KR20010018933A - Process for producing polyamideimide varnish for coating enamel wire by using Blocked -Isocyanate method and catalyst - Google Patents

Process for producing polyamideimide varnish for coating enamel wire by using Blocked -Isocyanate method and catalyst Download PDF

Info

Publication number
KR20010018933A
KR20010018933A KR1019990035092A KR19990035092A KR20010018933A KR 20010018933 A KR20010018933 A KR 20010018933A KR 1019990035092 A KR1019990035092 A KR 1019990035092A KR 19990035092 A KR19990035092 A KR 19990035092A KR 20010018933 A KR20010018933 A KR 20010018933A
Authority
KR
South Korea
Prior art keywords
coating
mdi
pai
nitrogen gas
polyamideimide
Prior art date
Application number
KR1019990035092A
Other languages
Korean (ko)
Inventor
정학기
Original Assignee
정학기
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정학기 filed Critical 정학기
Priority to KR1019990035092A priority Critical patent/KR20010018933A/en
Publication of KR20010018933A publication Critical patent/KR20010018933A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Insulating Materials (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PURPOSE: Provided is a process for producing polyamideimide vanish for enameled wire coating, which is improved durability, and also the cost of production is reduced by more than 50 percent and the time of production is shorten. CONSTITUTION: The polyamideimide vanish is obtained by the steps of: i) purging a chamber with a tube to be injected nitrogen gas, with nitrogen gas; ii) reacting methylene diisocyanate with m-cresol in N-methyl pyrrolidone to make m-methylene diisocyanate; iii) reacting m-methylene diisocyanate with trimellitic acid anhydride in N-methyl pyrrolidone and diluting it with dimethyl formamide; and then iv) coating it on the enameled wire and hardening it at the high temperature.

Description

블럭-이소시아네이트법 및 촉매를 사용한 에나멜선 코팅용 폴리아미드이미드 바니쉬의 제조공법{Process for producing polyamideimide varnish for coating enamel wire by using Blocked -Isocyanate method and catalyst}Process for producing polyamideimide varnish for coating enamel wire by using Blocked -Isocyanate method and catalyst}

본 발명은 전기적으로 회전력이 발휘되는 각종 모터 또는 TV브라운관의 요크코일, 특히 개폐가 반복되거나 고부하가 입력되는 각종 전동공구나 기계등과 고전압이 항상부여되는 변압기등의 주요부품인 코일 동선의 절연바니쉬인 폴리아미드이미드 (Polyamideimide)의 피복코팅을 위한 바니쉬의 제조공법에 관한 것이다. 이 경우, 피복코팅된 상기 코일등은 통전시간의 경과 및 과부하등의 여러 기계 전기적인 요인에 의하여 열(Joule 열)이 발생되므로 이러한 에나멜 피복동선을 사용하는 기기들의 경우에는 제품의 안전성을 위하여 높은 내열성의 절연체 코팅이 요구된다.The present invention is an insulation varnish of coil copper wire, which is a main component of yoke coils of various motors or TV CRTs, which are electrically exerted in rotational force, in particular, various electric tools or machines that are repeatedly opened or closed and a high voltage is always applied. It relates to a manufacturing method of varnish for coating coating of phosphoric polyamideimide. In this case, the coated coil is generated heat due to various mechanical and electrical factors such as the passage of the energization time and overload, so in the case of devices using such enameled copper wire, A heat resistant insulator coating is required.

따라서 전자,전기, 자동차 등과 각종 전기기계, 통신 기계기구 전자 웅용기계기구등에 필수적으로 사용되는 코일의 하나인 에나멜 피복동선의 고내열특성이 기기의 수명 및 성능의 신뢰성 과 안전성을 결정하는 중요한 요소이므로 이러한 동선에 절연재로서 피복되는 고내열 에나멜선용 바니쉬의 개발이 요구된다.Therefore, the high heat resistance characteristics of the enameled copper wire, which is one of the coils used in electronics, electrics, automobiles, various electric machines, communication machines, and electronic grand machines, are important factors in determining the reliability and safety of the equipment. The development of the high heat resistance enamel wire varnish coat | covered with such an copper wire as an insulation material is calculated | required.

그런데 일반적인 에나멜 동선 코팅용 바니쉬는 유독성 유기용제인 크레솔(cresol)이나 NMP(N-methylrrolidone), 또는 크실렌(Xylene)등을 혼합 또는 단독으로 사용하기 때문에 동선 코팅 건조시 이들 용매를 회수하거나 완전연소시켜 생산 시설주변을 오염되지 못하게 해야하지만 실제로는 주로 연소방법을 채택하고 있으며, 통상 완전 연소를 위하여 백금촉매를 사용한다. 이 때 발생되는 연소열은 동선코팅시 건조열로 재사용되어질 수 있으나 가연연성연료에 비하여 고가인 유기용매를 연소시킨다는 경제적 손실과 이때 발생되는 다량의 CO2와 미연소 된 용매의 악취등 때문에 용매의 일부를 물(H20)로 대체하려는 연구, 노력이 최근까지 계속되어오고 있다. 이러한 종래의 기본적인 접근방법은 이미드(Imide) 의 전구체인 폴리아미드산(Polyamic acid)을 극성용매인 상기 NMP, DMF(Dimethyl formamide) 등에 용해시키고 암모니아, 테트-아미노 알코올(Me2N CH2CH2OH)등과 반응시켜 아미드산염 (amic acid salt)을 만들고 이들을 물로 희석시키는 것으로 결국 물에 대한 용해도를 증가시켜 독성 용매의 사용량을 줄이려는 방법으로서 PESI, PAI, PI등 모든 이미드계 바니쉬에 적용하여왔다.However, general enamelled copper coating varnish uses cresol, NMP (N-methylrrolidone), or xylene (xylene), which is a toxic organic solvent, to recover these solvents or completely burn them when drying copper wire coating. In order to prevent contamination around the production facilities, in practice, mainly the combustion method is used, and platinum catalyst is usually used for complete combustion. The heat of combustion can be reused as dry heat during copper wire coating, but part of the solvent due to the economic loss of burning organic solvents that are more expensive than combustible fuels and the large amount of CO 2 and odor of unburned solvent. Research and efforts to replace H with H 2 0 have continued until recently. This conventional basic approach dissolves polyamide acid (Polyamic acid), a precursor of imide, to the NMP, dimethyl formamide (DMF), etc., which are polar solvents, and ammonia, tetramethylamino alcohol (Me 2 N CH 2 CH). It reacts with 2 OH) to make amic acid salt and dilutes it with water, which increases the solubility in water and reduces the use of toxic solvents. It is applied to all imide varnishes such as PESI, PAI, PI, etc. come.

그러나, 종래의 경우 구리선 위에 코팅 후 건조, 경화등의 공정을 통과하면서 이들 아민기는 아미드산 염(amic acid salt)으로부터 탈리되고 이미드환이 생성되어 피막을 형성하게된다. 이 방법은 폴리이미드 에나멜 바니쉬인 폴리아미드산(polyamic acid)의 저장성 개량이라는 측면에서도 많은 관심이 되고 있다.그러나 수용액상으로부터 제조된 에나멜선의 내열성과 전기특성이 저하되는 단점과 물을 사용하기 때문에 발생하는 코팅설비 및 운영장치 개선 그리고 아민계의 부생물의 악취등의 문제점등이 본격적인 상업화에 걸림돌이 되고 있다.또한 공해문제와 결부시켜 용매의 양을 대폭줄인 고농도화(high solid형)시킨 바니쉬도 발표되어 있다.In the conventional case, however, these amine groups are detached from the amic acid salt and an imide ring is formed to form a film while passing through a process such as drying and curing after coating on the copper wire. This method is also of great interest in terms of improving the shelf life of polyamic acid, a polyimide enamel varnish, but it is caused by the use of water and the disadvantage of deteriorating the heat resistance and electrical properties of the enameled wire prepared from the aqueous phase. Problems such as improvement of coating equipment and operating system and bad smell of amine by-products are obstacles to full-scale commercialization. In addition, high solid varnishes, which greatly reduce the amount of solvent in conjunction with pollution problems, It is announced.

그러나 고농도화형의 경우는 구리선 위에 에나멜 바니쉬를 코팅하는 공정이 기존의 것과는 크게 다르기 때문에 코팅 설비를 개조 또는 재설치가 요구되고 운영조건이 까다롭기 때문에 에나멜선 제조회사에서 적용을 꺼리고 있어 보급율이 낮다.이들 방법외에도 사출코팅(Extrusion coating),분말코팅(Powder coating), 방사코팅(Radiation coating) 등이 연구 발표되고 있으나 기존 제품보다 내열성 및 절연성등이 우수하지 않을 뿐만아니라 고농도화형과 같이 코팅시설의 변경에 따른 원가상승과 코팅조건의 까다로움, 기존 방법보다도 훨씬 고가인 원료가격등의 단점때문에 거의 채용되어 있지 않다.However, in the case of high concentration type, the coating process of enamel varnish on copper wire is very different from the existing one, so the coating equipment is required to be remodeled or re-installed, and the operating conditions are difficult. In addition, extrusion coating, powder coating, and radiation coating are being researched and announced, but they are not as excellent in heat resistance and insulation as existing products. It is rarely used due to the disadvantages such as cost increase, difficulty in coating conditions, and raw material price, which is much more expensive than conventional methods.

전술한 바와 같이 동선의 절연 피복재로 가장 많이 사용되는 내열성이 뛰어난 PAI(Polyamideimid)계 수지는 TMA(Trimellitic acid anhydride)와 방향족 디아민(diamine)과의 반응물로서 아래와 같은 화학구조를 가진다.As described above, PAI (Polyamideimid) -based resin having excellent heat resistance, which is most often used as an insulation coating material for copper wire, has a chemical structure as a reactant of trimellitic acid anhydride (TMA) and aromatic diamine (diamine).

통상 PAI제조는 TMA(Trimellitic acid anhydride)를 MDI(Methylene diisocyanate) 와 반응시키는 이소시아네이트(Isocyanate)법과 TMAC를 MDA와 반응시키는 아시드크로라이드 (Acid Chloride)법이 주로 사용되고 전선절연코팅제용에 사용되는 PAI의 제조에는 이소시아네이트법이 주종을 이루고 있다. 그런데 아시드크로라이드법에 의해 합성되는 PAI는 동선피복코팅용 보다는 주로 몰딩용에 사용되며 가격도 비교적 비싸다. 이에비해 이소시아네이트법에 의해 합성되는 PAI는 주로 졀연코팅재로 사용되며 몰딩용에 사용되는 예는 거의 없다.In general, PAI manufacture mainly uses isocyanate method for reacting trimellitic acid anhydride (TMA) with Methylene diisocyanate (MDI) and acid chloride method for reacting TMAC with MDA, and is used for wire insulation coating agent. The isocyanate method is mainly used for the production of these compounds. However, PAI synthesized by the acid chromide method is mainly used for molding rather than copper clad coating and is relatively expensive. On the other hand, PAI synthesized by the isocyanate method is mainly used as a lead coating material and few examples are used for molding.

이는 이 제조방법에 의해 제조된 PAI내에는 미반응의 -NCO 또는 우레아 (Urea)등이 존재하여 몰딩을 위해 재열처리 과정에서 가교가 일어나 공정진행이 불가능하기 때문이다. 그러나 이 미반응의 물질(MDI 등) 가교반응은 코팅된 피막의 용해도를 낮추고 내열성을 증가시키기 때문에 코팅용으로는 오히려 적합하다.This is because unreacted -NCO or urea is present in the PAI manufactured by this manufacturing method, so that cross-linking occurs during the reheating process for molding and thus the process cannot be performed. However, this unreacted material (MDI, etc.) crosslinking reaction is rather suitable for coating because it lowers the solubility of the coated film and increases the heat resistance.

단 미반응 물질들이 많이 존재하면 보관중 용액의 점도가 시간에 따라 증가하거나 코팅과정에서 과다 가교가 일어나 코팅피막의 유연성이 저하되는 단점도 나타나게 된다. 이 PAI를 조성하는 방법으로서 다음의 여러 화학식의 공정으로서 PAI를 제조할 수 있는 바,However, if a large amount of unreacted materials is present, the viscosity of the solution increases with time or excessive crosslinking occurs during the coating process, resulting in a decrease in flexibility of the coating film. As a method of forming this PAI, PAI can be produced by the following various chemical formulas,

상기 화학식에 의하여 PAI코팅 용액을 제조할 수 있다. 그런데PAI coating solution can be prepared by the above formula. By the way

일반적으로 PAI의 용매로서는 고비점 극성 용매인 NMP, DMSO(Dimethyl Sulfoxide), DMAC(N,N-Dimethyl acetamide), 설포란(Sulfolane), 크레졸( cresol)등이 사용가능하다. 그러나 PAI코팅 용액은 비교적 고농도(25% 이상)의 반응원액의 구득이 용이하기 때문에 단량체의 용매와의 반응성, 고농도에서의 상분리 문제 등과, 저장안정성, 코팅성, 코팅공정성등의 문제와 연관하여 검토되어야 하며 또한 경제성 문제 또한 간과할 수 없다.In general, as the solvent of PAI, NMP, DMSO (dimethyl sulfoxide), DMAC (N, N-dimethyl acetamide), sulfolane, cresol, etc. may be used. However, since PAI coating solution is easy to obtain a relatively high concentration (25% or more) of the reaction stock solution, it is examined in connection with problems such as monomer reactivity with solvent, phase separation at high concentration, storage stability, coating property and coating processability. And economic issues cannot be overlooked.

한편, DMF(Dimethyl formamide)는 고온에서 분해되어 단량체들과 반응하기 때문에, 크레졸은 반응성 및 상분리문제, DMAc, 설포란들은 가격 및 높은 제막온도등의 문제등으로 각각 사용이 제한되고 있다.On the other hand, since dimethyl formamide (DMF) is decomposed at high temperature and reacts with monomers, cresol has been limited in use due to problems such as reactivity and phase separation, DMAc, and sulfolane, such as price and high film forming temperature.

현재 시판되고 있는 거의 모든 PAI의 절연코팅제의 용매는 NMP가 주종을 이루고 있기 때문에 코팅용액의 원가에도 큰 부담이 되고 있다. 따라서 가격 저감화를 위한 저가 코팅용매로의 대체가 필요하다. 참고로 에나멜선이 가져야 할 특성을 표로 나타내면 하기와 같다.Almost all commercially available solvents for PAI insulating coatings are mainly made of NMP, which is a great burden on the cost of coating solutions. Therefore, it is necessary to replace with a low cost coating solvent for reducing the price. For reference, the characteristics that an enamel line should have are shown in the table below.

표 1. 에나멜선의 요구되는 특성Table 1. Required Properties of Enamelled Wire

이들외에 유연성도 중요한 요소가 되는데, 이는 주로 분자구조에 의해 본질적으로 결정되어지지만 가교형 바니쉬의 경우에는 가교정도에 의하여서도 달라진다. 즉 가교도가 큰 경우에는 치밀한 피막이 형성되지만 피막이 쉽게 깨어지는 단점이 있는 반면, 가교도가 너무 낮은 경우에는 절연성이나 내열성이 떨어지기 때문에 이의 적절한 균형이 필요하다.PAI나 PI의 경우에는 PEsI와는 달리 가교 첨가제를 사용하지 않기 때문에 이와 같은 문제는 발생하지 않지만 과도한 피막경화시킬 경우 탄화등에 의한 물성감소가 일어날 수 있다.In addition to these, flexibility is also an important factor, which is essentially determined by the molecular structure, but in the case of crosslinked varnish also depends on the degree of crosslinking. In other words, when the degree of crosslinking is high, a dense film is formed, but the film is easily broken.However, when the degree of crosslinking is too low, proper insulation is required because of poor insulation and heat resistance. This problem does not occur because it is not used, but if the film is excessively hardened, physical properties may decrease due to carbonization.

본 발명은 따라서, 전술한 바의 종래기술상의 문제점을 해소하기 위하여 종래의 폴리아미드이미드 바니쉬 생산 방식대신 블럭-이소시아 네이트 방식(Blocked-isocyanate method)을 채용하고, 제반 구체적 방법을 개량하므로써 생산단가도 일층저렴하게 낮출 수 있게 한 것이다.Therefore, the present invention adopts the blocked-isocyanate method instead of the conventional polyamideimide varnish production method in order to solve the above-mentioned problems of the prior art, and the production cost by improving the overall specific method. It is also possible to lower even more cheaply.

본 발명은 전술한 바와 같이 종래의 문제점을 해소하고 보다 저렴하고도 전기적 특성이 우수한 제품을 제조하기 위하여The present invention to solve the conventional problems as described above and to produce a product which is cheaper and has excellent electrical characteristics

종래의 TMA(trimellitic acid anhydride)와 MDI(methylene diisocyanate)가 NMP에서 직접 반응하여 최종물질을 생산하던 방식을 지양하고, 또한 이 최종물질을 에나멜선에 코팅 후 고온에서 경화하던 방식을 지양하고 에나멜 동선 피복용 폴리아미드이미드(Polyamideimide:PAI)용액을 제조하기 위하여, 질소가스출입가능한 튜브가 장착된 일정부피를 가진 용기내부를 질소가스로 퍼징(purging)한 후, 메틸렌디이소시아네이트(Methylene diisocyanate:MDI)와 m-크레솔(cresol)을 엔 메틸피롤리돈(N-methyl pyrrolidone:NMP)에서 반응시켜 m-MDI를 형성시키고, 다음 이 m-MDI를 트리멜리트산언하이드라이드(Trimellic acid anhydride:TMA)와 상기 엔 메틸피롤리돈에서 반응시켜 1 차 생성물을 만들고, 이를 디메틸포마마이드(Dimethyl formamide:DMF)로 묽게하여 2 차 생성물을 제조한 후, 이를 에나멜선에 코팅한 후 고온에서 경화시켜 최종생산품을 얻도록 한 블럭-이소이아네이트 및 에나멜선 코팅용 폴리아미드이미드 바니쉬의 제조방법으로 한 것이다.Refrain from the way that conventional TMA (trimellitic acid anhydride) and MDI (methylene diisocyanate) react directly in NMP to produce the final material, and also refrain from coating the final material on enameled wire and curing at high temperature. To prepare a coating polyamideimide (PAI) solution, after purging the inside of a container having a certain volume equipped with a nitrogen gas extractable tube with nitrogen gas, methylene diisocyanate (MDI) And m-cresol are reacted in N-methyl pyrrolidone (NMP) to form m-MDI, and then the m-MDI is trimellilic acid anhydride (TMA). ) And the enmethylpyrrolidone to make a primary product, which is diluted with dimethyl formamide (DMF) to prepare a secondary product, which is coated on an enamel wire and then The method of producing the polyamide-imide varnish for the block-isoyanate and enamel wire coating which was hardened to obtain a final product was obtained.

이를 위하여 당 발명자들은 다음과 같이 합성반응경로를 변경하였다.즉, MDI와 m-cresol을 NMP에서 반응시켜 m-MDI를 형성하였다. 다음 이 m-MDI를 TMA와 NMP(N- methyl pyrrolidone)에서 반응시켜 1차 생성물질을 만들도록 하고, 이를 DMF로 묽혀 2차 생성물질을 제조한 후, 이를 에나멜선에 코팅후 고온에서 경화시켜 최종생산품을 제조하도록 한 것이 특징이다.본 발명에는 또한 위 합성에 필요한 모노머가 TMA, MDI외에도 m-cresol이 추가되었으며, 반응완료에 필요한 온도를 종래의 180℃에서 130~140℃로 낮추었다.To this end, the inventors changed the synthetic reaction route as follows: MDI and m-cresol were reacted in NMP to form m-MDI. Next, m-MDI is reacted with TMA and NMP (N-methyl pyrrolidone) to make a primary product, which is diluted with DMF to prepare a secondary product, which is coated on an enameled wire and cured at high temperature. The present invention is also characterized in that the final product is produced. In addition to the TMA and MDI, the monomer required for the synthesis was added m-cresol, and the temperature required for the completion of the reaction was lowered from the conventional 180 ° C to 130-140 ° C.

이 때에 PAI 용액을 제조함에 있어 제품, 용도 및 용액점도에 따라 촉매를 적절히 사용할 수도 있다. 다만, 이 경우, 촉매를 잘못 사용할 경우, 예컨데 점차 PAI 용액의 점도가 증가하여 저장 안정성을 해칠 경우등이 있으므로 주의를 요한다.In preparing the PAI solution, the catalyst may be appropriately used depending on the product, the use, and the viscosity of the solution. In this case, however, if the catalyst is used incorrectly, for example, the viscosity of the PAI solution gradually increases, which may impair storage stability.

본 발명을 보다 구체적으로 설명하기 위하여 다음과 같이 일 실시예를 들었다.In order to describe the present invention in more detail, an example is given as follows.

실시예Example

우선 본 발명상으로 실시되는 PAI제조화학식은First of all, the PAI manufacturing formula implemented in the present invention

으로 되는 바 이를 상술하면 약 600ml의 30중량% PAI 코팅용액을 제조하기 위하여 일정한 부피의 용기 내부를 니트로겐 가스로 충전한 다음 TMA(Trimellitic acid anhydride)와 NMP를 투입한 다음 약 300RPM의 회전속도로 교반시키면서, 니트로겐(nitrogen)으로 충전된 또 다른 플라스크에 MDI(Methylene diisocyanate(Diphenylmethane-4, 4'-diisocyanate)와 m-크레졸을 NMP에 완전히 용해시켜 m-cresol과 일부 MDI가 결합된 m-MDI용액을 드로핑 펀넬(dropping funnel)을 사용하여 약 1 시간에 걸쳐서 서서히 적가하였다. 적가가 완료된 후에도 300RPM의 회전속도로 약 30분 정도 더 교반한 다음 용액을 2시간에 걸쳐서 70℃까지 서서히 승온케하고 이어서 약 2 시간(10℃/20mim)에 걸쳐서 140℃까지 승온케 한 다음 이 140℃온도를 유지시키면서 약 30분동안 300RPM의 회전속도로 회전시켜서 교반하고 반응이 끝난 용액을 서서히 40℃까지 온도를 내린 후 DMF(Dimethyl formamide)를 가하여 25 중량% 농도로 묽게하여 4시간 정도 교반시키므로서 코팅용액인 PAI용액을 제조하였다.To this end, in order to prepare about 600ml of 30% by weight PAI coating solution, the inside of the container was filled with nitrogen gas in a constant volume, followed by injection of TMA (Trimellitic acid anhydride) and NMP, and then at a rotational speed of about 300 RPM. While stirring, another flask filled with nitrogen, MDI (Methylene diisocyanate (Diphenylmethane-4, 4'-diisocyanate) and m-cresol completely dissolved in NMP m-cresol and some MDI combined m- The MDI solution was slowly added dropwise over a period of one hour using a dropping funnel, and after the addition was completed, the mixture was further stirred at a rotational speed of 300 RPM for about 30 minutes and then the solution was gradually heated to 70 ° C. over two hours. The solution was then heated to 140 ° C. over about 2 hours (10 ° C./20 mim) and then stirred by rotating at a rotational speed of 300 RPM for about 30 minutes while maintaining the temperature of 140 ° C., and the reaction was completed. After slowly lowering the temperature to 40 ℃ was added to DMF (dimethyl formamide) was diluted to 25% by weight concentration was stirred for about 4 hours to prepare a coating solution PAI solution.

참고로 본 발명에서 합성된 중합체의 구조는 H'-NMR과 FT-IR을 사용하여 확인하였으며 분자량은 NMP에 0.5g/dl의 농도로 용해하여 30℃에서 펜스크비스코메터(Fenskviscometer)로 측정하였으며 또한 용액의 점도는 상온에서 반응용액을 브룩필더비스코메터 (Brook field viscometer)를 사용하여 측정하였다.For reference, the structure of the polymer synthesized in the present invention was confirmed using H'-NMR and FT-IR, and the molecular weight was dissolved in NMP at a concentration of 0.5 g / dl and measured at 30 ° C. using a Penskviscometer. In addition, the viscosity of the solution was measured at room temperature using a Brookfield viscometer.

수지의 열(熱)적성질은 질소분위기하에서 DSC 및 TGA(승온속도 10℃/min)분석을 통하여 평가하였다.The thermal properties of the resin were evaluated by DSC and TGA (heating rate 10 ° C / min) analysis under nitrogen atmosphere.

또한 상기와 같이 실시하여 제조된 PAI용액(코팅용액)의 특성 평가를 위하여 PAI 용액을 파이로트라인(pilot line)에서 에나멜코팅동선을 제작한 후 이들 전선의 절연 파괴전압, 신율, 핀홀, 피막흠성, 밀착성 내열충격성 신장핀홀성 등의 제반 특성을 측정평가한 결과 표 2 과 같았으며 종래의 제법으로 제조된 PAI 바니쉬의 여러 물리적, 기계적 특성이 보다 우수하였다.In addition, in order to evaluate the characteristics of the PAI solution (coating solution) prepared as described above, after the PAI solution was made of enamel coated copper wire in a pilot line, the dielectric breakdown voltage, elongation, pinhole, and film flaw of the wires were prepared. As a result of measuring and evaluating various properties such as adhesion, heat shock resistance and elongation pinhole properties, the physical properties and mechanical properties of PAI varnishes prepared by the conventional methods were better.

표 2. 파일롯라인에서 제작한 전선결과Table 2. Electric Wire Result from Pilot Line

이를 고당량(당량비 100 mol%)으로 평가하여 PAI를 제조하고, 분자량에 따른 인장강도를 확인하기 위하여 PAI의 제막조건을 확립하고 제조된 인장강도를 측정하여 이를 종래의 샘플과의 비교한 결과는 다음과 같았다.The PAI was prepared by evaluating this at a high equivalent weight (equivalent ratio of 100 mol%), and in order to confirm the tensile strength according to the molecular weight, the film forming conditions of PAI were established, and the prepared tensile strength was measured and compared with the conventional sample. It was as follows.

표 3.Table 3.

즉, 본 발명에서 설정된 조건인 당량비 100mol%에서 30mol% 의 MCR을 사용하여 반응온도를 140℃로 낮춘 경우에 고유점도는 0.35dL/g정도이면서도 우수한 물성을 나타내는 필름제조가 가능하였다. 즉, 반응중에는 겔화(gelation)가 나타나지 않으면서도 고온에서 피막형성시에는 보다 치밀한 일층 강인한 물성의 필름을 제조할 수 있었다.That is, when the reaction temperature was lowered to 140 ° C. by using the MCR of 30 mol% in the equivalent ratio of 100 mol%, which is the condition set in the present invention, the intrinsic viscosity was about 0.35 dL / g, but it was possible to manufacture a film showing excellent physical properties. In other words, a film having a more dense, tougher physical property can be produced when the film is formed at a high temperature without gelation during the reaction.

본 발명에 의하여, 합성에 필요한 고가인 NMP의 사용량의 절반을 DMF로 대체할 수 있었고, 반응완료에 필요한 온도를 종래의 180℃에서 130~140℃로 낮출 수 있게 되어 사용전력량이 절감되었다. 또한 반응, 합성에 소요되는 시간을 종래의 대략 9시간에서 대략 5시간으로 단축하였으며 특히 최종생산품의 인장강도가 종래의 1100kg/cm2수준에서 1200kg/cm2이상으로 높이므로써 생산제품의 내구성을 향상할 수 있었다.According to the present invention, half of the expensive amount of NMP required for synthesis could be replaced with DMF, and the temperature required for the completion of the reaction could be lowered from 180 ° C. to 130 ° C. to 140 ° C., thus reducing the power consumption. In addition, the time required for reaction and synthesis was shortened from approximately 9 hours to approximately 5 hours, and in particular, the tensile strength of the final product was increased to 1200kg / cm 2 or more from the conventional 1100kg / cm 2 level, thereby improving durability of the product. Could.

위와 같은 제반효과 향상으로 제조코스트도 50%이상 절감가능하게 되었다.As a result, the manufacturing cost can be reduced by more than 50%.

즉, 본발명으로 종래의 방식에 비하여 현저한 생산성 향상과 제조코스트 절감이 아울러 이루어지게 된 것이다.In other words, the present invention is to achieve a significant productivity and manufacturing cost reduction compared to the conventional method.

Claims (1)

에나멜 동선 피복용 폴리아미드이미드(Polyamideimide:PAI)용액을 제조하기 위하여, 질소가스출입가능한 튜브가 장착된 일정부피를 가진 용기내부를 질소가스로 퍼징(purging)한 후, 메틸렌디이소시아네이트(Methylene diisocyanate:MDI)와 m-크레솔(cresol)을 엔 메틸피롤리돈(N-methyl pyrrolidone:NMP)에서 반응시켜 m-MDI를 형성시키고, 다음 이 m-MDI를 트리멜리트산언하이드라이드(Trimellic acid anhydride:TMA)와 상기 엔 메틸피롤리돈에서 반응시켜 1 차 생성물을 만들고, 이를 디메틸포마마이드(Dimethyl formamide:DMF)로 묽게하여 2 차 생성물을 제조한 후, 이를 에나멜선에 코팅한 후 고온에서 경화시켜 최종생산품을 얻도록 한 블럭-이소이아네이트 및 에나멜선 코팅용 폴리아미드이미드 바니쉬의 제조방법.In order to prepare a polyamideimide (PAI) solution for enamelled copper wire coating, after purging the inside of a container having a certain volume equipped with a nitrogen gas extractable tube with nitrogen gas, methylene diisocyanate: MDI) and m-cresol are reacted in N-methyl pyrrolidone (NMP) to form m-MDI, and then the m-MDI is trimellilic acid anhydride. : TMA) reacted with the en methylpyrrolidone to make a primary product, which was diluted with dimethyl formamide (DMF) to prepare a secondary product, which was coated on an enameled wire and cured at high temperature. A method for producing a polyamideimide varnish for block-isoyanate and enamel wire coating to obtain a final product.
KR1019990035092A 1999-08-24 1999-08-24 Process for producing polyamideimide varnish for coating enamel wire by using Blocked -Isocyanate method and catalyst KR20010018933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990035092A KR20010018933A (en) 1999-08-24 1999-08-24 Process for producing polyamideimide varnish for coating enamel wire by using Blocked -Isocyanate method and catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990035092A KR20010018933A (en) 1999-08-24 1999-08-24 Process for producing polyamideimide varnish for coating enamel wire by using Blocked -Isocyanate method and catalyst

Publications (1)

Publication Number Publication Date
KR20010018933A true KR20010018933A (en) 2001-03-15

Family

ID=19608405

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990035092A KR20010018933A (en) 1999-08-24 1999-08-24 Process for producing polyamideimide varnish for coating enamel wire by using Blocked -Isocyanate method and catalyst

Country Status (1)

Country Link
KR (1) KR20010018933A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040009235A (en) * 2002-07-23 2004-01-31 정학기 Process for producing aerial unit of Polyamideimideamide which improve the adhesive strength of Polyamideimide against metal by introducing Polyamide
KR100483712B1 (en) * 2001-12-19 2005-04-18 엘에스전선 주식회사 Polyamideimide polymer for enamel copper wire covering and enamel copper wire manufacturing method
KR100679369B1 (en) * 2005-02-21 2007-02-05 엘에스전선 주식회사 Enamel Vanish Composition for enamel wire and enamel wire using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100483712B1 (en) * 2001-12-19 2005-04-18 엘에스전선 주식회사 Polyamideimide polymer for enamel copper wire covering and enamel copper wire manufacturing method
KR20040009235A (en) * 2002-07-23 2004-01-31 정학기 Process for producing aerial unit of Polyamideimideamide which improve the adhesive strength of Polyamideimide against metal by introducing Polyamide
KR100679369B1 (en) * 2005-02-21 2007-02-05 엘에스전선 주식회사 Enamel Vanish Composition for enamel wire and enamel wire using the same

Similar Documents

Publication Publication Date Title
US3260691A (en) Coating compositions prepared from condensation products of aromatic primary diamines and aromatic tricarboxylic compounds
KR101472325B1 (en) Organic-solvent-soluble polyimide comprising pyromellitic dianhydride (pmda), diaminodiphenyl ether (dade), biphenyl tetracarboxylic dianhydride (bpda), and bicyclooctene tetracarboxylic dianhydride (bcd)
US3884880A (en) Modified amide-imide resins and method of making the same
CN105733258B (en) The preparation method of polyamidoimide precursor composition, polyamidoimide formed body and polyamidoimide formed body
JP2007100079A (en) Thermosetting polyamideimide resin composition, polyamideimide resin cured product, insulated electric wire and molded belt
JP2000044683A (en) Diamine having oligo-aniline unit and polyimide
US4004062A (en) Aqueous polyester coating composition
KR20010018933A (en) Process for producing polyamideimide varnish for coating enamel wire by using Blocked -Isocyanate method and catalyst
CN106498557A (en) A kind of preparation method of modified nano fiber thin film
US4428977A (en) Ammonium salt of partially emidized polyamide acid for aqueous coating composition
KR100644338B1 (en) The manufacture method of the polyamideimide resin solution for enamel copper wire clothing that the antiwear characteristic was strengthened
KR100483712B1 (en) Polyamideimide polymer for enamel copper wire covering and enamel copper wire manufacturing method
CN106589370B (en) Polyamic acid composition and preparation method and application
KR100644337B1 (en) The manufacture method of the polyamideimide resin solution for high concentration type enamel copper wire clothing
US3544504A (en) Insulating amide-imide polymeric magnetic wire coating composition
KR20040013691A (en) Manufacturing method of poly(amideimide) varnish with the improved adhesion strength
JPS5812900B2 (en) Water-soluble polyester-imide resin
KR101158062B1 (en) Polyamideimide vanish having improved water resistance
US3534003A (en) Polyamide imides prepared from aromatic cyclic sulfone amines and haloformylphthalic anhydrides
US4513113A (en) Aqueous coating composition of polyesterimide
CN105315664B (en) The controllable polyamic acid composition and its preparation method and application of viscosity
KR20050070290A (en) Polyamideimide vanish improved thermal resistance and folding endurance
JP2011178965A (en) Insulated wire and electric coil and motor using the same
US3652498A (en) Process for preparing polyamide-imides
KR20040009235A (en) Process for producing aerial unit of Polyamideimideamide which improve the adhesive strength of Polyamideimide against metal by introducing Polyamide

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100807

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee