017112628A1 (en) | 2017-06-29 |
US11339304B2 (en) | 2022-05-24 |
TW201734154A (en) | 2017-10-01 |
EP3394859A1 (en) | 2018-10-31 |
KR102524435B1 (en) | 2023-04-24 |
EP3394859A4 (en) | 2019-08-21 |
CN108885915A (en) | 2018-11-23 |
US20180298222A1 (en) | 2018-10-18 |
TWI733727B (en) | 2021-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20180097610A (en) | Polymer emulsion as binder for conductive compositions | |
KR102318523B1 (en) | Fine silver particle dispersion, fine silver particles, and method for producing same | |
JP2005531679A (en) | Low temperature sintered conductive nano ink and method for producing the same | |
CN106810675B (en) | A kind of graphene composite conductive material and preparation method | |
JP6795514B2 (en) | Conductive compositions, processes and applications | |
Hemmati et al. | Synthesis and characterization of silver nanowire suspensions for printable conductive media | |
CN102717064A (en) | Hyperbranched nano-silver taking amphiphilic polymer as stabilizing agent and preparation method thereof | |
CN108948939B (en) | Multifunctional electronic protective coating composition with low dielectric constant | |
Gupta et al. | Kinetics of micelle formation and their effect on the optical and structural properties of polypyrrole nanoparticles | |
Kim et al. | Synthesis and electrical resistivity of the monodisperse PMMA/Ag hybrid particles | |
JP6869227B2 (en) | Ink composition with improved conductivity | |
Wang et al. | pH-responsive SERS substrates based on AgNP-polyMETAC composites on patterned self-assembled monolayers | |
Ijeri et al. | An elegant and facile single-step UV-curing approach to surface nano-silvering of polymer composites | |
CN105315669A (en) | Conductive silicone resin composition and gasket for electromagnetic wave shielding manufactured from same | |
CN109897493A (en) | A kind of three-proofing coating and preparation method thereof | |
Nidetz et al. | Directed self-assembly of nanogold using a chemically modified nanopatterned surface | |
Römermann et al. | Formation of metal (nano-) particles in drying latex films by means of a reducing plasma: a route to auto-stratification | |
KR20110102036A (en) | Equipment for measuring deformation of structure and deformation measuring method of structure using the same | |
Zeng et al. | Fabrication of a superhydrophobic surface on copper foil based on ammonium bicarbonate and paraffin wax coating | |
CN107325627A (en) | Electrically conductive ink low-temperature setting composition and preparation method thereof | |
Li et al. | Printed copper-nanoplate conductor for electro-magnetic interference | |
CN106810945B (en) | Conductive ink composition and its application method and conductive ink material layer and electronic equipment and printer | |
JP2015124415A (en) | Production method of coated copper nanoparticle | |
CN115215291B (en) | Super structure based on liquid metal substrate and preparation method thereof | |
Mokhlis et al. | ELECTRICAL PERFORMANCES OF GRAPHENE MATERIALS WITH DIFFERENT FILLER LOADING FOR FUTURE SUPER CONDUCTOR. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A302 | Request for accelerated examination | ||
AMND | Amendment | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
X091 | Application refused [patent] | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant |