KR20040059356A - Method for manufacturing sheet steel with ferrite and martensite having excellent uniform elongation ratio - Google Patents

Method for manufacturing sheet steel with ferrite and martensite having excellent uniform elongation ratio Download PDF

Info

Publication number
KR20040059356A
KR20040059356A KR1020020085971A KR20020085971A KR20040059356A KR 20040059356 A KR20040059356 A KR 20040059356A KR 1020020085971 A KR1020020085971 A KR 1020020085971A KR 20020085971 A KR20020085971 A KR 20020085971A KR 20040059356 A KR20040059356 A KR 20040059356A
Authority
KR
South Korea
Prior art keywords
cooling
seconds
steel sheet
less
ferrite
Prior art date
Application number
KR1020020085971A
Other languages
Korean (ko)
Other versions
KR100928769B1 (en
Inventor
진광근
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020020085971A priority Critical patent/KR100928769B1/en
Publication of KR20040059356A publication Critical patent/KR20040059356A/en
Application granted granted Critical
Publication of KR100928769B1 publication Critical patent/KR100928769B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE: A method for manufacturing 45 to 80 kgf/mm¬2 class thin sheet steel having excellent uniform elongation and dual phase of ferrite and martensite by controlling ratio of B/N and controlling cooling rate according to amount of alloy is provided. CONSTITUTION: The method comprises first step of coiling the hot finish rolled steel sheet in the temperature range of 560 to 620 deg.C after hot finish rolling steel comprising 0.04 to 0.18 wt.% of C, 0.1 to 0.3 wt.% of Si, 1.4 to 1.8 wt.% of Mn, 0.005 to 0.03 wt.% of P, 0.005 wt.% or less of S, 0.003 wt.% or less of N, 0.02 to 0.2 wt.% of acid soluble Al, 0.02 to 0.1 wt.% of Mo 0.0007 to 0.004 wt.% of B and a balance of Fe and other inevitable impurities and satisfying the following relation: 0.7<=B/N<=1.5 at a temperature of Ar3 or more; second step of recrystallization annealing the cold rolled steel sheet in the temperature range of 770 to 830 deg.C for 30 to 180 seconds after cold rolling the coiled hot rolled steel sheet to a reduction ratio of 50 to 80%; third step of first cooling the recrystallization annealed steel sheet to a temperature of 650 to 720 deg.C in a cooling rate of 1 to 10 deg.C/sec; fourth step of maintaining the second cooled steel sheet for 10 to 180 seconds, thereby forming a dual phase of ferrite and martensite after second cooling the first cooled steel sheet to a temperature of 200 to 350 deg.C in a cooling rate (deg.C/sec) satisfying the following relation: log(CR)>=£2.4-(Mn(%)+0.3Si(%)+2.7P(%))|, where CR is cooling rate; fifth step of hot dip galvanizing the heated steel sheet for 10 seconds or less by heating the dual phase formed steel sheet to a temperature of 450 to 470 deg.C; and sixth step of cooling the hot dip galvanized steel sheet to an ordinary temperature.

Description

균일연신율이 우수한 페라이트와 마르텐사이트로 이루어진 복합조직 박강판의 제조방법{Method for manufacturing sheet steel with ferrite and martensite having excellent uniform elongation ratio}Method for manufacturing sheet steel with ferrite and martensite having excellent uniform elongation ratio}

본 발명은 자동차 판넬 및 구조용 부품에 이용되는 박강판의 제조방법에 관한 것으로, 보다 상세하게는 B/N 비의 제어 및 합금양에 따른 냉각속도의 제어를 통한 균일연신율이 우수하며 페라이트와 마르텐사이트의 복합조직을 갖는 45~80kgf/mm2급 박강판의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a thin steel sheet used in automobile panels and structural parts, and more particularly, excellent uniform elongation through control of the B / N ratio and the control of the cooling rate according to the amount of alloy, ferrite and martensite It relates to a manufacturing method of 45 ~ 80kgf / mm grade 2 steel sheet having a composite structure of.

최근에는 자동차의 연료비 저감을 위하여 차체의 경량화가 요구되고 있는 실정이며, 판넬이나 구조부품의 경우, 가공성이 우수한 45-80kgf/mm2급 고강도 강판이 개발되고 있다. 한편, 자동차 구조부품의 경우는 충돌흡수성이 양호한 강판이 요구되고 있으며, 이러한 강판은 고속 인장강도가 높은 강종이 적합하다. 강종의 고속 인장강도를 높게 하기 위해서는 강판의 균일연신율이 높은 강종을 사용하여야 한다.균일 연신율이 우수한 강으로는 페라이트-마르텐사이트의 2상조직(Dual phase, DP)강과 잔류 오스테나이트가 가공중 마르텐사이트로 변태되는 변태유기소성(Transformation Induced plasticity, TRIP)강이 있다. 상기 페라이트-마르텐사이트의 2상조직강에 대한 종래기술로는 일본 공개특허공보 소57-61819호가 있다. 상기 종래기술은 Mn-Cr계 저탄소강을 단시간 소둔하여 얻은 복합조직강에 관한 것으로, 항복비가 낮고 항복점 연신이 나타나지 않으며 같은 인장강도의 고용강화강이나 석출경화강에 비하여 연성이 우수한 특성을 보이고 있다. 그러나, 상기 종래기술은 Mn이 1.8중량% 이상, Cr이 0.4중량% 이상 첨가되기 때문에 판넬이나 멤버와 같은 부품에 적용하기에는 연성이 부족하고 더욱이 용융아연도금을 실시할 경우 밀착성에 문제가 있다.Recently, in order to reduce fuel costs of automobiles, it is required to reduce the weight of the vehicle body, and in the case of panels and structural parts, 45-80 kgf / mm grade 2 high strength steel sheets having excellent workability have been developed. On the other hand, in the case of automotive structural parts, a steel plate having a good impact absorption is required, and such a steel sheet is suitable for steel sheets having high tensile strength at high speed. In order to increase the high tensile strength of steel grades, steel sheets with high uniform elongation of steel sheets should be used. For steels with high uniform elongation, dual phase (DP) steel of ferritic-martensite and residual austenitic martensite are processed. Transformation Induced Plasticity (TRIP) steel Japanese Patent Application Laid-open No. 57-61819 is a conventional technique for the two-phase structure steel of ferrite-martensite. The prior art relates to a composite tissue steel obtained by annealing Mn-Cr based low carbon steel for a short time, and has a low yield ratio, no yield point elongation, and exhibits excellent ductility compared to solid solution hardening steel or precipitation hardening steel of the same tensile strength. . However, since the prior art has added 1.8 wt% or more of Mn and 0.4 wt% or more of Cr, ductility is insufficient to be applied to a part such as a panel or a member.

한편, 변태유기소성강을 이용한 종래기술로는 일본 공개특허공보 소58-42246호가 있다. 상기 종래기술은 소둔온도가 오스테나이트 단상역으로 높고, 조직이 베이나이트와 잔류 오스테나이트의 혼합조직으로 프레스 가공후 2차 가공취성에 취약한 문제점이 있다. 변태유기소성강을 이용한 또 다른 종래기술로는 일본 공개특허공보 평6-145788호가 있다. 상기 종래기술에서는 페라이트와 잔류 오스테나이트의 혼합조직 강판이 제안되었으나, 상기 강판은 변태유기소성에 의하여 연성은 우수하지만 Si함량이 높아 용접성 및 도장성에 문제가 있고, Al함량이 높아 강중 개재물이 형성되기 용이하여 가공시 가공균열이 발생하는 문제점이 있다.On the other hand, Japanese Patent Application Laid-open No. 58-42246 is a conventional technique using metamorphic organic plastic steel. The prior art has a problem that the annealing temperature is high in the austenite single phase region, and the structure is vulnerable to secondary processing brittleness after press working with a mixed structure of bainite and residual austenite. Another conventional technique using metamorphic organic plastic steel is Japanese Patent Application Laid-open No. Hei 6-145788. In the prior art, a mixed structure steel sheet of ferrite and residual austenite has been proposed, but the steel sheet has excellent ductility due to metamorphic organic plasticity, but has a high Si content, which is problematic in weldability and paintability, and high Al content forms steel inclusions. There is a problem that processing cracks occur during easy processing.

본 발명은 상기한 종래기술의 문제점을 해결하기 위한 것으로, 용융아연도금 또는 아연층의 합금화 처리 과정 이후 고용질소에 의하여 균일연신율이 저하되는 것을 방지하기 위하여, B/N 비를 제어하고 합금양에 따른 냉각속도를 제어함으로써 균일연신율이 우수하며 페라이트와 마르텐사이트의 복합조직을 갖는 45~80kgf/mm2급 박강판의 제조방법을 제공하는데, 그 목적이 있다.The present invention is to solve the above problems of the prior art, in order to prevent the uniform elongation is lowered by solid solution nitrogen after hot dip galvanizing or zinc alloying process, controlling the B / N ratio and the amount of alloy By controlling the cooling rate according to the excellent uniform elongation and to provide a manufacturing method of 45 ~ 80kgf / mm grade 2 steel sheet having a composite structure of ferrite and martensite, its purpose is to.

상기한 목적을 달성하기 위한 본 발명은 중량%로, C: 0.04~0.18%, Si: 0.1~0.3%, Mn: 1.4~1.8%, P: 0.005~0.03%, S: 0.005% 이하, N: 0.003% 이하, 산가용 Al: 0.02~0.2%, Mo: 0.02~0.1%, B: 0.0007~0.004%, 나머지 Fe 및 기타 불가피한 불순물로 조성되고, 상기 B와 N의 함량이 다음 관계,The present invention for achieving the above object by weight, C: 0.04 ~ 0.18%, Si: 0.1 ~ 0.3%, Mn: 1.4 ~ 1.8%, P: 0.005 ~ 0.03%, S: 0.005% or less, N: 0.003% or less, acid value Al: 0.02 to 0.2%, Mo: 0.02 to 0.1%, B: 0.0007 to 0.004%, remaining Fe and other inevitable impurities, the content of B and N is the following relationship,

0.7 ≤ B/N ≤ 1.50.7 ≤ B / N ≤ 1.5

를 만족하는 강을,To satisfy the river,

Ar3이상에서 마무리 열간압연한 다음 560~620℃에서 권취하는 제1단계,The first step of finishing hot rolling over A r3 and then winding at 560 ~ 620 ℃,

상기 권취 후, 50~80% 압하율로 냉간압연한 다음 770~830℃에서 30~180초 동안 재결정 소둔하는 제2단계,After the winding, the second step of cold rolling at 50 ~ 80% reduction rate and then recrystallized annealing at 770 ~ 830 ℃ for 30 to 180 seconds,

상기 재결정 소둔 후, 650~720℃까지 1~10℃/초의 냉각속도로 1차 냉각하는 제3단계,After the recrystallization annealing, the third step of first cooling to a cooling rate of 1 ~ 10 ℃ / second to 650 ~ 720 ℃,

상기 1차 냉각 후, 다음 관계,After the first cooling, the following relationship,

log(CR) ≥ [2.4-(Mn(%)+ 0.3Si(%)+ 2.7P(%))]log (CR) ≥ [2.4- (Mn (%) + 0.3Si (%) + 2.7P (%))]

를 만족하는 냉각속도(CR, ℃/초)로 200~350℃까지 2차 냉각한 다음 10~180초 동안 유지하여 페라이트와 마르텐사이트의 복합조직을 만드는 제4단계,Fourth step of making a composite structure of ferrite and martensite by second cooling to 200 ~ 350 ℃ at a cooling rate (CR, ℃ / sec) that satisfies and then maintained for 10 ~ 180 seconds,

상기 복합조직을 만든 후, 450~470℃로 가열하여 10초 이하 용융아연도금하는 제5단계 및 상기 용융아연도금 후, 상온까지 냉각하는 제6단계를 포함하여 이루어진다.After making the composite structure, and heated to 450 ~ 470 ℃ a fifth step of hot dip galvanizing and less than 10 seconds and after the hot dip galvanizing, comprising a sixth step of cooling to room temperature.

또한, 본 발명은 중량%로, C: 0.04~0.18%, Si: 0.1~0.3%, Mn: 1.4~1.8%, P: 0.005~0.03%, S: 0.005% 이하, N: 0.003% 이하, 산가용 Al: 0.02~0.2%, Mo: 0.02~0.1%, B: 0.0007~0.004%, 나머지 Fe 및 기타 불가피한 불순물로 조성되고, 상기 B와 N의 함량이 다음 관계,In addition, the present invention is a weight%, C: 0.04 ~ 0.18%, Si: 0.1 ~ 0.3%, Mn: 1.4 ~ 1.8%, P: 0.005 ~ 0.03%, S: 0.005% or less, N: 0.003% or less, acid Soluble Al: 0.02 to 0.2%, Mo: 0.02 to 0.1%, B: 0.0007 to 0.004%, remaining Fe and other inevitable impurities, and the content of B and N is

0.7 ≤ B/N ≤ 1.50.7 ≤ B / N ≤ 1.5

를 만족하는 강을,To satisfy the river,

Ar3이상에서 마무리 열간압연한 다음 560~620℃에서 권취하는 제1단계,The first step of finishing hot rolling over A r3 and then winding at 560 ~ 620 ℃,

상기 권취 후, 50~80% 압하율로 냉간압연한 다음 770~830℃에서 30~180초 동안 재결정 소둔하는 제2단계,After the winding, the second step of cold rolling at 50 ~ 80% reduction rate and then recrystallized annealing at 770 ~ 830 ℃ for 30 to 180 seconds,

상기 재결정 소둔 후, 650~720℃까지 1~10℃/초의 냉각속도로 1차 냉각하는 제3단계,After the recrystallization annealing, the third step of first cooling to a cooling rate of 1 ~ 10 ℃ / second to 650 ~ 720 ℃,

상기 1차 냉각 후, 450~470℃로 가열하여 10초 이하 용융아연도금하는 제4단계,After the first cooling, the fourth step of hot-dip galvanizing for 10 seconds or less by heating to 450 ~ 470 ℃,

상기 용융아연도금 후, 다음 관계,After the hot dip galvanizing, the following relationship,

log(CR) ≥ [2.4-(Mn(%)+ 0.3Si(%)+ 2.7P(%))]log (CR) ≥ [2.4- (Mn (%) + 0.3Si (%) + 2.7P (%))]

를 만족하는 냉각속도(CR, ℃/초)로 200~350℃까지 2차 냉각한 다음 10~180초 동안 유지하여 페라이트와 마르텐사이트의 복합조직을 만드는 제5단계 및5th step of making a composite structure of ferrite and martensite by second cooling to 200 ~ 350 ℃ at a cooling rate satisfying the following (CR, ℃ / sec) and maintaining for 10 ~ 180 seconds.

상기 용융아연도금 후, 상온까지 냉각하는 제6단계를 포함하여 이루어진다.After the hot dip galvanizing, it comprises a sixth step of cooling to room temperature.

이하, 본 발명에 대하여 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명은 용융아연도금 또는 아연층의 합금화 처리 과정 이후 고용질소에 의하여 균일연신율이 저하되는 것을 방지하기 위하여, B/N 비를 제어하고 합금양에 따른 냉각속도를 제어함으로써, 페라이트와 마르텐사이트의 복합조직을 갖는 45~80kgf/mm2급 박강판의 균일연신율을 향상시키는데 특징이 있으며, 먼저 본 발명의 성분제한 이유부터 살펴본다.The present invention is to control the B / N ratio and to control the cooling rate according to the amount of alloy, in order to prevent the uniform elongation is lowered by the solid solution nitrogen after the alloying process of hot dip galvanized or zinc layer, the ferrite and martensite of It is characterized by improving the uniform elongation of 45 ~ 80kgf / mm grade 2 steel sheet having a composite structure, first look at the reasons of the limitation of the present invention.

C: 0.04~0.18중량%C: 0.04-0.18 wt%

상기 C는 강의 강력한 침입형 고용강화 원소이고, 소둔온도에서 오스테나이트 체적분율을 5~30% 확보하기 위해서 첨가되는 성분으로, 0.04중량% 미만 첨가되면 2상역 소둔에서 오스테나이트 분율이 작기 때문에 강도를 확보하기 어렵고, 0.18중량%를 초과하여 첨가되면 점용접성이 저하되므로, 그 함량을 0.04~0.18중량%로 제한하는 것이 바람직하다.The C is a strong invasive solid solution strengthening element of the steel, and is added to secure the austenite volume fraction at 5 to 30% at the annealing temperature, and when it is added less than 0.04% by weight, the austenite fraction is small at the two-phase annealing. It is difficult to ensure, and when added in excess of 0.18% by weight, since the spot weldability is lowered, it is preferable to limit the content to 0.04 to 0.18% by weight.

Si: 0.1~0.3중량%Si: 0.1-0.3 wt%

상기 Si는 Mn을 첨가하는 강종에서 용접시 용융금속의 유동성을 좋게 하여 용접부 금속의 개재물 잔류를 최대한 감소시킴으로써 용접성을 개선하고, 페라이트내의 탄소를 오스테나이트로 방출하여 항복강도를 낮추고 연성을 개선하기 위해 첨가되는 성분으로, 0.1중량% 미만 첨가되면 상기 효과를 얻을 수 없고, 0.3중량%를 초과하여 첨가되면 실리콘 산화물에 의해 용접부 개재물이 형성되고 도장성 및 도금성 등을 저하시키므로, 그 함량을 0.1~0.3중량%로 제한하는 것이 바람직하다.The Si improves the weldability by improving the fluidity of the molten metal during welding in the Mn-added steel grade as much as possible to reduce the inclusion of metal in the weld zone, and release the carbon in the ferrite as austenite to lower the yield strength and improve the ductility As a component to be added, if less than 0.1% by weight can not be obtained the above effect, if it is added in excess of 0.3% by weight the weld inclusions are formed by the silicon oxide and the paintability and plating properties, etc., the content is 0.1 ~ It is preferable to limit it to 0.3 weight%.

Mn: 1.4~1.8중량%Mn: 1.4-1.8 wt%

상기 Mn은 오스테나이트를 안정화하여 마르텐사이트를 확보하는 작용을 함과 동시에 고용강화 원소이기 때문에 첨가하였으며, 1.4중량% 미만 첨가되면 마르텐사이트를 얻기 위한 냉각속도가 너무 빨라 열응력이 발생하여 강판의 형상을 나쁘게 하고, 1.8중량%를 초과하여 첨가되면 용접성, 도장성, 도금성에 악영향을 줄 뿐만 아니라 강판 조직에 밴드조직을 형성하여 연성을 저하시키므로, 그 함량을 1.4~1.8중량%로 제한하는 것이 바람직하다.The Mn was added to stabilize the austenite to secure martensite and at the same time it is a solid solution strengthening element. When the amount of Mn is less than 1.4 wt%, the cooling rate is too fast to obtain martensite, and thus thermal stress is generated. When the content is more than 1.8% by weight, the addition of more than 1.8% by weight not only adversely affects the weldability, paintability, and plating property, but also forms a band structure in the steel sheet structure, thereby lowering the ductility, and therefore, the content is preferably limited to 1.4 to 1.8% by weight. Do.

P: 0.005~0.03중량%P: 0.005 to 0.03 wt%

상기 P는 고용강화 원소이고, 입계편석 원소로써 열연강판의 표면에 농화되어 산세성을 촉진시키기 때문에 Si첨가에 따른 산세성 저하를 개선하기 위하여 첨가한다. 상기 P의 함량이 0.005중량% 미만이면 상기 효과를 얻을 수 없고, 0.03중량%를 초과하면 2차가공취성과 점용접성 및 용융아연도금층의 합금화 반응을 지연시키므로,그 함량을 0.005~0.03중량%로 제한하는 것이 바람직하다.P is a solid solution strengthening element, and is added as a grain boundary segregation element to concentrate on the surface of the hot-rolled steel sheet to promote pickling. If the content of P is less than 0.005% by weight, the above effect cannot be obtained. If the content of P is more than 0.03% by weight, the secondary processing brittleness and the spot weldability and the alloying reaction of the hot dip galvanized layer are delayed, so the content is limited to 0.005 to 0.03% by weight. It is desirable to.

S: 0.005중량% 이하S: 0.005 wt% or less

상기 S는 0.005중량%를 초과하여 첨가되면 열연판에 조대한 MnS가 생성되어 가공균열의 기점이 되므로, 그 함량을 0.005중량% 이하로 제한하는 것이 바람직하다.When the S is added in excess of 0.005% by weight, coarse MnS is generated in the hot rolled sheet, which is a starting point of the processing crack, and therefore, the content is preferably limited to 0.005% by weight or less.

N: 0.003중량% 이하N: 0.003 wt% or less

상기 N은 오스테나이트 안정화 원소이지만, 0.003중량%를 초과하여 첨가되면 용융아연도금 또는 아연층의 합금화 공정에서 냉각시 과포화되어 균일연신율을 저하시키므로, 그 함량을 0.003중량% 이하로 제한하는 것이 바람직하다.Although N is an austenite stabilizing element, when it is added in excess of 0.003% by weight, it is supersaturated during cooling in the alloying process of hot dip galvanized or zinc layer, thereby lowering the uniform elongation. Therefore, the content is preferably limited to 0.003% by weight or less. .

산가용 Al: 0.02~0.2중량%Acid value Al: 0.02-0.2 wt%

상기 산가용 Al은 강중 산소와 결합하여 슬라브의 제조시 균열을 방지하는데 유효한 성분으로, 0.02중량% 미만 첨가되면 상기 효과를 얻을 수 없고, 0.2중량%를 초과하여 첨가되면 합금비용이 증가하므로, 그 함량을 0.02~0.2중량%로 제한하는 것이 바람직하다.The acid value Al is an effective ingredient for preventing cracks in the manufacture of slabs by combining with oxygen in the steel, and when added below 0.02% by weight, the above effect cannot be obtained, and when added in excess of 0.2% by weight, the alloy cost increases. It is preferable to limit the content to 0.02 to 0.2% by weight.

Mo: 0.02~0.1중량%, B: 0.0007~0.004중량%Mo: 0.02% to 0.1% by weight, B: 0.0007% to 0.004% by weight

상기 Mo와 B는 Mn과 동일하게 소둔온도에서 냉각하는 과정에서 오스테나이트가 펄라이트로 변태하는 것을 지연시키는 성분으로, 동시에 첨가하면 단독으로 첨가하는경우에 비하여 그 효과가 크게 증가하므로, 본 발명에서는 복합첨가한다. 상기 Mo의 함량이 0.02중량% 미만이면 상기 효과를 얻을 수 없고, 0.1중량%를 초과하면 제2상을 조대하게 하여 굽힘가공성을 저하시키고 합금비용이 증가하므로, 그 함량을 0.02~0.1중량%로 제한하는 것이 바람직하다. 또한, B의 함량이 0.0007중량% 미만이면 상기 효과를 얻을 수 없고, 0.004중량%를 초과하면 표면에 과다한 B가 농화되어 도금밀착성을 저하시키므로, 그 함량을 0.0007~0.004중량%로 제한하는 것이 바람직하다.Mo and B is a component that delays the transformation of austenite into pearlite during the cooling process at the annealing temperature in the same manner as Mn, and when added simultaneously, the effect is greatly increased compared to the case where it is added alone. Add. If the content of Mo is less than 0.02% by weight, the above effect cannot be obtained. If the content of Mo is more than 0.1% by weight, the second phase is coarsened to lower the bendability and the alloy cost increases, so that the content is 0.02 to 0.1% by weight. It is desirable to limit. In addition, when the content of B is less than 0.0007% by weight, the above effect cannot be obtained. When the content of B is more than 0.004% by weight, excessive B is condensed on the surface, thereby degrading the plating adhesion. Therefore, the content is preferably limited to 0.0007 to 0.004% by weight. Do.

상기한 조성 이외에 나머지는 Fe 및 기타 불가피한 불순물로 조성된다.In addition to the above compositions, the remainder is composed of Fe and other unavoidable impurities.

본 발명은 균일연신율을 향상시키는데 특징이 있는 것으로, 상기 균일연신율을 향상시키기 위해서는 B/N 비를 적절하게 제어하여야 한다. 상기 B/N 비가 0.7 미만이면 균일연신율 향상 효과가 적고, 1.5를 초과하면 균일연신율의 향상 효과는 포함되고 과다한 B첨가에 의해 도금밀착성이 저하되므로, 상기 B/N 비는 0.7~1.5로 제한하는 것이 바람직하다.The present invention is characterized by improving the uniform elongation, and in order to improve the uniform elongation, the B / N ratio must be appropriately controlled. If the B / N ratio is less than 0.7, the effect of improving the uniform elongation is small. If the B / N ratio is greater than 1.5, the effect of improving the uniform elongation is included and the plating adhesion is reduced by excessive addition of B. Therefore, the B / N ratio is limited to 0.7 to 1.5. It is preferable.

상기와 같이 조성되는 강을 Ar3이상의 온도에서 마무리 열간압연한 다음 560~620℃에서 권취한다. 상기 마무리 열간압연 온도가 Ar3미만이면 미세한 열연조직을 얻을 수 없으므로, 상기 마무리 열간압연 온도는 Ar3이상으로 제한하는 것이 바람직하다. 또한, 상기 권취온도가 560℃ 미만이면 열연판의 과냉에 의해 형상불량이 발생하고, 620℃를 초과하면 Si, Mn, B 등 용융 아연도금의 젖음성을 저하시키는 원소들의 표면 농화가 심해지므로, 상기 권취온도는 560~620℃로 제한하는 것이 바람직하다.The steel formed as described above is finished hot rolled at a temperature of A r3 or higher, and then wound at 560 to 620 ° C. When the finish hot rolling temperature is less than A r3, a fine hot rolled structure cannot be obtained. Therefore, the finish hot rolling temperature is preferably limited to A r3 or more. In addition, when the coiling temperature is less than 560 ° C, shape defects occur due to supercooling of the hot rolled sheet, and when it exceeds 620 ° C, the surface thickening of elements deteriorating the wettability of the hot dip galvanizing, such as Si, Mn, and B, is increased. It is preferable to wind up the coiling temperature to 560-620 degreeC.

상기 권취 후, 50~80%의 압하율로 냉간압연한 다음 770~830℃에서 30~180초 동안 재결정 소둔한다. 상기 냉간압하율이 50% 미만이면 재결정에 필요한 축적에너지를 확보할 수 없고, 80%를 초과하면 냉간압연에 의한 가공이 어렵고 압연시 강판의 가장자리에 균열이 발생하는 문제점이 있으므로, 상기 냉간압하율은 50~80%로 제한하는 것이 바람직하다. 또한, 상기 재결정 소둔 단계는 재결정과 동시에 페라이트와 오스테나이트 분율 형성과 탄소분배를 촉진시키기 위한 것으로, 상기 재결정 소둔 온도가 770℃ 미만이면 오스테나이트 형성양이 적으며 복합조직의 효과가 작고, 830℃를 초과하면 오스테나이트 양이 과다하게 형성되어 연성이 저하되므로, 상기 재결정 소둔 온도는 770~830℃로 제한하는 것이 바람직하다. 또한, 상기 재결정 소둔 시간이 30초 미만이면 오스테나이트 형성양이 적어 복합조직의 효과가 작고, 180초를 초과하면 오스테나이트 양이 과다하게 형성되므로, 상기 재결정 소둔 시간은 30~180초로 제한하는 것이 바람직하다.After the winding, cold rolling at a reduction ratio of 50 to 80%, and then recrystallized annealing at 770 ~ 830 ℃ for 30 to 180 seconds. If the cold reduction rate is less than 50%, the accumulated energy required for recrystallization cannot be secured. If the cold reduction rate is higher than 80%, it is difficult to process by cold rolling and cracking occurs at the edge of the steel sheet during rolling. Is preferably limited to 50-80%. In addition, the recrystallization annealing step is to promote the formation of ferrite and austenite fraction and carbon distribution at the same time as the recrystallization, when the recrystallization annealing temperature is less than 770 ℃, the amount of austenite formation is small, the effect of the composite structure is small, 830 ℃ If it exceeds A, the amount of austenite is excessively formed and ductility decreases. Therefore, the recrystallization annealing temperature is preferably limited to 770 to 830 ° C. In addition, when the recrystallization annealing time is less than 30 seconds, the amount of austenite formation is small, and the effect of the composite structure is small, and when the recrystallization annealing time is longer than 180 seconds, the amount of austenite is excessively formed, so the recrystallization annealing time is limited to 30 to 180 seconds. desirable.

상기 재결정 소둔 후, 650~720℃까지 1~10℃/초의 냉각속도로 1차 냉각한다. 상기 1차 냉각 단계는 페라이트와 오스테나이트의 탄소농도를 평형상태에 접근하게 하여 연성과 강도를 증가시키기 위한 것으로, 상기 1차 냉각종료 온도가 650℃ 미만이면 균일연신율 및 연성이 부족하고, 720℃를 초과해도 균일연신율 및 연성이 부족하므로, 상기 1차 냉각종료 온도는 650~720℃로 제한하는 것이 바람직하다. 또한, 상기 1차 냉각종료 온도까지의 냉각속도가 1℃/초 미만이면 냉각과정에서 펄라이트 변태를 억제하기 어렵고, 10℃/초를 초과하면 탄소 재분배의 효과가 없으므로, 상기 1차 냉각종료 온도까지의 냉각속도는 1~10℃/초로 제한하는 것이 바람직하다.After the recrystallization annealing, the first cooling to 650 ~ 720 ℃ at a cooling rate of 1 ~ 10 ℃ / sec. The primary cooling step is to increase the ductility and strength by making the carbon concentration of ferrite and austenite approach the equilibrium state, the uniform elongation and ductility is insufficient when the primary cooling end temperature is less than 650 ℃, 720 ℃ Since the uniform elongation and ductility are insufficient even if it exceeds, it is preferable to limit the said primary cooling end temperature to 650-720 degreeC. In addition, when the cooling rate to the first cooling end temperature is less than 1 ℃ / second, it is difficult to suppress the pearlite transformation in the cooling process, if it exceeds 10 ℃ / second, there is no effect of carbon redistribution, until the first cooling end temperature The cooling rate of is preferably limited to 1 ~ 10 ℃ / second.

상기 1차 냉각 후, 다음 관계식 1,After the first cooling, the following relation 1,

[관계식 1][Relationship 1]

log(CR) ≥ [2.4-(Mn(%)+ 0.3Si(%)+ 2.7P(%))]log (CR) ≥ [2.4- (Mn (%) + 0.3Si (%) + 2.7P (%))]

을 만족하는 냉각속도(CR, ℃/초)로 200~350℃까지 2차 냉각한 다음 10~180초 동안 유지하여 페라이트와 마르텐사이트의 복합조직을 형성한다. 상기 관계식 1을 만족하지 못하면 펄라이트 또는 베이나이트 조직이 얻어져 페라이트와 마르텐사이트 복합조직의 장점인 강도 및 연성의 향상을 기대하기 어렵다.After cooling to 200 ~ 350 ℃ at a cooling rate (CR, ℃ / sec) satisfying to maintain for 10 to 180 seconds to form a complex structure of ferrite and martensite. If the relation 1 is not satisfied, pearlite or bainite structure is obtained, and it is difficult to expect the improvement of strength and ductility, which is an advantage of the ferrite and martensite composite structure.

또한, 상기 2차 냉각종료 온도가 200℃ 미만이면 페라이트와 마르텐사이트 복합조직을 안정하게 얻을 수 없고, 350℃를 초과해도 페라이트와 마르텐사이트 복합조직을 안정하게 얻을 수 없므로, 상기 2차 냉각종료 온도는 200~350℃로 제한하는 것이 바람직하다. 또한, 상기 2차 냉각 후, 유지시간이 10초 미만이거나 180초를 초과하면 페라이트와 마르텐사이트 복합조직을 안정하게 얻을 수 없으므로, 상기 2차 냉각 후 유지시간은 10~180초로 제한하는 것이 바람직하다.In addition, if the secondary cooling end temperature is less than 200 ℃ ferrite and martensite composite structure can not be obtained stably, even if it exceeds 350 ℃ ferrite and martensite composite structure can not be obtained stably, the secondary cooling end It is preferable to limit temperature to 200-350 degreeC. In addition, since the ferrite and martensite complex structure cannot be stably obtained when the holding time is less than 10 seconds or more than 180 seconds after the secondary cooling, the holding time after the secondary cooling is preferably limited to 10 to 180 seconds. .

상기 복합조직을 만든 후, 450~470℃로 가열하여 10초 이하 용융아연도금한다. 상기 용융아연도금 온도가 450℃ 미만이면 아연도금이 부족하고, 470℃를 초과하면 과다하게 아연도금이 이루어지므로, 상기 용융아연도금 온도는 450~470℃로 제한하는 것이 바람직하다. 또한, 상기 용융아연도금 시간이 10초를 초과하면 아연도금이 과다해지므로, 상기 용융아연도금 시간은 10초 이하로 제한하는 것이 바람직하다.After making the composite structure, it is heated to 450 ~ 470 ℃ hot-galvanized 10 seconds or less. If the hot-dip galvanizing temperature is less than 450 ℃ zinc plating is insufficient, if it exceeds 470 ℃ excessive zinc plating is made, the hot-dip galvanizing temperature is preferably limited to 450 ~ 470 ℃. In addition, since the zinc plating becomes excessive when the hot dip galvanizing time exceeds 10 seconds, the hot dip galvanizing time is preferably limited to 10 seconds or less.

상기 용융아연도금 후, 상온까지 냉각한다.After the hot dip galvanizing, it is cooled to room temperature.

또한, 본 발명은 상기 용융아연도금 단계와 상온까지 냉각하는 단계 사이에 500~580℃로 가열하여 30초 이하 합금화 열처리하는 단계를 추가로 포함할 수 있다. 상기 합금화 열처리는 용융아연도금 단계에서 형성된 용융아연도금층을 합금화 시키기 위한 것으로, 상기 합금화 열처리 온도가 500℃ 미만이면 합금화가 불안정하고, 580℃를 초과해도 합금화가 불안정하므로, 상기 합금화 열처리 온도는 500~580℃로 제한하는 것이 바람직하다. 또한, 상기 합금화 열처리 시간이 30초를 초과하면 합금화가 과다해지므로, 상기 합금화 열처리 시간은 30초 이하로 제한하는 것이 바람직하다.In addition, the present invention may further comprise the step of heat-treating the alloying heat treatment for less than 30 seconds by heating to 500 ~ 580 ℃ between the hot dip galvanizing step and the step of cooling to room temperature. The alloying heat treatment is for alloying the hot dip galvanized layer formed in the hot dip galvanizing step, if the alloying heat treatment temperature is less than 500 ℃ alloying is unstable, even if it exceeds 580 ℃ alloying is unstable, the alloying heat treatment temperature is 500 ~ It is desirable to limit to 580 ° C. Further, since the alloying becomes excessive when the alloying heat treatment time exceeds 30 seconds, the alloying heat treatment time is preferably limited to 30 seconds or less.

상기한 제조방법에서는 페라이트와 마르텐사이트의 복합조직을 형성한 다음 용융아연도금하거나 페라이트와 마르텐사이트의 복합조직을 형성한 다음 용융아연도금한 후, 합금화 열처리하고 있다. 하지만, 본 발명에서는 용융아연도금한 다음 페라이트와 마르텐사이트의 복합조직을 형성하거나 용융아연도금한 다음 합금화 열처리한 후, 페라이트와 마르텐사이트의 복합조직을 형성하더라도 같은 효과를 얻을 수 있다.In the above production method, a composite structure of ferrite and martensite is formed, followed by hot dip galvanization or a composite structure of ferrite and martensite, followed by hot dip galvanization, followed by alloy heat treatment. However, in the present invention, after forming the composite structure of ferrite and martensite after hot dip galvanizing or after hot-dip galvanizing and alloying heat treatment, the same effect can be obtained even if the composite structure of ferrite and martensite is formed.

이하, 실시예를 통하여 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

하기 표 1과 같이 조성되는 강을 900℃에서 마무리 열간압연하여 3.0mm의 강판으로 제조하였다. 이후 냉각한 다음 580℃에서 권취하고, 산세한 다음 1.2mm두께로 냉간압연하였다. 상기 냉간압연된 강판은 하기 표 2의 조건으로 소둔 및 1차냉각을 한 다음 460℃로 냉각하여 10초간 유지한 후, 다시 540℃로 가열하여 다시 540℃로 가열하여 20초간 유지하고, 300℃로 2차냉각하였다(냉각방식(4)). 상기와 같이 제조된 강판의 기계적 성질을 조사하였으며, 그 결과는 하기 표 2와 같다.Steel prepared as shown in Table 1 was hot-rolled at 900 ° C. to prepare a steel plate of 3.0 mm. After cooling, it was wound up at 580 ° C., pickled, and cold rolled to a thickness of 1.2 mm. The cold rolled steel sheet is subjected to annealing and primary cooling under the conditions shown in Table 2, and then cooled to 460 ° C. and maintained for 10 seconds, and then heated to 540 ° C. and further heated to 540 ° C. for 20 seconds, and 300 ° C. Secondary cooling (cooling method (4)). The mechanical properties of the steel sheet manufactured as described above were examined, and the results are shown in Table 2 below.

상기 표 2에서 알 수 있듯이, 본 발명의 성분과 소둔조건을 만족하는 강종은 본 발명의 범위를 벗어난 강종에 비하여 동일한 수준의 인장강도에서 균일연신율 및 연성이 매우 우수한 특징을 보였다. 특히, 비교강(G~I)는 본 발명강과 다르게 Mo 또는 B를 동시에 첨가하지 않은 강으로, 관계식 1을 만족하지만 강도 대비 균일연신율 및 연성이 본 발명강에 비하여 낮게 나타났으며, 이는 본 발명강의 Mo, B복합첨가에 따른 오스테나이트 안정화 효과를 보여주는 것이다. 비교강(J)는 B/N비가 본 발명의 범위를 벗어난 강으로, B/N비가 0.7 이상인 발명강에 비하여 균일연신율이 낮게 나타났다.As can be seen in Table 2, the steel grade that satisfies the components of the present invention and the annealing conditions showed a very excellent uniform elongation and ductility at the same level of tensile strength than the steel grade outside the scope of the present invention. In particular, the comparative steel (G ~ I) is a steel that does not add Mo or B at the same time different from the steel of the present invention, satisfies the relation 1, but the uniform elongation and ductility relative to the strength appeared lower than the steel of the present invention, which is the present invention It shows the austenite stabilizing effect of Mo and B complex addition of steel. Comparative steel (J) is a steel in which the B / N ratio is outside the scope of the present invention, and showed a lower uniform elongation than the inventive steel having a B / N ratio of 0.7 or more.

한편, 발명강(C)에 대하여 1차냉각 이후에 250℃로 2차냉각하여 120초간 유지후 다시 460℃로 가열하여 5초간 유지하고, 상온으로 최종냉각한 냉각방식(1), 250℃로 2차냉각하여 120초간 유지후 다시 460℃로 가열하여 5초간 유지후 540℃로 가열하여 20초간 유지하고, 상온으로 최종냉각한 냉각방식(2), 460℃로 냉각하여 5초간 유지후 상온으로 2차냉각한 냉각방식(3) 및 상기 냉각방식(4)로 강판을 제조하였으며, 그 결과는 하기 표 3과 같다.On the other hand, after the first cooling to the invention steel (C) after the second cooling to 250 ℃ and maintained for 120 seconds and then again heated to 460 ℃ and maintained for 5 seconds, the final cooling to room temperature (1), 250 ℃ Secondary cooling, holding for 120 seconds, heating to 460 ℃ again, holding for 5 seconds, heating to 540 ℃ for 20 seconds, final cooling to room temperature (2), cooling to 460 ℃, holding for 5 seconds, then to room temperature Steel sheets were manufactured by the secondary cooling method (3) and the cooling method (4), and the results are shown in Table 3 below.

상기 표 3에서 알 수 있듯이, 2차 냉각속도식인 관계식 1을 만족하는 냉각속도인 10℃/초에서 복합조직강의 우수한 기계적 성질이 얻어졌다.As can be seen from Table 3, excellent mechanical properties of the composite tissue steel was obtained at a cooling rate of 10 ℃ / second satisfying the relational expression 1, the second cooling rate formula.

상술한 바와 같이, 본 발명은 페라이트와 마르텐사이트의 복합조직을 가지는 인장강도 45-80kgf/mm2급의 균일연신율이 우수한 용융 아연도금 강판용 박강판에 관한 것으로, 자동차 판넬 및 구조용 부품에 적용할 수 있으며 자동차 경량화 및 충돌흡수성 개선에 효과가 있다.As described above, the present invention relates to a thin steel sheet for hot-dip galvanized steel sheet excellent in uniform elongation of 45-80kgf / mm 2 grade tensile strength having a composite structure of ferrite and martensite, can be applied to automotive panels and structural parts It is effective in lightening automobiles and improving crash absorption.

Claims (4)

중량%로, C: 0.04~0.18%, Si: 0.1~0.3%, Mn: 1.4~1.8%, P: 0.005~0.03%, S: 0.005% 이하, N: 0.003% 이하, 산가용 Al: 0.02~0.2%, Mo: 0.02~0.1%, B: 0.0007~0.004%, 나머지 Fe 및 기타 불가피한 불순물로 조성되고, 상기 B와 N의 함량이 다음 관계,By weight%, C: 0.04 to 0.18%, Si: 0.1 to 0.3%, Mn: 1.4 to 1.8%, P: 0.005 to 0.03%, S: 0.005% or less, N: 0.003% or less, acid value Al: 0.02 to 0.2%, Mo: 0.02% to 0.1%, B: 0.0007% to 0.004%, remaining Fe and other unavoidable impurities, and the content of B and N is 0.7 ≤ B/N ≤ 1.50.7 ≤ B / N ≤ 1.5 를 만족하는 강을,To satisfy the river, Ar3이상에서 마무리 열간압연한 다음 560~620℃에서 권취하는 제1단계,The first step of finishing hot rolling over A r3 and then winding at 560 ~ 620 ℃, 상기 권취 후, 50~80% 압하율로 냉간압연한 다음 770~830℃에서 30~180초 동안 재결정 소둔하는 제2단계,After the winding, the second step of cold rolling at 50 ~ 80% reduction rate and then recrystallized annealing at 770 ~ 830 ℃ for 30 to 180 seconds, 상기 재결정 소둔 후, 650~720℃까지 1~10℃/초의 냉각속도로 1차 냉각하는 제3단계,After the recrystallization annealing, the third step of first cooling to a cooling rate of 1 ~ 10 ℃ / second to 650 ~ 720 ℃, 상기 1차 냉각 후, 다음 관계,After the first cooling, the following relationship, log(CR) ≥ [2.4-(Mn(%)+ 0.3Si(%)+ 2.7P(%))]log (CR) ≥ [2.4- (Mn (%) + 0.3Si (%) + 2.7P (%))] 를 만족하는 냉각속도(CR, ℃/초)로 200~350℃까지 2차 냉각한 다음 10~180초 동안 유지하여 페라이트와 마르텐사이트의 복합조직을 만드는 제4단계,Fourth step of making a composite structure of ferrite and martensite by second cooling to 200 ~ 350 ℃ at a cooling rate (CR, ℃ / sec) that satisfies and then maintained for 10 ~ 180 seconds, 상기 복합조직을 만든 후, 450~470℃로 가열하여 10초 이하 용융아연도금하는 제5단계 및 상기 용융아연도금 후, 상온까지 냉각하는 제6단계를 포함하여 이루어지는 균일연신율이 우수한 페라이트와 마르텐사이트로 이루어진 복합조직 박강판의 제조방법.After making the composite structure, the ferrite and martensite excellent in uniform elongation comprising a fifth step of heating to 450 ~ 470 ℃ and hot dip galvanizing 10 seconds or less and the sixth step of cooling to room temperature after the hot dip galvanizing Method for manufacturing a composite tissue steel sheet consisting of. 제1항에 있어서, 상기 제5단계 이후에 500~580℃로 가열하여 30초 이하 합금화 열처리하는 단계를 추가로 포함하는 것을 특징으로 하는 균일연신율이 우수한 페라이트와 마르텐사이트로 이루어진 복합조직 박강판의 제조방법.According to claim 1, After the fifth step is heated to 500 ~ 580 ℃ further comprising the step of alloying heat treatment for 30 seconds or less, characterized in that the composite sheet steel sheet made of excellent ferrite and martensite excellent elongation Manufacturing method. 중량%로, C: 0.04~0.18%, Si: 0.1~0.3%, Mn: 1.4~1.8%, P: 0.005~0.03%, S: 0.005% 이하, N: 0.003% 이하, 산가용 Al: 0.02~0.2%, Mo: 0.02~0.1%, B: 0.0007~0.004%, 나머지 Fe 및 기타 불가피한 불순물로 조성되고, 상기 B와 N의 함량이 다음 관계,By weight%, C: 0.04 to 0.18%, Si: 0.1 to 0.3%, Mn: 1.4 to 1.8%, P: 0.005 to 0.03%, S: 0.005% or less, N: 0.003% or less, acid value Al: 0.02 to 0.2%, Mo: 0.02% to 0.1%, B: 0.0007% to 0.004%, remaining Fe and other unavoidable impurities, and the content of B and N is 0.7 ≤ B/N ≤ 1.50.7 ≤ B / N ≤ 1.5 를 만족하는 강을,To satisfy the river, Ar3이상에서 마무리 열간압연한 다음 560~620℃에서 권취하는 제1단계,The first step of finishing hot rolling over A r3 and then winding at 560 ~ 620 ℃, 상기 권취 후, 50~80% 압하율로 냉간압연한 다음 770~830℃에서 30~180초 동안 재결정 소둔하는 제2단계,After the winding, the second step of cold rolling at 50 ~ 80% reduction rate and then recrystallized annealing at 770 ~ 830 ℃ for 30 to 180 seconds, 상기 재결정 소둔 후, 650~720℃까지 1~10℃/초의 냉각속도로 1차 냉각하는 제3단계,After the recrystallization annealing, the third step of first cooling to a cooling rate of 1 ~ 10 ℃ / second to 650 ~ 720 ℃, 상기 1차 냉각 후, 450~470℃로 가열하여 10초 이하 용융아연도금하는 제4단계,After the first cooling, the fourth step of hot-dip galvanizing for 10 seconds or less by heating to 450 ~ 470 ℃, 상기 용융아연도금 후, 다음 관계,After the hot dip galvanizing, the following relationship, log(CR) ≥ [2.4-(Mn(%)+ 0.3Si(%)+ 2.7P(%))]log (CR) ≥ [2.4- (Mn (%) + 0.3Si (%) + 2.7P (%))] 를 만족하는 냉각속도(CR, ℃/초)로 200~350℃까지 2차 냉각한 다음 10~180초 동안 유지하여 페라이트와 마르텐사이트의 복합조직을 만드는 제5단계 및5th step of making a composite structure of ferrite and martensite by second cooling to 200 ~ 350 ℃ at a cooling rate satisfying the following (CR, ℃ / sec) and maintaining for 10 ~ 180 seconds. 상기 용융아연도금 후, 상온까지 냉각하는 제6단계를 포함하여 이루어지는 균일연신율이 우수한 페라이트와 마르텐사이트로 이루어진 복합조직 박강판의 제조방법.After the hot-dip galvanizing, a method for producing a composite structured steel sheet consisting of ferrite and martensite excellent in uniform elongation comprising a sixth step of cooling to room temperature. 제1항에 있어서, 상기 제4단계 이후에 500~580℃로 가열하여 30초 이하 합금화 열처리하는 단계를 추가로 포함하는 것을 특징으로 하는 균일연신율이 우수한 페라이트와 마르텐사이트로 이루어진 복합조직 박강판의 제조방법.According to claim 1, After the fourth step is heated to 500 ~ 580 ℃ further comprising the step of alloying heat treatment for 30 seconds or less, characterized in that the composite sheet steel sheet composed of excellent ferrite and martensite excellent elongation Manufacturing method.
KR1020020085971A 2002-12-28 2002-12-28 Manufacturing method of composite thin steel sheet composed of ferrite and martensite with excellent uniform elongation KR100928769B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020085971A KR100928769B1 (en) 2002-12-28 2002-12-28 Manufacturing method of composite thin steel sheet composed of ferrite and martensite with excellent uniform elongation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020085971A KR100928769B1 (en) 2002-12-28 2002-12-28 Manufacturing method of composite thin steel sheet composed of ferrite and martensite with excellent uniform elongation

Publications (2)

Publication Number Publication Date
KR20040059356A true KR20040059356A (en) 2004-07-05
KR100928769B1 KR100928769B1 (en) 2009-11-25

Family

ID=37351365

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020085971A KR100928769B1 (en) 2002-12-28 2002-12-28 Manufacturing method of composite thin steel sheet composed of ferrite and martensite with excellent uniform elongation

Country Status (1)

Country Link
KR (1) KR100928769B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100933882B1 (en) * 2007-07-03 2009-12-28 현대하이스코 주식회사 Manufacturing method of hot dip galvanized steel sheet with excellent workability

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58221233A (en) 1982-06-15 1983-12-22 Nippon Kokan Kk <Nkk> Manufacture of high-strength cold-rolled steel plate with superior press formability
JP4665302B2 (en) * 2000-11-02 2011-04-06 Jfeスチール株式会社 High-tensile cold-rolled steel sheet having high r value, excellent strain age hardening characteristics and non-aging at room temperature, and method for producing the same
KR100530071B1 (en) * 2001-12-20 2005-11-22 주식회사 포스코 Manufacturing method of retained austenite contained cold rolled steel sheets with good ductility

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100933882B1 (en) * 2007-07-03 2009-12-28 현대하이스코 주식회사 Manufacturing method of hot dip galvanized steel sheet with excellent workability

Also Published As

Publication number Publication date
KR100928769B1 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
CN113444977B (en) High-strength and high-formability steel sheet and method of manufacturing the same
KR101399741B1 (en) High-strength hot-dip zinc plated steel sheet excellent in workability and process for manufacturing the same
JP5042232B2 (en) High-strength cold-rolled steel sheet excellent in formability and plating characteristics, galvanized steel sheet using the same, and method for producing the same
JP5290245B2 (en) Composite structure steel plate and method of manufacturing the same
KR101638719B1 (en) Galvanized steel sheet and method for manufacturing the same
KR100931140B1 (en) High tensile steel sheet with excellent formability and manufacturing method thereof
KR101264574B1 (en) Method for producing high-strength steel plate having superior deep drawing characteristics
JP5564432B2 (en) High-strength cold-rolled steel sheet excellent in workability, galvanized steel sheet, and manufacturing method thereof
KR101726130B1 (en) Composition structure steel sheet having excellent formability and method for manufacturing the same
KR20070061859A (en) High strength thin steel plate excellent in elongation and bore expanding characteristics and method for production thereof
WO2003106723A1 (en) High strength cold rolled steel plate and method for production thereof
CN117604392A (en) Cold-rolled steel sheet and hot-dip galvanized steel sheet having excellent workability, and method for producing same
KR100711468B1 (en) High strength cold rolled steel sheet and hot dip galvanized steel sheet having excellent formability and coating property, and the method for manufacturing thereof
JP3587126B2 (en) High tensile hot-dip galvanized steel sheet excellent in ductility and method for producing the same
KR20150075307A (en) Ultra-high strength hot-rolled steel sheet with solid diffusion bonding properties, and method for producing the same
KR102200227B1 (en) Cord rolled steel sheet, hot-dip galvanized steel sheet having good workability, and manufacturing method thereof
CN114921726A (en) Low-cost high-yield-ratio cold-rolled hot-galvanized ultrahigh-strength steel and production method thereof
KR100711445B1 (en) A method for manu- facturing alloyed hot dip galvanized steel sheet for hot press forming having excellent plating adhesion and impact property, the method for manufacturing hot press parts made of it
JP4177477B2 (en) Manufacturing method of cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent room temperature aging resistance and panel characteristics
KR20220048611A (en) High-strength hot-dip galvanized steel sheet with excellent ductility and processability and process for producing the same
KR101889181B1 (en) High-strength steel having excellent bendability and stretch-flangeability and method for manufacturing same
KR20140086273A (en) High strength galvannealed steel sheet having excellent formability and coating adhesion and method for manufacturing the same
KR101505252B1 (en) Cold-rolled steel sheet for outcase of car having low yield ratio with excellent formability and method of manufacturing the same
KR100928769B1 (en) Manufacturing method of composite thin steel sheet composed of ferrite and martensite with excellent uniform elongation
KR100530057B1 (en) Method for Manufacturing Cold Rolled Steel Sheet with Superior Workability and Secondary Working Embrittlement Resistance

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121114

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20131101

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20141113

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20151117

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20161108

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20191119

Year of fee payment: 11