KR20080109347A - High strength and toughness aluminum alloy and manufacturing method for bumper beam - Google Patents
High strength and toughness aluminum alloy and manufacturing method for bumper beam Download PDFInfo
- Publication number
- KR20080109347A KR20080109347A KR1020070057548A KR20070057548A KR20080109347A KR 20080109347 A KR20080109347 A KR 20080109347A KR 1020070057548 A KR1020070057548 A KR 1020070057548A KR 20070057548 A KR20070057548 A KR 20070057548A KR 20080109347 A KR20080109347 A KR 20080109347A
- Authority
- KR
- South Korea
- Prior art keywords
- less
- weight
- aluminum alloy
- bumper beam
- aluminum
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/10—Alloys based on aluminium with zinc as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/053—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Extrusion Of Metal (AREA)
- Body Structure For Vehicles (AREA)
Abstract
Description
도 1은 본 발명에 따른 고강도 고인성 알루미늄 합금소재를 이용하여 제조된 범퍼빔 완성품을 나타내는 이미지로서, 대차시험후 범퍼빔이 파단되지 않고 변형된 것을 나타내는 이미지,1 is an image showing a bumper beam finished product manufactured using a high strength high toughness aluminum alloy material according to the present invention, the image showing that the bumper beam is not broken after deformation test,
도 2는 대차시험에서 파단된 종래의 고강도 알루미늄 합금소재로 제작된 범퍼빔이 파단된 것을 보여주는 이미지.Figure 2 is an image showing that the bumper beam made of a conventional high-strength aluminum alloy material was broken in the bogie test.
본 발명은 범퍼빔용 고강도 고인성 알루미늄 합금소재 및 이의 제조방법에 관한 것으로서, 보다 상세하게는 인성을 증가시켜 충격에 대한 저항성을 높일 수 있는 범퍼빔용 고강도 고인성 알루미늄 합금소재 및 이의 제조방법에 관한 것이다.The present invention relates to a high-strength high toughness aluminum alloy material for bumper beams and a method of manufacturing the same, and more particularly, to a high-strength high toughness aluminum alloy material for bumper beams capable of increasing toughness and increasing resistance to impact. .
자동차, 항공기 등 수송 기계의 경량화를 위해 경량 소재에 대한 연구가 진행되고 있으며, 경량 소재로서 대표적으로 알루미늄 합금이 사용되고 있다.In order to reduce the weight of transportation machinery such as automobiles and aircrafts, research is being conducted on lightweight materials, and aluminum alloys are typically used as lightweight materials.
알루미늄 합금은 가벼우면서 비강도가 높아 재료의 경량화 및 고강도를 요구하는 항공기, 차량 등의 구조용 재료 및 건축용 재료로 널리 사용되고 있으며, 최근에는 통신 장비, 반도체 및 컴퓨터의 전기ㆍ전자 부품, 레저 용품 및 자동차의 일부 구성부품 등 소형 제품에도 사용됨으로써 그 사용범위가 확대되어가는 추세이다.Aluminum alloys are widely used as structural materials and construction materials for aircraft and vehicles that require light weight and high strength due to their light weight and specific strength.In recent years, aluminum alloys have recently been used in electrical and electronic components, leisure products, and automobiles for communication equipment, semiconductors and computers. It is also used in small products such as some components of the trend is increasing the range of use.
알루미늄 합금은 크게 주물용 알루미늄 합금과 가공용 알루미늄 합금으로 나눌 수 있으며, 가공용 알루미늄 합금을 크게 나누면 두랄루민(duralumin)계의 Al-Cu-Mg계, Al-Zn-Mg계를 주체로 하는 고강도 합금계와 Al-Mn계, Al-Mg-Si계를 주체로 하는 내식성 합금계로 나눌 수 있다.Aluminum alloys can be broadly divided into casting aluminum alloys and processing aluminum alloys. The aluminum alloys for processing are divided into high-strength alloys mainly composed of duralumin-based Al-Cu-Mg and Al-Zn-Mg. It can be divided into the corrosion-resistant alloy system mainly having Al-Mn system and Al-Mg-Si system.
또한, 알루미늄 협회에 의해 4자리 숫자로 알루미늄 합금의 종류가 구별되어 사용되는데, 1000계열 번호부터 8000계열 번호까지 사용되며, 이 중에서 2000계열과 7000계열이 고강도 합금계에 해당한다.In addition, aluminum alloys are distinguished and used by a four-digit number by the aluminum association, which is used from the 1000 series number to the 8000 series number, among which the 2000 series and the 7000 series correspond to high strength alloys.
최근에는 알루미늄 합금 계열 중 최고의 강도를 가진 7000계열 합금에 대한 연구가 활발하며, 이 계열의 합금은 Al-Zn-Mg계로서 합금 내에 MgZn2가 함유되어 시효 경화성이 현저하므로 고강도 합금으로 주목받고 있다.Recently, research on 7000 series alloys, which has the highest strength among aluminum alloy series, has been actively conducted, and this series of alloys are Al-Zn-Mg-based alloys, and MgZn 2 is contained in the alloys, which has attracted attention as a high strength alloy due to remarkable aging hardenability. .
7000계열 합금 중에 대표적인 것들은 Al7003, Al7021 등이 있으며, 이러한 합금들은 압출가공 후 열처리를 추가로 진행해야 고강도의 특성을 얻을 수 있는 석출 경화형 합금으로서, Mg와 Zn에 의한 석출 형성으로 강화 효과를 발휘할 수 있도록 열처리를 필수적으로 요하는 열처리형 합금계이다.Representative of the 7000 series alloys include Al7003 and Al7021. These alloys are precipitation hardening alloys that can obtain high strength properties by further heat treatment after extrusion processing, and can exhibit reinforcement effects by precipitation formation by Mg and Zn. It is a heat treatment type alloy system that requires heat treatment essentially.
상기 열처리 방법은 알루미늄 합금 종류에 따라서 다양한 방법이 있는데, 7000계열 합금에는 일반적으로 T6 방법이 이용되고 있으며, T6 열처리 방법은 합금을 400℃ 내지 500℃의 온도로 가열하여 고용체화 한 후 물속에서 급랭시키고, 급랭시킨 합금을 다시 약 120℃ 정도의 온도로 약 24시간 가열하여 인공 시효 경화시키는 방법이다.The heat treatment method has a variety of methods according to the type of aluminum alloy, T6 method is generally used in 7000 series alloy, T6 heat treatment method is a solid solution by heating the alloy to a temperature of 400 ℃ to 500 ℃ after quenching in water And the quenched alloy is further heated to a temperature of about 120 ° C. for about 24 hours to artificially age harden.
상기 시효 경화란, 금속재료가 일정한 시간 동안 소정 온도에 방치되는 경우 단단해지는 현상으로 상온에 방치해 두어도 단단해지는 경우와, 어느 정도 가열하지 않으면 단단해지지 않는 경우가 있는데, 상온에서 단단해지는 것을 자연시효라 하고, 어느 정도 가열해야만 단단해지는 경우를 인공시효라 한다.The aging hardening is a phenomenon that the metal material is hardened when it is left at a predetermined temperature for a predetermined time, and it hardens even when it is left at room temperature, and may not harden if not heated to some extent. The case of hardening after heating to some extent is called artificial aging.
이때, 시효 경화가 일어나는 이유는 하나의 고체 속에 다른 고체가 별개의 상으로 되어 나오는 석출 현상 때문이다.At this time, the aging hardening occurs because of the precipitation phenomenon in which the other solid in a separate phase in a solid.
상기 알루미늄 7000계열 합금은 Mg과 Zn의 함량을 늘려서 MgZn2가 석출되도록 인공 시효 경화 처리함으로써 강도가 증가되지만, 동시에 입계 취성과 입계 응력 부식에 대한 저항성이 낮아진다. The aluminum 7000 series alloy is increased in strength by artificial aging hardening so that MgZn 2 is precipitated by increasing the content of Mg and Zn, but at the same time, the resistance to grain boundary brittleness and grain boundary stress corrosion is lowered.
상기 알루미늄 7000계열 합금에서, Zn/Mg의 원자비는 2~2.5 정도인데 Zn의 함량은 일반적으로 약 3~7.5중량% 범위로 설정하고, Mg의 함량은 MgZn2의 정량 반응 수준 또는 다소 Zn이 많은 쪽으로 설정되는 바, 그 이유는 Mg과 Zn이 고용 강화 효과에 있어서 거의 차이가 없고, Mg이 과량인 합금에서는 열처리 조건에 따라 나타날 수 있는 Al3Mg2가 응력 부식에 매우 유해하기 때문이다.In the aluminum 7000 series alloy, the atomic ratio of Zn / Mg is about 2 to 2.5, but the content of Zn is generally set in the range of about 3 to 7.5% by weight, and the content of Mg is a quantitative reaction level of MgZn 2 or more or less Zn. It is set in many directions because Mg and Zn have little difference in the solid solution strengthening effect, and Al 3 Mg 2 , which may appear depending on the heat treatment conditions, is very detrimental to stress corrosion in an alloy having Mg excess.
이와 같이, 알루미늄은 다양한 합금 형태로 제조되어 사용되고 있으며, 특히 7000계열 합금은 고강도 특성을 갖도록 Mg과 Zn을 주성분으로 기타 다른 천이원소들을 소량 첨가하여 무게가 무거운 철강 재료를 대신하여 고강도 특성을 요구하는 부품에 사용되고 있다.As such, aluminum is manufactured and used in various alloy forms, and in particular, 7000 series alloys require high strength properties in place of heavy steel materials by adding small amounts of other transition elements based on Mg and Zn to have high strength properties. Used for parts.
일반적으로, 알루미늄 7000계열 합금을 이용하여 소정 제품을 생산하는 공정을 살펴보면 다양한 천이원소들이 특성에 맞는 성분비로 함유된 알루미늄 합금 빌렛을 주조하고, 주조 빌렛을 소정의 제품 형상으로 압출 형성한 후, T6에 의한 열처리를 행하여 즉, 고용체화 처리 후, 인공 시효 경화시킴으로써, 강도를 향상시키는 공정으로 소정 제품을 제작하고 있다.In general, when looking at the process of producing a predetermined product using an aluminum 7000 series alloy, casting the aluminum alloy billet containing a variety of transition elements in a component ratio that suits the characteristics, and extrusion molding the cast billet into a predetermined product shape, T6 The predetermined | prescribed product is produced by the process of improving intensity | strength by performing heat processing by, ie, artificial age hardening after a solid solution treatment.
그러나, 이러한 7000계 고강도 알루미늄 합금소재는 비교적 높은 신율에도 불구하고 충격치(인성)가 낮아, 충돌시 충분히 변형하지 못하고 파단되기 때문에 자동차의 알루미늄 범퍼빔에 적용하는데 여의치 않은 문제점을 가지고 있다.However, the 7000-based high-strength aluminum alloy material has a low impact value (toughness) despite a relatively high elongation, so that it does not deform sufficiently during a collision, so it has no problem in applying to an aluminum bumper beam of an automobile.
본 발명은 상기와 같은 점을 감안하여 안출한 것으로서, Al-Zn-Mg계 알루미늄 합금을 기본 조성으로 하고, 여기에 Mn, Cu가 첨가되는 동시에 Zn과 Mg과 Zr이 소정 범위로 한정된 알루미늄 합금 빌렛을 주조하는 과정, 합금원소들을 완전히 고용시키기 위하여 충분히 용체화처리를 시행하여 담금질(Quenching)하는 과정, 약 120℃의 온도에서 약 24시간 가열하는 인공시효 경화 과정, 약 185℃의 온도로 1시간 내지 1시간30분동안 가열하여 과시효 경화시키는 과정(Overaging, T7 열처리)을 통하여, 범퍼빔의 인성을 증가시켜 충격에 대한 저항성을 높일 수 있는 고강도 고인성 알루미늄 합금소재 및 이의 제조방법을 제공하는데 그 목적이 있다.The present invention has been made in view of the above-mentioned, an aluminum alloy billet in which Al-Zn-Mg-based aluminum alloy is a basic composition, and Mn and Cu are added thereto and Zn, Mg, and Zr are limited to a predetermined range. Process of casting, quenching by fully solution treatment to completely dissolve the alloying elements, artificial aging curing process which is heated for about 24 hours at a temperature of about 120 ℃, and 1 hour at a temperature of about 185 ℃ To provide a high-strength high toughness aluminum alloy material and a method of manufacturing the same to increase the toughness of the bumper beam through the process of overaging (T7 heat treatment) by heating for 1 hour and 30 minutes. Its purpose is.
상기한 목적을 달성하기 위한 본 발명의 알루미늄 합금소재는: 알루미늄을 주성분으로 하고, 여기에 규소 0.1중량%이하, 철 0.2중량%이하, 구리 0.45~0.60중량%, 망간 0.1~0.20중량%, 마그네슘 1.3~1.5중량%, 크롬 0.1중량%이하, 아연 4.5~5.1중량%, 티탄 0.04중량%이하, 지르코늄 0.08~0.12중량%, 불가피한 불순물 0.15중량% 이하가 함유된 것을 특징으로 한다.The aluminum alloy material of the present invention for achieving the above object is: aluminum as the main component, 0.1% by weight or less of silicon, 0.2% by weight of iron, 0.45 to 0.60% by weight of copper, 0.1 to 0.20% by weight of manganese, magnesium 1.3 to 1.5% by weight, less than 0.1% by weight of chromium, 4.5 to 5.1% by weight of zinc, 0.04% by weight of titanium, 0.08 to 0.12% by weight of zirconium, and 0.15% by weight of inevitable impurities.
상기한 목적을 달성하기 위한 본 발명의 알루미늄 합금소재의 제조 방법은: 알루미늄을 주성분으로 하고, 여기에 규소 0.1중량%이하, 철 0.2중량%이하, 구리 0.45~0.60중량%, 망간 0.1~0.20중량%, 마그네슘 1.3~1.5중량%, 크롬 0.1중량%이하, 아연 4.5~5.1중량%, 티탄 0.04중량%이하, 지르코늄 0.08~0.12중량%, 불가피한 불순물 0.15중량% 이하가 함유된 알루미늄 합금을 빌렛으로 주조하는 단계; 주조된 빌렛을 소정 형상으로 압출하여 압출품을 형성하는 단계; 상기 압출품을 용체화 처리를 시행하여 담금질(Quenching)하는 단계; 120℃의 온도로 24시간 가열하여 인공시효 경화시키는 단계; 170~185℃의 온도로 1시간~3시간 동안 가열하여 과시효 경화시키는 오버에이징(Overaging) 단계로 이루어지는 것을 특징으로 하는 고강도 고인성 알루미늄 합금소재의 제조 방법을 제공한다.Method for producing an aluminum alloy material of the present invention for achieving the above object is: aluminum as a main component, silicon 0.1% by weight or less, iron 0.2% by weight or less, copper 0.45-0.60% by weight, manganese 0.1-0.20 weight Cast aluminum alloys containing%, 1.3 to 1.5% by weight, less than 0.1% by weight of chromium, 4.5 to 5.1% by weight of zinc, 0.04% by weight of titanium, 0.08 to 0.12% by weight of zirconium, and 0.15% by weight of unavoidable impurities. Making; Extruding the cast billet into a predetermined shape to form an extrudate; Quenching the extruded product by performing a solution treatment; Artificial age hardening by heating to a temperature of 120 ° C. for 24 hours; It provides a method for producing a high strength high toughness aluminum alloy material, characterized in that consisting of an overaging step of overaging curing by heating at a temperature of 170 ~ 185 ℃ for 1 hour to 3 hours.
이하, 본 발명을 보다 상세하게 설명하기로 한다.Hereinafter, the present invention will be described in more detail.
잘 알려진 바와 같이, 7000계 알루미늄 합금의 주요 합금 성분인 Mn, Mg, Zn은 기존 Al7021합금의 경우 Mn:0.1중량%이하, Mg:1.2~1.8중량%, Zn:5~6중량%의 성분비로 구성되며, 알루미늄 협회에 의해 공시된 물성치는 인장강도 약 420 MPa, 연신율 약 13%에 해당한다.As is well known, Mn, Mg, and Zn, which are the main alloying components of the 7000-based aluminum alloy, have a ratio of Mn: 0.1% by weight or less, Mg: 1.2-1.8% by weight, and Zn: 5-6% by weight of the existing Al7021 alloy. Properties published by the Aluminum Association correspond to tensile strength of about 420 MPa and elongation of about 13%.
따라서, Al7021-T6 합금의 경우, 높은 인장강도에도 불구하고 낮은 연신율 및 충격치로 인해 충돌시 파단이 발생하기 쉬워 자동차용 범퍼빔으로는 부적합한 단점이 있다.Therefore, in the case of Al7021-T6 alloy, breakage is likely to occur due to low elongation and impact value in spite of high tensile strength, which is not suitable as a bumper beam for automobiles.
이에, 아래의 표 1에 나타낸 바와 같이, 본 발명에 따른 범퍼빔 제조용 알루미늄 합금은 기존의 7000계 알루미늄 합금인 Al7021과 달리, 망간(Mn), 구리(Cu), 아연(Zn) 및 마그네슘(Mg)의 함량을 조절하여 인성을 증가시켜 내충격성을 갖도록, 알루미늄을 주성분으로 하고, 여기에 규소 0.1중량%이하, 철 0.2중량%이하, 구리 0.45~0.60중량%, 망간 0.1~0.20중량%, 마그네슘 1.3~1.5중량%, 크롬 0.1중량%이하, 아연 4.5~5.1중량%, 티탄 0.04중량%이하, 지르코늄 0.08~0.12중량%, 불가피한 불순물 0.15중량% 이하가 함유된 것이다.Thus, as shown in Table 1 below, the aluminum alloy for manufacturing a bumper beam according to the present invention, unlike Al7021, a conventional 7000-based aluminum alloy, manganese (Mn), copper (Cu), zinc (Zn) and magnesium (Mg) In order to increase the toughness by adjusting the content of), aluminum is the main component, and in addition to silicon, 0.1 wt% or less, iron 0.2 wt% or less, 0.45 to 0.60 wt% copper, 0.1 to 0.20 wt% manganese, magnesium 1.3 to 1.5% by weight, less than 0.1% by weight of chromium, 4.5 to 5.1% by weight of zinc, 0.04% by weight of titanium, 0.08 to 0.12% by weight of zirconium, and 0.15% by weight of unavoidable impurities.
본 발명의 알루미늄 합금에 함유된 주요 원소에 대한 첨가 이유 및 그 함량비 한정 이유를 설명하면 다음과 같다.The reason for addition to the main elements contained in the aluminum alloy of the present invention and the reason for limiting the content ratio are as follows.
(1) 망간(Mn) 0.1~0.20중량%(1) Manganese (Mn) 0.1-0.20 wt%
본 발명에 따른 알루미늄 합금을 빌렛으로 주조시에 신율이 증대되도록 Mn을 첨가하게 되며, 천이원소 Mn은 합금 내에서 입자를 구상화시켜 신율 향상에 영향을 미치지만, 그 성분비가 증가되면 가공성이 낮아져서 금형이 마모되거나 가공 기계의 마모가 발생되므로, 본 발명에서는 신율을 증가시키되 가공성에 영향이 없는 범위로서 Mn의 성분비를 0.1~0.20중량%로 한정하기로 한다.Mn is added to increase the elongation at the time of casting the aluminum alloy according to the present invention by billet, and transition element Mn affects the elongation by spheroidizing the particles in the alloy, but when the component ratio is increased, the workability is lowered and the mold Since the wear or wear of the processing machine is generated, in the present invention, the elongation is increased, but the component ratio of Mn is limited to 0.1 to 0.20% by weight as a range that does not affect the workability.
(2) 마그네슘(Mg) 1.3~1.5중량%(2) Magnesium (Mg) 1.3-1.5 wt%
Mg은 합금의 강도에 관련된 원소로서 강도 증가를 위해 첨가하고, Mg 성분의 증가는 합금의 가공 경화현상을 촉진시킴으로써 가공성이 저하되고 제품의 크기나 형상에 따라서는 압출이 불가능한 경우가 발생하므로, 이를 방지하기 위해 Mg의 함량을 1.3~1.5중량%로 한정한 것이다.Mg is added to increase the strength as an element related to the strength of the alloy, and the increase in the Mg component promotes the work hardening phenomenon of the alloy, the workability is lowered, and depending on the size or shape of the product, extrusion may occur, In order to prevent the Mg content is limited to 1.3 to 1.5% by weight.
(3) 아연(Zn) 4.5~5.1중량% (3) 4.5 to 5.1% by weight of zinc (Zn)
Zn도 마찬가지로 합금의 강도에 관련된 원소로서 강도 증가를 위해 첨가하고, 합금의 강도를 위해 그 함량을 최대화하는 것이 바람직하겠으나, 그 성분비가 6중량% 이상인 경우에는 테스트 결과 가공시 크랙이 발생하게 되는데, 이는 Zn이 Mg과 결합하여 MgZn2를 이루고, Mg과 결합하지 못하고 남는 Zn이 불순물로 합금 내에 존재하게 됨으로써 크랙이 발생되므로, 본 발명에서는 Zn의 함량은 4.5~5.1중량%로 한정하기로 한다.It is desirable to add Zn as an element related to the strength of the alloy to increase the strength, and to maximize the content for the strength of the alloy, but when the component ratio is 6% by weight or more, cracks occur during processing as a result of the test. This is because Zn combines with Mg to form MgZn 2 , and cracks are generated because Zn remaining in the alloy as an impurity cannot be combined with Mg, so the content of Zn in the present invention is limited to 4.5 to 5.1% by weight.
(4) 구리(Cu) 0.45~0.60중량%(4) 0.45 to 0.60% by weight of copper (Cu)
Cu가 첨가되는 경우 압출압력이 증대되고, 부식특성(Stress Corrosion Cracking)이 좋지 않은 단점이 있으나, 범퍼빔의 경우 부식의 영향이 크지 않은 사용 환경이므로, 본 발명에서는 범퍼빔의 신율 및 인성의 증대를 주목적으로 하므로 0.45~0.6중량%를 첨가한다.When Cu is added, the extrusion pressure is increased and the stress corrosion stress (Stress Corrosion Cracking) is not good, but in the case of the bumper beam is not a large influence of the corrosion environment, the present invention increases the elongation and toughness of the bumper beam Since the main purpose is to add 0.45 ~ 0.6% by weight.
(5) 지르코늄(Zr) 0.08~0.12중량%(5) Zirconium (Zr) 0.08 to 0.12 wt%
Zr은 본 발명의 알루미늄 합금 소재에 새롭게 함유시킨 성분으로서, 조직 미세화 및 인성의 증대를 도모하고자 0.08~0.12중량%로 첨가한다.Zr is a component newly contained in the aluminum alloy material of the present invention, and is added in an amount of 0.08 to 0.12% by weight in order to achieve finer structure and increased toughness.
여기서, 본 발명에 따른 알루미늄 합금소재의 제조 방법을 설명하면 다음과 같다.Here, the manufacturing method of the aluminum alloy material according to the present invention will be described.
상기와 같이 조성된 본 발명의 알루미늄 합금을 빌렛으로 통상의 주조 방법으로 주조하고, 이 주조된 빌렛을 원하는 형상으로 압출하여 압출품을 성형한 다음, 열처리 한다.The aluminum alloy of the present invention as described above is cast into a billet by a conventional casting method, the molded billet is extruded into a desired shape to form an extruded product, and then heat treated.
본 발명에 따른 열처리 방법은, 합금원소들을 완전히 고용시키기 위하여 충분히 용체화처리를 시행하여 담금질을 한 후, 약 120℃의 온도로 약 24시간 가열하여 인공시효 경화시킨 다음, 170℃~185℃의 온도로 1시간~3시간 동안 가열하는 과시효 경화 과정 즉, 오버에이징(Overaging, T7 열처리)을 더 실시한다.In the heat treatment method according to the present invention, in order to fully quench the alloying elements, the solution is sufficiently quenched, quenched, and then heated to a temperature of about 120 ° C. for about 24 hours to artificially cure, and then to 170 ° C. to 185 ° C. An overaging curing process that is heated for 1 hour to 3 hours, that is, overaging (T7 heat treatment) is further performed.
이하, 본 발명의 실시예를 비교예와 함께 더욱 상세하게 설명하겠는바, 본 발명이 하기의 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the embodiment of the present invention will be described in more detail with a comparative example, but the present invention is not limited to the following examples.
실시예 및 비교예Examples and Comparative Examples
다음 표 1에 나타난 바와 같은 합금조성 및 함량을 갖는 실시예 및 비교예에 따른 알루미늄 합금을 통상의 주조법으로 빌렛으로 주조하고, 주조된 빌렛을 범퍼빔의 형상으로 압출한 후 T6 열처리를 하였으며, 다음으로 180℃의 온도에서 1시간 동안 가열하는 과시효 열처리 과정 즉, 오버 에이징 단계를 실시하여, 범퍼빔으로 제조하였다.Next, the aluminum alloys according to the examples and comparative examples having the alloy composition and content as shown in Table 1 were cast into billets by a conventional casting method, and the cast billets were extruded into the shape of bumper beams, followed by T6 heat treatment. By performing an over-aging heat treatment process, that is, an over-aging step of heating for 1 hour at a temperature of 180 ℃, was prepared as a bumper beam.
실험예Experimental Example
실시예 및 비교예에 따라 제조된 범퍼빔에 대한 인장강도, 항복강도, 연신율, 충격에너지 등을 통상의 측정장비를 이용하여 측정하였는 바, 그 결과는 아래의 표 3에 나타낸 바와 같다.Tensile strength, yield strength, elongation, impact energy and the like of the bumper beams prepared according to the Examples and Comparative Examples were measured using a conventional measuring equipment. The results are shown in Table 3 below.
위의 표 3에서 보는 바와 같이, 본 발명에 따른 과시효 열처리를 추가하여 제조한 고강도 알루미늄 합금 범퍼빔은 기존 재질의 범퍼빔에 비해 강도, 신율 등은 유사하나, 충격에너지(인성)이 4배 이상 향상되었음을 알 수 있었다.As shown in Table 3 above, the high-strength aluminum alloy bumper beam manufactured by adding the over-aging heat treatment according to the present invention is similar in strength and elongation to the bumper beam of the conventional material, but has four times the impact energy (toughness). It was found that the improvement.
이상에서 본 바와 같이, 본 발명에 따른 범퍼빔용 고강도 고인성 알루미늄 합금소재 및 이의 제조방법에 의하면, Al-Zn-Mg계 알루미늄 합금을 기본 조성으로 하되, 기존의 7000계 알루미늄 합금인 Al7021과 달리, 망간(Mn), 구리(Cu), 아연(Zn) 및 마그네슘(Mg)의 함량을 인성을 증가시켜 내충격성을 갖도록 조절하고, 이 함량 조절된 알루미늄 합금을 빌렛으로 주조하는 과정, 용체화처리를 시행하여 담금질(Quenching)하는 과정, 인공시효 경화 및 과시효 경화 과정을 거치게 함으로써, 인성을 증가시켜 충격에 대한 저항성을 높일 수 있는 범퍼빔을 제공할 수 있다.As described above, according to the high-strength high toughness aluminum alloy material for the bumper beam and the manufacturing method thereof according to the present invention, the Al-Zn-Mg-based aluminum alloy as a base composition, unlike the existing 7000-based aluminum alloy Al7021, The content of manganese (Mn), copper (Cu), zinc (Zn) and magnesium (Mg) is adjusted to have toughness by increasing the toughness, casting the content-controlled aluminum alloy into billets, and solution treatment By performing the process of quenching (quenching), artificial aging hardening and over-aging hardening process, it is possible to provide a bumper beam to increase the toughness to increase the resistance to impact.
Claims (2)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070057548A KR20080109347A (en) | 2007-06-13 | 2007-06-13 | High strength and toughness aluminum alloy and manufacturing method for bumper beam |
US11/977,999 US20080308196A1 (en) | 2007-06-13 | 2007-10-25 | High-strength and high-toughness aluminum alloy material for bumper beam and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070057548A KR20080109347A (en) | 2007-06-13 | 2007-06-13 | High strength and toughness aluminum alloy and manufacturing method for bumper beam |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20080109347A true KR20080109347A (en) | 2008-12-17 |
Family
ID=40131224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020070057548A KR20080109347A (en) | 2007-06-13 | 2007-06-13 | High strength and toughness aluminum alloy and manufacturing method for bumper beam |
Country Status (2)
Country | Link |
---|---|
US (1) | US20080308196A1 (en) |
KR (1) | KR20080109347A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105401018A (en) * | 2015-11-14 | 2016-03-16 | 合肥标兵凯基新型材料有限公司 | High-strength high-toughness ultra-fine grain wrought aluminum alloy and preparation method thereof |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10125410B2 (en) | 2012-12-06 | 2018-11-13 | National University of Science and Technology “MISIS” | Heat resistant aluminum base alloy and wrought semifinsihed product fabrication method |
US10202091B2 (en) | 2014-07-09 | 2019-02-12 | Magna International Inc. | Cast bumper system and method of manufacturing same |
US10407011B2 (en) | 2014-07-09 | 2019-09-10 | Magna International Inc. | Cast bumper system and method of manufacturing same |
CN106660503A (en) * | 2014-07-09 | 2017-05-10 | 麦格纳国际公司 | Cast bumper assembly and method of manufacturing same |
CN107385294A (en) * | 2017-08-01 | 2017-11-24 | 天津百恩威新材料科技有限公司 | A kind of aluminum alloy for automobile wheel hub and its spray deposition processing |
CN110641404A (en) * | 2019-09-18 | 2020-01-03 | 安徽科蓝特铝业有限公司 | High-toughness anti-collision beam for automobile and heat-insulation extrusion molding process thereof |
CN113493877A (en) * | 2020-03-18 | 2021-10-12 | 郭涛 | Aluminum alloy for producing wind power tower cylinder ladder stand stepping stick |
CN115572862A (en) * | 2022-10-10 | 2023-01-06 | 江苏亚太轻合金科技股份有限公司 | High-strength fine-grain corrosion-resistant aluminum alloy with good welding performance and preparation process |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6342111B1 (en) * | 1999-09-02 | 2002-01-29 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Energy-absorbing member |
-
2007
- 2007-06-13 KR KR1020070057548A patent/KR20080109347A/en not_active Application Discontinuation
- 2007-10-25 US US11/977,999 patent/US20080308196A1/en not_active Abandoned
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105401018A (en) * | 2015-11-14 | 2016-03-16 | 合肥标兵凯基新型材料有限公司 | High-strength high-toughness ultra-fine grain wrought aluminum alloy and preparation method thereof |
CN105401018B (en) * | 2015-11-14 | 2018-05-15 | 合肥市易远新材料有限公司 | A kind of high-strength tenacity ultrafine crystal deformed aluminium alloy and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
US20080308196A1 (en) | 2008-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2657331C (en) | A high strength, heat treatable aluminum alloy | |
KR20080109347A (en) | High strength and toughness aluminum alloy and manufacturing method for bumper beam | |
US9322086B2 (en) | Aluminum pressure casting alloy | |
US4863528A (en) | Aluminum alloy product having improved combinations of strength and corrosion resistance properties and method for producing the same | |
AU739415B2 (en) | 6XXX series aluminium alloy | |
US20110017366A1 (en) | 7000-series aluminum alloy extruded product and method of producing the same | |
JP7044863B2 (en) | Al-Mg-Si based aluminum alloy material | |
US20220364213A1 (en) | Method for Producing Aluminum Alloy Extrusion | |
JP2019143232A (en) | Manufacturing method of flexure molded article using aluminum alloy | |
AT504089B1 (en) | ALUMINUM ALLOYING AND METHOD FOR THE PRODUCTION THEREOF | |
JP2020139228A (en) | Method for producing aluminum alloy extrusion material | |
JPH09268342A (en) | High strength aluminum alloy | |
US20230357902A1 (en) | Method For Manufacturing Aluminum Alloy Extruded Material With High Strength And Excellent In SCC Resistance And Hardenability | |
EP2088216B1 (en) | Aluminium alloy | |
US20230357889A1 (en) | Method For Manufacturing Aluminum Alloy Extruded Material | |
JP3853021B2 (en) | Method for producing Al-Cu-Mg-Si alloy hollow extruded material excellent in strength and corrosion resistance | |
KR100909699B1 (en) | Aluminum alloy with improved impact energy and extrusion made from the same | |
JPH05271834A (en) | Aluminum alloy having stable artificial ageing characteristic | |
US11827967B2 (en) | Method for producing aluminum alloy extruded material | |
KR20120008778A (en) | High strength cast al alloy and nuckle for suspension of vehicle | |
KR20150001463A (en) | METHOD OF MANUFACTURING Al-Mg-Si BASED ALLOY | |
WO2023233713A1 (en) | Manufacturing method for high-strength aluminum alloy extruded material having excellent scc resistance | |
KR102202201B1 (en) | Aluminum alloy for insert die casting, extruded material, and method of manufacturing the same | |
KR20220058823A (en) | Fastner forming method for aluminum alloy material | |
JP2022127410A (en) | Aluminum alloy extrusion material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |