KR200184807Y1 - Vacuum boiler with spiral tube economizer - Google Patents
Vacuum boiler with spiral tube economizer Download PDFInfo
- Publication number
- KR200184807Y1 KR200184807Y1 KR2019970028964U KR19970028964U KR200184807Y1 KR 200184807 Y1 KR200184807 Y1 KR 200184807Y1 KR 2019970028964 U KR2019970028964 U KR 2019970028964U KR 19970028964 U KR19970028964 U KR 19970028964U KR 200184807 Y1 KR200184807 Y1 KR 200184807Y1
- Authority
- KR
- South Korea
- Prior art keywords
- boiler
- spiral tube
- vacuum
- combustion
- combustion chamber
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H8/00—Fluid heaters characterised by means for extracting latent heat from flue gases by means of condensation
- F24H8/006—Means for removing condensate from the heater
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/66—Treatment of water, waste water, or sewage by neutralisation; pH adjustment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H1/00—Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
- F24H1/22—Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
- F24H1/40—Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water tube or tubes
- F24H1/41—Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water tube or tubes in serpentine form
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/02—Tubular elements of cross-section which is non-circular
- F28F1/06—Tubular elements of cross-section which is non-circular crimped or corrugated in cross-section
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/08—Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
- F28F21/081—Heat exchange elements made from metals or metal alloys
- F28F21/082—Heat exchange elements made from metals or metal alloys from steel or ferrous alloys
- F28F21/083—Heat exchange elements made from metals or metal alloys from steel or ferrous alloys from stainless steel
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/06—Controlling or monitoring parameters in water treatment pH
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H9/00—Details
- F24H9/0005—Details for water heaters
- F24H9/0036—Dispositions against condensation of combustion products
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Water Supply & Treatment (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Geometry (AREA)
- Treating Waste Gases (AREA)
Abstract
1. 청구범위에 기재된 고안이 속한 기술분야1. TECHNICAL FIELD OF THE INVENTION
본 고안은 지공 보일러에 관한 것으로, 보일러 본체에 가스버너, 연소실, 액실, 후부연실, 후부연실연도, 급탕용열교환기, 난방용열교환기, 진공펌프, 용해전, 배기구 및 기타 부수장치 등으로 이루어진 종래의 진공 보일러의 후부연실연도에 고효율 절탄기를 장착하므로써, 상기 보일러 열 효율의 향상과 상기 열 효율에 의한 에너지 절약과 환경오염을 방지할 수 있는 진공 보일러에 관한 것이다.The present invention relates to a paper-based boiler, the conventional boiler consisting of a gas burner, combustion chamber, liquid chamber, rear combustion chamber, rear combustion chamber, hot water heat exchanger, heating heat exchanger, vacuum pump, before melting, exhaust port and other auxiliary devices By installing a high efficiency coal mill in the rear combustion year of the vacuum boiler of the present invention, the present invention relates to a vacuum boiler which can improve the boiler thermal efficiency, save energy due to the thermal efficiency, and prevent environmental pollution.
2. 고안이 해결하려고 하는 기술적 과제2. The technical problem the invention is trying to solve
종래의 진공 보일러를 사용할 경우 연소가스속에 포함되어 있는 수중기의 현열 및 잠열을 완전히 흡수하지 못하고 연소가스의 대기배출온도가 230℃이상의 고온으로 배출되므로써, 이데 따른 진공 보일러의 열 효율이 낮고, 또한 연소가스속에 포함되어 있는 유해물질인 CO2와 NOx를 정화시키지 못한것에 따른 환경문제에 큰 영향을 미치는 문제점이 있음.In the case of using a conventional vacuum boiler, the thermal efficiency of the vacuum boiler is low due to the fact that it does not completely absorb the sensible and latent heat of the submersible included in the combustion gas and the exhaust gas is discharged at a high temperature of 230 ° C or higher. There is a problem that greatly affects the environmental problems caused by the failure to purify CO 2 and NOx, which are harmful substances in the combustion gas.
3. 고안의 해결방법의 요지3. Summary of solution of design
종래의 진공 보일러의 후부연실연도에 고효율 절탄기를 장착하여 구성한 본 고안에 의해 해결됨.It is solved by the present invention, which is equipped with a high efficiency coal mill in the rear combustion year of a conventional vacuum boiler.
4. 고안의 중요한 용도4. Important uses of the devise
고효율 절탄기를 종래의 진공 보일러의 후부연실연도에 장착하여 사용할 경우, 연소가스속에 포함하고 있는 수증기의 현열 및 잠열을 거의 흡수하므로써, 진공 보일러의 열 효율이 99-106%로 향상되고, 보일러 열 효율에 따른 10%이상의 에너지를 절약할 수 있으며, 또한 연소가스속에 포함되어 있는 유해물질인 CO2와 NOx의 양을 각각 2%와 20PPM으로 저감시킬 수 있는 탁월한 효과가 있다.When the high efficiency coal blower is mounted on the trailing edge smoke of the conventional vacuum boiler, the heat efficiency of the vacuum boiler is improved to 99-106% by absorbing almost the sensible heat and latent heat of the water vapor contained in the combustion gas. It can save more than 10% of the energy, and also has an excellent effect of reducing the amount of CO 2 and NOx, harmful substances contained in the combustion gas to 2% and 20PPM, respectively.
Description
본 고안은 보일러의 후부연실연도에 스파이럴튜브 절탄기(Economizer)를 구비한 진공 콘덴싱 보일러에 괸한 것이다.The present invention is directed to a vacuum condensing boiler equipped with a spiral tube economizer in the trailing edge of the boiler.
일반적으로 사용되고 있는 보일러로는 연관과 노통을 함께 사용하는 것으로 연관을 노동주위에 둔 노통연관식 보일러와, 강제 순환식 보일러에 속하는 것으로, 강제 관류 보일러라고도 하며 긴관의 한쪽 끝에서 급수를 펌프로 압송하고 도중에서 차례로 가열, 증발, 과열되어 관의 다른 한 쪽 끝까지 과열증기로 송출되는 형식의 관류식 보일러와, 보일러의 증발 전열면을 다수의 작은지름(30-100mm)으로 된 수관으로 형성하고, 관측의 물을 관밖에서 기열하는 방식의 수관식 보일러와, 진공상태에서 물은 10O℃보다 낮은온도에서 끓고 증발하는 원리를 응용하여 보일러 내부를 진공으로 만들고 간접기열방식인 진공식 보일러와, 무압으로 유지되는 히터내의 관수가 버너의 연소에 따라 액실내부애서 상, 하로 순환되면서 비등점 이하의 온도로 가열되는 무압 관수식 보일러 등을 사용하고 있다.Commonly used boilers include a pipe and a furnace, which are related to labor-related pipe-fired boilers, and a forced circulation boiler, also called a forced-flow boiler, and pump water from one end of a long pipe to a pump. In the middle of the process, the heating, evaporation, and overheating are carried out in the form of a perfusion boiler which is sent to the superheated steam to the other end of the tube, and the evaporation heat transfer surface of the boiler is formed of a plurality of small diameter (30-100 mm) water pipes. A water pipe boiler in which the water of observation is heated outside the tube, the water boils and evaporates at a temperature lower than 100 ° C under vacuum, and the inside of the boiler is vacuumed. Water that is maintained in the heater is circulated up and down in the liquid chamber as the burner burns and is heated to a temperature below the boiling point. And using the formula tube boilers.
상기와 같은 보일러들은 열 효율이 89-96% 이상을 발휘할 수 없으며, 230℃의 높은 온도의 연소가스가 배기구를 통해 배출된다.Such boilers are not capable of achieving more than 89-96% of thermal efficiency, and a high temperature combustion gas of 230 ° C is discharged through the exhaust port.
또한, 일반적으로 발열량은 저위발열량을 기준으로 하며, 대개 보일러의 열효율은 저위발열랑의 89-96% 이다.In general, the calorific value is based on the low calorific value, and usually the thermal efficiency of the boiler is 89-96% of the low calorific value.
그리고, 가스연료롤 사용하고 있는 산업용 보일러에 있어서는 연소실로부터 다량의 CO2, NOx가 발생하고 있는데, 이러한 연소과정중에 형성되는 NOx는 광화학 스모그를 일으키는 수원인으로 밝혀짐에 따라 현재는 이의 배출량이 엄격히 규제되고 있다.Then, the gas in the fuel roll in use industrial boilers, there is a large amount of CO 2, NOx emitted from the furnace, NOx is formed during this combustion process is now a counter emission strictly according to the load out to be causing photochemical smog It is regulated.
따라서, 연소에 의해 화학에너지를 열에너지로 변환하는 과정에 있어서 완전연소는 상기 산업용 보일러의 기본적인 요건으로 되었고, 이에 덧붙여 연소가스속의 미연분의 종래 최대함유량의 기준에서 벗어나지 않으면서 어느정도 CO2, NOx를 줄일 수 있는지가 산업용 보일러의 성능을 좌우하는 매우 중요한 항목으로 부각되고 있다.Therefore, in the process of converting chemical energy into thermal energy by combustion, complete combustion has become a basic requirement of the industrial boiler, and in addition, CO 2 and NOx are somewhat reduced without departing from the conventional maximum content of unburnt in the combustion gas. Whether it can be reduced is an important factor that determines the performance of industrial boilers.
종래의 진공 보일러는 가스버너, 연소실, 액실, 후부연실, 후부연실연도, 급탕용열교환기, 난방용열교환기, 진공펌프, 용해전, 배기구, 및 기타 부수장치 등으로 구성되어 있다.Conventional vacuum boilers are composed of gas burners, combustion chambers, liquid chambers, rear combustion chambers, rear combustion chambers, hot water heat exchangers, heat exchangers for heating, vacuum pumps, before melting, exhaust ports, and other accessories.
상기 가스버너가 취부된 연소실에서 연료인 도시가스가 연소되므로 인해 열과 연소가스가 발생하는데, 이에 따른 상기 열은 액실내의 열매수에 전달되고, 이렇게 열이 전달된 열매수는 비등되어 증발상승을 하고 진공상태인 액실상부에 위치하고 있는 급탕용열교환기 및 난방용열교환기를 통과하므로써 상기 증발상승한 열매수는 열교환의 상(Phase)변화에 의해 응축낙하 한다.Heat and combustion gas are generated due to the combustion of city gas as fuel in the combustion chamber in which the gas burner is mounted. Accordingly, the heat is transferred to the fruit water in the liquid chamber, and the fruit water thus transferred is boiled to evaporate. The fruit water thus evaporated by passing through the hot water supply heat exchanger and the heating heat exchanger located in the upper portion of the liquid chamber under vacuum is condensed and dropped by the phase change of the heat exchange.
상기와 같이 열교환을 하는 열매수의 온도상숭으로 인해 그리고 진공펌프에 의해 액실은 진공도를 적정진공도로 유지하고, 상기 액실내의 스팀온도가 상한치인 88℃를 넘어 96℃까지 상승하면 상기 액실상부에 용해전과 같이 접합되어 있는 납이 녹으면서 용해전은 액실로 낙하함과 동시에, 상기 액실내의 내부스팀을 외부로 방출하므로씨 상기 액실내의 진공도와 스팀온도를 직정상태로 유지한다.Due to the temperature difference of the fruit water heat-exchanging as described above and by the vacuum pump, the liquid chamber maintains the vacuum degree at an appropriate vacuum, and when the steam temperature in the liquid chamber rises to 96 ° C above the upper limit of 88 ° C, the liquid chamber upper part The melted lead is melted into the liquid chamber while releasing lead, which is melted in the same manner as before dissolution, and the internal steam in the liquid chamber is discharged to the outside, so that the vacuum and steam temperature in the liquid chamber are maintained at an upright state.
상기 연소실에서 열과 함께 발생된 연소가스는 상기 연소실후단에 설치되어 있는 수관과 후무연실 그리고 후부연실연도를 거쳐 최종적으로 배기구를 거쳐 대기로 방출된다.The combustion gas generated together with the heat in the combustion chamber is discharged to the atmosphere through the exhaust pipe through the water pipe, the rear combustion chamber and the rear combustion chamber installed at the rear of the combustion chamber.
이때 대기로 방출되는 상기 연소가스의 온도는 230℃이상의 고온이고, 상기 연소가스속에 포함되어 있는 수중기가 그대로 배기구를 통하여 방출되기 때문에 보일러의 열 효율이 89-96% 정도이며, 또한 연소가스속에 포함되어 있는 유해물질인 CO2와 NOx가 정화되지않고 배출되기 때문에 환경문제에도 큰 영향을 미치는 문제점이 있었다.At this time, the temperature of the combustion gas discharged to the atmosphere is a high temperature of 230 ℃ or more, and since the water contained in the combustion gas is discharged through the exhaust port as it is, the thermal efficiency of the boiler is about 89-96%, and also included in the combustion gas The harmful substances CO 2 and NOx are emitted without being purified, so there was a problem affecting the environmental problems.
따라서, 본 고안의 목적은 연소가스속에 포함되어 있는 수증기의 현열 및 잠열을 흡수하여 보일러의 열 효율을 99-106%로 증가시키고, 또한 연소가스속의 유해물질 성분인 CO2와, NOx를 줄일 수 있어 환경오염 역시 예방할 수 있는 스파이럴튜브 절탄기를 구비한 진공 콘덴싱 보일러를 제공하는 것이다.Therefore, the object of the present invention is to absorb the sensible and latent heat of water vapor contained in the combustion gas to increase the thermal efficiency of the boiler to 99-106%, and also to reduce CO 2 and NOx, which are harmful substances in the combustion gas. It is to provide a vacuum condensing boiler equipped with a spiral tube cutter to prevent environmental pollution.
이와같은 목적을 달성하기 위해, 보일러 본체에 가스버너, 연소실, 액실, 후부연실, 후부연실연도, 급탕용열교환기, 난방용열교환기, 진공펌프, 용해전, 배기구 및 기타 부수장치 등으로 구성된 진공 콘덴싱 보일러에 있어서, 후부연실연도에 스파이럴튜브 절탄기를 장착하고, 마그네슘 중화장치를 설치한 본 고안에 의해 달성될 수 있는바, 이하 첨부한 도면을 참고로 상세히 설명한다.To achieve this purpose, vacuum condensing consists of a gas burner, a combustion chamber, a liquid chamber, a rear combustion chamber, a rear combustion chamber, a hot water heat exchanger, a heating heat exchanger, a vacuum pump, a melting furnace, an exhaust port, and other auxiliary devices. In the boiler, it can be achieved by the present invention equipped with a spiral tube cutter in the rear combustion flue, and installed a magnesium neutralizer, will be described in detail with reference to the accompanying drawings.
제1도는 본 고안에 따른 스파이럴튜브 절탄기를 구비한 진공 콘덴싱 보일러를 도시한 개략도.1 is a schematic view showing a vacuum condensing boiler having a spiral tube cutter according to the present invention.
제2도는 제1도에 도시된 절탄기의 스파이럴튜브를 도시한 사시도.2 is a perspective view showing a spiral tube of the coal mill shown in FIG.
제3도는 본 고안에 따른 핀이 부착된 스피이럴튜브의 개략도.Figure 3 is a schematic diagram of a spiral tube with a pin according to the present invention.
제4도는 본 고안에 다른 마그네슘 중화장치의 개략도.4 is a schematic diagram of another magnesium neutralizer according to the present invention.
* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings
1 : 보일러 본체 2 : 가스버너1: boiler body 2: gas burner
3 : 연소실 4 : 액실3: combustion chamber 4: liquid chamber
5 : 열매수관 6 : 후부연실5: fruit tree 6: rear part chamber
7 : 후부연실연도 8 : 급탕용열교환기7: Rear combustion year 8: Heat exchanger for hot water supply
9 : 난방용열교환기 10 : 스파이럴튜브 절탄기9: heat exchanger for heating 10: spiral tube cutting machine
11 : 스파이럴튜브 14 : 핀11: Spiral Tube 14: Pin
15 : 진공펌프 16 : 용해전15: vacuum pump 16: before dissolution
17 : 배기구 18 : 마그네슘 중화장치17: exhaust port 18: magnesium neutralizing device
19 : 응축수관 20 : 마그네슘 용기19: condensate pipe 20: magnesium container
21 : 배수관 22 : 마그네슘21: drain pipe 22: magnesium
제1도를 참조하던, 본 고안에 따른 스파이럴튜브 절탄기를 구비한 진공 콘덴싱 보일러는 보일러 하부전단에 가스버너(2)와 연소실(3)이 배치되고, 상기 연소실(3) 둘레에 액실(4)이 위치되고, 액실(4) 상부에 급탕용열교환기(8) 및 난방용열교환기(9)가 설치되며, 상기 액실(4)내에 진공도를 적절하게 유지시키며 진공도 150mmHg 이하에서 주기적으로 가동되는 진공펌프(15)가 상기 액실(4)의 상부에 위치해 있으며, 상기 진공펌프(15)와 같이 열교환기(8), (9)상부에 스팀을 배출시키기 의한 용해전(16)이 위치되고, 상기 연소실(3)후단에 수관(5), 후부연실(6), 후부연실연도(7) 및 배기구(17)가 순서대로 배치되고, 상기 후부연실연도(7)에 스테인레스(SUS 316)로 이루어진 스파이럴튜브 절탄기(10)가 장착되며, 상기 스파이럴튜브 절탄기(10)에 마그네슘 중화장치(18)가 응축수관(19)에 의해 연결된다.Referring to FIG. 1, in the vacuum condensing boiler having a spiral tube cutter according to the present invention, a gas burner 2 and a combustion chamber 3 are disposed at a lower end of a boiler, and a liquid chamber 4 is disposed around the combustion chamber 3. In this position, the hot water heat exchanger (8) and the heat exchanger (9) for heating are installed in the upper part of the liquid chamber (4), and the vacuum pump is maintained in the liquid chamber (4) properly and periodically operated at a vacuum degree of 150 mmHg or less. (15) is located above the liquid chamber (4), and the dissolution field (16) is discharged above the heat exchangers (8) and (9), such as the vacuum pump (15), and the combustion chamber is located. (3) A spiral tube (5), rear combustion chamber (6), rear combustion chamber (7), and exhaust port (17) are arranged in order at the rear end, and a spiral tube made of stainless steel (SUS 316) in the rear combustion flue (7). A pelletizer 10 is mounted, and a magnesium neutralizer 18 is condensed in the spiral tube cutter 10. Connected by a tube 19.
제2도를 참조하면, 제2도에는 상기 스파이럴튜브 절탄기(10)에 내장되는 스파이럴튜브(11)가 도시되어 있다. 본 고안에 따른 스파이럴튜브(11)는 연소가스와 냉수의 열교환이 일어나는 전열면이 꼬아져 종래의 절탄기의 전열면적보다 크게되어 종래의 진공 보일러에 설치된 절탄기와 같은 체적에서 약 2배의 전열효과를 갖는다.Referring to FIG. 2, FIG. 2 shows a spiral tube 11 embedded in the spiral tube cutter 10. The spiral tube 11 according to the present invention has a heat transfer surface in which heat exchange between combustion gas and cold water is twisted, which is larger than the heat transfer area of a conventional coal mill, and thus heat transfer effect about twice as large as that of a coal mill installed in a conventional vacuum boiler. Has
따라시, 스파이럴튜브(11) 내부로 냉수를 통과시키면, 스파이럴튜브(11)의 내의 냉수와 스파이럴튜브 절탄기(10)를 통과하는 연소가스가 스파이럴튜브(11)를 통해 열교환이 일어나게 된다. 이때, 냉수가 연소가스에 포함되어 있는 수증기의 응축잠열 및 현열을 흡수하므로서, 연소가스는 온도가 약 90-40℃의 노점이하로 밀어져 스파이럴튜브 절탄기(10)를 통과한 후 배기구(17 ; 제1도 참조)를 통해 대기로 배출된다.Accordingly, when the cold water passes through the spiral tube 11, the cold water in the spiral tube 11 and the combustion gas passing through the spiral tube breaker 10 undergo heat exchange through the spiral tube 11. At this time, the cold water absorbs the latent condensation and sensible heat of the water vapor contained in the combustion gas, the combustion gas is pushed under the dew point of about 90-40 ℃ temperature passes through the spiral tube pelletizer 10, the exhaust port 17 See also FIG. 1).
이와같이 스파이럴튜브(11)의 냉수가 10% 정도의 현열 및 수증기 잠열을 흡수하므로써 본 고안에 따른 진공 콘덴싱 보일러의 열 효율이 99-106%로 향상된다. 특히, 연소가스의 온도가 약 90℃로 배출될 때 본 고안에 따른 진공 콘덴싱 보일러의 열 효율은 약 99% 이고, 40℃ 정도로 배출될 때 열효율이 약 106% 이다.As such, the cold water of the spiral tube 11 absorbs about 10% of sensible heat and latent heat of steam, thereby improving the thermal efficiency of the vacuum condensing boiler according to the present invention to 99-106%. In particular, the thermal efficiency of the vacuum condensing boiler according to the present invention is about 99% when the temperature of the combustion gas is discharged to about 90 ℃, the thermal efficiency is about 106% when discharged to about 40 ℃.
그리고, 제3도에서처럼, 열교환 효율을 높이기 위해 본 고안에 따른 스파이럴튜브(11)에 핀(14)이 부착될 수 있다. 상기 핀(14)은 보일러의 사양에 따라 선택될 수 있다.And, as shown in Figure 3, in order to increase the heat exchange efficiency, the fin 14 may be attached to the spiral tube 11 according to the present invention. The pin 14 may be selected according to the specifications of the boiler.
제4도를 참조하면, 제4도는 제1도에 도시된 마그네슘 중화장치(18)를 보다 상세히 도시한 것이다. 상기 마그네슘 중화장치(18)는 스파이럴튜브 절탄기(10)에서 열교환에 의해 연소기스의 수중기가 응축된 폐수를 정화하기 위한 것으로서, 스파이럴튜브 절탄기(10)와 응축수를 중화시키는 마그네슘 용기(20)가 응축수관(19)에 의해 연결되고, 마그네슘 용기(20)에서 중화된 폐수를 하천으로 배출시키는 배수관(21)이 마그네슘 용기(20) 하부에 설치된다.Referring to FIG. 4, FIG. 4 shows the magnesium neutralizer 18 shown in FIG. 1 in more detail. The magnesium neutralizer 18 is for purifying the waste water condensed with the water vapor of the combustion gas by heat exchange in the spiral tube breaker 10, the magnesium vessel 20 for neutralizing the spiral tube breaker 10 and the condensed water. Is connected by the condensate pipe 19, and the drain pipe 21 for discharging the wastewater neutralized in the magnesium container 20 to the river is installed under the magnesium container 20.
상기와 같이 구성된 마그네슘 중화장치(18)의 마그네슘 용기(20)는 40ℓ정도의 크기로서, 마그네슘(22)이 다 녹게 되면은 일정량씩 마그네슘을 공급해주도록 되어 있다. 응축된 폐수속에 포함되어 있는 H2CO3와 HNO3가 마그네슘에 의해 중화되는 반응식은 디음과 같다.The magnesium container 20 of the magnesium neutralizing device 18 configured as described above has a size of about 40 L. When the magnesium 22 is melted, magnesium is supplied by a predetermined amount. The reaction equation where H 2 CO 3 and HNO 3 in the condensed wastewater is neutralized by magnesium is as follows.
H2CO3+ Mg → MgCO3+ 2H+ H 2 CO 3 + Mg → MgCO 3 + 2H +
(탄산 마그네슘)(Magnesium Carbonate)
HNO3+ Mg → MgNO3+ 2H+ HNO 3 + Mg → MgNO 3 + 2H +
(아질산 마그네슘)(Magnesium Nitrite)
상기와 같이 H2CO3와 HNO3가 마그네슘(22)과 반응하여 폐수를 중화시켜 하천으로 배출된다. 이 때, 마그네슘 용기(20)속에 있던 마그네슘(22)이 MgCO3, MgNO3로 변화하면서 녹게된다.As described above, H 2 CO 3 and HNO 3 react with magnesium (22) to neutralize the wastewater is discharged to the river. At this time, the magnesium 22 in the magnesium container 20 is melted while changing to MgCO 3 , MgNO 3 .
일반적인 보일러의 열 효율은 대개 저위 발열랑 9550kcal가 기준이 되는데, 이 에 따른 본 고안이 보일러의 열 효율은 저위 발열량을 기준으로 할 때 최고 89-96%의 열 효율을 나타내고, 고위 발열량인 10500kcal를 기준으로 할 때 약 79-86%의 열 효율이 나타나는데, 여기에 현열 및 잠열회수의 10%열 효율을 합친다면 저위 발열량을 기준으로 했을 때 약 99-106%의 열 효율이 발생하고, 고위 발열량을 기준으로 했을 때 약 89-96%의 열 효율이 발생한다.In general, the thermal efficiency of the boiler is usually 9550 kcal for the low heat, and according to the present invention, the thermal efficiency of the boiler is up to 89-96% based on the low heat. On the basis of the thermal efficiency of about 79-86%, combined with 10% thermal efficiency of sensible heat and latent heat recovery, about 99-106% of heat efficiency based on the low calorific value, and high calorific value Based on this, thermal efficiencies of about 89-96% occur.
또한, 본 고안인 진공 보일러에서는, 연료를 도시가스로 사용하기 때문에 석탄, 유류와는 달리 노점이하에서 금속을 부식시키는 유황(S)성분이 없고, 항상 완전연소되어 그으름(Soot)이 발생되지 않으며, 스파이럴튜브 절탄기를 지나가는 연소가스 온도가 노점이하로 떨어질 때 전열면에서 응축수가 생기는데, 이러한 응축수는 마그네슘 중화장치에 의해 환경기준치인 PH 6.5-7로 중화시켜 하천으로 방출됨으로 하천의 오염이 줄어들고, 환경보호에 탁월한 효과가 있다.In addition, in the vacuum boiler of the present invention, since the fuel is used as a city gas, unlike coal and oil, there is no sulfur (S) component that corrodes metals under dew point, and it is always completely burned soot is not generated. In addition, when the combustion gas temperature passing through the spiral tube breaker falls below the dew point, condensate is generated on the heat transfer surface, and the condensate is discharged into the stream by neutralizing the environmental standard PH 6.5-7 by the magnesium neutralizer to reduce the pollution of the stream. It has an excellent effect on environmental protection.
이에 따른 본고안의 진공 콘덴싱 보일러의 용도로는 고층빌딩(10Om), 가정용, 목욕탕, 스포츠센터 풀장 등에 사용된다.The vacuum condensing boiler in this paper is used in high-rise buildings (10m), homes, bathhouses, sports centers, and the like.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR2019970028964U KR200184807Y1 (en) | 1997-10-18 | 1997-10-18 | Vacuum boiler with spiral tube economizer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR2019970028964U KR200184807Y1 (en) | 1997-10-18 | 1997-10-18 | Vacuum boiler with spiral tube economizer |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19990015681U KR19990015681U (en) | 1999-05-15 |
KR200184807Y1 true KR200184807Y1 (en) | 2000-08-01 |
Family
ID=19512220
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR2019970028964U KR200184807Y1 (en) | 1997-10-18 | 1997-10-18 | Vacuum boiler with spiral tube economizer |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR200184807Y1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105004052A (en) * | 2015-08-22 | 2015-10-28 | 郑州大学 | Water tube type vacuum boiler with central reverse flames |
CN105066437A (en) * | 2015-08-22 | 2015-11-18 | 郑州大学 | Integrated full-wet-back central-reverse-flame boiler |
CN105066434A (en) * | 2015-08-22 | 2015-11-18 | 郑州大学 | Direct-contact type waste heat recovery constant-pressure integral boiler |
CN105157228A (en) * | 2015-08-22 | 2015-12-16 | 郑州大学 | Water-tube type central-reverse-flame and condensation integrated boiler |
CN105180421A (en) * | 2015-08-22 | 2015-12-23 | 郑州大学 | Central back combustion boiler with water pipes being transversely scoured |
CN106595063A (en) * | 2016-12-15 | 2017-04-26 | 龙正环保股份有限公司 | Self-circulation type water heater with heat-medium water |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100937100B1 (en) * | 2008-08-19 | 2010-01-15 | 권혁대 | Vacuum hot water boiler |
CN106224961A (en) * | 2016-09-30 | 2016-12-14 | 山西煜能科技开发有限公司 | A kind of methanol fuel vacuum condensation hot-water boiler |
CN109506488B (en) * | 2018-12-28 | 2024-02-13 | 广东万和热能科技有限公司 | Gas wall-mounted furnace and condensing heat exchanger |
-
1997
- 1997-10-18 KR KR2019970028964U patent/KR200184807Y1/en not_active IP Right Cessation
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105004052A (en) * | 2015-08-22 | 2015-10-28 | 郑州大学 | Water tube type vacuum boiler with central reverse flames |
CN105066437A (en) * | 2015-08-22 | 2015-11-18 | 郑州大学 | Integrated full-wet-back central-reverse-flame boiler |
CN105066434A (en) * | 2015-08-22 | 2015-11-18 | 郑州大学 | Direct-contact type waste heat recovery constant-pressure integral boiler |
CN105157228A (en) * | 2015-08-22 | 2015-12-16 | 郑州大学 | Water-tube type central-reverse-flame and condensation integrated boiler |
CN105180421A (en) * | 2015-08-22 | 2015-12-23 | 郑州大学 | Central back combustion boiler with water pipes being transversely scoured |
CN105180421B (en) * | 2015-08-22 | 2018-04-06 | 郑州大学 | Transversal flow waterpipe type central flame flame boiler |
CN105157228B (en) * | 2015-08-22 | 2018-05-22 | 郑州大学 | Waterpipe type central flame flame condenses all-in-one oven |
CN105066434B (en) * | 2015-08-22 | 2018-05-22 | 郑州大学 | Direct contact type waste heat recovery normal pressure all-in-one oven |
CN106595063A (en) * | 2016-12-15 | 2017-04-26 | 龙正环保股份有限公司 | Self-circulation type water heater with heat-medium water |
Also Published As
Publication number | Publication date |
---|---|
KR19990015681U (en) | 1999-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
BRPI0609999A2 (en) | liquor recovery boiler used in the pulp and paper industry and method for producing energy in a pulp mill | |
EP1856456B1 (en) | Hot-water supply system having dual pipe | |
KR200184807Y1 (en) | Vacuum boiler with spiral tube economizer | |
KR101739442B1 (en) | The hot water boiler of a vacuum type | |
EP0405621B1 (en) | Recuperative furnace | |
CN105157228B (en) | Waterpipe type central flame flame condenses all-in-one oven | |
CN117028964A (en) | Enhanced heat transfer condensing gas boiler with water-cooling premixing planar burner | |
KR100392597B1 (en) | Condensing Type Heat Exchanger of Gas Boiler | |
KR100257573B1 (en) | Heat exchanger of gas boiler | |
KR200184809Y1 (en) | Nopressure tube boiler | |
CN107131645A (en) | A kind of deep condensation wall hanging furnace system | |
CN102563680A (en) | Boiler flue gas evaporating and cooling device | |
KR200245375Y1 (en) | High Efficiency once-through Boiler with Economizer | |
CN107101374A (en) | A kind of method that non-condensing wall-hung boiler changes deep condensation wall-hung boiler | |
KR100392595B1 (en) | Condensing type Heat Exchanger of Gas Boiler | |
KR100392596B1 (en) | Condensing type Heat Exchanger of Gas Boiler | |
KR200211743Y1 (en) | Condensing gas boiler | |
CN206280991U (en) | A kind of gas fired-boiler flue gas low-temperature afterheat utilizing system | |
CN2627415Y (en) | Condensing phase change-liquid bath type gas and fuel oil hot-water boiler | |
CN214536221U (en) | Hazardous waste flue gas reheating device | |
CN214469355U (en) | Full premix burning ultralow nitrogen condensation vacuum boiler | |
NO153189B (en) | HEATING | |
CN220892203U (en) | Enhanced heat transfer condensing gas boiler with water-cooling premixing planar burner | |
KR200184808Y1 (en) | Condensing boiler | |
KR200190660Y1 (en) | Condensing unit for absorption type cool-hot water supplier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
REGI | Registration of establishment | ||
FPAY | Annual fee payment |
Payment date: 20061114 Year of fee payment: 8 |
|
LAPS | Lapse due to unpaid annual fee |