KR20070102172A - Heat exchanger having condenser and oil cooler installed therein - Google Patents

Heat exchanger having condenser and oil cooler installed therein Download PDF

Info

Publication number
KR20070102172A
KR20070102172A KR1020060033980A KR20060033980A KR20070102172A KR 20070102172 A KR20070102172 A KR 20070102172A KR 1020060033980 A KR1020060033980 A KR 1020060033980A KR 20060033980 A KR20060033980 A KR 20060033980A KR 20070102172 A KR20070102172 A KR 20070102172A
Authority
KR
South Korea
Prior art keywords
tube
oil cooler
condenser
heat exchanger
hydraulic diameter
Prior art date
Application number
KR1020060033980A
Other languages
Korean (ko)
Inventor
전태수
민은기
Original Assignee
한라공조주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한라공조주식회사 filed Critical 한라공조주식회사
Priority to KR1020060033980A priority Critical patent/KR20070102172A/en
Publication of KR20070102172A publication Critical patent/KR20070102172A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/003Multiple wall conduits, e.g. for leak detection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0234Header boxes; End plates having a second heat exchanger disposed there within, e.g. oil cooler

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

An integral heat exchanger with a condenser and an oil cooler is provided to reduce a pressure drop and to increase heat exchange efficiency by varying the hydraulic diameter of each tube of a condensing section, a supercooling section and an oil cooler section. An integral heat exchanger(100) with a condenser and an oil cooler comprises a pair of header tanks(110) arranged at regular intervals and placed parallel to each other, a condensing section(103) coupled to a pair of the header tanks to condense refrigerants, a supercooling section(104) supercooling the condensed refrigerants, plural tubes(113,114,115) forming an oil cooler section(105) cooling down oil, and heat radiating fins(116) placed among the tubes to facilitate heat exchange. The integral heat exchanger reduces a pressure drop and increases heat exchange efficiency by varying the hydraulic diameter of each tube forming the condensing section, the supercooling section and the oil cooler section.

Description

응축기와 오일쿨러 일체형 열교환기{heat exchanger having condenser and oil cooler installed therein}Heat exchanger having condenser and oil cooler installed therein

도 1은 종래의 응축기와 오일쿨러 일체형 열교환기를 나타내는 정면도,1 is a front view showing a conventional condenser and an oil cooler integrated heat exchanger,

도 2는 본 발명에 따른 응축기와 오일쿨러 일체형 열교환기를 나타내는 정면도,2 is a front view showing a condenser and an oil cooler integrated heat exchanger according to the present invention;

도 3은 도 2에서 응축부와 과냉각부와 오일쿨러부의 각 튜브를 나타내는 단면도이다.3 is a cross-sectional view illustrating each tube of the condensation unit, the subcooling unit, and the oil cooler unit in FIG. 2.

<도면의 주요부분에 대한 부호 설명><Description of Signs of Major Parts of Drawings>

100: 일체형 열교환기 101: 응축기100: integral heat exchanger 101: condenser

102: 오일쿨러 103: 응축부102: oil cooler 103: condensation unit

104: 과냉각부 105: 오일쿨러부104: subcooling section 105: oil cooler section

110: 헤더탱크 110a: 엔드캡110: header tank 110a: end cap

111: 제 1 배플111: the first baffle

112: 제 2 배플 113,114,115: 튜브112: second baffle 113,114,115: tube

113a,114a,115a: 유로 116: 방열핀113a, 114a, 115a: Euro 116: heat sink fin

117: 사이드서포트 118,119: 입구파이프117: side support 118,119: inlet pipe

118a,119a: 출구파이프118a, 119a: outlet pipe

본 발명은 응축기와 오일쿨러 일체형 열교환기에 관한 것으로서, 더욱 상세하게는 응축부, 과냉각부, 오일쿨러부의 각 튜브의 수력직경을 다르게 함으로서 압력강하량을 감소함과 동시에 열교환성능을 향상할 수 있는 응축기와 오일쿨러 일체형 열교환기에 관한 것이다.The present invention relates to a heat exchanger integrated with a condenser and an oil cooler, and more particularly, by varying the hydraulic diameters of the tubes of the condenser, the supercooling part, and the oil cooler, to reduce the pressure drop and improve heat exchange performance. An oil cooler integrated heat exchanger.

일반적으로 열교환기는 특정 유로상에 설치되어 그 내부를 순환하는 열교환매체가 외기열을 흡열하도록 하거나 또는 자신의 열을 외부로 방열하는 방식으로 열교환을 수행하도록 하는 것이다.In general, the heat exchanger is installed on a specific flow path to allow the heat exchange medium circulating therein to absorb endothermic heat or to perform heat exchange by radiating its heat to the outside.

이러한 열교환기는 냉매를 열교환매체로 사용하는 응축기와 증발기, 그리고 냉각수를 열교환매체로 사용하는 라디에이터와 히터코어, 또한 엔진 및 변속기 등의 내부를 유동하는 오일을 냉각하기 위해 오일을 열교환매체로 사용하는 오일쿨러 등 사용목적과 용도에 따라 다양하게 제작되고 있다.The heat exchanger uses oil as a heat exchange medium to cool oil flowing inside a condenser and an evaporator using a refrigerant as a heat exchange medium, a radiator and a heater core using a cooling water as a heat exchange medium, and an engine and a transmission. It is produced in various ways according to the purpose of use and the use of the cooler.

상기 오일쿨러는 공냉식과 수냉식으로 구분되며, 이중에서 공냉식은 차량의 엔진룸 전방에 배치되는 응축기의 앞쪽에 설치되어 오일쿨러의 내부를 흐르는 오일을 외기와 열교환되도록 함으로서 오일을 적절히 냉각시키고 있다.The oil cooler is divided into air-cooled and water-cooled, in which the air-cooled is installed in front of the condenser disposed in front of the engine room of the vehicle to cool the oil properly by allowing the oil flowing inside the oil cooler to exchange heat with the outside air.

그러나, 상기 응축기와 오일쿨러가 별개의 부품으로 구성되어 각 장치를 제조한 후 설치하여야 하므로 제작공수가 많아 생산성이 낮을 뿐만 아니라, 재료의 낭비가 심해 원가가 크게 상승함과 오일쿨러를 장착하기 위한 공간확보에도 문제가 있었다.However, since the condenser and the oil cooler are composed of separate parts and must be installed after each device is manufactured, not only is the productivity low due to a large number of manufacturing labor, but also a great waste of materials, which greatly increases the cost and mounts the oil cooler. There was also a problem in securing space.

이러한 문제를 해결하기 위해 상기 오일쿨러를 상기 응축기와 일체화한 기술이 국내 실용신안등록번호 제 173431호(명칭: 자동차용 응축기/오일쿨러 일체형 열교환기)에 개시되어 있으며, 도 1을 참조하여 간략히 설명하면 다음과 같다.In order to solve this problem, a technology of integrating the oil cooler with the condenser is disclosed in Korean Utility Model Registration No. 173431 (name: automobile condenser / oil cooler integrated heat exchanger), which will be briefly described with reference to FIG. 1. Is as follows.

도시된 바와 같이, 상호 일정간격 이격되어 평행하게 배치되는 한 쌍의 헤더탱크(4)(5)와, 상기 한 쌍의 헤더탱크(4)(5)를 연통시키는 다수의 평판형 튜브(6)(6a)와, 상기 각 튜브(6)(6a)들 사이에 개재되는 방열핀(7)과, 상기 한 쌍의 헤더탱크(4)(5)의 내부를 각각 상,하로 구획함으로써 냉매가 흐르는 응축기(2) 및 오일이 흐르는 오일쿨러(3)로 구획하는 제 1 배플(8)과, 상기 응축기(2)측의 한 쌍의 헤더탱크(4)(5) 내부에 대해 상호 교호적으로 배치되어 냉매가 튜브(6)들을 지그재그 형태로 흐르도록 유도하는 제 2 배플(9)을 구비하여 구성된다.As shown, a plurality of flat tubes 6 for communicating a pair of header tanks 4 and 5 arranged in parallel and spaced apart from each other, and the pair of header tanks 4 and 5. 6a, the heat dissipation fins 7 interposed between the tubes 6 and 6a, and the inside of the pair of header tanks 4 and 5, respectively, up and down to separate the condenser through which the refrigerant flows. (2) and the first baffle 8 partitioned by the oil cooler 3 through which oil flows, and the pair of header tanks 4 and 5 inside the condenser 2 side are alternately arranged. It is configured with a second baffle 9 which guides the coolant to flow through the tubes 6 in a zigzag form.

그리고, 상기 응축기(2)측과 오일쿨러(3)측의 헤더탱크(4)(5)에는 각각 입,출구파이프(10)(11)(12)(13)가 구비된다.In addition, the inlet and outlet pipes 10, 11, 12, 13 are provided in the header tanks 4 and 5 on the condenser 2 side and the oil cooler 3 side, respectively.

따라서, 별도의 오일쿨러 없이도 하나의 열교환기(1)만으로 냉매의 액화작용은 물론 오일의 냉각작용도 동시에 수행할 수 있는 것이다.Therefore, the liquefaction of the refrigerant as well as the cooling operation of the oil can be performed simultaneously with only one heat exchanger 1 without a separate oil cooler.

여기서, 상기 오일쿨러(3) 뿐만아니라 응축기(2)의 성능을 향상시키기 위해서는 냉매가 열교환할 수 있는 전열면적을 증가시키고 냉매측의 압력강하량은 최소화시키도록 설계하는 것이 중요하다. 물론 냉매의 전열면적을 증가시키는 방안으로 튜브(6)(6a)내에서 냉매가 유동하는 유로의 수력직경(Hydraulic Diameter)을 무조건적으로 감소시키는 방안은 압력강하량을 증가시키게 되는 요인이 된다.Here, in order to improve the performance of the oil cooler 3 as well as the condenser 2, it is important to increase the heat transfer area through which the refrigerant can exchange heat and to minimize the pressure drop on the refrigerant side. Of course, the method of increasing the heat transfer area of the refrigerant unconditionally reducing the hydraulic diameter of the flow path in which the refrigerant flows in the tube (6) (6a) is a factor that increases the amount of pressure drop.

한편, 상기 응축기(2)는 입구파이프(10)를 통해 유입된 기상의 냉매가 튜브(6)내를 이동하면서 응축되는 응축부(2a)와, 상기 응축부(2a)의 하부측에 위치하면서 응축부(2a)에서 응축된 냉매를 과냉각시키는 과냉각부(2b)로 구성된다.On the other hand, the condenser 2 is located on the lower side of the condensation unit (2a) and the condensation unit (2a) where the refrigerant of the gas phase flowing through the inlet pipe 10 is condensed while moving in the tube (6) It consists of the subcooling part 2b which supercools the refrigerant condensed in the condensation part 2a.

그러나, 상기한 종래의 일체형 열교환기(1)는 응축기(2)의 응축부(2a)와 과냉각부(2b)를 구성하는 튜브(6)들의 수력직경이 동일하게 구성되어 있기 때문에 과냉각부(2b)에서 냉매의 유동저항이 크게 발생하면서 압력강하량이 증가하게 되고 결국 열교환성능이 저하되는 문제가 있었다.However, since the hydraulic diameter of the tubes 6 constituting the condenser 2a and the supercooling portion 2b of the condenser 2 is the same as that of the conventional integrated heat exchanger 1, the supercooling portion 2b The flow resistance of the refrigerant in the large) increases the pressure drop and eventually the heat exchange performance was a problem.

즉, 응축기(2)의 응축부(2a)에서는 기상의 냉매가 유입되어 튜브(6)내를 이동하면서 외부공기와의 열교환을 통해 점차 응축되고, 이렇게 응축된 냉매는 과냉각부(2b)에서 과냉각되게 되는데, 이때 응축부(2a)의 튜브(6)에는 기상의 냉매가 유입되기 때문에 유동저항이 크게 발생하지 않지만, 상기 응축부(2a)의 튜브(6)와 동일한 수력직경을 갖는 과냉각부(2b)의 튜브(6)에서는 과냉각된 액상의 냉매가 이동하기 때문에 유동저항이 크게 발생하여 압력강하량이 증가하고 이에따라 열교환성능이 저하되는 것이다.That is, in the condenser 2a of the condenser 2, the refrigerant of the gaseous phase flows into the tube 6 and gradually condenses through heat exchange with external air, and the condensed refrigerant is supercooled in the subcooling unit 2b. In this case, the flow resistance does not occur largely because the refrigerant of the gas phase flows into the tube 6 of the condensation unit 2a, but the supercooling unit having the same hydraulic diameter as the tube 6 of the condensation unit 2a ( In the tube 6 of 2b), because the refrigerant of the supercooled liquid phase moves, a large flow resistance is generated, thereby increasing the pressure drop and deteriorating the heat exchange performance.

상기한 문제점을 해결하기 위한 본 발명의 목적은 응축부, 과냉각부, 오일쿨러부의 각 튜브의 수력직경을 다르게 함으로서 압력강하량을 감소함과 동시에 열교환성능을 향상할 수 있는 응축기와 오일쿨러 일체형 열교환기를 제공하는데 있다.An object of the present invention for solving the above problems is to reduce the pressure drop by improving the hydraulic diameter of each tube of the condensation unit, subcooling unit, oil cooler unit and at the same time improve the heat exchange performance of the condenser and oil cooler integral heat exchanger To provide.

상기한 목적을 달성하기 위한 본 발명은 상호 일정간격 이격되어 평행하게 배치되는 한 쌍의 헤더탱크; 상기 한 쌍의 헤더탱크(110)에 양단부가 연통되게 결합되며, 유입된 냉매를 응축시키는 응축부와, 상기에서 응축된 냉매를 과냉각시키는 과냉각부와, 오일을 냉각시키는 오일쿨러부를 구성하는 다수의 튜브; 상기 튜브들 사이에 개재되는 방열핀을 포함하여 이루어진 응축기와 오일쿨러 일체형 열교환기에 있어서, 상기 응축부측 튜브의 수력직경을 Dch1 이라 하고, 과냉각부측 튜브의 수력직경을 Dch2 라 하고, 오일쿨러부측 튜브의 수력직경을 Doh 라 할 때, 다음식 0.8mm3〈 Dch1×Dch2×Doh〈 3.0mm3 을 만족하는 것을 특징으로 한다.The present invention for achieving the above object is a pair of header tanks arranged in parallel spaced apart from each other at regular intervals; Both ends of the pair of header tanks 110 are connected in communication with each other, and a condensation part condensing the introduced refrigerant, a subcooling part for supercooling the condensed refrigerant, and a plurality of oil cooler parts for cooling oil are provided. tube; In the condenser and oil cooler integrated heat exchanger comprising a heat dissipation fin interposed between the tubes, the hydraulic diameter of the condensation side tube is called Dch1, the hydraulic diameter of the supercooling side tube is Dch2, and the hydraulic power of the oil cooler side tube is when the diameter d Doh, and satisfy the following food 0.8mm 3 <Dch1 × Dch2 × Doh <3.0mm 3.

이하, 본 발명을 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 2는 본 발명에 따른 응축기와 오일쿨러 일체형 열교환기를 나타내는 정면도이고, 도 3은 도 2에서 응축부와 과냉각부와 오일쿨러부의 각 튜브를 나타내는 단면도이다.FIG. 2 is a front view illustrating a condenser and an oil cooler integrated heat exchanger according to the present invention, and FIG. 3 is a cross-sectional view illustrating each tube of the condenser, the supercooling part, and the oil cooler part in FIG. 2.

도시된 바와 같이, 본 발명에 따른 응축기와 오일쿨러 일체형 열교환기(100)는, 상호 일정간격 이격되어 평행하게 배치되는 한 쌍의 헤더탱크(110)와, 상기 한 쌍의 헤더탱크(110)에 양단부가 연통되게 결합되어 유입된 냉매를 응축시키는 응축부(103), 상기에서 응축된 냉매를 과냉각시키는 과냉각부(104), 오일을 냉각시키는 오일쿨러부(105)를 구성하는 다수의 튜브(113)(114)(115)와, 상기 튜브(113)(114)(115)들 사이에 개재되어 열교환을 촉진시키는 방열핀(116)으로 구성된다.As shown, the condenser and oil cooler integrated heat exchanger 100 according to the present invention, a pair of header tanks 110 are arranged in parallel spaced apart from each other at a predetermined interval, and the pair of header tanks 110 A plurality of tubes 113 constituting a condensation unit 103 for condensing the refrigerant introduced by the both ends in communication, a subcooling unit 104 for supercooling the condensed refrigerant, and an oil cooler unit 105 for cooling oil. ) 114, 115 and the heat dissipation fin 116 interposed between the tubes 113, 114 and 115 to promote heat exchange.

상기 한 쌍의 헤더탱크(110)의 양단부는 엔드캡(110a)에 의해 밀폐되며, 상 기 튜브(113)(114)(115) 및 방열핀(116)의 최외곽에는 이들을 보호하기 위해서 사이드서포트(117)가 결합되어 있다.Both ends of the pair of header tanks 110 are sealed by the end caps 110a, and the outermost sides of the tubes 113, 114, 115 and the heat dissipation fins 116 are provided at the outermost sides to protect them. 117 is combined.

그리고, 상기 한 쌍의 헤더탱크(110)의 내부를 각각 상,하로 구획하도록 제 1 배플(111)이 결합되는데, 즉, 상기 제 1 배플(111)을 기준으로 상측에는 상기 응축부(103) 및 과냉각부(104)로 이루어진 응축기(101)가 구성되고, 하측에는 상기 오일쿨러부(105)로 이루어진 오일쿨러(102)가 구성된다.In addition, a first baffle 111 is coupled to partition the inside of the pair of header tanks 110 up and down, that is, the condenser 103 is disposed on the upper side of the first baffle 111. And a condenser 101 composed of a supercooling portion 104, and an oil cooler 102 composed of the oil cooler portion 105 at the lower side thereof.

이때, 상기 응축기(101)측의 한 쌍의 헤더탱크(110)에는 냉매를 유입/배출할 수 있도록 입,출구파이프(118)(118a)가 구비되고, 오일쿨러(102)측의 한 쌍의 헤더탱크(110)에는 오일을 유입/배출할 수 있도록 입,출구파이프(119)(119a)가 구비된다.At this time, the pair of header tanks 110 on the condenser 101 side are provided with inlet and outlet pipes 118 and 118a to allow the refrigerant to flow in and out, and a pair of the oil cooler 102 sides. The header tank 110 is provided with inlet and outlet pipes 119 and 119a to allow oil to flow in and out.

또한, 상기 응축기(101)측 한 쌍의 헤더탱크(110)의 내부에는 제 2 배플(112)이 상호 교호적으로 결합되어 입구파이프(118)를 통해 유입된 냉매가 튜브(113)(114)들을 지그재그 형태로 유동하도록 유도하게 된다.In addition, the second baffle 112 is alternately coupled to the inside of the pair of header tanks 110 on the condenser 101 side, and the refrigerant introduced through the inlet pipe 118 is the tube 113 and 114. Induce zigzag flow.

여기서, 상기 한 쌍의 헤더탱크(110)는 각각 일체형 파이프로 구성할 수도 있고, 각각 분리된 헤더와 탱크를 조립한 후 브레이징시 접합하여 구성할 수도 있다.Here, the pair of header tanks 110 may be composed of integral pipes, respectively, or may be configured by assembling separate headers and tanks and then bonding them during brazing.

한편, 상기 한 쌍의 헤더탱크(110) 중 응축기(101)측의 출구파이프(118a)가 구비된 헤더탱크(110)측에는 상기 응축기(101)를 흐르면서 미쳐 액상화되지 않은 기체상태의 냉매를 분리/제거하거나 흐르는 냉매 중에 함유된 수분을 흡수하여 냉방효율을 높일 수 있도록 수액기(미도시)가 더 설치될 수도 있다.Meanwhile, in the header tank 110 side of the pair of header tanks 110 having the outlet pipe 118a on the condenser 101 side, the condenser 101 flows to separate / dissolve the gaseous refrigerant that is not liquefied. A receiver (not shown) may be further installed to absorb moisture contained in the removed or flowing refrigerant to increase cooling efficiency.

그리고, 상기 튜브(113)(114)(115)는 내부에 복수의 유로(113a)(114a)(115a)를 갖는 편형튜브로 이루어지며, 본 발명에서는 상기 응축부(103), 과냉각부(104), 오일쿨러부(105)를 구성하는 각 튜브(113)(114)(115)의 수력직경을 다르게 하여 압력강하량을 감소하고 이에따라 열교환성능을 향상하고자 한다.In addition, the tubes 113, 114, and 115 are formed of a flat tube having a plurality of flow paths 113a, 114a, and 115a therein. In the present invention, the condensation unit 103 and the subcooling unit 104 are provided. ), To reduce the pressure drop by varying the hydraulic diameters of the tubes 113, 114 and 115 constituting the oil cooler 105, thereby improving heat exchange performance.

따라서, 본 발명은 응축부(103)측 튜브(113)의 수력직경을 Dch1 이라 하고, 과냉각부(104)측 튜브(114)의 수력직경을 Dch2 라 하고, 오일쿨러부(105)측 튜브(115)의 수력직경을 Doh 라 할 때, 다음식 0.8mm3〈 Dch1×Dch2×Doh〈 3.0mm3 을 만족하도록 하는 것이다.Accordingly, in the present invention, the hydraulic diameter of the tube 113 on the condensation part 103 is referred to as Dch1, and the hydraulic diameter of the tube 114 on the subcooling part 104 is referred to as Dch2. When the hydraulic diameter of 115) is referred to as Doh, the following formula 0.8mm 3 &lt; Dch1 x Dch2 x Doh &lt; 3.0mm 3 is satisfied.

즉, 상기 응축부(103), 과냉각부(104), 오일쿨러부(105)의 각 튜브(113)(114)(115) 수력직경의 곱의 범위가 0.8mm3 보다 크고 3.0mm3 보다 작게 한 것이며, 만일 0.8mm3 이하가 되면 수력직경이 작아 전열면적이 증가하긴 하지만 냉매측 압력강하량이 증가하여 열교환성능이 저하되고, 3.0mm3 이상이 되면 반대로 수력직경이 커져 냉매측 압력강하량이 감소하긴 하지만 전열면적이 감소하여 열교환성능이 저하된다.That is, the condensing unit 103, a super-cooling section 104, each tube 113, 114, 115, the range of the product of the hydraulic diameter of the oil cooler 105 to be smaller than 3.0mm greater than 0.8mm 3 3 If the diameter is less than 0.8mm 3 , the heat transfer area increases due to the small hydraulic diameter, but the pressure drop on the refrigerant side increases the heat exchange performance. On the contrary, when the pressure exceeds 3.0mm 3 , the pressure drop on the refrigerant side decreases. However, the heat transfer area is reduced, which reduces the heat exchange performance.

튜브(113)(114)(115)의 수력직경이 작다는 것은 튜브(113)(114)(115)내의 유로(113a)(114a)(115a)들이 미세하다는 것을 의미하므로 결국 냉매가 흐를 수 있는 튜브(113)(114)(115)내의 유로(113a)(114a)(115a)가 좁아지기 때문에 전체적으로 응축기(101)내의 압력강하량이 증가하게 되는 것이다.The small hydraulic diameter of the tubes 113, 114, 115 means that the flow paths 113a, 114a, 115a in the tubes 113, 114, 115 are fine, so that refrigerant may flow. Since the flow passages 113a, 114a, 115a in the tubes 113, 114, 115 are narrowed, the amount of pressure drop in the condenser 101 is increased as a whole.

그리고, 본 발명은 상기의 식을 만족하는 범위내에서, 상기 응축부(103)측 튜브(113)의 수력직경(Dch1)과 과냉각부(104)측 튜브(114)의 수력직경(Dch2)이 서로 다르게 구성되는 것이 바람직하다.In the present invention, the hydraulic diameter Dch1 of the tube 113 of the condensation part 103 and the hydraulic diameter Dch2 of the tube 114 of the supercooling part 104 are equal to each other within a range satisfying the above expression. It is desirable to be configured differently.

즉, 상기 응축부(103)측 튜브(113)의 수력직경(Dch1)과, 과냉각부(104)측 튜브(114)의 수력직경(Dch2)과, 오일쿨러부(105)측 튜브(115)의 수력직경(Doh), 다음식 Dch1〈 Dch2〈 Doh 을 만족하는 것이 바람직하다.That is, the hydraulic diameter Dch1 of the tube 113 on the condensation part 103, the hydraulic diameter Dch2 of the tube 114 on the subcooling part 104, and the tube 115 of the oil cooler part 105 It is preferable to satisfy the hydraulic diameter Doh and the following formula Dch1 &lt; Dch2 &lt;

여기서, 상기 식을 만족하는 범위내에서 본 발명의 최적화된 수력직경은, 응축부(103)측 튜브(113)의 수력직경(Dch1)이 0.8mm 이하이고, 과냉각부(104)측 튜브(114)의 수력직경(Dch2)이 0.9mm 이하이고, 오일쿨러부(105)측 튜브(115)의 수력직경(Doh)이 1.8mm 이하 인것이 바람직하다.Here, within the range that satisfies the above formula, the optimized hydraulic diameter of the present invention, the hydraulic diameter (Dch1) of the tube 113 of the condensation part 103 side is 0.8mm or less, the tube 114 of the supercooling part 104 side ), The hydraulic diameter Dch2 is 0.9 mm or less, and the hydraulic diameter Doh of the tube 115 side of the oil cooler part 105 is preferably 1.8 mm or less.

즉, 응축부(103)측 튜브(113)에서는 기상의 냉매가 유입되어 점차 응축되는 영역이고, 과냉각부(104)측 튜브(114)에서는 상기에서 응축된 냉매가 과냉각되는 영역이기 때문에, 주로 기상 또는 기상과 액상이 혼합된 냉매가 유동하는 응축부(103)측 보다는 순수한 액상의 냉매가 유동하는 과냉각부(104)측 튜브(114)의 수력직경을 더 크게 해야 냉매측 유동저항을 감소할 수 있고 이에따라 응축기(101) 전체의 압력강햐량도 감소할 수 있는 것이다.That is, in the tube 113 on the condensation part 103 side, the gaseous refrigerant flows into the condensation part gradually, and in the tube 114 on the subcooling part 104 side, the condensed refrigerant is supercooled. Alternatively, the flow resistance of the refrigerant may be reduced by increasing the hydraulic diameter of the tube 114 on the supercooling unit 104 side in which the pure liquid refrigerant flows rather than the condensation unit 103 side in which the refrigerant mixed with the gas phase and the liquid phase flows. As a result, the amount of pressure drop across the condenser 101 may be reduced.

또한, 오일쿨러부(105)측 튜브(115)에서는 오일이 외부공기와의 열교환으로 냉각되는 영역이기 때문에 이때 오일의 점성이 높고 이에따라 유동저항이 크게 발생하므로 상기 응축부(103)측과 과냉각부(104)측 튜브(113)(114)의 수력직경과 보다 수력직경을 더 크게 해야 하는 것이다.In addition, the oil cooler part 105 side tube 115 is a region where oil is cooled by heat exchange with external air, and thus the viscosity of the oil is high and flow resistance is largely generated. The hydraulic diameter of the (104) side tubes 113 and 114 should be larger than the hydraulic diameter.

한편, 상기 응축부(103), 과냉각부(104), 오일쿨러부(105)측 튜브(113)(114)(115)들의 사이에 개재되는 방열핀(116)의 밀도는 모두 동일하다.On the other hand, the density of the heat dissipation fin 116 interposed between the condensation unit 103, the subcooling unit 104, the oil cooler unit 105 side tube 113, 114, 115 are all the same.

상기한 바와 같이, 본 발명에 따른 응축기와 오일쿨러 일체형 열교환기(100)의 냉매 및 오일의 순환과정을 설명하면 다음과 같다.As described above, the circulation of the refrigerant and the oil of the condenser and the oil cooler integrated heat exchanger 100 according to the present invention will be described as follows.

먼저 압축기(미도시)로부터 이송된 고온/고압의 기상 냉매는 응축기(101)의 입구파이프(118)를 통해 일측의 헤더탱크(110)로 유입되고, 유입된 기상 냉매는 제 2 배플(112)에 의해 응축부(103)측의 튜브(113)들을 지그재그 형태로 흐르는 동안 외부공기와의 열교환으로 응축되어 액상으로 점차 바뀌면서 과냉각부(104)의 튜브(114)들로 이동하게 되고, 과냉각부(104)의 튜브(114)들을 흐르는 응축된 냉매는 과냉각된 후 타측의 헤더탱크(110)에 구비된 출구파이프(118a)를 통해 배출되는 것이다.First, the high temperature / high pressure gaseous refrigerant transferred from the compressor (not shown) is introduced into the header tank 110 on one side through the inlet pipe 118 of the condenser 101, and the introduced gaseous refrigerant is the second baffle 112. By condensation by the tube 113 on the condensation part 103 side by the heat exchange with the outside air while flowing in a zigzag form is gradually converted into a liquid phase is moved to the tubes 114 of the subcooling part 104, The condensed refrigerant flowing through the tubes 114 of the 104 is supercooled and then discharged through the outlet pipe 118a provided in the header tank 110 on the other side.

한편, 엔진오일, 변속기오일은 오일쿨러(102)의 입구파이프(119)를 통해 일측의 헤더탱크(110)로 유입되고, 유입된 오일은 오일쿨러부(105)의 튜브(115)들을 흐르는 동안 외부공기와 열교환하여 냉각되면서 타측의 헤더탱크(110)로 유입된 후 출구파이프(119a)를 통해 배출된다.On the other hand, the engine oil, the transmission oil is introduced into the header tank 110 of one side through the inlet pipe 119 of the oil cooler 102, while the introduced oil flows through the tubes 115 of the oil cooler unit 105 The heat exchange with the outside air is cooled and introduced into the other header tank 110 and then discharged through the outlet pipe (119a).

이와 같이, 일체형 열교환기(100)는, 응축기(101)에서는 압축기에서 압축된 냉매를 외부공기와의 열교환으로 액화시키고, 오일쿨러(102)에서는 엔진 또는 변속기 등의 오일을 외부공기와의 열교환으로 동시에 냉각시키게 되는 것이다.As described above, the integrated heat exchanger 100 liquefies the refrigerant compressed by the compressor in heat exchange with the external air in the condenser 101, and the oil cooler 102 exchanges oil such as an engine or a transmission with external air. It will be cooled at the same time.

상기한 본 발명에 따르면, 상기 응축부, 과냉각부, 오일쿨러부측의 각 튜브의 수력직경을 다르게 함으로서 압력강하량을 감소함과 동시에 열교환성능이 향상된다.According to the present invention described above, by varying the hydraulic diameter of each tube of the condensation unit, the subcooling unit, and the oil cooler unit, the pressure drop is reduced and the heat exchange performance is improved.

Claims (4)

상호 일정간격 이격되어 평행하게 배치되는 한 쌍의 헤더탱크(110);A pair of header tanks 110 disposed to be parallel to each other at a predetermined interval; 상기 한 쌍의 헤더탱크(110)에 양단부가 연통되게 결합되며, 유입된 냉매를 응축시키는 응축부(103)와, 상기에서 응축된 냉매를 과냉각시키는 과냉각부(104)와, 오일을 냉각시키는 오일쿨러부(105)를 구성하는 다수의 튜브(113)(114)(115);Both ends of the pair of header tanks 110 are in communication with each other, a condensation unit 103 for condensing the introduced refrigerant, a subcooling unit 104 for supercooling the condensed refrigerant, and an oil cooling oil A plurality of tubes 113, 114, 115 constituting the cooler portion 105; 상기 튜브(113)(114)(115)들 사이에 개재되는 방열핀(116)Heat dissipation fin 116 interposed between the tube 113, 114, 115 을 포함하여 이루어진 응축기와 오일쿨러 일체형 열교환기에 있어서,In the condenser and oil cooler integrated heat exchanger comprising: 상기 응축부(103)측 튜브(113)의 수력직경을 Dch1 이라 하고, 과냉각부(104)측 튜브(114)의 수력직경을 Dch2 라 하고, 오일쿨러부(105)측 튜브(115)의 수력직경을 Doh 라 할 때, 다음식 0.8mm3〈 Dch1×Dch2×Doh〈 3.0mm3 을 만족하는 것을 특징으로 하는 응축기와 오일쿨러 일체형 열교환기.The hydraulic diameter of the tube 113 of the condensation part 103 side is referred to as Dch1, the hydraulic diameter of the tube 114 of the subcooling part 104 side is referred to as Dch2, and the hydraulic pressure of the tube 115 of the oil cooler part 105 side is shown. when the diameter d Doh, the food 0.8mm 3 <Dch1 Dch2 × × Doh group <condenser to satisfy the 3.0mm 3 and an oil cooler integrated heat exchanger. 제 1 항에 있어서,The method of claim 1, 상기 응축부(103)측 튜브(113)의 수력직경(Dch1)과 과냉각부(104)측 튜브(114)의 수력직경(Dch2)은 서로 다르게 구성된 것을 특징으로 하는 응축기와 오일쿨러 일체형 열교환기.The hydraulic diameter (Dch1) of the tube (113) side of the condensation part 103 and the hydraulic diameter (Dch2) of the tube (114) side of the supercooling part (104) are different from each other, characterized in that the condenser and oil cooler integrated heat exchanger. 제 1 항에 있어서,The method of claim 1, 상기 응축부(103)측 튜브(113)의 수력직경(Dch1)과, 과냉각부(104)측 튜브(114)의 수력직경(Dch2)과, 오일쿨러부(105)측 튜브(115)의 수력직경(Doh)은, 다음식 Dch1〈 Dch2〈 Doh 을 만족하는 것을 특징으로 하는 응축기와 오일쿨러 일체형 열교환기.The hydraulic diameter Dch1 of the tube 113 on the condensation part 103 side, the hydraulic diameter Dch2 of the tube 114 on the subcooling part 104, and the hydraulic pressure of the tube 115 on the oil cooler part 105 side. A condenser and an oil cooler integrated heat exchanger, wherein the diameter Doh satisfies the following expression Dch1 &lt; Dch2 &lt; Doh. 제 3 항에 있어서,The method of claim 3, wherein 상기 응축부(103)측 튜브(113)의 수력직경(Dch1)은 0.8mm 이하이고, 과냉각부(104)측 튜브(114)의 수력직경(Dch2)은 0.9mm 이하이고, 오일쿨러부(105)측 튜브(115)의 수력직경(Doh)은 1.8mm 이하 인것을 특징으로 하는 응축기와 오일쿨러 일체형 열교환기.The hydraulic diameter Dch1 of the tube 113 on the condensation part 103 side is 0.8 mm or less, the hydraulic diameter Dch2 of the tube 114 on the subcooling part 104 side is 0.9 mm or less, and an oil cooler part 105 Hydraulic tube (Doh) of the side tube 115 is 1.8mm or less condenser and oil cooler integrated heat exchanger.
KR1020060033980A 2006-04-14 2006-04-14 Heat exchanger having condenser and oil cooler installed therein KR20070102172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060033980A KR20070102172A (en) 2006-04-14 2006-04-14 Heat exchanger having condenser and oil cooler installed therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060033980A KR20070102172A (en) 2006-04-14 2006-04-14 Heat exchanger having condenser and oil cooler installed therein

Publications (1)

Publication Number Publication Date
KR20070102172A true KR20070102172A (en) 2007-10-18

Family

ID=38817224

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060033980A KR20070102172A (en) 2006-04-14 2006-04-14 Heat exchanger having condenser and oil cooler installed therein

Country Status (1)

Country Link
KR (1) KR20070102172A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101353394B1 (en) * 2011-06-03 2014-01-21 한라비스테온공조 주식회사 Integrated heat exchanger, front end module, and heat exchange system
KR101362181B1 (en) * 2008-01-09 2014-02-12 한라비스테온공조 주식회사 Intercooler
KR101453314B1 (en) * 2007-11-01 2014-10-21 한라비스테온공조 주식회사 A Integrated-type Heat Exchanger
CN108613436A (en) * 2018-04-28 2018-10-02 青岛海尔空调器有限总公司 A kind of heat exchanger and air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101453314B1 (en) * 2007-11-01 2014-10-21 한라비스테온공조 주식회사 A Integrated-type Heat Exchanger
KR101362181B1 (en) * 2008-01-09 2014-02-12 한라비스테온공조 주식회사 Intercooler
KR101353394B1 (en) * 2011-06-03 2014-01-21 한라비스테온공조 주식회사 Integrated heat exchanger, front end module, and heat exchange system
CN108613436A (en) * 2018-04-28 2018-10-02 青岛海尔空调器有限总公司 A kind of heat exchanger and air conditioner
WO2019205601A1 (en) * 2018-04-28 2019-10-31 青岛海尔空调器有限总公司 Heat exchanger and air conditioner
CN108613436B (en) * 2018-04-28 2020-11-27 青岛海尔空调器有限总公司 Heat exchanger and air conditioner

Similar Documents

Publication Publication Date Title
US10005354B2 (en) Cooling module and cooling system for vehicle
CN102788452B (en) Condenser for vehicle and the air conditioning system for vehicle
US8276651B2 (en) Cooling system for a vehicle
JP5274175B2 (en) Cold storage heat exchanger
JPH109713A (en) Refrigerant condensing device and refrigerant condenser
KR101438608B1 (en) Cooling module for vehicle
JP5552309B2 (en) Evaporator with cool storage function
JP2007163042A (en) Heat exchanger
KR20070102172A (en) Heat exchanger having condenser and oil cooler installed therein
JP2014020758A (en) Cold storage heat exchanger
US20070056718A1 (en) Heat exchanger and duplex type heat exchanger
TW200303973A (en) Heat exchanger with receiver tank, receiver tank connecting member, receiver tank mounting structure of heat exchanger and refrigeration system
JP2005127529A (en) Heat exchanger
KR102439432B1 (en) Cooling module for hybrid vehicle
JP2005106329A (en) Subcool type condenser
JP2010175167A (en) Cold storage heat exchanger
JP2001215096A (en) Heat exchanger
KR100644134B1 (en) Condenser integrated with oil-cooler
KR20060011502A (en) Heat exchanger having condenser and oil cooler installed therein
JPH02293595A (en) Refrigerant condenser
KR200141952Y1 (en) Heat exchanger
KR100858514B1 (en) Receiver drier - integrated condenser
KR100879190B1 (en) One piece type condenser having oil cooler
KR200173431Y1 (en) Condenser/oil cooler heat exchange system for a car
KR101081964B1 (en) Receiver drier - integrated condenser

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination