KR102548620B1 - 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치 - Google Patents
무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치 Download PDFInfo
- Publication number
- KR102548620B1 KR102548620B1 KR1020227034037A KR20227034037A KR102548620B1 KR 102548620 B1 KR102548620 B1 KR 102548620B1 KR 1020227034037 A KR1020227034037 A KR 1020227034037A KR 20227034037 A KR20227034037 A KR 20227034037A KR 102548620 B1 KR102548620 B1 KR 102548620B1
- Authority
- KR
- South Korea
- Prior art keywords
- field
- frame
- sta
- information
- ack
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 117
- 238000004891 communication Methods 0.000 title description 60
- 230000005540 biological transmission Effects 0.000 claims abstract description 207
- 230000004044 response Effects 0.000 claims abstract description 27
- 238000013468 resource allocation Methods 0.000 claims description 39
- 238000010586 diagram Methods 0.000 description 65
- 238000007726 management method Methods 0.000 description 45
- 101150081243 STA1 gene Proteins 0.000 description 28
- OVGWMUWIRHGGJP-WTODYLRWSA-N (z)-7-[(1r,3s,4s,5r)-3-[(e,3r)-3-hydroxyoct-1-enyl]-6-thiabicyclo[3.1.1]heptan-4-yl]hept-5-enoic acid Chemical compound OC(=O)CCC\C=C/C[C@H]1[C@H](/C=C/[C@H](O)CCCCC)C[C@H]2S[C@@H]1C2 OVGWMUWIRHGGJP-WTODYLRWSA-N 0.000 description 23
- 101100366889 Caenorhabditis elegans sta-2 gene Proteins 0.000 description 23
- 230000006870 function Effects 0.000 description 21
- 230000009471 action Effects 0.000 description 20
- 239000012634 fragment Substances 0.000 description 20
- 239000011159 matrix material Substances 0.000 description 15
- 238000005516 engineering process Methods 0.000 description 14
- 230000007246 mechanism Effects 0.000 description 13
- VYLDEYYOISNGST-UHFFFAOYSA-N bissulfosuccinimidyl suberate Chemical compound O=C1C(S(=O)(=O)O)CC(=O)N1OC(=O)CCCCCCC(=O)ON1C(=O)C(S(O)(=O)=O)CC1=O VYLDEYYOISNGST-UHFFFAOYSA-N 0.000 description 11
- 238000012549 training Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 7
- 238000011084 recovery Methods 0.000 description 7
- 230000011664 signaling Effects 0.000 description 7
- 238000001514 detection method Methods 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 108700026140 MAC combination Proteins 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 238000010295 mobile communication Methods 0.000 description 4
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 3
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 3
- 101100172132 Mus musculus Eif3a gene Proteins 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000003999 initiator Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 238000012937 correction Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 101001051799 Aedes aegypti Molybdenum cofactor sulfurase 3 Proteins 0.000 description 1
- 101710116852 Molybdenum cofactor sulfurase 1 Proteins 0.000 description 1
- 101710116850 Molybdenum cofactor sulfurase 2 Proteins 0.000 description 1
- 206010042135 Stomatitis necrotising Diseases 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- PKOMXLRKGNITKG-UHFFFAOYSA-L calcium;hydroxy(methyl)arsinate Chemical compound [Ca+2].C[As](O)([O-])=O.C[As](O)([O-])=O PKOMXLRKGNITKG-UHFFFAOYSA-L 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 201000008585 noma Diseases 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0452—Multi-user MIMO systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/1607—Details of the supervisory signal
- H04L1/1671—Details of the supervisory signal the supervisory signal being transmitted together with control information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/063—Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0002—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
- H04L1/0003—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0006—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
- H04L1/0007—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0023—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
- H04L1/0027—Scheduling of signalling, e.g. occurrence thereof
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0075—Transmission of coding parameters to receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/02—Arrangements for detecting or preventing errors in the information received by diversity reception
- H04L1/06—Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
- H04L1/0618—Space-time coding
- H04L1/0675—Space-time coding characterised by the signaling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/1607—Details of the supervisory signal
- H04L1/1614—Details of the supervisory signal using bitmaps
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0044—Arrangements for allocating sub-channels of the transmission path allocation of payload
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
- H04L5/0055—Physical resource allocation for ACK/NACK
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
- H04L5/0094—Indication of how sub-channels of the path are allocated
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
- H04L69/10—Streamlined, light-weight or high-speed protocols, e.g. express transfer protocol [XTP] or byte stream
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
- H04L69/22—Parsing or analysis of headers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
- H04L69/30—Definitions, standards or architectural aspects of layered protocol stacks
- H04L69/32—Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
- H04L69/322—Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
- H04L69/324—Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the data link layer [OSI layer 2], e.g. HDLC
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/40—Network security protocols
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0453—Resources in frequency domain, e.g. a carrier in FDMA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0466—Wireless resource allocation based on the type of the allocated resource the resource being a scrambling code
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W80/00—Wireless network protocols or protocol adaptations to wireless operation
- H04W80/02—Data link layer protocols
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/10—Small scale networks; Flat hierarchical networks
- H04W84/12—WLAN [Wireless Local Area Networks]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0023—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
- H04L1/0025—Transmission of mode-switching indication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/21—Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Computer Security & Cryptography (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Multimedia (AREA)
- Mobile Radio Communication Systems (AREA)
- Communication Control (AREA)
Abstract
본 발명의 일 실시예에 따른, WLAN(Wireless LAN) 시스템에서 AP(Access Point) 장치의 하향링크(DL: Downlink) 다중 사용자(MU: Multi-User) 전송 방법에 있어서, 물리 프리앰블(physical preamble) 및 데이터 필드를 포함하는 DL MU PPDU(Physical Protocol Data Unit)를 생성하는 단계; 상기 데이터 필드는 적어도 하나의 MPDU(Mac Protocol Data Unit)를 포함하고, 상기 적어도 하나의 MPDU는 MAC 헤더와 MAC 프레임 바디를 포함하고, 상기 MAC 헤더는 상기 데이터 필드를 통해 전송된 데이터에 대한 응답인 ACK 프레임의 상향링크(UL: Uplink) MU 전송을 위한 ACK 지시(indication) 정보를 포함함, 및 상기 DL MU PPDU를 전송하는 단계; 를 포함할 수 있다.
Description
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게 다중 사용자(multi-user)의 데이터 전송을 지원하기 위한 데이터 전송 방법 및 이를 지원하는 장치에 관한 것이다.
와이파이(Wi-Fi)는 2.4GHz, 5GHz 또는 60GHz 주파수 대역에서 기기가 인터넷에 접속 가능하게 하는 WLAN(Wireless Local Area Network) 기술이다.
WLAN은 IEEE(institute of electrical and electronic engineers) 802.11 표준에 기반한다. IEEE 802.11의 WNG SC(Wireless Next Generation Standing Committee)는 차세대 WLAN(wireless local area network)을 중장기적으로 고민하는 애드혹 위원회(committee)이다.
IEEE 802.11n은 네트워크의 속도와 신뢰성을 증가시키고, 무선 네트워크의 운영 거리를 확장하는데 목적을 두고 있다. 보다 구체적으로, IEEE 802.11n에서는 최대 600Mbps 데이터 처리 속도(data rate)를 제공하는 고처리율(HT: High Throughput)을 지원하며, 또한 전송 에러를 최소화하고 데이터 속도를 최적화하기 위해 송신부와 수신부 양단 모두에 다중 안테나를 사용하는 MIMO(Multiple Inputs and Multiple Outputs) 기술에 기반을 두고 있다.
WLAN의 보급이 활성화되고 또한 이를 이용한 어플리케이션이 다양화됨에 따라, 초고처리율(VHT: Very High Throughput)를 지원하는 차세대 WLAN 시스템은 IEEE 802.11n WLAN 시스템의 다음 버전으로서, IEEE 802.11ac가 새롭게 제정되었다. IEEE 802.11ac는 80MHz 대역폭 전송 및/또는 더 높은 대역폭 전송(예를 들어, 160MHz)을 통해 1Gbps 이상의 데이터 처리 속도를 지원하고, 주로 5 GHz 대역에서 동작한다.
최근에는 IEEE 802.11ac이 지원하는 데이터 처리 속도보다 더 높은 처리율을 지원하기 위한 새로운 WLAN 시스템에 대한 필요성이 대두되고 있다.
일명 IEEE 802.11ax 또는 고효율(HEW: High Efficiency) WLAN라고 불리는 차세대 WLAN 태스크 그룹에서 주로 논의되는 IEEE 802.11ax의 범위(scope)는 1) 2.4GHz 및 5GHz 등의 대역에서 802.11 PHY(physical) 계층과 MAC(medium access control) 계층의 향상, 2) 스펙트럼 효율성(spectrum efficiency)과 영역 쓰루풋(area throughput) 향상, 3) 간섭 소스가 존재하는 환경, 밀집한 이종 네트워크(heterogeneous network) 환경 및 높은 사용자 부하가 존재하는 환경과 같은 실제 실내 환경 및 실외 환경에서 성능을 향상 등을 포함한다.
IEEE 802.11ax에서 주로 고려되는 시나리오는 AP(access point)와 STA(station)이 많은 밀집 환경이며, IEEE 802.11ax는 이러한 상황에서 스펙트럼 효율(spectrum efficiency)과 공간 전송률(area throughput) 개선에 대해 논의한다. 특히, 실내 환경뿐만 아니라, 기존 WLAN에서 많이 고려되지 않던 실외 환경에서의 실질적 성능 개선에 관심을 가진다.
IEEE 802.11ax에서는 무선 오피스(wireless office), 스마트 홈(smart home), 스타디움(Stadium), 핫스팟(Hotspot), 빌딩/아파트(building/apartment)와 같은 시나리오에 관심이 크며, 해당 시나리오 기반으로 AP와 STA가 많은 밀집 환경에서의 시스템 성능 향상에 대한 논의가 수행되고 있다.
앞으로 IEEE 802.11ax에서는 하나의 BSS(basic service set)에서의 단일 링크 성능 향상보다는, OBSS(overlapping basic service set) 환경에서의 시스템 성능 향상 및 실외 환경 성능 개선, 그리고 셀룰러 오프로딩(cellular offloading) 등에 대한 논의가 활발할 것으로 예상된다. 이러한 IEEE 802.11ax의 방향성은 차세대 WLAN이 점점 이동 통신과 유사한 기술 범위를 갖게 됨을 의미한다. 최근 스몰 셀(small cell) 및 D2D(Direct-to-Direct) 통신 영역에서 이동 통신과 WLAN 기술이 함께 논의되고 있는 상황을 고려해 볼 때, IEEE 802.11ax를 기반한 차세대 WLAN과 이동 통신의 기술적 및 사업적 융합은 더욱 활발해질 것으로 예측된다.
본 발명의 목적은 무선 통신 시스템에서 상향링크/하향링크 다중 사용자(multi-user) 데이터 송수신 방법을 제안한다.
또한, 본 발명의 목적은 무선 통신 시스템에서 상향링크/하향링크 다중 사용자(multi-user) 송수신에 이용되는 PPDU의 HE(High Efficiency) 포맷을 제안한다. 특히, PPDU에 포함된 HE-SIG(signal) A 필드 및 HE-SIG B 필드의 포맷을 제안한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상술한 기술적 과제를 해결하기 위하여, 본 발명의 일 실시예에 따른 WLAN 시스템의 AP 장치 및 AP 장치의 데이터 전송 방법을 제안한다.
본 발명의 일 실시예에 따른 WLAN(Wireless LAN) 시스템에서 AP(Access Point) 장치의 하향링크(DL: Downlink) 다중 사용자(MU: Multi-User) 전송 방법에 있어서, 물리 프리앰블(physical preamble) 및 데이터 필드를 포함하는 DL MU PPDU(Physical Protocol Data Unit)를 생성하는 단계; 상기 데이터 필드는 적어도 하나의 MPDU(Mac Protocol Data Unit)를 포함하고, 상기 적어도 하나의 MPDU는 MAC 헤더와 MAC 프레임 바디를 포함하고, 상기 MAC 헤더는 상기 데이터 필드를 통해 전송된 데이터에 대한 응답인 ACK 프레임의 상향링크(UL: Uplink) MU 전송을 위한 ACK 지시(indication) 정보를 포함함, 및 상기 DL MU PPDU를 전송하는 단계; 를 포함할 수 있다.
또한, 상기 적어도 하나의 MPDU는, 상기 적어도 하나의 MPDU가 상기 ACK 지시 정보를 포함하고 있음을 지시하는 지시자를 포함할 수 있다.
또한, 상기 지시자는 상기 적어도 하나의 MPDU에 포함된 MPDU 델리미터(delimiter) 필드에 포함할 수 있다.
또한, 상기 적어도 하나의 MPDU의 타입 또는 서브 타입이 정의되는 경우, 상기 지시자는 상기 정의된 타입 또는 서브 타입으로서 상기 MAC 헤더의 프레임 컨트롤 필드(Frame Control Field)에 포함될 수 있다.
또한, 상기 적어도 하나의 MPDU가 HT(High-Throughput) 포맷의 제어 랩퍼 프레임(Control Wrapper Frame)인 경우, 상기 지시자는 상기 MAC 헤더에 포함된 HT 컨트롤 필드에 포함될 수 있다.
또한, 상기 적어도 하나의 MPDU가 HE(High-Efficiency) 포맷 프레임인 경우, 상기 지시자는 상기 MAC 헤더에 포함된 HE 컨트롤 필드에 포함될 수 있다.
또한, 상기 적어도 하나의 MPDU에 대응하는 MPDU 델리미터 필드의 특정 예비 비트 값이 기설정된 값으로 설정되거나, 상기 적어도 하나의 MPDU에 포함된 컨트롤 필드의 특정 예비 비트 값이 기설정된 값으로 설정된 경우, 상기 적어도 하나의 MPDU는 상기 HE 포맷 프레임일 수 있다.
또한, 상기 지시자는 상기 MAC 헤더에 포함된 프레임 컨트롤 필드(Frame Control Field) 또는 주소 필드(Address Field)에 포함될 수 있다.
또한, 상기 지시자가 상기 프레임 컨트롤 필드에 포함되는 경우, 상기 프레임 컨트롤 필드의 To DS 필드 및 From DS 필드의 비트 값이 각각 ‘1’로 설정될 수 있다.
또한, 상기 ACK 지시 정보는 상기 MAC 헤더의 컨트롤 필드에 포함될 수 있다.
또한, 상기 컨트롤 필드는, 상기 AK 지시 정보로서 상기 ACK 프레임의 UL MU 전송을 위한 주파수 자원 할당 정보, 대역폭(bandwidth) 정보, 공간 자원 할당 정보, 전송 채널 정보, MCS(Modulation and Coding Scheme) 레벨 정보, 상기 ACK 프레임을 나르는 UL MU PPDU의 최대 길이 정보, 버퍼 상태 요청(Buffer status report request) 정보, 및 채널 상태 요청(Channel status report request) 정보 중 적어도 하나를 포함할 수 있다.
또한, 상기 데이터 필드가 A-MPDU를 포함하는 경우, 상기 A-MPDU의 일부는 상기 적어도 하나의 MPDU로 구성될 수 있다.
또한, 상기 ACK 지시 정보에 따른 응답으로서 상기 ACK 프레임이 수신되지 않은 경우, 상기 ACK 지시 정보의 수신 STA으로 BAR(Block Acknowledgment request) 프레임을 전송하거나, 상기 수신 STA으로부터 상기 BAR 프레임의 전송을 요청 받고, 상기 요청에 대한 응답으로서 상기 BAR 프레임을 상기 수신 STA으로 전송하거나, 상기 수신 STA에 대응하는 데이터를 상기 DL MU PPDU를 통해 상기 수신 STA으로 재전송하는 단계; 를 더 포함할 수 있다.
또한, 상기 ACK 지시 정보의 수신 STA으로 BAR 프레임을 전송하는 단계는, 상기 ACK 프레임이 수신되지 않음을 인식한 뒤 SIFS(Short interframe space) 후 또는 상기 데이터를 상기 수신 STA으로 재전송하기 위한 백 오프 과정(backoff procedure) 후에, 채널 경쟁(channel contention)을 통해 상기 BAR 프레임을 전송하는 단계일 수 있다.
또한, 상기 수신 STA으로부터 상기 BAR 프레임의 전송을 요청 받고, 상기 요청에 대한 응답으로서 상기 BAR 프레임을 상기 수신 STA으로 전송하는 경우, 상기 BAR 프레임의 요청은 랜덤 액세스(random access) 구간에 상기 수신 STA으로부터 수신될 수 있다.
또한, 상기 데이터 필드가 A-MPDU를 포함하는 경우, 상기 A-MPDU는 상기 적어도 하나의 MPDU로 구성될 수 있다.
또한, 본 발명의 다른 실시예에 따르면, WLAN(Wireless LAN) 시스템에서 AP(Access Point) 장치에 있어서, 무선 신호를 송수신하는, RF 유닛; 및 상기 RF 유닛을 제어하는, 프로세서; 를 포함하고, 상기 프로세서는, 물리 프리앰블(physical preamble) 및 데이터 필드를 포함하는 하향링크(DL: Downlink) 다중 사용자(MU: Multi-User) PPDU(Physical Protocol Data Unit)를 생성하되, 상기 데이터 필드는 적어도 하나의 MPDU(Mac Protocal Data Unit)를 포함하고, 상기 MPDU는 MAC 헤더와 MAC 프레임 바디를 포함함, 및 상기 MAC 헤더는 상기 데이터 필드를 통해 전송된 데이터에 대한 응답인 ACK 프레임의 상향링크(UL: Uplink) MU 전송을 위한 ACK 지시(indication) 정보를 포함함, 및 상기 DL MU PPDU를 전송할 수 있다.
또한, 상기 적어도 하나의 MPDU는, 상기 적어도 하나의 MPDU가 상기 ACK 지시 정보를 포함하고 있음을 지시하는 지시자를 포함할 수 있다.
본 발명의 일 실시예에 따르면, AP 장치는 ACK 프레임을 전송할 UL MU 자원을 지시하는 ACK 지시 정보가 포함된 MAC 헤더를 DL MU 전송할 수 있으며, 수신 STA은 수신한 ACK 지시 정보가 지시하는 UL MU 자원을 이용하여 ACK 프레임을 전송할 수 있다.
또한, 본 발명의 일 실시예에 따르면, AP 장치는 상기 ACK 지시 정보의 포함 여부를 지시하는 지시자를 상기 ACK 지시 정보와 함께 DL MU 전송하여, 수신 STA은 상기 지시자를 통해 ACK 지시 정보의 포함 여부를 인식할 수 있다.
이외에 본 발명의 다른 효과들에 대해서는 이하의 실시예들에서 추가로 설명하도록 한다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 발명이 적용될 수 있는 IEEE 802.11 시스템의 일례를 나타내는 도면이다.
도 2는 본 발명이 적용될 수 있는 IEEE 802.11 시스템의 계층 아키텍처(layer architecture)의 구조를 예시하는 도면이다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템의 non-HT 포맷 PPDU 및 HT 포맷 PPDU를 예시한다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템의 VHT 포맷 PPDU 포맷을 예시한다.
도 5는 본 발명이 적용될 수 있는 무선 통신 시스템의 PPDU의 포맷을 구분하기 위한 성상(constellation)을 예시하는 도면이다.
도 6은 본 발명이 적용될 수 있는 IEEE 802.11 시스템의 MAC 프레임 포맷을 예시한다.
도 7은 본 발명이 적용될 수 있는 무선 통신 시스템에서 MAC 프레임 내 프레임 제어(Frame Control) 필드를 예시하는 도면이다.
도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 HT Control 필드의 VHT 포맷을 예시한다.
도 9는 본 발명이 적용될 수 있는 무선 통신 시스템에서 임의 백오프 주기와 프레임 전송 절차를 설명하기 위한 도면이다.
도 10은 본 발명이 적용될 수 있는 무선 통신 시스템에서 IFS 관계를 예시하는 도면이다.
도 11은 본 발명이 적용될 수 있는 무선 통신 시스템에서 채널 사운딩(sounding) 방법을 개념적으로 나타내는 도면이다.
도 12는 본 발명이 적용될 수 있는 무선 통신 시스템에서 VHT NDPA 프레임을 예시하는 도면이다.
도 13은 본 발명이 적용될 수 있는 무선 통신 시스템에서 NDP PPDU을 예시하는 도면이다.
도 14는 본 발명이 적용될 수 있는 무선 통신 시스템에서 VHT 압축된 빔포밍(VHT compressed beamforming) 프레임 포맷을 예시하는 도면이다.
도 15는 본 발명이 적용될 수 있는 무선 통신 시스템에서 빔포밍 보고 폴(Beamforming Report Poll) 프레임 포맷을 예시하는 도면이다.
도 16은 본 발명이 적용될 수 있는 무선 통신 시스템에서 Group ID Management 프레임을 예시하는 도면이다.
도 17은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 다중 사용자(multi-user) PPDU 포맷을 예시하는 도면이다.
도 18은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 다중 사용자(multi-user) PPDU 포맷을 예시하는 도면이다.
도 19는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 MU-MIMO 전송 과정을 예시하는 도면이다.
도 20은 본 발명이 적용될 수 있는 무선 통신 시스템에서 ACK 프레임을 예시하는 도면이다.
도 21은 본 발명이 적용될 수 있는 무선 통신 시스템에서 블록 ACK 요청(Block Ack Request) 프레임을 예시하는 도면이다.
도 22는 본 발명이 적용될 수 있는 무선 통신 시스템에서 블록 ACK 요청(Block Ack Request) 프레임의 BAR 정보(BAR Information) 필드를 예시하는 도면이다.
도 23은 본 발명이 적용될 수 있는 무선 통신 시스템에서 블록 ACK(Block Ack) 프레임을 예시하는 도면이다.
도 24는 본 발명이 적용될 수 있는 무선 통신 시스템에서 블록 ACK(Block Ack) 프레임의 BA 정보(BA Information) 필드를 예시하는 도면이다.
도 25는 본 발명의 일 실시예에 따른 HE(High Efficiency) 포맷 PPDU를 예시하는 도면이다.
도 26 내지 도 28은 본 발명의 일 실시예에 따른 HE 포맷 PPDU을 예시하는 도면이다.
도 29는 본 발명의 일 실시예에 따른 상향링크 다중 사용자(multi-user) 전송 절차를 예시하는 도면이다.
도 30 내지 32는 본 발명의 일 실시예에 따른 OFDMA 다중 사용자(multi-user) 전송 방식에서 자원 할당 단위를 예시하는 도면이다.
도 33은 ACK 지시 정보가 물리 프리앰블에 포함된 20MHz DL MU PPDU의 일 실시예를 도시한 도면이다.
도 34는 ACK 지시 정보가 데이터 필드에 포함된 20MHz DL MU PPDU의 일 실시예를 도시한 도면이다.
도 35는 HT 포맷의 컨트롤 필드를 도시한 도면이다.
도 36은 본 발명의 일 실시예에 따른 HE 컨트롤 필드를 도시한 도면이다.
도 37은 본 발명의 일 실시예에 따른 오류 복구 절차를 개략적으로 도시한 도면이다.
도 38은 본 발명의 일 실시예에 따른 AP 장치의 DL MU 전송 방법을 나타낸 순서도이다.
도 39는 본 발명의 일 실시예에 따른 각 STA 장치의 블록도이다.
도 1은 본 발명이 적용될 수 있는 IEEE 802.11 시스템의 일례를 나타내는 도면이다.
도 2는 본 발명이 적용될 수 있는 IEEE 802.11 시스템의 계층 아키텍처(layer architecture)의 구조를 예시하는 도면이다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템의 non-HT 포맷 PPDU 및 HT 포맷 PPDU를 예시한다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템의 VHT 포맷 PPDU 포맷을 예시한다.
도 5는 본 발명이 적용될 수 있는 무선 통신 시스템의 PPDU의 포맷을 구분하기 위한 성상(constellation)을 예시하는 도면이다.
도 6은 본 발명이 적용될 수 있는 IEEE 802.11 시스템의 MAC 프레임 포맷을 예시한다.
도 7은 본 발명이 적용될 수 있는 무선 통신 시스템에서 MAC 프레임 내 프레임 제어(Frame Control) 필드를 예시하는 도면이다.
도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 HT Control 필드의 VHT 포맷을 예시한다.
도 9는 본 발명이 적용될 수 있는 무선 통신 시스템에서 임의 백오프 주기와 프레임 전송 절차를 설명하기 위한 도면이다.
도 10은 본 발명이 적용될 수 있는 무선 통신 시스템에서 IFS 관계를 예시하는 도면이다.
도 11은 본 발명이 적용될 수 있는 무선 통신 시스템에서 채널 사운딩(sounding) 방법을 개념적으로 나타내는 도면이다.
도 12는 본 발명이 적용될 수 있는 무선 통신 시스템에서 VHT NDPA 프레임을 예시하는 도면이다.
도 13은 본 발명이 적용될 수 있는 무선 통신 시스템에서 NDP PPDU을 예시하는 도면이다.
도 14는 본 발명이 적용될 수 있는 무선 통신 시스템에서 VHT 압축된 빔포밍(VHT compressed beamforming) 프레임 포맷을 예시하는 도면이다.
도 15는 본 발명이 적용될 수 있는 무선 통신 시스템에서 빔포밍 보고 폴(Beamforming Report Poll) 프레임 포맷을 예시하는 도면이다.
도 16은 본 발명이 적용될 수 있는 무선 통신 시스템에서 Group ID Management 프레임을 예시하는 도면이다.
도 17은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 다중 사용자(multi-user) PPDU 포맷을 예시하는 도면이다.
도 18은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 다중 사용자(multi-user) PPDU 포맷을 예시하는 도면이다.
도 19는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 MU-MIMO 전송 과정을 예시하는 도면이다.
도 20은 본 발명이 적용될 수 있는 무선 통신 시스템에서 ACK 프레임을 예시하는 도면이다.
도 21은 본 발명이 적용될 수 있는 무선 통신 시스템에서 블록 ACK 요청(Block Ack Request) 프레임을 예시하는 도면이다.
도 22는 본 발명이 적용될 수 있는 무선 통신 시스템에서 블록 ACK 요청(Block Ack Request) 프레임의 BAR 정보(BAR Information) 필드를 예시하는 도면이다.
도 23은 본 발명이 적용될 수 있는 무선 통신 시스템에서 블록 ACK(Block Ack) 프레임을 예시하는 도면이다.
도 24는 본 발명이 적용될 수 있는 무선 통신 시스템에서 블록 ACK(Block Ack) 프레임의 BA 정보(BA Information) 필드를 예시하는 도면이다.
도 25는 본 발명의 일 실시예에 따른 HE(High Efficiency) 포맷 PPDU를 예시하는 도면이다.
도 26 내지 도 28은 본 발명의 일 실시예에 따른 HE 포맷 PPDU을 예시하는 도면이다.
도 29는 본 발명의 일 실시예에 따른 상향링크 다중 사용자(multi-user) 전송 절차를 예시하는 도면이다.
도 30 내지 32는 본 발명의 일 실시예에 따른 OFDMA 다중 사용자(multi-user) 전송 방식에서 자원 할당 단위를 예시하는 도면이다.
도 33은 ACK 지시 정보가 물리 프리앰블에 포함된 20MHz DL MU PPDU의 일 실시예를 도시한 도면이다.
도 34는 ACK 지시 정보가 데이터 필드에 포함된 20MHz DL MU PPDU의 일 실시예를 도시한 도면이다.
도 35는 HT 포맷의 컨트롤 필드를 도시한 도면이다.
도 36은 본 발명의 일 실시예에 따른 HE 컨트롤 필드를 도시한 도면이다.
도 37은 본 발명의 일 실시예에 따른 오류 복구 절차를 개략적으로 도시한 도면이다.
도 38은 본 발명의 일 실시예에 따른 AP 장치의 DL MU 전송 방법을 나타낸 순서도이다.
도 39는 본 발명의 일 실시예에 따른 각 STA 장치의 블록도이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE(institute of electrical and electronics engineers) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, IEEE 802.11 시스템을 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.
시스템 일반
도 1 은 본 발명이 적용될 수 있는 IEEE 802.11 시스템의 일례를 나타내는 도면이다.
IEEE 802.11 구조는 복수개의 구성요소들로 구성될 수 있고, 이들의 상호작용에 의해 상위계층에 대해 트랜스패런트(transparent)한 스테이션(STA: Station) 이동성을 지원하는 무선 통신 시스템이 제공될 수 있다. 기본 서비스 세트(BSS: Basic Service Set)는 IEEE 802.11 시스템에서의 기본적인 구성 블록에 해당할 수 있다.
도 1 에서는 3개의 BSS(BSS 1 내지 BSS 3)가 존재하고 각각의 BSS의 멤버로서 2개의 STA이 포함되는 것(STA 1 및 STA 2 는 BSS 1에 포함되고, STA 3 및 STA 4는 BSS 2에 포함되며, STA 5 및 STA 6은 BSS 3에 포함됨)을 예시적으로 도시한다.
도 1 에서 BSS를 나타내는 타원은 해당 BSS에 포함된 STA들이 통신을 유지하는 커버리지 영역을 나타내는 것으로도 이해될 수 있다. 이 영역을 기본 서비스 영역(BSA: Basic Service Area)이라고 칭할 수 있다. STA가 BSA 밖으로 이동하게 되면 해당 BSA 내의 다른 STA들과 직접적으로 통신할 수 없게 된다.
IEEE 802.11 시스템에서 가장 기본적인 타입의 BSS는 독립적인 BSS(IBSS: Independent BSS)이다. 예를 들어, IBSS는 2 개의 STA만으로 구성된 최소의 형태를 가질 수 있다. 또한, 가장 단순한 형태이고 다른 구성요소들이 생략되어 있는 도 1 의 BSS 3이 IBSS의 대표적인 예시에 해당할 수 있다. 이러한 구성은 STA들이 직접 통신할 수 있는 경우에 가능하다. 또한, 이러한 형태의 LAN은 미리 계획되어서 구성되는 것이 아니라 LAN이 필요한 경우에 구성될 수 있으며, 이를 애드-혹(ad-hoc) 네트워크라고 칭할 수도 있다.
STA의 켜지거나 꺼짐, STA가 BSS 영역에 들어오거나 나감 등에 의해서, BSS에서의 STA의 멤버십이 동적으로 변경될 수 있다. BSS의 멤버가 되기 위해서는, STA는 동기화 과정을 이용하여 BSS에 조인할 수 있다. BSS 기반 구조의 모든 서비스에 액세스하기 위해서는, STA는 BSS에 연계(associated)되어야 한다. 이러한 연계(association)는 동적으로 설정될 수 있고, 분배 시스템 서비스(DSS: Distribution System Service)의 이용을 포함할 수 있다.
802.11 시스템에서 직접적인 STA-대-STA의 거리는 물리 계층(PHY: physical) 성능에 의해서 제한될 수 있다. 어떠한 경우에는 이러한 거리의 한계가 충분할 수도 있지만, 경우에 따라서는 보다 먼 거리의 STA 간의 통신이 필요할 수도 있다. 확장된 커버리지를 지원하기 위해서 분배 시스템(DS: Distribution System)이 구성될 수 있다.
DS는 BSS들이 상호 연결되는 구조를 의미한다. 구체적으로, 도 1 과 같이 BSS가 독립적으로 존재하는 대신에, 복수개의 BSS들로 구성된 네트워크의 확장된 형태의 구성요소로서 BSS가 존재할 수도 있다.
DS는 논리적인 개념이며 분배 시스템 매체(DSM: Distribution System Medium)의 특성에 의해서 특정될 수 있다. 이와 관련하여, IEEE 802.11 표준에서는 무선 매체(WM: Wireless Medium)와 분배 시스템 매체(DSM: Distribution System Medium)을 논리적으로 구분하고 있다. 각각의 논리적 매체는 상이한 목적을 위해서 사용되며, 상이한 구성요소에 의해서 사용된다. IEEE 802.11 표준의 정의에서는 이러한 매체들이 동일한 것으로 제한하지도 않고 상이한 것으로 제한하지도 않는다. 이와 같이 복수개의 매체들이 논리적으로 상이하다는 점에서, IEEE 802.11 시스템의 구조(DS 구조 또는 다른 네트워크 구조)의 유연성이 설명될 수 있다. 즉, IEEE 802.11 시스템 구조는 다양하게 구현될 수 있으며, 각각의 구현예의 물리적인 특성에 의해서 독립적으로 해당 시스템 구조가 특정될 수 있다.
DS는 복수개의 BSS들의 끊김 없는(seamless) 통합을 제공하고 목적지로의 어드레스를 다루는 데에 필요한 논리적 서비스들을 제공함으로써 이동 장치를 지원할 수 있다.
AP는, 연계된 STA들에 대해서 WM을 통해서 DS로의 액세스를 가능하게 하고 STA 기능성을 가지는 개체를 의미한다. AP를 통해서 BSS 및 DS 간의 데이터 이동이 수행될 수 있다. 예를 들어, 도 1에서 도시하는 STA 2 및 STA 3은 STA의 기능성을 가지면서, 연계된 STA들(STA 1 및 STA 4)가 DS로 액세스하도록 하는 기능을 제공한다. 또한, 모든 AP는 기본적으로 STA에 해당하므로, 모든 AP는 어드레스 가능한 개체이다. WM 상에서의 통신을 위해 AP에 의해서 사용되는 어드레스와 DSM 상에서의 통신을 위해 AP에 의해서 사용되는 어드레스는 반드시 동일할 필요는 없다.
AP에 연계된 STA들 중의 하나로부터 그 AP의 STA 어드레스로 전송되는 데이터는, 항상 비제어 포트(uncontrolled port)에서 수신되고 IEEE 802.1X 포트 액세스 개체에 의해서 처리될 수 있다. 또한, 제어 포트(controlled port)가 인증되면 전송 데이터(또는 프레임)는 DS로 전달될 수 있다.
임의의(arbitrary) 크기 및 복잡도를 가지는 무선 네트워크가 DS 및 BSS들로 구성될 수 있다. IEEE 802.11 시스템에서는 이러한 방식의 네트워크를 확장된 서비스 세트(ESS: Extended Service Set) 네트워크라고 칭한다. ESS는 하나의 DS에 연결된 BSS들의 집합에 해당할 수 있다. 그러나, ESS는 DS를 포함하지는 않는다. ESS 네트워크는 논리 링크 제어(LLC: Logical Link Control) 계층에서 IBSS 네트워크로 보이는 점이 특징이다. ESS에 포함되는 STA들은 서로 통신할 수 있고, 이동 STA들은 LLC에 트랜스패런트(transparent)하게 하나의 BSS에서 다른 BSS로(동일한 ESS 내에서) 이동할 수 있다.
IEEE 802.11 시스템에서는 도 1 에서의 BSS들의 상대적인 물리적 위치에 대해서 아무것도 가정하지 않으며, 다음과 같은 형태가 모두 가능하다.
구체적으로, BSS들은 부분적으로 중첩될 수 있고, 이는 연속적인 커버리지를 제공하기 위해서 일반적으로 이용되는 형태이다. 또한, BSS들은 물리적으로 연결되어 있지 않을 수 있고, 논리적으로는 BSS들 간의 거리에 제한은 없다. 또한, BSS들은 물리적으로 동일한 위치에 위치할 수 있고, 이는 리던던시(redundancy)를 제공하기 위해서 이용될 수 있다. 또한, 하나 (또는 하나 이상의) IBSS 또는 ESS 네트워크들이 하나 또는 그 이상의 ESS 네트워크로서 동일한 공간에 물리적으로 존재할 수 있다. 이는 ESS 네트워크가 존재하는 위치에 ad-hoc 네트워크가 동작하는 경우나, 상이한 기관(organizations)에 의해서 물리적으로 중첩되는 IEEE 802.11 네트워크들이 구성되는 경우나, 동일한 위치에서 2 이상의 상이한 액세스 및 보안 정책이 필요한 경우 등에서의 ESS 네트워크 형태에 해당할 수 있다.
WLAN 시스템에서 STA은 IEEE 802.11의 매체 접속 제어(MAC: Medium Access Control)/PHY 규정에 따라 동작하는 장치이다. STA의 기능이 AP와 개별적으로 구분되지 않는 한, STA는 AP STA과 비-AP STA(non-AP STA)를 포함할 수 있다. 다만, STA과 AP 간에 통신이 수행된다고 할 때, STA은 non-AP STA으로 이해될 수 있다. 도 1의 예시에서 STA 1, STA 4, STA 5 및 STA 6은 non-AP STA에 해당하고, STA 2 및 STA 3은 AP STA 에 해당한다.
Non-AP STA는 랩탑 컴퓨터, 이동 전화기와 같이 일반적으로 사용자가 직접 다루는 장치에 해당한다. 이하의 설명에서 non-AP STA는 무선 장치(wireless device), 단말(terminal), 사용자 장치(UE: User Equipment), 이동국(MS: Mobile Station), 이동 단말(Mobile Terminal), 무선 단말(wireless terminal), 무선 송수신 유닛(WTRU: Wireless Transmit/Receive Unit), 네트워크 인터페이스 장치(network interface device), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치 등으로 칭할 수도 있다.
또한, AP는 다른 무선 통신 분야에서의 기지국(BS: Base Station), 노드-B(Node-B), 발전된 노드-B(eNB: evolved Node-B), 기저 송수신 시스템(BTS: Base Transceiver System), 펨토 기지국(Femto BS) 등에 대응하는 개념이다.
이하, 본 명세서에서 하향링크(DL: downlink)는 AP에서 non-AP STA로의 통신을 의미하며, 상향링크(UL: uplink)는 non-AP STA에서 AP로의 통신을 의미한다. 하향링크에서 송신기는 AP의 일부이고, 수신기는 non-AP STA의 일부일 수 있다. 상향링크에서 송신기는 non-AP STA의 일부이고, 수신기는 AP의 일부일 수 있다.
도 2는 본 발명이 적용될 수 있는 IEEE 802.11 시스템의 계층 아키텍처(layer architecture)의 구조를 예시하는 도면이다.
도 2를 참조하면, IEEE 802.11 시스템의 계층 아키텍처는 MAC 부계층(MAC sublayer)과 PHY 부계층(PHY sublayer)을 포함할 수 있다.
PHY sublayer은 PLCP(Physical Layer Convergence Procedure) 개체(entity)와 PMD(Physical Medium Dependent) 개체로 구분될 수도 있다. 이 경우, PLCP 개체는 MAC sublayer와 데이터 프레임을 연결하는 역할을 수행하고, PMD 개체는 2개 또는 그 이상의 STA과 데이터를 무선으로 송수신하는 역할을 수행한다.
MAC sublayer과 PHY sublayer 모두 관리 개체(Management Entity)를 포함할 수 있으며, 각각 MAC 서브계층 관리 개체(MLME: MAC Sublayer Management Entity)과 PHY 서브계층 관리 개체(PLME: Physical Sublayer Management Entity)로 지칭할 수 있다. 이들 관리 개체은 계층 관리 함수의 동작을 통해 계층 관리 서비스 인터페이스를 제공한다. MLME는 PLME와 연결되어 MAC sublayer의 관리 동작(management operation)을 수행할 수 있고, 마찬가지로 PLME도 MLME와 연결되어 PHY sublayer의 관리 동작(management operation)을 수행할 수 있다.
정확한 MAC 동작을 제공하기 위하여, SME(Station Management Entity)가 각 STA 내에 존재할 수 있다. SME는 각 계층과 독립적인 관리 개체로서, MLME와 PLME로부터 계층 기반 상태 정보를 수집하거나 각 계층의 특정 파라미터들의 값을 설정한다. SME는 일반 시스템 관리 개체들을 대신하여 이러한 기능을 수행할 수 있으며, 표준 관리 프로토콜을 구현할 수 있다.
MLME, PLME 및 SME은 프리미티브(primitive)를 기반의 다양한 방법으로 상호 작용(interact)할 수 있다. 구체적으로, XX-GET.request 프리미티브는 관리 정보 베이스 속성(MIB attribute: Management Information Base attribute)의 값을 요청하기 위해 사용되고, XX-GET.confirm 프리미티브는 상태가 'SUCCESS'라면, 해당 MIB 속성 값을 리턴(return)하고, 그 외의 경우에는 상태 필드에 오류 표시를 하여 리턴한다. XX-SET.request 프리미티브는 지정된 MIB 속성을 주어진 값으로 설정하도록 요청하기 위해 사용된다. MIB 속성이 특정 동작으로 의미하고 있다면, 이 요청은 그 특정 동작의 실행을 요청한다. 그리고, XX-SET.confirm 프리미티브는 상태가 'SUCCESS'라면, 이는 지정된 MIB 속성이 요청된 값으로 설정되었음을 의미한다. 그 외의 경우에는, 상태 필드는 오류 상황을 나타낸다. 이 MIB 속성이 특정 동작을 의미한다면, 이 프리미티브는 해당 동작의 수행된 것을 확인해 줄 수 있다.
각 sublayer에서의 동작을 간략하게 설명하면 다음과 같다.
MAC sublayer는 상위 계층(예를 들어, LLC 계층)으로부터 전달 받은 MAC 서비스 데이터 유닛(MSDU: MAC Service Data Unit) 또는 MSDU의 조각(fragment)에 MAC 헤더(header)와 프레임 체크 시퀀스(FCS: Frame Check Sequence)을 부착하여 하나 이상의 MAC 프로토콜 데이터 유닛(MPDU: MAC Protocol Data Unit)을 생성한다. 생성된 MPDU는 PHY sublayer로 전달된다.
A-MSDU(aggregated MSDU) 기법(scheme)이 사용되는 경우, 복수 개의 MSDU는 단일의 A-MSDU(aggregated MSDU)로 병합될 수 있다. MSDU 병합 동작은 MAC 상위 계층에서 수행될 수 있다. A-MSDU는 단일의 MPDU(조각화(fragment)되지 않는 경우)로 PHY sublayer로 전달된다.
PHY sublayer는 MAC sublayer으로부터 전달 받은 물리 서비스 데이터 유닛(PSDU: Physical Service Data Unit)에 물리 계층 송수신기에 의해 필요한 정보를 포함하는 부가필드를 덧붙여 물리 프로토콜 데이터 유닛(PPDU: Physical Protocol Data Unit)을 생성한다. PPDU는 무선 매체를 통해 전송된다.
PSDU는 PHY sublayer가 MAC sublayer로부터 수신한 것이고, MPDU는 MAC sublayer가 PHY sublayer로 전송한 것이므로, PSDU는 실질적으로 MPDU와 동일하다.
A-MPDU(aggregated MPDU) 기법(scheme)이 사용되는 경우, 복수의 MPDU(이때, 각 MPDU는 A-MSDU를 나를 수 있다.)는 단일의 A-MPDU로 병합될 수 있다. MPDU 병합 동작은 MAC 하위 계층에서 수행될 수 있다. A-MPDU는 다양한 타입의 MPDU(예를 들어, QoS 데이터, ACK(Acknowledge), 블록 ACK(BlockAck) 등)이 병합될 수 있다. PHY sublayer는 MAC sublayer로부터 단일의 PSDU로써 A-MPDU를 수신한다. 즉, PSDU는 복수의 MPDU로 구성된다. 따라서, A-MPDU는 단일의 PPDU 내에서 무선 매체를 통해 전송된다.
PPDU(Physical Protocol Data Unit) 포맷
PPDU(Physical Protocol Data Unit)는 물리 계층에서 발생되는 데이터 블록을 의미한다. 이하, 본 발명이 적용될 수 있는 IEEE 802.11 WLAN 시스템을 기초로 PPDU 포맷을 설명한다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템의 non-HT 포맷 PPDU 및 HT 포맷 PPDU를 예시한다.
도 3의 (a)는 IEEE 802.11a/g 시스템을 지원하기 위한 non-HT 포맷 PPDU을 예시한다. non-HT PPDU은 레거시(legacy) PPDU으로도 불릴 수 있다.
도 3의 (a)를 참조하면, non-HT 포맷 PPDU은 L-STF(Legacy(또는, Non-HT) Short Training field), L-LTF(Legacy(또는, Non-HT) Long Training field) 및 L-SIG(Legacy(또는 Non-HT) SIGNAL) 필드로 구성되는 레가시 포맷 프리앰블과 데이터 필드를 포함하여 구성된다.
L-STF는 짧은 트레이닝 OFDM(short training orthogonal frequency division multiplexing symbol)을 포함할 수 있다. L-STF는 프레임 타이밍 획득(frame timing acquisition), 자동 이득 제어(AGC: Automatic Gain Control), 다이버시티 검출(diversity detection), 대략적인 주파수/시간 동기화(coarse frequency/time synchronization)을 위해 사용될 수 있다.
L-LTF는 긴 트레이닝 OFDM 심볼(long training orthogonal frequency division multiplexing symbol)을 포함할 수 있다. L-LTF는 정밀한 주파수/시간 동기화(fine frequency/time synchronization) 및 채널 추정(channel estimation)을 위해 사용될 수 있다.
L-SIG 필드는 데이터 필드의 복조 및 디코딩을 위한 제어 정보를 전송하기 위하여 사용될 수 있다.
L-SIG 필드는 4 비트의 레이트(Rate) 필드, 1비트의 예비(Reserved) 비트, 12 비트의 길이(Length) 필드, 1비트의 패리티 비트, 6비트의 신호 테일(Signal Tail) 필드로 구성될 수 있다.
레이트 필드는 전송율 정보를 포함하고, 길이 필드는 PSDU의 옥텟의 수를 지시한다.
도 3의 (b)는 IEEE 802.11n 시스템 및 IEEE 802.11a/g 시스템을 모두 지원하기 위한 HT 혼합 포맷 PPDU(HT-mixed format PPDU)을 예시한다.
도 3의 (b)를 참조하면, HT 혼합 포맷 PPDU은 L-STF, L-LTF 및 L-SIG 필드로 구성되는 레가시 포맷 프리앰블과 HT-SIG(HT-Signal) 필드, HT-STF(HT Short Training field), HT-LTF(HT Long Training field)로 구성되는 HT 포맷 프리앰블 및 데이터 필드를 포함하여 구성된다.
L-STF, L-LTF 및 L-SIG 필드는 하위 호환성(backward compatibility)를 위한 레가시 필드를 의미하므로, L-STF부터 L-SIG 필드까지 non-HT 포맷과 동일하다. L-STA은 HT 혼합 PPDU를 수신하여도 L-LTF, L-LTF 및 L-SIG 필드를 통해 데이터 필드를 해석할 수 있다. 다만 L-LTF는 HT-STA이 HT 혼합 PPDU를 수신하고 L-SIG 필드 및 HT-SIG 필드를 복조하기 위하여 수행할 채널 추정을 위한 정보를 더 포함할 수 있다.
HT-STA는 레가시 필드 뒤에 오는 HT-SIG 필드 이용하여 HT-혼합 포맷 PPDU임을 알 수 있으며, 이를 기반으로 데이터 필드를 디코딩할 수 있다.
HT-LTF 필드는 데이터 필드의 복조를 위한 채널 추정에 사용될 수 있다. IEEE 802.11n은 SU-MIMO(Single-User Multi-Input and Multi-Output)를 지원하므로 복수의 공간 스트림으로 전송되는 데이터 필드 각각에 대하여 채널 추정을 위해 HT-LTF 필드는 복수로 구성될 수 있다.
HT-LTF 필드는 공간 스트림에 대한 채널 추정을 위하여 사용되는 데이터 HT-LTF(data HT-LTF)와 풀 채널 사운딩(full channel sounding)을 위해 추가적으로 사용되는 확장 HT-LTF(extension HT-LTF)로 구성될 수 있다. 따라서, 복수의 HT-LTF는 전송되는 공간 스트림의 개수보다 같거나 많을 수 있다.
HT-혼합 포맷 PPDU은 L-STA도 수신하여 데이터를 획득할 수 있도록 하기 위해 L-STF, L-LTF 및 L-SIG 필드가 가장 먼저 전송된다. 이후 HT-STA을 위하여 전송되는 데이터의 복조 및 디코딩을 위해 HT-SIG 필드가 전송된다.
HT-SIG 필드까지는 빔포밍을 수행하지 않고 전송하여 L-STA 및 HT-STA이 해당 PPDU를 수신하여 데이터를 획득할 수 있도록 하고, 이후 전송되는 HT-STF, HT-LTF 및 데이터 필드는 프리코딩을 통한 무선 신호 전송이 수행된다. 여기서 프리코딩을 하여 수신하는 STA에서 프리코딩에 의한 전력이 가변 되는 부분을 감안할 수 있도록 HT-STF 필드를 전송하고 그 이후에 복수의 HT-LTF 및 데이터 필드를 전송한다.
아래 표 1은 HT-SIG 필드를 예시하는 표이다.
도 3의 (c)는 IEEE 802.11n 시스템만을 지원하기 위한 HT-GF 포맷 PPDU(HT-greenfield format PPDU)을 예시한다.
도 3의 (c)를 참조하면, HT-GF 포맷 PPDU은 HT-GF-STF, HT-LTF1, HT-SIG 필드, 복수의 HT-LTF2 및 데이터 필드를 포함한다.
HT-GF-STF는 프레임 타이밍 획득 및 AGC를 위해 사용된다.
HT-LTF1는 채널 추정을 위해 사용된다.
HT-SIG 필드는 데이터 필드의 복조 및 디코딩을 위해 사용된다.
HT-LTF2는 데이터 필드의 복조를 위한 채널 추정에 사용된다. 마찬가지로 HT-STA은 SU-MIMO를 사용하므로 복수의 공간 스트림으로 전송되는 데이터 필드 각각에 대하여 채널 추정을 요하므로 HT-LTF2는 복수로 구성될 수 있다.
복수의 HT-LTF2는 HT 혼합 PPDU의 HT-LTF 필드와 유사하게 복수의 Data HT-LTF와 복수의 확장 HT-LTF로 구성될 수 있다.
도 3의 (a) 내지 (c)에서 데이터 필드는 페이로드(payload)로서, 서비스 필드(SERVICE field), 스크램블링된 PSDU(scrambled PSDU) 필드, 테일 비트(Tail bits), 패딩 비트(padding bits)를 포함할 수 있다. 데이터 필드의 모든 비트는 스크램블된다.
도 3(d)는 데이터 필드에 포함되는 서비스 필드를 나타낸다. 서비스 필드는 16 비트를 가진다. 각 비트는 0번부터 15번까지 부여되며, 0번 비트부터 순차적으로 전송된다. 0번부터 6번 비트는 0으로 설정되고, 수신단 내 디스크램블러(descrambler)를 동기화하기 위하여 사용된다.
IEEE 802.11ac WLAN 시스템은 무선채널을 효율적으로 이용하기 위하여 복수의 STA들이 동시에 채널에 액세스하는 하향링크 MU-MIMO(Multi User Multiple Input Multiple Output) 방식의 전송을 지원한다. MU-MIMO 전송 방식에 따르면, AP가 MIMO 페어링(pairing)된 하나 이상의 STA에게 동시에 패킷을 전송할 수 있다.
DL MU 전송(downlink multi-user transmission)은 하나 이상의 안테나를 통해 AP가 동일한 시간 자원을 통해 PPDU를 복수의 non-AP STA에게 전송하는 기술을 의미한다.
이하, MU PPDU는 MU-MIMO 기술 또는 OFDMA 기술을 이용하여 하나 이상의 STA을 위한 하나 이상의 PSDU를 전달하는 PPDU를 의미한다. 그리고, SU PPDU는 하나의 PSDU만을 전달할 수 있거나 PSDU가 존재하지 않는 포맷을 가진 PPDU를 의미한다.
MU-MIMO 전송을 위하여 802.11n 제어 정보의 크기에 비하여 STA에 전송되는 제어 정보의 크기가 상대적으로 클 수 있다. MU-MIMO 지원을 위해 추가적으로 요구되는 제어 정보의 일례로, 각 STA에 의해 수신되는 공간적 스트림(spatial stream)의 수를 지시하는 정보, 각 STA에 전송되는 데이터의 변조 및 코딩 관련 정보 등이 이에 해당될 수 있다.
따라서, 복수의 STA에 동시에 데이터 서비스를 제공하기 위하여 MU-MIMO 전송이 수행될 때, 전송되는 제어 정보의 크기는 수신하는 STA의 수에 따라 증가될 수 있다.
이와 같이 증가되는 제어 정보의 크기를 효율적으로 전송하기 위하여, MU-MIMO 전송을 위해 요구되는 복수의 제어 정보는 모든 STA에 공통으로 요구되는 공통 제어 정보(common control information)와 특정 STA에 개별적으로 요구되는 전용 제어 정보(dedicated control information)의 두 가지 타입의 정보로 구분하여 전송될 수 있다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템의 VHT 포맷 PPDU 포맷을 예시한다.
도 4(a)는 IEEE 802.11ac 시스템을 지원하기 위한 VHT 포맷 PPDU(VHT format PPDU)을 예시한다.
도 4(a)를 참조하면, VHT 포맷 PPDU은 L-STF, L-LTF 및 L-SIG 필드로 구성되는 레가시 포맷 프리앰블과 VHT-SIG-A(VHT-Signal-A) 필드, VHT-STF(VHT Short Training field), VHT-LTF(VHT Long Training field), VHT-SIG-B(VHT-Signal-B) 필드로 구성되는 VHT 포맷 프리앰블 및 데이터 필드를 포함하여 구성된다.
L-STF, L-LTF 및 L-SIG는 하위 호환성(backward compatibility)를 위한 레가시 필드를 의미하므로, L-STF부터 L-SIG 필드까지 non-HT 포맷과 동일하다. 다만, L-LTF는 L-SIG 필드 및 VHT-SIG-A 필드를 복조하기 위하여 수행할 채널 추정을 위한 정보를 더 포함할 수 있다.
L-STF, L-LTF, L-SIG 필드 및 VHT-SIG-A 필드는 20MHz 채널 단위로 반복되어 전송될 수 있다. 예를 들어, PPDU가 4개의 20MHz 채널(즉, 80 MHz 대역폭)을 통해 전송될 때, L-STF, L-LTF, L-SIG 필드 및 VHT-SIG-A 필드는 매 20MHz 채널에서 반복되어 전송될 수 있다.
VHT-STA는 레가시 필드 뒤에 오는 VHT-SIG-A 필드 이용하여 VHT 포맷 PPDU임을 알 수 있으며, 이를 기반으로 데이터 필드를 디코딩할 수 있다.
VHT 포맷 PPDU은 L-STA도 수신하여 데이터를 획득할 수 있도록 하기 위해 L-STF, L-LTF 및 L-SIG 필드가 가장 먼저 전송된다. 이후, VHT-STA을 위하여 전송되는 데이터의 복조 및 디코딩을 위해 VHT-SIG-A 필드가 전송된다.
VHT-SIG-A 필드는 AP와 MIMO 페이링된(paired) VHT STA들에게 공통되는 제어 정보 전송을 위한 필드로서, 이는 수신된 VHT 포맷 PPDU를 해석하기 위한 제어 정보를 포함하고 있다.
VHT-SIG-A 필드는 VHT-SIG-A1 필드와 VHT-SIG-A2 필드를 포함할 수 있다.
VHT-SIG-A1 필드는 사용하는 채널 대역폭(BW: bandwidth) 정보, 시공간 블록 코딩(STBC: Space Time Block Coding)의 적용 여부, MU-MIMO에서 그룹핑된 STA들의 그룹의 지시하기 위한 그룹 식별 정보(Group ID: Group Identifier), 사용되는 스트림의 개수(NSTS: Number of space-time stream)/부분 AID(Partial AID(association Identifier))에 대한 정보 및 전송 파워 세이브 금지(Transmit power save forbidden) 정보를 포함할 수 있다. 여기서, Group ID는 MU-MIMO 전송을 지원하기 위해 전송 대상 STA 그룹에 대하여 할당되는 식별자를 의미하며, 현재 사용된 MIMO 전송 방법이 MU-MIMO인지 또는 SU-MIMO 인지 여부를 나타낼 수 있다.
표 2은 VHT-SIG-A1 필드를 예시하는 표이다.
VHT-SIG-A2 필드는 짧은 보호구간(GI: Guard Interval) 사용 여부에 대한 정보, 포워드 에러 정정(FEC: Forward Error Correction) 정보, 단일 사용자에 대한 MCS(Modulation and Coding Scheme)에 관한 정보, 복수 사용자에 대한 채널 코딩의 종류에 관한 정보, 빔포밍 관련 정보, CRC(Cyclic Redundancy Checking)를 위한 여분 비트(redundancy bits)와 컨벌루셔널 디코딩(convolutional decoder)의 테일 비트(tail bit) 등을 포함할 수 있다.
표 3은 VHT-SIG-A2 필드를 예시하는 표이다.
VHT-STF는 MIMO 전송에 있어서 AGC 추정의 성능을 개선하기 위해 사용된다.
VHT-LTF는 VHT-STA이 MIMO 채널을 추정하는데 사용된다. VHT WLAN 시스템은 MU-MIMO를 지원하기 때문에, VHT-LTF는 PPDU가 전송되는 공간 스트림의 개수만큼 설정될 수 있다. 추가적으로, 풀 채널 사운딩(full channel sounding)이 지원되는 경우, VHT-LTF의 수는 더 많아질 수 있다.
VHT-SIG-B 필드는 MU-MIMO 페어링된 복수의 VHT-STA이 PPDU를 수신하여 데이터를 획득하는데 필요한 전용 제어 정보를 포함한다. 따라서, VHT-SIG-A 필드에 포함된 공용 제어 정보가 현재 수신된 PPDU가 MU-MIMO 전송을 지시한 경우에만, VHT-STA은 VHT-SIG-B 필드를 디코딩(decoding)하도록 설계될 수 있다. 반면, 공용 제어 정보가 현재 수신된 PPDU가 단일 VHT-STA을 위한 것(SU-MIMO를 포함)임을 지시한 경우 STA은 VHT-SIG-B 필드를 디코딩하지 않도록 설계될 수 있다.
VHT-SIG-B 필드는 VHT-SIG-B 길이(Length) 필드, VHT-MCS 필드, 예비(Reserved) 필드, 테일(Tail) 필드를 포함한다.
VHT-SIG-B 길이(Length) 필드는 A-MPDU의 길이(EOF(end-of-frame) 패딩 이전)를 지시한다. VHT-MCS 필드는 각 VHT-STA들의 변조(modulation), 인코딩(encoding) 및 레이트 매칭(rate-matching)에 대한 정보를 포함한다.
VHT-SIG-B 필드의 크기는 MIMO 전송의 유형(MU-MIMO 또는 SU-MIMO) 및 PPDU 전송을 위해 사용하는 채널 대역폭에 따라 다를 수 있다.
도 4(b)는 PPDU 전송 대역폭에 따른 VHT-SIG-B 필드를 예시한다.
도 4(b)를 참조하면, 40MHz 전송에 있어서, VHT-SIG-B 비트는 2번 반복된다. 80MHz 전송에 있어서, VHT-SIG-B 비트는 4번 반복되고, 0로 셋팅된 패드 비트가 부착된다.
160MHz 전송 및 80+80MHz 에 있어서, 먼저 80MHz 전송과 같이 VHT-SIG-B 비트는 4번 반복되고, 0로 셋팅된 패드 비트가 부착된다. 그리고, 전체 117 비트가 다시 반복된다.
MU-MIMO를 지원하는 시스템에서 동일한 크기의 PPDU를 AP에 페어링된 STA들에게 전송하기 위하여, PPDU를 구성하는 데이터 필드의 비트 크기를 지시하는 정보 및/또는 특정 필드를 구성하는 비트 스트림 크기를 지시하는 정보가 VHT-SIG-A 필드에 포함될 수 있다.
다만, 효과적으로 PPDU 포맷을 사용하기 위하여 L-SIG 필드가 사용될 수도 있다. 동일한 크기의 PPDU가 모든 STA에게 전송되기 위하여 L-SIG 필드 내 포함되어 전송되는 길이 필드(length field) 및 레이트 필드(rate field)가 필요한 정보를 제공하기 위해 사용될 수 있다. 이 경우, MPDU(MAC Protocol Data Unit) 및/또는 A-MPDU(Aggregate MAC Protocol Data Unit)가 MAC 계층의 바이트(또는 옥텟(oct: octet)) 기반으로 설정되므로 물리 계층에서 추가적인 패딩(padding)이 요구될 수 있다.
도 4에서 데이터 필드는 페이로드(payload)로서, 서비스 필드(SERVICE field), 스크램블링된 PSDU(scrambled PSDU), 테일 비트(tail bits), 패딩 비트(padding bits)를 포함할 수 있다.
위와 같이 여러 가지의 PPDU의 포맷이 혼합되어 사용되기 때문에, STA은 수신한 PPDU의 포맷을 구분할 수 있어야 한다.
여기서, PPDU를 구분한다는 의미(또는, PPDU 포맷을 구분한다는 의미)는 다양한 의미를 가질 수 있다. 예를 들어, PPDU를 구분한다는 의미는 수신한 PPDU가 STA에 의해 디코딩(또는, 해석)이 가능한 PPDU인지 여부에 대하여 판단한다는 의미를 포함할 수 있다. 또한, PPDU를 구분한다는 의미는 수신한 PPDU가 STA에 의해 지원 가능한 PPDU인지 여부에 대하여 판단한다는 의미일 수도 있다. 또한, PPDU를 구분한다는 의미는 수신한 PPDU를 통해 전송된 정보가 어떠한 정보인지를 구분한다는 의미로도 해석될 수 있다.
이에 대하여 아래 도면을 참조하여 보다 상세히 설명한다.
도 5는 본 발명이 적용될 수 있는 무선 통신 시스템의 PPDU의 포맷을 구분하기 위한 성상(constellation)을 예시하는 도면이다.
도 5(a)는 non-HT 포맷 PPDU에 포함되는 L-SIG 필드의 성상(constellation)를 예시하고, 도 5(b)는 HT 혼합 포맷 PPDU 검출을 위한 위상 회전(phase rotation)을 예시하며, 도 5(c)는 VHT 포맷 PPDU 검출을 위한 위상 회전(phase rotation)을 예시한다.
STA이 non-HT 포맷 PPDU, HT-GF 포맷 PPDU, HT 혼합 포맷 PPDU 및 VHT 포맷 PPDU을 구분(classification)하기 위하여, L-SIG 필드 및 L-SIG 필드 이후에 전송되는 OFDM 심볼의 성상(constellation)의 위상(phase)이 사용된다. 즉, STA은 수신한 PPDU의 L-SIG 필드 및/또는 L-SIG 필드 이후에 전송되는 OFDM 심볼의 성상의 위상을 기반으로 PPDU 포맷을 구분할 수 있다.
도 5(a)를 참조하면, L-SIG 필드를 구성하는 OFDM 심볼은 BPSK(Binary Phase Shift Keying)가 이용된다.
먼저, HT-GF 포맷 PPDU를 구분하기 위하여, STA은 수신한 PPDU에서 최초의 SIG 필드가 감지되면, L-SIG 필드인지 여부를 판단한다. 즉, STA은 도 5(a)의 예시와 같은 성상을 기반으로 디코딩을 시도한다. STA이 디코딩에 실패하면 해당 PPDU가 HT-GF 포맷 PPDU라고 판단할 수 있다.
다음으로, non-HT 포맷 PPDU, HT 혼합 포맷 PPDU 및 VHT 포맷 PPDU을 구분(classification)하기 위하여, L-SIG 필드 이후에 전송되는 OFDM 심볼의 성상의 위상이 사용될 수 있다. 즉, L-SIG 필드 이후에 전송되는 OFDM 심볼의 변조 방법이 서로 다를 수 있으며, STA은 수신한 PPDU의 L-SIG 필드 이후의 필드에 대한 변조 방법을 기반으로 PPDU 포맷을 구분할 수 있다.
도 5(b)를 참조하면, HT 혼합 포맷 PPDU를 구분하기 위하여, HT 혼합 포맷 PPDU에서 L-SIG 필드 이후에 전송되는 2개의 OFDM 심볼의 위상이 사용될 수 있다.
보다 구체적으로, HT 혼합 포맷 PPDU에서 L-SIG 필드 이후에 전송되는 HT-SIG 필드에 대응되는 OFDM 심볼 #1 및 OFDM 심볼 #2의 위상은 모두 반시계 방향으로 90도만큼 회전된다. 즉, OFDM 심볼 #1 및 OFDM 심볼 #2에 대한 변조 방법은 QBPSK(Quadrature Binary Phase Shift Keying)가 이용된다. QBPSK 성상은 BPSK 성상을 기준으로 반시계 방향으로 90도만큼 위상이 회전한 성상일 수 있다.
STA은 수신한 PPDU의 L-SIG 필드 다음에 전송되는 HT-SIG 필드에 대응되는 제1 OFDM 심볼 및 제2 OFDM 심볼을 도 5(b)의 예시와 같은 성상을 기반으로 디코딩을 시도한다. STA이 디코딩에 성공하면 해당 PPDU가 HT 포맷 PPDU라고 판단한다.
다음으로, non-HT 포맷 PPDU 및 VHT 포맷 PPDU을 구분하기 위하여, L-SIG 필드 이후에 전송되는 OFDM 심볼의 성상의 위상이 사용될 수 있다.
도 5(c)를 참조하면, VHT 포맷 PPDU를 구분(classification)하기 위하여, VHT 포맷 PPDU에서 L-SIG 필드 이후에 전송되는 2개의 OFDM 심볼의 위상이 사용될 수 있다.
보다 구체적으로, VHT 포맷 PPDU에서 L-SIG 필드 이후의 VHT-SIG-A 필드에 대응되는 OFDM 심볼 #1의 위상은 회전되지 않으나, OFDM 심볼 #2의 위상은 반시계 방향으로 90도만큼 회전된다. 즉, OFDM 심볼 #1에 대한 변조 방법은 BPSK가 이용되고, OFDM 심볼 #2에 대한 변조 방법은 QBPSK가 이용된다.
STA은 수신한 PPDU의 L-SIG 필드 다음에 전송되는 VHT-SIG 필드에 대응되는 제1 OFDM 심볼 및 제2 OFDM 심볼을 도 5(c)의 예시와 같은 성상을 기반으로 디코딩을 시도한다. STA이 디코딩에 성공하면 해당 PPDU가 VHT 포맷 PPDU이라고 판단할 수 있다.
반면, 디코딩에 실패하면, STA은 해당 PPDU가 non-HT 포맷 PPDU이라고 판단할 수 있다.
MAC 프레임 포맷
도 6은 본 발명이 적용될 수 있는 IEEE 802.11 시스템의 MAC 프레임 포맷을 예시한다.
도 6을 참조하면, MAC 프레임(즉, MPDU)은 MAC 헤더(MAC Header), 프레임 몸체(Frame Body) 및 프레임 체크 시퀀스(FCS: frame check sequence)로 구성된다.
MAC Header는 프레임 제어(Frame Control) 필드, 지속 시간/식별자(Duration/ID) 필드, 주소 1(Address 1) 필드, 주소 2(Address 2) 필드, 주소 3(Address 3) 필드, 시퀀스 제어(Sequence Control) 필드, 주소 4(Address 4) 필드, QoS 제어(QoS Control) 필드 및 HT 제어(HT Control) 필드를 포함하는 영역으로 정의된다.
Frame Control 필드는 해당 MAC 프레임 특성에 대한 정보를 포함한다. Frame Control 필드에 대한 보다 상세한 설명은 후술한다.
Duration/ID 필드는 해당 MAC 프레임의 타입 및 서브타입에 따른 다른 값을 가지도록 구현될 수 있다.
만약, 해당 MAC 프레임의 타입 및 서브타입이 파워 세이브(PS: power save) 운영을 위한 PS-폴(PS-Poll) 프레임의 경우, Duration/ID 필드는 프레임을 전송한 STA의 AID(association identifier)를 포함하도록 설정될 수 있다. 그 이외의 경우, Duration/ID 필드는 해당 MAC 프레임의 타입 및 서브타입에 따라 특정 지속시간 값을 가지도록 설정될 수 있다. 또한, 프레임이 A-MPDU(aggregate-MPDU) 포맷에 포함된 MPDU인 경우, MAC 헤더에 포함된 Duration/ID 필드는 모두 동일한 값을 가지도록 설정될 수도 있다.
Address 1 필드 내지 Address 4 필드는 BSSID, 소스 주소(SA: source address), 목적 주소(DA: destination address), 전송 STA 주소를 나타내는 전송 주소 (TA: Transmitting Address), 수신 STA 주소를 나타내는 수신 주소(RA: Receiving Address)를 지시하기 위하여 사용된다.
한편, TA 필드로 구현된 주소 필드는 대역폭 시그널링 TA(bandwidth signaling TA) 값으로 설정될 수 있으며, 이 경우 TA 필드는 해당 MAC 프레임이 스크램블링 시퀀스에 추가적인 정보를 담고 있음을 지시할 수 있다. 대역폭 시그널링 TA는 해당 MAC 프레임을 전송하는 STA의 MAC 주소로 표현될 수 있으나, MAC 주소에 포함된 개별/그룹 비트(Individual/Group bit)가 특정 값(예를 들어, '1')으로 설정될 수 있다.
Sequence Control 필드는 시퀀스 넘버(sequence number) 및 조각 넘버(fragment number)를 포함하도록 설정된다. 시퀀스 넘버를 해당 MAC 프레임에 할당된 시퀀스 넘버를 지시할 수 있다. 조각 넘버는 해당 MAC 프레임의 각 조각의 넘버를 지시할 수 있다.
QoS Control 필드는 QoS와 관련된 정보를 포함한다. QoS Control 필드는 서브타입(Subtype) 서브필드에서 QoS 데이터 프레임을 지시하는 경우 포함될 수 있다.
HT Control 필드는 HT 및/또는 VHT 송수신 기법과 관련된 제어 정보를 포함한다. HT Control 필드는 제어 래퍼(Control Wrapper) 프레임에 포함된다. 또한, 오더(Order) 서브필드 값이 1인 QoS 데이터(QoS Data) 프레임, 관리(Management) 프레임에 존재한다.
Frame Body는 MAC 페이로드(payload)로 정의되고, 상위 계층에서 전송하고자 하는 데이터가 위치하게 되며, 가변적인 크기를 가진다. 예를 들어, 최대 MPDU의 크기는 11454 옥텟(octets)이고, 최대 PPDU 크기는 5.484 ms일 수 있다.
FCS는 MAC 풋터(footer)로 정의되고, MAC 프레임의 에러 탐색을 위하여 사용된다.
처음 세 필드(Frame Control 필드, Duration/ID 필드 및 Address 1 필드)와 제일 마지막 필드(FCS 필드)는 최소 프레임 포맷을 구성하며, 모든 프레임에 존재한다. 그 외의 필드는 특정 프레임 타입에서만 존재할 수 있다.
도 7은 본 발명이 적용될 수 있는 무선 통신 시스템에서 MAC 프레임 내 프레임 제어(Frame Control) 필드를 예시하는 도면이다.
도 7을 참조하면, Frame Control 필드는 프로토콜 버전(Protocol Version) 서브필드, 타입(Type) 서브필드, 서브타입(Subtype) 서브필드, To DS 서브필드, From DS 서브필드, 추가 조각(More Fragments) 서브필드, 재시도(Retry) 서브필드, 파워 관리(Power Management) 서브필드, 추가 데이터(More Data) 서브필드, 보호된 프레임(Protected Frame) 서브필드 및 오더(Order) 서브필드로 구성된다.
Protocol Version 서브필드는 해당 MAC 프레임에 적용된 WLAN 프로토콜의 버전을 지시할 수 있다.
Type 서브필드 및 Subtype 서브필드는 해당 MAC 프레임의 기능을 식별하는 정보를 지시하도록 설정될 수 있다.
MAC 프레임의 타입은 관리 프레임(Management Frame), 제어 프레임(Control Frame), 데이터 프레임(Data Frame) 3가지의 프레임 타입을 포함할 수 있다.
그리고, 각 프레임 타입들은 다시 서브타입으로 구분될 수 있다.
예를 들어, 제어 프레임(Control frames)은 RTS(request to send) 프레임, CTS(clear-to-send) 프레임, ACK(Acknowledgment) 프레임, PS-Poll 프레임, CF(contention free)-End 프레임, CF-End+CF-ACK 프레임, 블록 ACK 요청(BAR: Block Acknowledgment request) 프레임, 블록 ACK(BA: Block Acknowledgment) 프레임, 제어 래퍼(Control Wrapper(Control+HTcontrol)) 프레임, VHT 널 데이터 패킷 공지(NDPA: Null Data Packet Announcement), 빔포밍 보고 폴(Beamforming Report Poll) 프레임을 포함할 수 있다.
관리 프레임(Management frames)은 비콘(Beacon) 프레임, ATIM(Announcement Traffic Indication Message) 프레임, 연계해제(Disassociation) 프레임, 연계 요청/응답(Association Request/Response) 프레임, 재연계 요청/응답(Reassociation Request/Response) 프레임, 프로브 요청/응답(Probe Request/Response) 프레임, 인증(Authentication) 프레임, 인증해제(Deauthentication) 프레임, 동작(Action) 프레임, 동작 무응답(Action No ACK) 프레임, 타이밍 광고(Timing Advertisement) 프레임을 포함할 수 있다.
To DS 서브필드 및 From DS 서브필드는 해당 MAC 프레임 헤더에 포함된 Address 1 필드 내지 Address 4 필드를 해석하기 위하여 필요한 정보를 포함할 수 있다. Control 프레임의 경우, To DS 서브필드 및 From DS 서브필드는 모두 '0'로 설정된다. Management 프레임의 경우, To DS 서브필드 및 From DS 서브필드는 해당 프레임이 QoS 관리 프레임(QMF: QoS Management frame)이면 순서대로 '1', '0'으로 설정되고, 해당 프레임이 QMF가 아니면 순서대로 모두 '0', '0'로 설정될 수 있다.
More Fragments 서브필드는 해당 MAC 프레임에 이어 전송될 조각(fragment)이 존재하는지 여부를 지시할 수 있다. 현재 MSDU 또는 MMPDU의 또 다른 조각(fragment)가 존재하는 경우 '1'로 설정되고, 그렇지 않은 경우 '0'로 설정될 수 있다.
Retry 서브필드는 해당 MAC 프레임이 이전 MAC 프레임의 재전송에 따른 것인지 여부를 지시할 수 있다. 이전 MAC 프레임의 재전송인 경우 '1'로 설정되고, 그렇지 않은 경우 '0'으로 설정될 수 있다.
Power Management 서브필드는 STA의 파워 관리 모드를 지시할 수 있다. Power Management 서브필드 값이 '1'이면 STA이 파워 세이브 모드로 전환하는 것을 지시할 수 있다.
More Data 서브필드는 추가적으로 전송될 MAC 프레임이 존재하는지 여부를 지시할 수 있다. 추가적으로 전송될 MAC 프레임이 존재하는 경우 '1'로 설정되고, 그렇지 않은 경우 '0'으로 설정될 수 있다.
Protected Frame 서브필드는 프레임 바디(Frame Body) 필드가 암호화되었는지 여부를 지시할 수 있다. Frame Body 필드가 암호화된 인캡슐레이션 알고리즘(cryptographic encapsulation algorithm)에 의해 처리된 정보를 포함하는 경우 '1'로 설정되고, 그렇지 않은 경우 '0'으로 설정될 수 있다.
앞서 설명한 각 필드들에 포함되는 정보들은 IEEE 802.11 시스템의 정의를 따를 수 있다. 또한, 앞서 설명한 각 필드들은 MAC 프레임에 포함될 수 있는 필드들의 예시에 해당하며, 이에 한정되지 않는다. 즉, 앞서 설명한 각 필드가 다른 필드로 대체되거나 추가적인 필드가 더 포함될 수 있으며, 모든 필드가 필수적으로 포함되지 않을 수도 있다.
도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 HT Control 필드의 VHT 포맷을 예시한다.
도 8을 참조하면, HT Control 필드는 VHT 서브필드, HT 제어 미들(HT Control Middle) 서브필드, AC 제한(AC Constraint) 서브필드 및 역방향 승인(RDG: Reverse Direction Grant)/추가 PPDU(More PPDU) 서브필드로 구성될 수 있다.
VHT 서브필드는 HT Control 필드가 VHT를 위한 HT Control 필드의 포맷을 가지는지(VHT=1) 또는 HT를 위한 HT Control 필드의 포맷을 가지는지(VHT=0) 여부를 지시한다. 도 8에서는 VHT를 위한 HT Control 필드(즉, VHT=1)를 가정하여 설명한다. VHT를 위한 HT Control 필드를 VHT Control 필드로 지칭할 수 있다.
HT Control Middle 서브필드는 VHT 서브필드의 지시에 따라 다른 포맷을 가지도록 구현될 수 있다. HT Control Middle 서브필드에 대한 보다 상세한 설명은 후술한다.
AC Constraint 서브필드는 역방향(RD: reverse direction) 데이터 프레임의 맵핑된 AC(Access Category)가 단일 AC에 한정된 것인지 여부를 지시한다.
RDG/More PPDU 서브필드는 해당 필드가 RD 개시자(initiator) 또는 RD 응답자(responder)에 의하여 전송되는지 여부에 따라 다르게 해석될 수 있다.
RD 개시자에 의하여 전송된 경우, RDG가 존재하는 경우 RDG/More PPDU 필드가 '1'로 설정되고, RDG가 존재하지 않는 경우 '0'으로 설정된다. RD 응답자에 의하여 전송된 경우, 해당 서브필드를 포함하는 PPDU가 RD 응답자에 의해 전송된 마지막 프레임이면 '1'로 설정되고, 또 다른 PPDU가 전송되면 '0'으로 설정된다.
상술한 바와 같이, HT Control Middle 서브필드는 VHT 서브필드의 지시에 따라 다른 포맷을 가지도록 구현될 수 있다.
VHT를 위한 HT Control 필드의 HT Control Middle 서브필드는 예비 비트(Reserved bit), MCS 피드백 요청(MRQ: MCS(Modulation and Coding Scheme) feedback request) 서브필드, MRQ 시퀀스 식별자(MSI: MRQ Sequence Identifier)/시공간 블록 코딩(STBC: space-time block coding) 서브필드, MCS 피드백 시퀀스 식별자(MFSI: MCS feedback sequence identifier)/그룹 ID 최하위 비트(GID-L: LSB(Least Significant Bit) of Group ID) 서브필드, MCS 피드백(MFB: MCS Feedback) 서브필드, 그룹 ID 최상위 비트(GID-H: MSB(Most Significant Bit) of Group ID) 서브필드, 코딩 타입(Coding Type) 서브필드, 피드백 전송 타입(FB Tx Type: Feedback Transmission type) 서브필드 및 자발적 MFB(Unsolicited MFB) 서브필드로 구성될 수 있다.
표 4는 VHT 포맷의 HT Control Middle 서브필드에 포함된 각 서브필드에 대한 설명을 나타낸다.
그리고, MFB 서브필드는 VHT 공간-시간 스트림 개수(NUM_STS: Number of space time streams) 서브필드, VHT-MCS 서브필드, 대역폭(BW: Bandwidth) 서브필드, 신호 대 잡음비(SNR: Signal to Noise Ratio) 서브필드를 포함할 수 있다.
NUM_STS 서브필드는 추천하는 공간 스트림의 개수를 지시한다. VHT-MCS 서브필드는 추천하는 MCS를 지시한다. BW 서브필드는 추천하는 MCS와 관련된 대역폭 정보를 지시한다. SNR 서브필드는 데이터 서브캐리어 및 공간 스트림 상의 평균 SNR 값을 지시한다.
앞서 설명한 각 필드들에 포함되는 정보들은 IEEE 802.11 시스템의 정의를 따를 수 있다. 또한, 앞서 설명한 각 필드들은 MAC 프레임에 포함될 수 있는 필드들의 예시에 해당하며, 이에 한정되지 않는다. 즉, 앞서 설명한 각 필드가 다른 필드로 대체되거나 추가적인 필드가 더 포함될 수 있으며, 모든 필드가 필수적으로 포함되지 않을 수도 있다.
매체 액세스 메커니즘
IEEE 802.11에서 통신은 공유된 무선 매체(shared wireless medium)에서 이루어지기 때문에 유선 채널(wired channel) 환경과는 근본적으로 다른 특징을 가진다.
유선 채널 환경에서는 CSMA/CD(carrier sense multiple access/collision detection) 기반으로 통신이 가능하다. 예를 들어 송신단에서 한번 시그널이 전송되면 채널 환경이 큰 변화가 없기 때문에 수신단까지 큰 신호 감쇄를 겪지 않고 전송이 된다. 이때 두 개 이상의 시그널이 충돌되면 감지(detection)이 가능했다. 이는 수신단에서 감지된 전력(power)이 순간적으로 송신단에서 전송한 전력보다 커지기 때문이다. 하지만, 무선 채널 환경은 다양한 요소들 (예를 들어, 거리에 따라 시그널의 감쇄가 크다거나 순간적으로 깊은 페이딩(deep fading)을 겪을 수 있음)이 채널에 영향을 주기 때문에 실제로 수신단에서 신호가 제대로 전송이 되었는지 혹은 충돌이 발생되었는지 송신단에서 정확히 캐리어 센싱(carrier sensing)을 할 수가 없다.
이에 따라, IEEE 802.11에 따른 WLAN 시스템에서, MAC의 기본 액세스 메커니즘으로서 CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance) 메커니즘을 도입하였다. CAMA/CA 메커니즘은 IEEE 802.11 MAC의 분배 조정 기능(DCF: Distributed Coordination Function)이라고도 불리는데, 기본적으로 "listen before talk" 액세스 메커니즘을 채용하고 있다. 이러한 유형의 액세스 메커니즘에 따르면, AP 및/또는 STA은 전송을 시작하기에 앞서, 소정의 시간 구간(예를 들어, DIFS(DCF Inter-Frame Space)) 동안 무선 채널 또는 매체(medium)를 센싱(sensing)하는 CCA(Clear Channel Assessment)를 수행한다. 센싱 결과, 만일 매체가 유휴 상태(idle status)인 것으로 판단되면, 해당 매체를 통하여 프레임 전송을 시작한다. 반면, 매체가 점유 상태(occupied status)인 것으로 감지되면, 해당 AP 및/또는 STA은 자기 자신의 전송을 시작하지 않고, 이미 여러 STA들이 해당 매체를 사용하기 위해 대기하고 있다는 가정하에 DIFS에 추가적으로 매체 액세스를 위한 지연 시간(예를 들어, 임의 백오프 주기(random backoff period)) 동안 더 기다린 후에 프레임 전송을 시도할 수 있다.
임의 백오프 주기를 적용함으로써, 프레임을 전송하기 위한 여러 STA들이 존재한다고 가정할 때 여러 STA들은 확률적으로 다른 백오프 주기 값을 가지게 되어 서로 다른 시간 동안 대기한 후에 프레임 전송을 시도할 것이 기대되므로, 충돌(collision)을 최소화시킬 수 있다.
또한, IEEE 802.11 MAC 프로토콜은 HCF(Hybrid Coordination Function)를 제공한다. HCF는 상기 DCF와 지점 조정 기능(PCF: Point Coordination Function)를 기반으로 한다. PCF는 폴링(polling) 기반의 동기식 액세스 방식으로 모든 수신 AP 및/또는 STA이 데이터 프레임을 수신할 수 있도록 주기적으로 폴링하는 방식을 일컫는다. 또한, HCF는 EDCA(Enhanced Distributed Channel Access)와 HCCA(HCF Controlled Channel Access)를 가진다. EDCA는 제공자가 다수의 사용자에게 데이터 프레임을 제공하기 위한 액세스 방식을 경쟁 기반으로 수행하는 것이고, HCCA는 폴링(polling) 메커니즘을 이용한 비경쟁 기반의 채널 액세스 방식을 사용하는 것이다. 또한, HCF는 WLAN의 QoS(Quality of Service)를 향상시키기 위한 매체 액세스 메커니즘을 포함하며, 경쟁 주기(CP: Contention Period)와 비경쟁 주기(CFP: Contention Free Period) 모두에서 QoS 데이터를 전송할 수 있다.
도 9는 본 발명이 적용될 수 있는 무선 통신 시스템에서 임의 백오프 주기와 프레임 전송 절차를 설명하기 위한 도면이다.
특정 매체가 점유(occupy 또는 busy) 상태에서 유휴(idle) 상태로 변경되면, 여러 STA들은 데이터(또는 프레임) 전송을 시도할 수 있다. 이때, 충돌을 최소화하기 위한 방안으로서, STA들은 각각 임의 백오프 카운트(random backoff count)를 선택하고 그에 해당하는 슬롯 시간(slot time)만큼 대기한 후에 전송을 시도할 수 있다. 임의 백오프 카운트는 의사-임의 정수(pseudo-random integer) 값을 가지며, 0 내지 경쟁 윈도우(CW: Contention Window) 범위에서 균일 분포(uniform distribution)한 값 중 하나로 결정될 수 있다. 여기서, CW는 경쟁 윈도우 파라미터 값이다. CW 파라미터는 초기 값으로 CW_min이 주어지지만, 전송이 실패된 경우(예를 들어, 전송된 프레임에 대한 ACK을 수신하지 못한 경우)에 2배의 값을 취할 수 있다. CW 파라미터 값이 CW_max가 되면 데이터 전송이 성공할 때까지 CW_max 값을 유지하면서 데이터 전송을 시도할 수 있고, 데이터 전송이 성공하는 경우에는 CW_min 값으로 리셋된다. CW, CW_min 및 CW_max 값은 2^n-1 (n=0, 1, 2, ...)로 설정되는 것이 바람직하다.
임의 백오프 과정이 시작되면 STA은 결정된 백오프 카운트 값에 따라서 백오프 슬롯을 카운트 다운하고, 카운트 다운하는 동안에 계속하여 매체를 모니터링한다. 매체게 점유 상태로 모니터링되면 카운트 다운을 중단하고 대기하게 되며, 매체가 유휴 상태가 되면 카운트 다운을 재개한다.
도 9의 예시에서 STA 3의 MAC에 전송할 패킷이 도달한 경우에, STA 3은 DIFS 만큼 매체가 유휴 상태인 것을 확인하고 바로 프레임을 전송할 수 있다.
한편, 나머지 STA들은 매체가 점유(busy) 상태인 것을 모니터링하고 대기한다. 그 동안 STA 1, STA 2 및 STA 5의 각각에서도 전송할 데이터가 발생할 수 있고, 각각의 STA은 매체가 유휴 상태로 모니터링되면 DIFS만큼 대기한 후에, 각자가 선택한 임의 백오프 카운트 값에 따라서 백오프 슬롯을 카운트 다운한다.
도 9의 예시에서는 STA 2가 가장 작은 백오프 카운트 값을 선택하고, STA 1이 가장 큰 백오프 카운트 값을 선택한 경우를 나타난다. 즉, STA 2가 백오프 카운트를 마치고 프레임 전송을 시작하는 시점에서 STA 5의 잔여 백오프 시간은 STA 1의 잔여 백오프 시간보다 짧은 경우를 예시한다.
STA 1 및 STA 5는 STA 2가 매체를 점유하는 동안에 카운트 다운을 멈추고 대기한다. STA 2의 매체 점유가 종료되어 매체가 다시 유휴 상태가 되면, STA 1 및 STA 5는 DIFS만큼 대기한 후에, 멈추었던 백오프 카운트를 재개한다. 즉, 잔여 백오프 시간만큼의 나머지 백오프 슬롯을 카운트 다운한 후에서 프레임 전송을 시작할 수 있다. STA 5의 잔여 백오프 시간이 STA 1보다 짧았으므로 STA 5의 프레임 전송을 시작하게 된다.
한편, STA 2가 매체를 점유하는 동안에서 STA 4에서도 전송할 데이터가 발생할 수 있다. 이때, STA 4 입장에서는 매체가 유휴 상태가 되면 DIFS 만큼 대기한 후, 자신이 선택한 임의 백오프 카운트 값에 따른 백오프 슬롯의 카운트 다운을 수행한다.
도 9의 예시에서는 STA 5의 잔여 백오프 시간이 STA 4의 임의 백오프 카운트 값과 우연히 일치하는 경우를 나타내며, 이 경우 STA 4와 STA 5 간에 충돌이 발생할 수 있다. 충돌이 발생하는 경우에는 STA 4와 STA 5 모두 ACK을 수신하지 못하여, 데이터 전송을 실패하게 된다. 이 경우, STA 4와 STA 5는 CW 값을 2배로 늘린 후에 임의 백오프 카운트 값을 선택하고 백오프 슬롯의 카운트 다운을 수행한다.
한편, STA 1은 STA 4와 STA 5의 전송으로 인해 매체가 점유 상태인 동안에 대기하고 있다가, 매체가 유휴 상태가 되면 DIFS 만큼 대기한 후에, 잔여 백오프 시간이 지나면 프레임 전송을 시작할 수 있다.
CSMA/CA 메커니즘은 AP 및/또는 STA이 매체를 직접 센싱하는 물리적 캐리어 센싱(physical carrier sensing) 외에 가상 캐리어 센싱(virtual carrier sensing)도 포함한다.
가상 캐리어 센싱은 히든 노드 문제(hidden node problem) 등과 같이 매체 접근상 발생할 수 있는 문제를 보완하기 위한 것이다. 가상 캐리어 센싱을 위하여, WLAN 시스템의 MAC은 네트워크 할당 벡터(NAV: Network Allocation Vector)를 이용한다. NAV는 현재 매체를 사용하고 있거나 또는 사용할 권한이 있는 AP 및/또는 STA이, 매체가 이용 가능한 상태로 되기까지 남아 있는 시간을 다른 AP 및/또는 STA에게 지시하는 값이다. 따라서 NAV로 설정된 값은 해당 프레임을 전송하는 AP 및/또는 STA에 의하여 매체의 사용이 예정되어 있는 기간에 해당하고, NAV 값을 수신하는 STA은 해당 기간 동안 매체 액세스가 금지된다. NAV는, 예를 들어, 프레임의 MAC 헤더(header)의 지속 기간(duration) 필드의 값에 따라 설정될 수 있다.
AP 및/또는 STA은 매체에 접근하고자 함을 알리기 위해 RTS(request to send) 프레임 및 CTS(clear to send) 프레임을 교환하는 절차를 수행할 수 있다. RTS 프레임 및 CTS 프레임은 실질적인 데이터 프레임 전송 및 수신 확인 응답(ACK)이 지원될 경우 ACK 프레임이 송수신 되는데 필요한 무선 매체가 접근 예약된 시간적인 구간을 지시하는 정보를 포함한다. 프레임을 전송하고자 하는 AP 및/또는 STA으로부터 전송된 RTS 프레임을 수신하거나, 프레임 전송 대상 STA으로부터 전송된 CTS 프레임을 수신한 다른 STA은 RTS/CTS 프레임에 포함되어 있는 정보가 지시하는 시간적인 구간 동안 매체에 접근하지 않도록 설정될 수 있다. 이는 시간 구간 동안 NAV가 설정됨을 통하여 구현될 수 있다.
프레임 간격(interframe space)
프레임 사이의 시간 간격을 프레임 간격(IFS: Interframe Space)으로 정의한다. STA은 캐리어 센싱(carrier sensing)을 통해 IFS 시간 구간 동안 채널이 사용되는지 여부를 판단할 수 있다. 802.11 WLAN 시스템에서 무선 매체를 점유하는 우선 레벨(priority level)을 제공하기 위하여 복수의 IFS이 정의된다.
도 10은 본 발명이 적용될 수 있는 무선 통신 시스템에서 IFS 관계를 예시하는 도면이다.
모든 타이밍은 물리 계층 인터페이스 프리미티브 즉, PHY-TXEND.confirm 프리미티브, PHYTXSTART.confirm 프리미티브, PHY-RXSTART.indication 프리미티브 및 PHY-RXEND.indication 프리미티브를 참조하여 정해질 수 있다.
IFS 종류에 따른 프레임 간격은 아래와 같다.
a) 축소된 프레임 간격(RIFS: reduced interframe space)
b) 짧은 프레임 간격(SIFS: short interframe space)
c) PCF 프레임 간격(PIFS: PCF interframe space)
d) DCF 프레임 간격(DIFS: DCF interframe space)
e) 조정 프레임 간격(AIFS: arbitration interframe space)
f) 확장 프레임 간격(EIFS: extended interframe space)
서로 다른 IFS들은 STA의 비트율(bit rate)과 무관하게 물리 계층에 의해 특정된 속성으로부터 결정된다. IFS 타이밍은 매체 상에서의 시간 갭(time gap)으로 정의된다. AIFS를 제외한 IFS 타이밍은 각 물리 계층 별로 고정된다.
SIFS는 ACK 프레임, CTS 프레임, 블록 ACK 요청(BlockAckReq) 프레임 또는 A-MPDU에 대한 즉각적인 응답인 블록 ACK(BlockAck) 프레임을 포함하는 PPDU, 조각난 버스트(fragment burst)의 두 번째 또는 연속적인 MPDU, PCF에 의한 폴링(polling)에 대한 STA의 응답의 전송을 위해 사용되며 최고 우선 순위를 가진다. SIFS는 또한 비경쟁 구간(CFP) 시간 동안 프레임의 타입과 무관하게 프레임들의 지점 조정(point coordinator)을 위해 사용될 수 있다. SIFS는 이전 프레임의 마지막 심볼의 종료 또는 시그널 확장(존재하는 경우)으로부터 이어지는 다음 프레임의 프리앰블의 첫 번째 심볼의 시작까지의 시간을 나타낸다.
SIFS 타이밍은 TxSIFS 슬롯 경계에서 연속적인 프레임의 전송이 시작될 때 달성된다.
SIFS는 서로 다른 STA들로부터의 전송 간의 IFS 중에서 가장 짧다. 매체를 점유하고 있는 STA이 프레임 교환 시퀀스(frame exchange sequence)가 수행되는 구간 동안 매체의 점유를 유지할 필요가 있는 경우 사용될 수 있다.
프레임 교환 시퀀스 내 전송 간 가장 작은 갭을 사용함으로써, 더 긴 갭 동안 매체가 유휴 상태가 되길 기다리는 것이 요구되는 다른 STA들이 매체의 사용을 시도하는 것을 방지할 수 있다. 따라서, 진행 중인 프레임 교환 시퀀스가 완료되는데 우선권을 부여할 수 있다.
PIFS는 매체를 액세스하는데 우선권을 획득하기 위하여 사용된다.
PIFS는 다음과 같은 경우에 사용될 수 있다.
- PCF 하에 동작하는 STA
- 채널 스위치 공지(Channel Switch Announcement) 프레임을 전송하는 STA
- 트래픽 지시 맵(TIM: Traffic Indication Map) 프레임을 전송하는 STA
- CFP 또는 전송 기회(TXOP: Transmission Opportunity)를 시작하는 하이브리드 조정자(HC: Hybrid Coordinator)
- CAP(controlled access phase) 내 예상된 수신의 부재로부터 복구(recovering)하기 위한 폴링된 TXOP 홀더(holder)인 HC 또는 non-AP QoS STA
- CTS2의 전송 전 듀얼 CTS 보호를 사용하는 HT STA
- 전송 실패 이후에 계속하여 전송하기 위한 TXOP 홀더(holder)
- 에러 복구(error recovery)를 사용하여 계속하여 전송하기 위한 RD(reverse direction) 개시자
- PSMP(power save multi-poll) 복구 프레임을 전송하는 PSMP 시퀀스 동안 HT AP
- EDCA 채널 액세스를 사용하는 40MHz 마스크 PPDU를 전송하기 전 세컨더리 채널(secondary channel) 내 CCA를 수행하는 HT STA
앞서 나열된 예시 중 세컨더리 채널(secondary channel)에서 CCA을 수행하는 경우를 제외하고, PIFS를 사용하는 STA은 TxPIFS 슬롯 경계에서 매체가 유휴 상태임을 결정하는 CS(carrier sense) 메커니즘 이후에 전송을 시작한다.
DIFS는 DCF 하에 데이터 프레임(MPDU) 및 관리 프레임(MMPDU: MAC Management Protocol Data Unit)을 전송하도록 동작하는 STA에 의해 사용될 수 있다. DCF를 사용하는 STA은 정확히 수신된 프레임 및 백오프 타임이 만료된 이후 CS(carrier sense) 메커니즘을 통해 매체가 유휴 상태라고 결정되면, TxDIFS 슬롯 경계에서 전송할 수 있다. 여기서, 정확히 수신된 프레임은 PHY-RXEND.indication 프리미티브가 에러를 지시하지 않고, FCS가 프레임이 에러가 아님(error free)을 지시하는 프레임을 의미한다.
SIFS 시간('aSIFSTime')과 슬롯 시간('aSlotTime')은 물리 계층 별로 결정될 수 있다. SIFS 시간은 고정된 값을 가지나, 슬롯 시간은 무선 지연 시간(aAirPropagationTime) 변화에 따라 동적으로 변화할 수 있다.
'aSIFSTime'은 아래 수학식 1 및 2와 같이 정의된다.
'aSlotTime'은 아래 수학식 3과 같이 정의된다.
수학식 3에서 기본적인(default) 물리 계층 파라미터는 1㎲와 같거나 작은 값을 가지는 'aMACProcessingDelay'에 기반한다. 무선 파는 자유 공간(free space)에서 300m/㎲로 확산된다. 예를 들어, 3㎲는 BSS 최대 일방향(one-way) 거리 ~450m(왕복 시간(round trip)은 ~900m)의 상한선일 수 있다.
PIFS와 SIFS는 각각 아래 수학식 4 및 5와 같이 정의된다.
앞서 수학식 1 내지 5에서 괄호 안에 수치는 일반적인 값을 예시하는 것이나, 그 값은 STA 별로 혹은 STA의 위치 별로 달라질 수 있다.
상술한 SIFS, PIFS 및 DIFS 들은 매체와 서로 다른 MAC 슬롯 경계(TxSIFS, TxPIFS, TxDIFS)를 기반으로 측정된다.
SIFS, PIFS 및 DIFS 에 대한 각 MAC 슬롯 경계는 각각 아래 수학식 6 내지 8과 같이 정의된다.
채널 상태 정보(Channel State Information) 피드백(feedback) 방법
*빔포머(Beamformer)가 모든 안테나를 하나의 빔포미(Beamformee)에 할당하여 통신하는 SU-MIMO 기술은 시공간을 이용한 다이버시티 이득(diversity gain)과 스트림(stream) 다중 전송을 통해 채널 용량을 증대시킨다. SU-MIMO 기술은 MIMO 기술을 적용하지 않을 때에 비해 안테나의 개수를 늘림으로써, 공간 자유도를 확장시켜 물리 계층의 성능 향상에 기여할 수 있다.
또한, Beamformer가 복수의 Beamformee에게 안테나를 할당하는 MU-MIMO 기술은 Beamformer에 접속한 복수의 Beamformee들의 다중 접속을 위한 링크 계층 프로토콜을 통하여, Beamformee 당 전송률을 높이거나 채널의 신뢰도를 높임으로써 MIMO 안테나의 성능을 향상시킬 수 있다.
MIMO 환경에서는 Beamformer가 채널 정보를 얼마나 정확히 알고 있는지가 성능에 큰 영향을 미칠 수 있으므로, 채널 정보 획득을 위한 피드백 절차가 요구된다.
채널 정보 획득을 위한 피드백 절차는 크게 두 가지 방식이 지원될 수 있다. 하나는 제어 프레임(Control frame)을 이용하는 방식이며, 남은 하나는 데이터 필드가 포함되지 않은 채널 사운딩(channel sounding) 절차를 이용하는 방식이다. 사운딩은 프리엠블 트레이닝 필드(training field)를 포함하는 PPDU의 데이터 복조 이외의 목적을 위해 채널을 측정하기 위하여 해당 트레이닝 필드(training field)를 이용하는 것을 의미한다.
이하, 제어 프레임(Control frame)을 이용한 채널 정보 피드백 방법과 NDP(null data packet)을 이용한 채널 정보 피드백 방법에 대하여 보다 구체적으로 살펴본다.
1) 제어 프레임(Control frame)을 이용한 피드백 방법
MIMO 환경에서 Beamformer는 MAC 헤더에 포함된 HT control 필드를 통해 채널 상태 정보의 피드백을 지시하거나, Beamformee는 MAC 프레임 헤더에 포함된 HT control 필드를 통해 채널 상태 정보를 보고할 수 있다(도 8 참조). HT control 필드는 Control Wrapper 프레임이나 MAC 헤더의 Order 서브필드가 1로 설정된 QoS Data 프레임, 관리 프레임에 포함될 수 있다.
2) 채널 사운딩(channel sounding)을 이용한 피드백 방법
도 11은 본 발명이 적용될 수 있는 무선 통신 시스템에서 채널 사운딩(sounding) 방법을 개념적으로 나타내는 도면이다.
도 11에서는 사운딩 프로토콜(sounding protocol)을 기초로 Beamformer(예를 들어, AP)와 Beamformee(예를 들어, non-AP STA) 간의 채널 상태 정보(channel state information)를 피드백하는 방법을 예시한다. 사운딩 프로토콜(sounding protocol)은 채널 상태 정보에 대한 정보를 피드백 받는 절차를 의미할 수 있다.
사운딩 프로토콜을 기초로 한 Beamformer와 Beamformee 간의 채널 상태 정보 사운딩 방법을 아래와 같은 단계로 수행될 수 있다.
(1) Beamformer에서 Beamformee의 피드백을 위한 사운딩 전송을 알리는 VHT NDPA(VHT Null Data Packet Announcement) 프레임을 전송한다.
VHT NDPA 프레임은 채널 사운딩이 개시되고, NDP(Null Data Packet)이 전송될 것임을 알리기 위해 사용되는 제어 프레임(control frame)을 의미한다. 다시 말해, NDP을 전송하기 전 VHT NDPA 프레임을 전송함으로써 Beamformee가 NDP 프레임을 수신하기 전 채널 상태 정보를 피드백 하기 위한 준비를 하도록 할 수 있다.
VHT NDPA 프레임은 NDP을 전송할 Beamformee의 AID(association identifier) 정보, 피드백 타입 정보 등을 포함할 수 있다. VHT NDPA 프레임에 대한 보다 상세한 설명은 후술한다.
VHT NDPA 프레임은 MU-MIMO를 사용하여 데이터를 전송하는 경우와 SU-MIMO를 사용하여 데이터를 전송하는 경우 서로 다른 전송 방식으로 전송될 수 있다. 예를 들어, MU-MIMO를 위한 채널 사운딩을 수행하는 경우 VHT NDPA 프레임을 브로드캐스트(broadcast) 방식으로 전송하나, SU-MIMO를 위한 채널 사운딩을 수행하는 경우 하나의 대상 STA으로 VHT NDPA 프레임을 유니캐스트(unicast) 방식으로 전송할 수 있다.
(2) Beamformer는 VHT NDPA 프레임을 전송한 후, SIFS 시간 후에 NDP을 전송한다. NDP은 데이터 필드를 제외한 VHT PPDU 구조를 가진다.
VHT NDPA 프레임을 수신한 Beamformee들은 STA 정보 필드에 포함된 AID12 서브필드 값을 확인하고, 자신이 사운딩 대상 STA인지 확인할 수 있다.
또한, Beamformee들은 NDPA에 포함된 STA Info 필드의 순서를 통해 피드백 순서를 알 수 있다. 도 11에서는 피드백 순서가 Beamformee 1, Beamformee 2, Beamformee 3의 순서로 진행되는 경우를 예시한다.
(3) Beamformee 1은 NDP에 포함된 트레이닝 필드(training field)를 기초로 하향링크 채널 상태 정보를 획득하여, Beamformer에게 전송할 피드백 정보를 생성한다.
Beamformee 1은 NDP 프레임을 수신 후 SIFS 이후에 피드백 정보를 포함한 VHT 압축된 빔포밍(VHT Compressed Beamforming) 프레임을 Beamformer에게 전송한다.
VHT Compressed Beamforming 프레임은 시공간 스트림(space-time stream)에 대한 SNR 값, 서브캐리어(subcarrier)에 대한 압축된 빔포밍 피드백 행렬(compressed beamforming feedback matrix)에 대한 정보 등이 포함될 수 있다. VHT Compressed Beamforming 프레임에 대한 보다 상세한 설명은 후술한다.
(4) Beamformer는 Beamformee 1으로부터 VHT Compressed Beamforming 프레임 수신 후, SIFS 이후에 Beamformee 2로부터 채널 정보를 얻기 위해 빔포밍 보고 폴(Beamforming Report Poll) 프레임을 Beamformee 2에게 전송한다.
Beamforming Report Poll 프레임은 NDP 프레임과 동일한 역할을 수행하는 프레임으로서, Beamformee 2는 전송되는 Beamforming Report Poll 프레임을 기초로 채널 상태를 측정할 수 있다.
Beamforming report poll frame 프레임에 대한 보다 상세한 설명은 후술한다.
(5) Beamforming Report Poll 프레임을 수신한 Beamformee 2는 SIFS 이후에 피드백 정보를 포함한 VHT Compressed Beamforming 프레임을 Beamformer에게 전송한다.
(6) Beamformer는 Beamformee 2로부터 VHT Compressed Beamforming 프레임 수신 후, SIFS 이후에 Beamformee 3로부터 채널 정보를 얻기 위해 Beamforming Report Poll 프레임을 Beamformee 3에게 전송한다.
(7) Beamforming Report Poll 프레임을 수신한 Beamformee 3은 SIFS 이후에 피드백 정보를 포함한 VHT Compressed Beamforming 프레임을 Beamformer에게 전송한다.
이하, 앞서 설명한 채널 사운딩 절차에서 사용되는 프레임에 대하여 살펴본다.
도 12는 본 발명이 적용될 수 있는 무선 통신 시스템에서 VHT NDPA 프레임을 예시하는 도면이다.
도 12를 참조하면, VHT NDPA 프레임은 프레임 제어(Frame Control) 필드, 지속 시간(Duration) 필드, RA(Receiving Address) 필드, TA(Transmitting Address) 필드, 사운딩 다이얼로그 토큰(Sounding Dialog Token) 필드, STA 정보 1(STA Info 1) 필드 내지 STA 정보 n(STA Info n) 필드 및 FCS로 구성될 수 있다.
RA 필드 값은 VHT NDPA 프레임을 수신하는 수신자 주소(receiver address) 또는 STA 주소를 나타낸다.
VHT NDPA 프레임이 하나의 STA Info 필드를 포함하는 경우, RA 필드 값은 STA Info 필드 내 AID에 의해 식별되는 STA의 주소를 가진다. 예를 들어, SU-MIMO 채널 사운딩을 위하여 하나의 대상 STA으로 VHT NDPA 프레임을 전송하는 경우, AP는 VHT NDPA 프레임을 대상 STA에게 유니캐스트(unicast)로 전송한다.
반면, VHT NDPA 프레임이 하나 이상의 STA Info 필드를 포함하는 경우, RA 필드 값은 브로드캐스트 주소(broadcast address)를 가진다. 예를 들어, MU-MIMO 채널 사운딩을 위하여 적어도 하나 이상의 대상 STA으로 VHT NDPA 프레임을 전송하는 경우, AP는 VHT NDPA 프레임을 브로드캐스팅한다.
TA 필드 값은 VHT NDPA 프레임을 전송하는 송신자 주소(transmitter address) 또는 전송하는 STA의 주소 또는 TA를 시그널링하는 대역폭을 나타낸다.
Sounding Dialog Token 필드는 사운딩 시퀀스(Sounding Sequence) 필드로 불릴 수도 있다. Sounding Dialog Token 필드 내 사운딩 다이얼로그 토큰 번호(Sounding Dialog Token Number) 서브필드는 VHT NDPA 프레임을 식별하기 위하여 Beamformer에 의해 선택된 값을 포함한다.
*VHT NDPA 프레임은 적어도 하나의 STA Info 필드를 포함한다. 즉, VHT NDPA 프레임은 사운딩 대상 STA에 대한 정보를 포함하는 STA Info 필드를 포함한다. STA Info 필드는 사운딩 대상 STA 마다 하나씩 포함될 수 있다.
각 STA Info 필드는 AID12 서브필드, 피드백 타입(Feedback Type) 서브필드 및 Nc 인덱스(Nc Index) 서브필드로 구성될 수 있다.
표 5는 VHT NDPA 프레임에 포함되는 STA Info 필드의 서브필드를 나타낸다.
앞서 설명한 각 필드들에 포함되는 정보들은 IEEE 802.11 시스템의 정의를 따를 수 있다. 또한, 앞서 설명한 각 필드들은 MAC 프레임에 포함될 수 있는 필드들의 예시에 해당하며, 다른 필드로 대체되거나, 추가적인 필드가 더 포함될 수 있다.
도 13은 본 발명이 적용될 수 있는 무선 통신 시스템에서 NDP PPDU을 예시하는 도면이다.
도 13을 참조하면, NDP은 앞서 도 4와 같은 VHT PPDU 포맷에서 데이터 필드가 생략된 포맷을 가질 수 있다. NDP은 특정 프리코딩 행렬(precoding matrix)를 기반으로 프리코딩(precoding)되어 사운딩 대상 STA으로 전송될 수 있다.
NDP의 L-SIG 필드에서 데이터 필드에 포함된 PSDU 길이를 지시하는 길이 필드는 '0'으로 설정된다.
NDP의 VHT-SIG-A 필드에서 NDP 전송을 위해 사용된 전송 기법이 MU-MIMO 인지 또는 SU-MIMO 인지 지시하는 Group ID 필드는 SU-MIMO 전송을 지시하는 값으로 설정된다.
NDP의 VHT-SIG-B 필드의 데이터 비트는 대역폭 별로 고정된 비트 패턴(bit pattern)으로 설정된다.
사운딩 대상 STA은 NDP를 수신하면, NDP의 VHT-LTF 필드를 기반으로 채널을 추정하고 채널 상태 정보를 획득한다.
도 14는 본 발명이 적용될 수 있는 무선 통신 시스템에서 VHT 압축된 빔포밍(VHT compressed beamforming) 프레임 포맷을 예시하는 도면이다.
도 14를 참조하면, VHT compressed beamforming 프레임은 VHT 기능을 지원하기 위한 VHT 동작(VHT Action) 프레임으로서, Frame Body에 Action 필드를 포함한다. Action 필드는 MAC 프레임의 Frame Body에 포함되어 확장된 관리 동작들을 명시하기 위한 메커니즘을 제공한다.
Action 필드는 카테고리(Category) 필드, VHT 동작(VHT Action) 필드, VHT MIMO 제어(VHT MIMO Control) 필드, VHT 압축된 빔포밍 보고(VHT Compressed Beamforming Report) 필드 및 MU 전용 빔포밍 보고(MU Exclusive Beamforming Report) 필드로 구성된다.
Category 필드는 VHT 카테고리(즉, VHT Action 프레임)를 지시하는 값으로 설정되고, VHT Action 필드는 VHT Compressed Beamforming 프레임을 지시하는 값으로 설정된다.
VHT MIMO Control 필드는 빔포밍 피드백과 관련된 제어 정보를 피드백하기 위하여 사용된다. VHT MIMO Control 필드는 VHT Compressed Beamforming 프레임에 항상 존재할 수 있다.
VHT Compressed Beamforming Report 필드는 데이터를 전송하는데 사용되는 시공간 스트림(space-time stream)에 대한 SNR 정보가 포함된 빔포밍 매트릭에 대한 정보를 피드백하기 위하여 사용된다.
MU Exclusive Beamforming Report 필드는 MU-MIMO 전송을 수행하는 경우 공간적 스트림(spatial stream)에 대한 SNR 정보를 피드백하기 위하여 사용된다.
VHT Compressed Beamforming Report 필드 및 MU Exclusive Beamforming Report 필드의 존재 여부 및 내용(content)은 VHT MIMO Control 필드의 피드백 타입(Feedback Type) 서브필드, 잔여 피드백 세그먼트(Remaining Feedback Segments) 서브필드, 최초 피드백 세그먼트(First Feedback Segment) 서브필드의 값에 따라 결정될 수 있다.
이하, VHT MIMO Control 필드, VHT Compressed Beamforming Report 필드 및 MU Exclusive Beamforming Report 필드에 대하여 보다 구체적으로 살펴본다.
1) VHT MIMO Control 필드는 Nc 인덱스(Nc Index) 서브필드, Nr 인덱스(Nr Index) 서브필드, 채널 폭(Channel Width) 서브필드, 그룹핑(Grouping) 서브필드, 코드북 정보(Codebook Information) 서브필드, 피드백 타입(Feedback Type) 서브필드, 잔여 피드백 세그먼트(Remaining Feedback Segments) 서브필드, 최초 피드백 세그먼트(First Feedback Segment) 서브필드, 예비(reserved) 서브필드 및 사운딩 다이얼로그 토큰 번호(Sounding Dialog Token Number) 서브필드로 구성된다.
표 6은 VHT MIMO Control 필드의 서브필드를 나타낸다.
VHT Compressed Beamforming 프레임이 VHT Compressed Beamforming Report 필드의 전부 또는 일부를 전달하지 않는 경우, Nc Index 서브필드, Channel Width 서브필드, Grouping 서브필드, Codebook Information 서브필드, Feedback Type 서브필드 및 Sounding Dialog Token Number 서브필드는 예비 필드로 설정되고, First Feedback Segment 서브필드는 '0'로 설정되며, Remaining Feedback Segments 서브필드는 '7'로 설정된다.
Sounding Dialog Token Number 서브필드는 사운딩 시퀀스 번호(Sounding Sequence Number) 서브필드로 불릴 수도 있다.
2) VHT compressed beamforming report 필드는 전송 Beamformer가 스티어링 행렬(steering matix) 'Q'를 결정하기 위해 사용하는 압축된 빔포밍 피드백 행렬(comporessed beamforming feedback matrix) 'V'를 각도의 형태로 나타낸 명시적인 피드백 정보를 전달하기 위하여 사용된다.
표 7은 VHT compressed beamforming report 필드의 서브필드를 나타낸다.
표 7을 참조하면, VHT compressed beamforming report 필드에서는 시공간 스트림 각각에 대한 평균 SNR과 각각의 서브캐리어에 대한 압축된 빔포밍 피드백 행렬(Compressed Beamforming Feedback Matrix) 'V'가 포함될 수 있다. 압축된 빔포밍 피드백 행렬은 채널 상황에 대한 정보를 포함한 행렬로서 MIMO를 사용한 전송 방법에서 채널 행렬(즉, 스티어링 행렬(steering matix) 'Q')을 산출하기 위하여 사용된다.
scidx()는 Compressed Beamforming Feedback Matrix 서브필드가 전송되는 서브캐리어를 의미한다. Na는 Nr × Nc 값에 의해 고정된다(예를 들어, Nr × Nc= 2 × 1인 경우, Φ11, Ψ21, ...).
Ns는 Beamformer에게 압축된 빔포밍 피드백 행렬이 전송되는 서브캐리어의 개수를 의미한다. Beamformee는 그룹핑 방법을 사용하여 압축된 빔포밍 피드백 행렬이 전송되는 Ns의 수를 줄일 수 있다. 예를 들어, 복수의 서브캐리어를 하나의 그룹으로 묶고 해당 그룹 별로 압축된 빔포밍 피드백 행렬을 전송함으로써 피드백되는 압축된 빔포밍 피드백 행렬의 개수를 줄일 수 있다. Ns는 VHT MIMO Control 필드에 포함된 Channel Width 서브필드와 Grouping 서브필드로부터 산출될 수 있다.
표 8은 시공간 스트림의 평균 SNR(Average SNR of Space-Time) Stream 서브필드를 예시한다.
표 8을 참조하면, 시공간 스트림 각각에 대한 평균 SNR은 채널에 포함되는 서브캐리어 전체에 대한 평균 SNR 값을 산출하여 그 값을 -128~+128 범위로 매핑하여 산출된다.
3) MU Exclusive Beamforming Report 필드는 델타() SNR의 형태로 나타낸 명시적인 피드백 정보를 전달하기 위하여 사용된다. VHT Compressed Beamforming Report 필드 및 MU Exclusive Beamforming Report 필드 내 정보는 MU Beamformer가 스티어링 행렬(steering matix) 'Q'를 결정하기 위하여 사용될 수 있다.
표 9는 VHT compressed beamforming 프레임에 포함되는 MU Exclusive Beamforming Report 필드의 서브필드를 나타낸다.
표 9를 참조하면, MU Exclusive Beamforming Report 필드에서는 서브캐리어 별로 시공간 스트림 당 SNR이 포함될 수 있다.
각 Delta SNR 서브필드는 -8dB에서 7dB 사이에서 1dB씩 증가되는 값을 가진다.
scidx()는 Delta SNR 서브필드가 전송되는 서브캐리어(들)을 의미하고, Ns는 Beamformer로 Delta SNR 서브필드가 전송되는 서브캐리어의 수를 의미한다.
도 15는 본 발명이 적용될 수 있는 무선 통신 시스템에서 빔포밍 보고 폴(Beamforming Report Poll) 프레임 포맷을 예시하는 도면이다.
도 15를 참조하면, Beamforming Report Poll 프레임은 프레임 제어(Frame Control) 필드, 지속 시간(Duration) 필드, RA(Receiving Address) 필드, TA(Transmitting Address) 필드, 피드백 세그먼트 재전송 비트맵(Feedback Segment Retransmission Bitmap) 필드 및 FCS를 포함하여 구성된다.
RA 필드 값은 대상 수신자(intended recipient)의 주소를 나타낸다.
TA 필드 값은 Beamforming Report Poll 프레임을 전송하는 STA의 주소 또는 TA를 시그널링하는 대역폭을 나타낸다.
Feedback Segment Retransmission Bitmap 필드는 VHT 압축된 빔포밍 보고(VHT Compressed Beamforming report)에서 요청되는 피드백 세그먼트를 지시한다.
Feedback Segment Retransmission Bitmap 필드 값에서 위치 n의 비트가 '1'이면(LSB 경우 n=0, MSB 경우 n=7), VHT compressed beamforming 프레임의 VHT MIMO Control 필드 내 Remaining Feedback Segments 서브필드에서 n과 상응하는 피드백 세그먼트가 요청된다. 반면, 위치 n의 비트가 '0'이면, VHT MIMO Control 필드 내 Remaining Feedback Segments 서브필드에서 n과 상응하는 피드백 세그먼트가 요청되지 않는다.
그룹 식별자(Group ID)
VHT WLAN 시스템은 보다 높은 처리율을 위하여 MU-MIMO 전송 방법을 지원하므로, AP는 MIMO 페어링된 적어도 하나 이상의 STA에게 동시에 데이터 프레임을 전송할 수 있다. AP는 자신과 결합(association)되어 있는 복수의 STA들 중 적어도 하나 이상의 STA을 포함하는 STA 그룹에게 데이터를 동시에 전송할 수 있다. 예를 들어, 페어링된 STA의 수는 최대 4개일 수 있으며, 최대 공간 스트림 수가 8개일 때 각 STA에는 최대 4개의 공간 스트림이 할당될 수 있다.
또한, TDLS(Tunneled Direct Link Setup) 이나 DLS(Direct Link Setup), 메쉬 네트워크(mesh network)를 지원하는 WLAN 시스템에서는 데이터를 전송하고자 하는 STA이 MU-MIMO 전송기법을 사용하여 PPDU를 복수의 STA들에게 전송할 수 있다.
이하, AP가 복수의 STA에게 MU-MIMO 전송 기법에 따라 PPDU를 전송하는 것을 예로 들어 설명하도록 한다.
AP는 페어링 된 전송 대상 STA 그룹에 속하는 STA에게 서로 다른 공간 스트림(spatial stream)을 통하여 PPDU를 동시에 전송한다. 상술한 바와 같이, VHT PPDU 포맷의 VHT-SIG A 필드는 그룹 ID 정보 및 시공간 스트림 정보를 포함하여 각 STA은 자신에게 전송되는 PPDU인지 확인할 수 있다. 이때, 전송 대상 STA 그룹의 특정 STA에게는 공간 스트림이 할당되지 않아 데이터가 전송되지 않을 수도 있다.
하나 이상의 Group ID에 상응하는 사용자 위치(user position)를 할당(assignment)하거나 또는 변경(change)하기 위하여 그룹 ID 관리 (Group ID Management) 프레임이 이용된다. 즉, AP는 MU-MIMO 전송을 수행하기 전에 Group ID Management 프레임을 통해 특정 그룹 ID와 연결된 STA들을 알려줄 수 있다.
도 16은 본 발명이 적용될 수 있는 무선 통신 시스템에서 Group ID Management 프레임을 예시하는 도면이다.
도 16을 참조하면, Group ID Management 프레임은 VHT 기능을 지원하기 위한 VHT 동작(VHT Action) 프레임으로서, Frame Body에 Action 필드를 포함한다. Action 필드는 MAC 프레임의 Frame Body에 포함되어 확장된 관리 동작들을 명시하기 위한 메커니즘을 제공한다.
Action 필드는 카테고리(Category) 필드, VHT 동작(VHT Action) 필드, 멤버십 상태 어레이(Membership Status Array) 필드 및 사용자 위치 어레이(User Position Array) 필드로 구성된다.
Category 필드는 VHT 카테고리(즉, VHT Action 프레임)를 지시하는 값으로 설정되고, VHT Action 필드는 Group ID Management 프레임을 지시하는 값으로 설정된다.
Membership Status Array 필드는 각 그룹 별로 1 비트의 멤버십 상태(Membership Status) 서브필드로 구성된다. Membership Status 서브필드가 '0'으로 설정되면 STA이 해당 그룹의 멤버가 아님을 나타내고, '1'로 설정되면 STA이 해당 그룹의 멤버임을 나타낸다. STA은 Membership Status Array 필드 내 하나 이상의 Membership Status 서브필드가 '1'로 설정됨으로써 하나 이상의 그룹이 할당될 수 있다.
*STA은 자신이 속한 각 그룹에서 하나의 사용자 위치(user position)를 가질 수 있다.
User Position Array 필드는 각 그룹 별로 2 비트의 사용자 위치(User Position) 서브필드로 구성된다. 자신이 속한 그룹 내에서 STA의 사용자 위치(user position)는 User Position Array 필드 내 User Position 서브필드에 의해 지시된다. AP는 각 그룹에서 동일한 사용자 위치(user position)을 서로 다른 STA에게 할당할 수 있다.
AP는 dot11VHTOptionImplemented 파라미터가 'true'인 경우에만, Group ID Management 프레임을 전송할 수 있다. Group ID Management 프레임은 VHT 능력 요소(VHT Capabilities element) 필드 내 MU Beamformee Capable 필드가 '1'로 설정된 VHT STA에게만 전송된다. Group ID Management 프레임은 각 STA에게 어드레스된(addressed) 프레임으로 전송된다.
STA은 자신의 MAC 주소와 매칭되는 RA 필드를 가지는 Group ID Management 프레임을 수신한다. STA은 수신한 Group ID Management 프레임의 내용에 기반하여 PHYCONFIG_VECTOR 파라미터인 GROUP_ID_MANAGEMENT를 업데이트 한다.
STA으로 Group ID Management 프레임의 전송 및 그에 대한 STA으로부터 ACK의 전송은 STA에게 MU PPDU를 전송하기 전에 완료된다.
MU PPDU는 가장 최근에 STA에게 전송되고 ACK이 수신된 Group ID Management 프레임의 내용에 기반하여 STA에게 전송된다.
하향링크 MU-MIMO 프레임(DL MU-MIMO Frame)
도 17은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 다중 사용자(multi-user) PPDU 포맷을 예시하는 도면이다.
도 17을 참조하면, PPDU은 프리앰블 및 데이터 필드(Data field)를 포함하여 구성된다. 데이터 필드는 서비스 필드(SERVICE field), 스크램블링된 PSDU(scrambled PSDU) 필드, 테일 비트(Tail bits), 패딩 비트(padding bits)를 포함할 수 있다.
AP는 MPDU를 병합(aggregation)하여 A-MPDU(aggregated MPDU) 포맷으로 데이터 프레임을 전송할 수 있다. 이 경우, 스크램블링된 PSDU(scrambled PSDU) 필드는 A-MPDU로 구성될 수 있다.
A-MPDU는 하나 이상의 A-MPDU 서브프레임(A-MPDU subframe)의 배열(sequence)로 구성된다.
VHT PPDU의 경우, 각 A-MPDU 서브프레임의 길이가 4 옥텟의 배수이므로, A-MPDU는 PSDU의 마지막 옥텟에 A-MPDU를 맞추기 위하여 마지막 A-MPDU 서브프레임(A-MPDU subframe) 이후에 0 내지 3 옥텟의 EOF(end-of-frame) 패드(pad)를 포함할 수 있다.
A-MPDU 서브프레임은 MPDU 딜리미터(delimiter)로 구성되고, 선택적으로 MPDU가 MPDU 딜리미터(Delimiter) 이후에 포함될 수 있다. 또한, 하나의 A-MPDU 내 마지막 A-MPDU 서브프레임을 제외하고, 각 A-MPDU 서브프레임의 길이를 4 옥텟의 배수로 만들기 위하여 패드 옥텟이 MPDU 이후에 부착된다.
MPDU Delimiter는 예비(Reserved) 필드, MPDU 길이(MPDU Length) 필드, CRC (cyclic redundancy check) 필드, 딜리미터 시그니처(Delimiter Signature) 필드로 구성된다.
VHT PPDU의 경우, MPDU Delimiter는 EOF(end-of-frame) 필드를 더 포함할 수 있다. MPDU Length 필드가 0이고 패딩하기 위하여 사용되는 A-MPDU 서브프레임, 또는 A-MPDU가 하나의 MPDU만으로 구성되는 경우 해당 MPDU가 실어지는 A-MPDU 서브프레임의 경우, EOF 필드는 '1'로 셋팅된다. 그렇지 않은 경우 '0'으로 셋팅된다.
MPDU Length 필드는 MPDU의 길이에 대한 정보를 포함한다.
해당 A-MPDU 서브프레임에 MPDU가 존재하지 않는 경우 '0'으로 셋팅된다. MPDU Length 필드가 '0' 값을 가지는 A-MPDU 서브프레임은 VHT PPDU 내 가용한 옥텟에 A-MPDU를 맞추기 위해 해당 A-MPDU에 패딩할 때 사용된다.
CRC 필드는 에러 체크를 위한 CRC 정보, Delimiter Signature 필드는 MPDU 딜리미터를 검색하기 위하여 사용되는 패턴 정보를 포함한다.
그리고, MPDU는 MAC 헤더(MAC Header), 프레임 몸체(Frame Body) 및 프레임 체크 시퀀스(FCS)로 구성된다.
*도 18은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 다중 사용자(multi-user) PPDU 포맷을 예시하는 도면이다.
도 18은 해당 PPDU를 수신하는 STA의 개수가 3개이고, 각 STA에 할당되는 공간적 스트림(spatial stream)의 개수가 1이라고 가정하나 AP에 페어링된 STA의 수, 각 STA에 할당되는 공간적 스트림의 수는 이에 한정되지 않는다.
도 18을 참조하면, MU PPDU는 L-TFs 필드(L-STF 필드 및 L-LTF 필드), L-SIG 필드, VHT-SIG-A 필드, VHT-TFs 필드(VHT-STF 필드 및 VHT-LTF 필드), VHT-SIG-B 필드, Service 필드, 하나 이상의 PSDU, padding 필드 및 Tail 비트를 포함하여 구성된다. L-TFs 필드, L-SIG 필드, VHT-SIG-A 필드, VHT-TFs 필드, VHT-SIG-B 필드는 앞서 도 4의 예시와 동일하므로 이하 상세한 설명은 생략한다.
PPDU 지속기간을 지시하기 위한 정보가 L-SIG 필드에 포함될 수 있다. PPDU 내에서, L-SIG 필드에 의해 지시된 PPDU 지속기간은 VHT-SIG-A 필드가 할당된 심볼, VHT-TFs 필드가 할당된 심볼, VHT-SIG-B 필드가 할당된 필드, Service 필드를 구성하는 비트, PSDU를 구성하는 비트, padding 필드를 구성하는 비트 및 Tail 필드를 구성하는 비트를 포함한다. PPDU를 수신하는 STA은 L-SIG 필드에 포함된 PPDU 지속시간을 지시하는 정보를 통해 PPDU의 지속기간에 대한 정보를 획득할 수 있다.
상술한 바와 같이, VHT-SIG-A를 통해 Group ID 정보, 각 사용자 당 시공간 스트림 수 정보가 전송되고, VHT-SIG-B를 통해 코딩(coding) 방법 및 MCS 정보 등이 전송된다. 따라서, Beamformee들은 VHT-SIG-A와 VHT-SIG-B를 확인하고, 자신이 속한 MU MIMO 프레임인지 여부를 알 수 있다. 따라서, 해당 Group ID의 멤버 STA이 아니거나 해당 Group ID의 멤버이나 할당된 스트림 수가 '0'인 STA은 VHT-SIG-A 필드 이후부터 PPDU 끝까지 물리 계층의 수신을 중단하도록 설정함으로써 전력 소모를 절감할 수 있다.
Group ID는 사전에 Beamformer가 전송하는 Group ID Management 프레임을 수신함으로써, Beamformee가 어떤 MU 그룹에 속하는지, 자신이 속하는 그룹 중에서 몇 번째 사용자인지, 즉 어떤 스트림을 통해 PPDU를 수신하는지 알 수 있다.
802.11ac을 기반으로 하는 VHT MU PPDU 내 전송되는 모든 MPDU는 A-MPDU에 포함된다. 도 18의 데이터 필드에서 각 VHT A-MPDU는 서로 다른 스트림으로 전송될 수 있다.
도 18에서 각 STA에 전송되는 데이터의 크기가 상이할 수 있으므로, 각각의 A-MPDU는 서로 다른 비트 크기를 가질 수 있다.
이 경우, Beamformer가 전송하는 복수의 데이터 프레임의 전송이 종료되는 시간은 최대 구간 전송 데이터 프레임의 전송이 종료되는 시간과 동일하도록 널 패딩(null padding)을 수행할 수 있다. 최대 구간 전송 데이터 프레임은 Beamformer에 의해 유효 하향링크 데이터가 가장 오랜 구간 동안 전송되는 프레임일 수 있다. 유효 하향링크 데이터는 널 패딩되지 않은 하향링크 데이터일 수 있다. 예를 들어, 유효 하향링크 데이터는 A-MPDU에 포함되어 전송될 수 있다. 복수의 데이터 프레임 중 최대 구간 전송 데이터 프레임을 제외한 나머지 데이터 프레임은 널 패딩을 수행할 수 있다.
널 패딩을 위해 Beamformer는 A-MPDU 프레임 내 복수의 A-MPDU 서브프레임에서 시간적으로 후순위에 위치한 하나 이상의 A-MPDU 서브프레임을 MPDU delimiter 필드만으로 인코딩하여 채울 수 있다. MPDU 길이가 0인 A-MPDU 서브프레임을 널 서브프레임(Null subframe)으로 지칭할 수 있다.
앞서 살펴본 바와 같이, 널 서브프레임은 MPDU Delimiter의 EOF 필드가 '1'로 셋팅된다. 따라서, 수신측 STA의 MAC 계층에서는 1로 셋팅된 EOF 필드를 감지하면, 물리 계층에 수신을 중단하도록 설정함으로써 전력 소모를 절감할 수 있다.
블록 ACK(Block Ack) 절차
도 19는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 MU-MIMO 전송 과정을 예시하는 도면이다.
802.11ac에서는 MU-MIMO는 AP로부터 클라이언트(즉, non-AP STA)으로 향하는 하향링크에서 정의된다. 이때, 다중 사용자 프레임(multi-user frame)은 다중 수신자에게 동시에 전송되나, 수신 확인(acknowledgement)은 상향링크에서 개별적으로 전송되어야 한다.
802.11ac을 기반으로 하는 VHT MU PPDU 내 전송되는 모든 MPDU는 A-MPDU에 포함되므로, VHT MU PPDU에 대한 즉각적인 응답이 아닌 VHT MU PPDU 내 A-MPDU에 대한 응답은 AP에 의한 블록 ACK 요청(BAR: Block Ack Request) 프레임에 대한 응답으로 전송된다.
먼저, AP는 모든 수신자(즉, STA 1, STA 2, STA 3)에게 VHT MU PPDU(즉, 프리앰블 및 데이터)를 전송한다. VHT MU PPDU는 각 STA에 전송되는 VHT A-MPDU를 포함한다.
AP로부터 VHT MU PPDU를 수신한 STA 1은 SIFS 이후에 블록 ACK(BA: Block Acknowledgement) 프레임을 AP로 전송한다. BA 프레임에 대하여 보다 상세한 설명은 후술한다.
*STA 1으로부터 BA를 수신한 AP는 SIFS 이후에 BAR(block acknowledgement request) 프레임을 다음 STA 2로 전송하고, STA 2는 SIFS 이후에 BA 프레임을 AP로 전송한다. STA 2로부터 BA 프레임을 수신한 AP는 SIFS 이후에 BAR 프레임을 STA 3로 전송하고, STA 3은 SIFS 이후에 BA 프레임을 AP로 전송한다.
이러한 과정이 모든 STA들에 대해 수행되면, AP는 다음 MU PPDU를 모든 STA에게 전송한다.
ACK(Acknowledgement)/블록 ACK(Block ACK) 프레임
일반적으로 MPDU의 응답으로 ACK 프레임을 사용하고, A-MPDU의 응답으로 블록 ACK 프레임을 사용한다.
도 20은 본 발명이 적용될 수 있는 무선 통신 시스템에서 ACK 프레임을 예시하는 도면이다.
도 20을 참조하면, ACK 프레임은 프레임 제어(Frame Control) 필드, 지속기간(Duration) 필드, RA 필드 및 FCS로 구성된다.
RA 필드는 직전에 수신된 데이터(Data) 프레임, 관리(Management) 프레임, 블록 ACK 요청(Block Ack Request) 프레임, 블록 ACK(Block Ack) 프레임 또는 PS-Poll 프레임의 제2 주소(Address 2) 필드의 값으로 설정된다.
비 QoS(non-QoS) STA에 의해 ACK 프레임이 전송되는 경우, 직전에 수신된 데이터(Data) 프레임, 관리(Management) 프레임의 프레임 제어(Frame Control) 필드 내 모어 프래그먼트(More Fragments) 서브필드가 '0'이면, 지속기간(duration) 값은 '0'으로 설정된다.
비 QoS(non-QoS) STA에 의해 전송되지 않는 ACK 프레임에서 지속기간(duration) 값은 직전에 수신된 데이터(Data) 프레임, 관리(Management) 프레임, 블록 ACK 요청(Block Ack Request) 프레임, 블록 ACK(Block Ack) 프레임 또는 PS-Poll 프레임의 Duration/ID 필드에서 ACK 프레임 전송을 위해 요구되는 시간 및 SIFS 구간을 차감한 값(ms)으로 설정된다. 계산된 지속기간(duration) 값이 정수 값이 아닌 경우, 반올림된다.
이하, 블록 ACK (요청) 프레임에 대하여 살펴본다.
도 21은 본 발명이 적용될 수 있는 무선 통신 시스템에서 블록 ACK 요청(Block Ack Request) 프레임을 예시하는 도면이다.
도 21을 참조하면, 블록 ACK 요청(BAR) 프레임은 프레임 제어(Frame Control) 필드, 지속기간/식별자(Duration/ID) 필드, 수신 주소(RA) 필드, 전송 주소(TA) 필드, BAR 제어(BAR control) 필드, BAR 정보(BAR Information) 필드 및 프레임 체크 시퀀스(FCS)로 구성된다.
RA 필드는 BAR 프레임을 수신하는 STA의 주소로 설정될 수 있다.
TA 필드는 BAR 프레임을 전송하는 STA의 주소로 설정될 수 있다.
BAR control 필드는 BAR Ack 정책(BAR Ack Policy) 서브필드, 다중-TID(Multi-TID) 서브필드, 압축 비트맵(Compressed Bitmap) 서브필드, 예비(Reserved) 서브필드 및 TID 정보(TID_Info) 서브필드를 포함한다.
표 10은 BAR control 필드를 예시하는 표이다.
BAR Information 필드는 BAR 프레임의 타입에 따라 상이한 정보가 포함된다. 이에 대하여 도 22를 참조하여 설명한다.
도 22는 본 발명이 적용될 수 있는 무선 통신 시스템에서 블록 ACK 요청(Block Ack Request) 프레임의 BAR 정보(BAR Information) 필드를 예시하는 도면이다.
도 22(a)는 Basic BAR 프레임 및 Compressed BAR 프레임의 BAR Information 필드를 예시하고, 도 22(b)는 Multi-TID BAR 프레임의 BAR Information 필드를 예시한다.
도 22(a)를 참조하면, Basic BAR 프레임 및 Compressed BAR 프레임의 경우, BAR Information 필드는 블록 ACK 시작 시퀀스 제어(Block Ack Starting Sequence Control) 서브필드를 포함한다.
그리고, Block Ack Starting Sequence Control 서브필드는 조각 번호(Fragment Number) 서브필드, 시작 시퀀스 번호(Starting Sequence Number) 서브필드를 포함한다.
Fragment Number 서브필드는 0으로 설정된다.
Basic BAR 프레임의 경우, Starting Sequence Number 서브필드는 해당 BAR 프레임이 전송되는 첫 번째 MSDU의 시퀀스 번호를 포함한다. Compressed BAR 프레임의 경우, Starting Sequence Control 서브필드는 해당 BAR 프레임이 전송되기 위한 첫 번째 MSDU 또는 A-MSDU의 시퀀스 번호를 포함한다.
*도 22(b)를 참조하면, Multi-TID BAR 프레임의 경우, BAR Information 필드는 TID 별 정보(Per TID Info) 서브필드 및 블록 ACK 시작 시퀀스 제어(Block Ack Starting Sequence Control) 서브필드가 하나 이상의 TID 별로 반복되어 구성된다.
Per TID Info 서브필드는 예비(Reserved) 서브필드 및 TID 값(TID Value) 서브필드를 포함한다. TID Value 서브필드는 TID 값을 포함한다.
Block Ack Starting Sequence Control 서브필드는 상술한 바와 같이 Fragment Number 및 Starting Sequence Number 서브필드를 포함한다. Fragment Number 서브필드는 0으로 설정된다. Starting Sequence Control 서브필드는 해당 BAR 프레임이 전송되기 위한 첫 번째 MSDU 또는 A-MSDU의 시퀀스 번호를 포함한다.
도 23은 본 발명이 적용될 수 있는 무선 통신 시스템에서 블록 ACK(Block Ack) 프레임을 예시하는 도면이다.
도 23을 참조하면, 블록 ACK(BA) 프레임은 프레임 제어(Frame Control) 필드, 지속기간/식별자(Duration/ID) 필드, 수신 주소(RA) 필드, 전송 주소(TA) 필드, BA 제어(BA control) 필드, BA 정보(BA Information) 필드 및 프레임 체크 시퀀스(FCS)로 구성된다.
RA 필드는 블록 ACK을 요청한 STA의 주소로 설정될 수 있다.
TA 필드는 BA 프레임을 전송하는 STA의 주소로 설정될 수 있다.
BA control 필드는 BA Ack 정책(BA Ack Policy) 서브필드, 다중-TID(Multi-TID) 서브필드, 압축 비트맵(Compressed Bitmap) 서브필드, 예비(Reserved) 서브필드 및 TID 정보(TID_Info) 서브필드를 포함한다.
표 11은 BA control 필드를 예시하는 표이다.
BA Information 필드는 BA 프레임의 타입에 따라 상이한 정보가 포함된다. 이에 대하여 도 24를 참조하여 설명한다.
도 24는 본 발명이 적용될 수 있는 무선 통신 시스템에서 블록 ACK(Block Ack) 프레임의 BA 정보(BA Information) 필드를 예시하는 도면이다.
도 24(a)의 Basic BA 프레임의 BA Information 필드를 예시하고, 도 24(b)는 Compressed BA 프레임의 BA Information 필드를 예시하고, 도 24(c)는 Multi-TID BA 프레임의 BA Information 필드를 예시한다.
도 24(a)를 참조하면, Basic BA 프레임의 경우, BA Information 필드는 블록 ACK 시작 시퀀스 제어(Block Ack Starting Sequence Control) 서브필드 및 블록 ACK 비트맵(Block Ack Bitmap) 서브필드를 포함한다.
Block Ack Starting Sequence Control 서브필드는 상술한 바와 같이 Fragment Number 서브필드 및 Starting Sequence Number 서브필드를 포함한다.
Fragment Number 서브필드는 0으로 설정된다.
Starting Sequence Number 서브필드는 해당 BA 프레임이 전송되기 위한 첫 번째 MSDU의 시퀀스 번호를 포함하고, 직전에 수신한 Basic BAR 프레임과 동일한 값으로 설정된다.
Block Ack Bitmap 서브필드는 128 옥텟의 길이로 구성되고, 최대 64개의 MSDU의 수신 상태를 지시하기 위하여 사용된다. Block Ack Bitmap 서브필드에서 '1' 값은 해당 비트 위치에 대응되는 MPDU가 성공적으로 수신되었음을 지시하고, '0' 값은 해당 비트 위치에 대응되는 MPDU가 성공적으로 수신되지 않았음을 지시한다.
도 24(b)를 참조하면, Compressed BA 프레임의 경우, BA Information 필드는 블록 ACK 시작 시퀀스 제어(Block Ack Starting Sequence Control) 서브필드 및 블록 ACK 비트맵(Block Ack Bitmap) 서브필드를 포함한다.
Block Ack Starting Sequence Control 서브필드는 상술한 바와 같이 Fragment Number 서브필드 및 Starting Sequence Number 서브필드를 포함한다.
Fragment Number 서브필드는 0으로 설정된다.
Starting Sequence Number 서브필드는 해당 BA 프레임이 전송되기 위한 첫 번째 MSDU 또는 A-MSDU의 시퀀스 번호를 포함하고, 직전에 수신한 Basic BAR 프레임과 동일한 값으로 설정된다.
Block Ack Bitmap 서브필드는 8 옥텟의 길이로 구성되고, 최대 64개의 MSDU 및 A-MSDU의 수신 상태를 지시하기 위하여 사용된다. Block Ack Bitmap 서브필드에서 '1' 값은 해당 비트 위치에 대응되는 단일 MSDU 또는 A-MSDU가 성공적으로 수신되었음을 지시하고, '0' 값은 해당 비트 위치에 대응되는 단일 MSDU 또는 A-MSDU가 성공적으로 수신되지 않았음을 지시한다.
도 24(c)를 참조하면, Multi-TID BA 프레임의 경우, BA Information 필드는 TID 별 정보(Per TID Info) 서브필드, 블록 ACK 시작 시퀀스 제어(Block Ack Starting Sequence Control) 서브필드 및 블록 ACK 비트맵(Block Ack Bitmap) 서브필드가 하나 이상의 TID 별로 반복되어 구성되고, TID가 증가되는 순서대로 구성된다.
Per TID Info 서브필드는 예비(Reserved) 서브필드 및 TID 값(TID Value) 서브필드를 포함한다. TID Value 서브필드는 TID 값을 포함한다.
Block Ack Starting Sequence Control 서브필드는 상술한 바와 같이 Fragment Number 및 Starting Sequence Number 서브필드를 포함한다. Fragment Number 서브필드는 0으로 설정된다. Starting Sequence Control 서브필드는 해당 BA 프레임이 전송되기 위한 첫 번째 MSDU 또는 A-MSDU의 시퀀스 번호를 포함한다.
Block Ack Bitmap 서브필드는 8 옥텟의 길이로 구성된다. Block Ack Bitmap 서브필드에서 '1' 값은 해당 비트 위치에 대응되는 단일 MSDU 또는 A-MSDU가 성공적으로 수신되었음을 지시하고, '0' 값은 해당 비트 위치에 대응되는 단일 MSDU 또는 A-MSDU가 성공적으로 수신되지 않았음을 지시한다.
상향링크 다중 사용자 전송 방법
차세대 WiFi에 대한 다양한 분야의 벤더들의 많은 관심과 802.11ac 이후의 높은 스루풋(high throughput) 및 QoE(quality of experience) 성능 향상에 대한 요구가 높아지고 있는 상황에서 차세대 WLAN 시스템인 802.11ax 시스템을 위한 새로운 프레임 포맷 및 뉴머롤로지(numerology)에 대한 논의가 활발히 진행 중이다.
IEEE 802.11ax은 더 높은 데이터 처리율(data rate)을 지원하고 더 높은 사용자 부하(user load)를 처리하기 위한 차세대 WLAN 시스템으로서 최근에 새롭게 제안되고 있는 WLAN 시스템 중 하나로서, 일명 고효율 WLAN(HEW: High Efficiency WLAN)라고 불린다.
IEEE 802.11ax WLAN 시스템은 기존 WLAN 시스템과 동일하게 2.4 GHz 주파수 대역 및 5 GHz 주파수 대역에서 동작할 수 있다. 또한, 그보다 높은 60 GHz 주파수 대역에서도 동작할 수 있다.
IEEE 802.11ax 시스템에서는 평균 스루풋 향상(average throughput enhancement)과 실외 환경에서의 심볼 간 간섭(inter-symbol interference)에 대한 강인한 전송(outdoor robust transmission)을 위해서 기존 IEEE 802.11 OFDM system (IEEE 802.11a, 802.11n, 802.11ac 등)보다 각 대역폭에서 4배 큰 FFT 크기를 사용할 수 있다. 이에 대하여 아래 도면을 참조하여 설명한다.
이하, 본 발명에 HE 포맷 PPDU에 대한 설명에 있어서, 별도의 언급이 없더라도 앞서 설명한 non-HT 포맷 PPDU, HT-mixed 포맷 PPDU, HT-greenfield 포맷 PPDU 및/또는 VHT 포맷 PPDU에 대한 설명이 HE 포맷 PPDU에 대한 설명에 병합될 수 있다.
도 25는 본 발명의 일 실시예에 따른 HE(High Efficiency) 포맷 PPDU를 예시하는 도면이다.
도 25(a)는 HE 포맷 PPDU의 개략적인 구조를 예시하고, 도 25(b) 내지 (d)는 HE 포맷 PPDU의 보다 구체적인 구조를 예시한다.
도 25(a)를 참조하면, HEW를 위한 HE 포맷 PPDU는 크게 레가시 부분(L-part), HE 부분(HE-part) 및 데이터 필드(HE-data)로 구성될 수 있다.
L-part는 기존의 WLAN 시스템에서 유지하는 형태와 동일하게 L-STF 필드, L-LTF 필드 및 L-SIG 필드로 구성된다. L-STF 필드, L-LTF 필드 및 L-SIG 필드를 레가시 프리앰블(legacy preamble)이라고 지칭할 수 있다.
HE-part는 802.11ax 표준을 위하여 새롭게 정의되는 부분으로서, HE-STF 필드, HE-SIG 필드 및 HE-LTF 필드를 포함할 수 있다. 도 25(a)에서는 HE-STF 필드, HE-SIG 필드 및 HE-LTF 필드의 순서를 예시하고 있으나, 이와 상이한 순서로 구성될 수 있다. 또한, HE-LTF는 생략될 수도 있다. HE-STF 필드 및 HE-LTF 필드뿐만 아니라 HE-SIG 필드를 포함하여 HE-preamble로 통칭할 수도 있다.
HE-SIG는 HE-data 필드를 디코딩하기 위한 정보(예를 들어, OFDMA, UL MU MIMO, 향상된 MCS 등)을 포함할 수 있다.
L-part와 HE-part는 서로 다른 FFT(Fast Fourier Transform) 크기(즉, 서브캐리어 간격(spacing))을 가질 수 있으며, 서로 다른 CP(Cyclic Prefix)를 사용할 수도 있다.
802.11ax 시스템에서는 레가시 WLAN 시스템에 비하여 4배 큰(4x) FFT 크기를 사용할 수 있다. 즉, L-part는 1x 심볼 구조로 구성되고, HE-part(특히, HE-preamble 및 HE-data)는 4x 심볼 구조로 구성될 수 있다. 여기서, 1x, 2x, 4x 크기의 FFT는 레가시 WLAN 시스템(예를 들어, IEEE 802.11a, 802.11n, 802.11ac 등)에 대한 상대적인 크기를 의미한다.
예를 들어, L-part에 이용되는 FFT 크기는 20MHz, 40MHz, 80MHz 및 160MHz에서 각각 64, 128, 256, 512라면, HE-part에 이용되는 FFT 크기는 20MHz, 40MHz, 80MHz 및 160MHz에서 각각 256, 512, 1024, 2048일 수 있다.
이와 같이 레가시 WLAN 시스템 보다 FFT 크기가 커지면, 서브캐리어 주파수 간격(subcarrier frequency spacing)이 작아지므로 단위 주파수 당 서브캐리어의 수가 증가되나, OFDM 심볼 길이가 길어진다.
즉, 보다 큰 FFT 크기가 사용된다는 것은 서브캐리어 간격이 좁아진다는 의미이며, 마찬가지로 IDFT(Inverse Discrete Fourier Transform)/DFT(Discrete Fourier Transform) 주기(period)가 늘어난다는 의미이다. 여기서, IDFT/DFT 주기는 OFDM 심볼에서 보호 구간(GI)을 제외한 심볼 길이를 의미할 수 있다.
따라서, HE-part(특히, HE-preamble 및 HE-data)는 L-part에 비하여 4배 큰 FFT 크기가 사용된다면, HE-part의 서브캐리어 간격은 L-part의 서브캐리어 간격의 1/4 배가 되고, HE-part의 IDFT/DFT 주기는 L-part의 IDFT/DFT 주기의 4배가 된다. 예를 들어, L-part의 서브캐리어 간격이 312.5kHz(=20MHz/64, 40MHZ/128, 80MHz/256 및/또는 160MHz/512)라면 HE-part의 서브캐리어 간격은 78.125kHz(=20MHz/256, 40MHZ/512, 80MHz/1024 및/또는 160MHz/2048)일 수 있다. 또한, L-part의 IDFT/DFT 주기가 3.2㎲(=1/312.5kHz)이라면, HE-part의 IDFT/DFT 주기는 12.8㎲(=1/78.125kHz)일 수 있다.
여기서, GI는 0.8㎲, 1.6㎲, 3.2㎲ 중 하나가 사용될 수 있으므로, GI를 포함하는 HE-part의 OFDM 심볼 길이(또는 심볼 간격(symbol interval))은 GI에 따라 13.6㎲, 14.4㎲, 16㎲일 수 있다.
도 25(b)를 참조하면, HE-SIG 필드는 HE-SIG A 필드와 HE-SIG B 필드로 구분될 수 있다.
예를 들어, HE 포맷 PPDU의 HE-part는 12.8㎲ 길이를 가지는 HE-SIG A 필드, 1 OFDM 심볼의 HE-STF 필드, 하나 이상의 HE-LTF 필드 및 1 OFDM 심볼의 HE-SIG B 필드를 포함할 수 있다.
또한, HE-part에서 HE-SIG A 필드는 제외하고 HE-STF 필드부터는 기존의 PPDU 보다 4배 큰 크기의 FFT가 적용될 수 있다. 즉, 256, 512, 1024 및 2048 크기의 FFT가 각각 20MHz, 40MHz, 80MHz 및 160MHz의 HE 포맷 PPDU의 HE-STF 필드부터 적용될 수 있다.
다만, 도 25(b)와 같이 HE-SIG가 HE-SIG A 필드와 HE-SIG B 필드로 구분되어 전송될 때, HE-SIG A 필드 및 HE-SIG B 필드의 위치는 도 25(b)와 상이할 수 있다. 예를 들어, HE-SIG A 필드 다음에 HE-SIG B 필드가 전송되고, HE-SIG B 필드 다음에 HE-STF 필드와 HE-LTF 필드가 전송될 수 있다. 이 경우에도 마찬가지로 HE-STF 필드부터는 기존의 PPDU 보다 4배 큰 크기의 FFT가 적용될 수 있다.
도 25(c)를 참조하면, HE-SIG 필드는 HE-SIG A 필드와 HE-SIG B 필드로 구분되지 않을 수 있다.
예를 들어, HE 포맷 PPDU의 HE-part는 1 OFDM 심볼의 HE-STF 필드, 1 OFDM 심볼의 HE-SIG 필드 및 하나 이상의 HE-LTF 필드를 포함할 수 있다.
위와 유사하게 HE-part는 기존의 PPDU 보다 4배 큰 크기의 FFT가 적용될 수 있다. 즉, 256, 512, 1024 및 2048 크기의 FFT가 각각 20MHz, 40MHz, 80MHz 및 160MHz의 HE 포맷 PPDU의 HE-STF 필드부터 적용될 수 있다.
도 25(d)를 참조하면, HE-SIG 필드는 HE-SIG A 필드와 HE-SIG B 필드로 구분되지 않으며, HE-LTF 필드는 생략될 수 있다.
예를 들어, HE 포맷 PPDU의 HE-part는 1 OFDM 심볼의 HE-STF 필드 및 1 OFDM 심볼의 HE-SIG 필드를 포함할 수 있다.
위와 유사하게 HE-part는 기존의 PPDU 보다 4배 큰 크기의 FFT가 적용될 수 있다. 즉, 256, 512, 1024 및 2048 크기의 FFT가 각각 20MHz, 40MHz, 80MHz 및 160MHz의 HE 포맷 PPDU의 HE-STF 필드부터 적용될 수 있다.
본 발명에 따른 WLAN 시스템을 위한 HE 포맷 PPDU는 적어도 하나의 20MHz 채널을 통해 전송될 수 있다. 예를 들어, HE 포맷 PPDU은 총 4개의 20MHz 채널을 통해 40MHz, 80MHz 또는 160MHz 주파수 대역에서 전송될 수 있다. 이에 대하여 아래 도면을 참조하여 보다 상세히 설명한다.
본 발명이 적용될 수 있는 WLAN 시스템을 위한 HE 포맷 PPDU는 적어도 하나의 20MHz 채널을 통해 전송될 수 있다. 예를 들어, HE 포맷 PPDU은 총 4개의 20MHz 채널을 통해 40MHz, 80MHz 또는 160MHz 주파수 대역에서 전송될 수 있다. 이에 대하여 아래 도면을 참조하여 보다 상세히 설명한다.
이하, 설명하는 PPDU 포맷은 설명의 편의를 위해 앞서 도 25(b)를 기반으로 설명하나, 본 발명이 이에 한정되는 것은 아니다.
도 26은 본 발명의 일 실시예에 따른 HE 포맷 PPDU을 예시하는 도면이다.
도 26에서는 하나의 STA에 80MHz가 할당된 경우(또는 80MHz 내 복수의 STA에게 OFDMA 자원 유닛이 할당된 경우) 혹은 복수의 STA에게 각각 80MHz의 서로 다른 스트림이 할당된 경우의 PPDU 포맷을 예시한다.
도 26을 참조하면, L-STF, L-LTF 및 L-SIG은 각 20MHz 채널에서 64 FFT 포인트(또는 64 서브캐리어)에 기반하여 생성된 OFDM 심볼로 전송될 수 있다.
또한, HE-SIG B 필드가 HE-SIG A 필드 다음에 위치할 수 있다. 이 경우, 단위 주파수 당 FFT 크기는 HE-STF(또는 HE-SIG B) 이후부터 더욱 커질 수 있다. 예를 들어, HE-STF(또는 HE-SIG B)부터 256 FFT가 20MHz 채널에서 사용되고, 512 FFT가 40MHz 채널에서 사용되며, 1024 FFT가 80MHz 채널에서 사용될 수 있다.
HE-SIG A 필드는 PPDU를 수신하는 STA들에게 공통으로 전송되는 공통 제어 정보를 포함할 수 있다. HE-SIG A 필드는 1개 내지 3개의 OFDM 심볼에서 전송될 수 있다. HE-SIG A 필드는 20MHz 단위로 복사되어 동일한 정보를 포함한다. 또한, HE-SIG-A 필드는 시스템의 전체 대역폭 정보를 알려준다.
표 12는 HE-SIG A 필드에 포함되는 정보를 예시하는 표이다.
표 12에 예시되는 각 필드들에 포함되는 정보들은 IEEE 802.11 시스템의 정의를 따를 수 있다. 또한, 앞서 설명한 각 필드들은 PPDU에 포함될 수 있는 필드들의 예시에 해당하며, 이에 한정되지 않는다. 즉, 앞서 설명한 각 필드가 다른 필드로 대체되거나 추가적인 필드가 더 포함될 수 있으며, 모든 필드가 필수적으로 포함되지 않을 수도 있다. HE-SIG A 필드에 포함되는 정보의 또 다른 실시예는 도 34와 관련하여 이하에서 후술하기로 한다.
HE-STF는 MIMO 전송에 있어서 AGC 추정의 성능을 개선하기 위해 사용된다.
HE-SIG B 필드는 각 STA이 자신의 데이터(예를 들어, PSDU)를 수신하기 위하여 요구되는 사용자 특정(user-specific) 정보를 포함할 수 있다. HE-SIG B 필드는 하나 또는 두 개의 OFDM 심볼에서 전송될 수 있다. 예를 들어, HE-SIG B 필드는 해당 PSDU의 변조 및 코딩 기법(MCS) 및 해당 PSDU의 길이에 관한 정보를 포함할 수 있다.
L-STF, L-LTF, L-SIG 및 HE-SIG A 필드는 20MHz 채널 단위로 반복되어 전송될 수 있다. 예를 들어, PPDU가 4개의 20MHz 채널(즉, 80MHz 대역)을 통해 전송될 때, L-STF, L-LTF, L-SIG 및 HE-SIG A 필드는 매 20MHz 채널에서 반복되어 전송될 수 있다.
FFT 크기가 커지면, 기존의 IEEE 802.11a/g/n/ac를 지원하는 레가시 STA은 해당 HE PPDU를 디코딩하지 못할 수 있다. 레가시 STA과 HE STA이 공존(coexistence)하기 위하여, L-STF, L-LTF 및 L-SIG 필드는 레가시 STA이 수신할 수 있도록 20MHz 채널에서 64 FFT를 통해 전송된다. 예를 들어, L-SIG 필드는 하나의 OFDM 심볼을 점유하고, 하나의 OFDM 심볼 시간은 4㎲이며, GI는 0.8㎲일 수 있다.
각 주파수 단위 별 FFT 크기는 HE-STF(또는 HE-SIG A)부터 더욱 커질 수 있다. 예를 들어, 256 FFT가 20MHz 채널에서 사용되고, 512 FFT가 40MHz 채널에서 사용되며, 1024 FFT가 80MHz 채널에서 사용될 수 있다. FFT 크기가 커지면, OFDM 서브캐리어 간의 간격이 작아지므로 단위 주파수 당 OFDM 서브캐리어의 수가 증가되나, OFDM 심볼 시간은 길어진다. 시스템의 효율을 향상시키기 위하여 HE-STF 이후의 GI의 길이는 HE-SIG A의 GI의 길이와 동일하게 설정될 수 있다.
HE-SIG A 필드는 HE STA이 HE PPDU를 디코딩하기 위하여 요구되는 정보를 포함할 수 있다. 그러나, HE-SIG A 필드는 레가시 STA과 HE STA이 모두 수신할 수 있도록 20MHz 채널에서 64 FFT를 통해 전송될 수 있다. 이는 HE STA가 HE 포맷 PPDU 뿐만 아니라 기존의 HT/VHT 포맷 PPDU를 수신할 수 있으며, 레가시 STA 및 HE STA이 HT/VHT 포맷 PPDU와 HE 포맷 PPDU를 구분하여야 하기 때문이다.
도 27은 본 발명의 일 실시예에 따른 HE 포맷 PPDU을 예시하는 도면이다.
도 27에서는 20MHz 채널들이 각각 서로 다른 STA들(예를 들어, STA 1, STA 2, STA 3 및 STA 4)에 할당되는 경우를 가정한다.
도 27을 참조하면, 단위 주파수 당 FFT 크기는 HE-STF(또는 HE-SIG-B)부터 더욱 커질 수 있다. 예를 들어, HE-STF(또는 HE-SIG-B)부터 256 FFT가 20MHz 채널에서 사용되고, 512 FFT가 40MHz 채널에서 사용되며, 1024 FFT가 80MHz 채널에서 사용될 수 있다.
*PPDU에 포함되는 각 필드에서 전송되는 정보는 앞서 도 26의 예시와 동일하므로 이하 설명을 생략한다.
HE-SIG-B 필드는 각 STA에 특정된 정보를 포함할 수 있으나, 전체 밴드(즉, HE-SIG-A 필드에서 지시)에 걸쳐서 인코딩될 수 있다. 즉, HE-SIG-B 필드는 모든 STA에 대한 정보를 포함하며 모든 STA들이 수신하게 된다.
HE-SIG-B 필드는 각 STA 별로 할당되는 주파수 대역폭 정보 및/또는 해당 주파수 대역에서 스트림 정보를 알려줄 수 있다. 예를 들어, 도 27에서 HE-SIG-B는 STA 1는 20MHz, STA 2는 그 다음 20MHz, STA 3는 그 다음 20MHz, STA 4는 그 다음 20MHz가 할당될 수 있다. 또한, STA 1과 STA 2는 40MHz를 할당하고, STA 3와 STA 4는 그 다음 40MHz를 할당할 수 있다. 이 경우, STA 1과 STA 2는 서로 다른 스트림을 할당하고, STA 3와 STA 4는 서로 다른 스트림을 할당할 수 있다.
또한, HE-SIG-C 필드를 정의하여, 도 27의 예시에 HE-SIG C 필드가 추가될 수 있다. 이 경우, HE-SIG-B 필드에서는 전대역에 걸쳐서 모든 STA에 대한 정보가 전송되고, 각 STA에 특정한 제어 정보는 HE-SIG-C 필드를 통해 20MHz 단위로 전송될 수도 있다.
또한, 도 26 및 27의 예시와 상이하게 HE-SIG-B 필드는 전대역에 걸쳐 전송하지 않고 HE-SIG-A 필드와 동일하게 20MHz 단위로 전송될 수 있다. 이에 대하여 아래 도면을 참조하여 설명한다.
도 28은 본 발명의 일 실시예에 따른 HE 포맷 PPDU을 예시하는 도면이다.
도 28에서는 20MHz 채널들이 각각 서로 다른 STA들(예를 들어, STA 1, STA 2, STA 3 및 STA 4)에 할당되는 경우를 가정한다.
도 28을 참조하면, HE-SIG-B 필드는 전대역에 걸쳐 전송되지 않고, HE-SIG-A 필드와 동일하게 20MHz 단위로 전송된다. 다만, 이때 HE-SIG-B는 HE-SIG-A 필드와 상이하게 20MHz 단위로 인코딩되어 전송되나, 20MHz 단위로 복제되어 전송되지는 않을 수 있다.
이 경우, 단위 주파수 당 FFT 크기는 HE-STF(또는 HE-SIG-B)부터 더욱 커질 수 있다. 예를 들어, HE-STF(또는 HE-SIG-B)부터 256 FFT가 20MHz 채널에서 사용되고, 512 FFT가 40MHz 채널에서 사용되며, 1024 FFT가 80MHz 채널에서 사용될 수 있다.
PPDU에 포함되는 각 필드에서 전송되는 정보는 앞서 도 26의 예시와 동일하므로 이하 설명을 생략한다.
HE-SIG-A 필드는 20MHz 단위로 복사되어(duplicated) 전송된다.
HE-SIG-B 필드는 각 STA 별로 할당되는 주파수 대역폭 정보 및/또는 해당 주파수 대역에서 스트림 정보를 알려줄 수 있다. HE-SIG-B 필드는 각 STA에 대한 정보를 포함하므로 20MHz 단위의 각 HE-SIG-B 필드 별로 각 STA에 대한 정보가 포함될 수 있다. 이때, 도 28의 예시에서는 각 STA 별로 20MHz가 할당되는 경우를 예시하고 있으나, 예를 들어 STA에 40MHz가 할당되는 경우, 20MHz 단위로 HE-SIG-B 필드가 복사되어 전송될 수도 있다.
각 BSS 별로 서로 다른 대역폭을 지원하는 상황에서 인접한 BSS로부터의 간섭 레벨이 적은 일부의 대역폭을 STA에게 할당하는 경우에 위와 같이 HE-SIG-B 필드를 전대역에 걸쳐서 전송하지 않는 것이 보다 바람직할 수 있다.
이하에서는 설명의 편의를 위해 도 28의 HE 포맷 PPDU를 기준으로 설명하기로 한다.
도 26 내지 도 28에서 데이터 필드는 페이로드(payload)로서, 서비스 필드(SERVICE field), 스크램블링된 PSDU, 테일 비트(tail bits), 패딩 비트(padding bits)를 포함할 수 있다.
한편, 앞서 도 26 내지 도 28과 같은 HE 포맷 PPDU는 L-SIG 필드의 반복 심볼인 RL-SIG(Repeated L-SIG) 필드를 통해서 구분될 수 있다. RL-SIG 필드는 HE SIG-A 필드 앞에 삽입되며, 각 STA은 RL-SIG 필드를 이용하여 수신된 PPDU의 포맷을 HE 포맷 PPDU로서 구분할 수 있다.
이하, WLAN 시스템에서 다중 사용자(multi-user) 상향링크 전송 방법에 대하여 설명한다.
WLAN 시스템에서 동작하는 AP가 동일한 시간 자원 상에서 복수의 STA으로 데이터를 전송하는 방식을 DL MU 전송(downlink multi-user transmission)이라고 지칭할 수 있다. 반대로, WLAN 시스템에서 동작하는 복수의 STA이 동일한 시간 자원 상에서 AP로 데이터를 전송하는 방식을 UL MU 전송(uplink multi-user transmission)이라고 지칭할 수 있다.
이러한 DL MU 전송 또는 UL MU 전송은 주파수 도메인 또는 공간 도메인(spatial domain) 상에서 다중화될 수 있다.
주파수 도메인 상에서 다중화되는 경우, OFDMA(orthogonal frequency division multiplexing)를 기반으로 복수의 STA 각각에 대해 서로 다른 주파수 자원(예를 들어, 서브캐리어 또는 톤(tone))이 하향링크 또는 상향링크 자원으로 할당될 수 있다. 이러한 동일한 시간 자원에서 서로 다른 주파수 자원을 통한 전송 방식을 'DL/UL MU OFDMA 전송'이라고 지칭할 수 있다.
공간 도메인(spatial domain) 상에서 다중화되는 경우, 복수의 STA 각각에 대해 서로 다른 공간 스트림이 하향링크 또는 상향링크 자원으로 할당될 수 있다. 이러한 동일한 시간 자원에서 서로 다른 공간적 스트림을 통한 전송 식을 'DL/UL MU MIMO' 전송이라고 지칭할 수 있다.
현재 WLAN 시스템에서는 아래와 같은 제약 사항으로 인해 UL MU 전송을 지원하지 못한다.
현재 WLAN 시스템에서는 복수의 STA으로부터 전송되는 상향링크 데이터의 전송 타이밍에 대한 동기화가 지원되지 않는다. 예를 들어, 기존의 WLAN 시스템에서 복수의 STA들이 동일한 시간 자원을 통해 상향링크 데이터를 전송하는 경우를 가정하면, 현재 WLAN 시스템에서는 복수의 STA 각각은 다른 STA의 상향링크 데이터의 전송 타이밍을 알 수 없다. 따라서, AP는 복수의 STA 각각으로부터 동일한 시간 자원 상에서 상향링크 데이터를 수신하기 어렵다.
또한, 현재 WLAN 시스템에서는 복수의 STA에 의해 상향링크 데이터를 전송하기 위해 사용되는 주파수 자원 간의 중첩이 발생될 수 있다. 예를 들어, 복수의 STA 각각의 오실레이터(oscillator)가 다를 경우, 주파수 오프셋(frequency offset)이 다르게 나타날 수 있다. 만약, 주파수 오프셋이 다른 복수의 STA 각각이 서로 다른 주파수 자원을 통해 동시에 상향링크 전송을 수행하는 경우, 복수의 STA 각각에 의해 사용되는 주파수 영역 중 일부가 중첩될 수 있다.
또한, 기존의 WLAN 시스템에서는 복수의 STA 각각에 대한 파워 제어가 수행되지 않는다. 복수의 STA 각각과 AP 사이의 거리와 채널 환경에 종속적으로 AP는 복수의 STA 각각으로부터 서로 다른 파워의 신호를 수신할 수 있다. 이러한 경우, 약한 파워로 도착하는 신호는 강한 파워로 도착하는 신호에 비해 상대적으로 AP에 의해 검출되기 어려울 수 있다.
이에 따라, 본 발명은 WLAN 시스템에서의 UL MU 전송 방법을 제안한다.
도 29는 본 발명의 일 실시예에 따른 상향링크 다중 사용자(multi-user) 전송 절차를 예시하는 도면이다.
도 29을 참조하면, AP가 UL MU 전송에 참여하는 STA들에게 UL MU 전송을 준비할 것을 지시하고, 해당 STA들로부터 UL MU 데이터 프레임을 수신하며, UL MU 데이터 프레임에 대한 응답으로 ACK 프레임(BA(Block Ack) 프레임)을 전송한다.
먼저 AP는 UL MU 트리거 프레임(UL MU Trigger frame, 2910)을 전송함으로써, UL MU 데이터를 전송할 STA들에게 UL MU 전송을 준비할 것을 지시한다. 여기서, UL MU 스케줄링 프레임은 'UL MU 스케줄링(scheduling) 프레임'의 용어로 불릴 수도 있다.
여기서, UL MU 트리거 프레임(2910)은 STA 식별자(ID: Identifier)/주소(address) 정보, 각 STA이 사용할 자원 할당 정보, 지속기간(duration) 정보 등과 같은 제어 정보를 포함할 수 있다.
STA ID/주소 정보는 상향링크 데이터를 전송하는 각 STA을 특정하기 위한 식별자 또는 주소에 대한 정보를 의미한다.
자원 할당 정보는 각 STA 별로 할당되는 상향링크 전송 자원(예를 들어, UL MU OFDMA 전송의 경우 각 STA에게 할당되는 주파수/서브캐리어 정보, UL MU MIMO 전송의 경우 각 STA에게 할당되는 스트림 인덱스)에 대한 정보를 의미한다.
지속기간(duration) 정보는 복수의 STA 각각에 의해 전송되는 상향링크 데이터 프레임의 전송을 위한 시간 자원을 결정하기 위한 정보를 의미한다.
예를 들어, 지속 기간 정보는 각 STA의 상향링크 전송을 위해 할당된 TXOP(Transmit Opportunity)의 구간 정보 혹은 상향링크 프레임 길이(frame length)에 대한 정보(예를 들어, 비트 또는 심볼)를 포함할 수 있다.
또한, UL MU 트리거 프레임(2910)은 각 STA 별로 UL MU 데이터 프레임 전송 시 사용해야 할 MCS 정보, 코딩(Coding) 정보 등과 같은 제어 정보를 더 포함할 수도 있다.
위와 같은 제어 정보는 UL MU 트리거 프레임(2910)을 전달하는 PPDU의 HE-part(예를 들어, HE-SIG A 필드 또는 HE-SIG B 필드)나 UL MU 트리거 프레임(2910)의 제어 필드(예를 들어, MAC 프레임의 Frame Control 필드 등)에서 전송될 수 있다.
UL MU 트리거 프레임(2910)을 전달하는 PPDU는 L-part(예를 들어, L-STF 필드, L-LTF 필드, L-SIG 필드 등)으로 시작하는 구조를 가진다. 이에 따라, 레가시 STA들은 L-SIG 필드로부터 L-SIG 보호(L-SIG protection)을 통해 NAV(Network Allocation Vector) 셋팅을 수행할 수 있다. 예를 들어, 레가시 STA들은 L-SIG에서 데이터 길이(length) 및 데이터율(data rate) 정보를 기반으로 NAV 셋팅을 위한 구간(이하, 'L-SIG 보호 구간')을 산출할 수 있다. 그리고, 레가시 STA들은 산출된 L-SIG 보호 구간 동안에는 자신에게 전송될 데이터가 없다고 판단할 수 있다.
예를 들어, L-SIG 보호 구간은 UL MU 트리거 프레임(2910)의 MAC duration 필드 값과 UL MU 트리거 프레임(2910)을 나르는 PPDU의 L-SIG 필드 이후의 잔여 구간의 합으로 결정될 수 있다. 이에 따라, L-SIG 보호 구간은 UL MU 트리거 프레임(2910)의 MAC duration 값에 따라 각 STA에게 전송되는 ACK 프레임(2930)(또는 BA 프레임)을 전송하는 구간까지의 값으로 설정될 수 있다.
이하, 각 STA에게 UL MU 전송을 위한 자원 할당 방법을 보다 구체적으로 살펴본다. 설명의 편의를 위해 제어 정보가 포함되는 필드를 구분하여 설명하나 본 발명이 이에 한정되는 것은 아니다.
제1 필드는 UL MU OFDMA 전송과 UL MU MIMO 전송을 구분하여 지시할 수 있다. 예를 들어, '0'이면 UL MU OFDMA 전송을 지시하고, '1'이면 UL MU MIMO 전송을 지시할 수 있다. 제1 필드의 크기는 1 비트로 구성될 수 있다.
제2 필드(예를 들어, STA ID/주소 필드)는 UL MU 전송에 참여할 STA ID 혹은 STA 주소들을 알려준다. 제2 필드의 크기는 STA ID를 알려주기 위한 비트 수 × UL MU에 참여할 STA 수로 구성될 수 있다. 예를 들어, 제2 필드가 12 비트로 구성되는 경우, 4 비트 별로 각 STA의 ID/주소를 지시할 수 있다.
제3 필드(예를 들어, 자원 할당 필드)는 UL MU 전송을 위해 각 STA에 할당되는 자원 영역을 지시한다. 이때, 각 STA에 할당되는 자원 영역은 앞서 제2 필드의 순서에 따라 각 STA에게 순차적으로 지시될 수 있다.
만약, 제1 필드 값이 '0'인 경우, 제2 필드에 포함된 STA ID/주소의 순서대로 UL MU 전송을 위한 주파수 정보(예를 들어, 주파수 인덱스, 서브캐리어 인덱스 등)를 나타내고, 제1 필드 값이 '1'인 경우, 제2 필드에 포함된 STA ID/주소의 순서대로 UL MU 전송을 위한 MIMO 정보(예를 들어, 스트림 인덱스 등)를 나타낸다.
이때, 하나의 STA에게 여러 개의 인덱스(즉, 주파수/서브캐리어 인덱스 또는 스트림 인덱스)를 알려줄 수도 있으므로, 제3 필드의 크기는 복수의 비트(혹은, 비트맵(bitmap) 형식으로 구성될 수 있음) × UL MU 전송에 참여할 STA 개수로 구성될 수 있다.
예를 들어, 제2 필드가 'STA 1', 'STA 2'의 순서로 설정되고, 제3 필드가 '2', '2'의 순서로 설정된다고 가정한다.
이 경우, 제1 필드가 '0'인 경우, STA 1은 상위(또는, 하위) 주파수 영역부터 주파수 자원이 할당되고, STA 2는 그 다음의 주파수 자원이 순차적으로 할당될 수 있다. 일례로, 80MHz 대역에서 20MHz 단위의 OFDMA를 지원하는 경우, STA 1은 상위(또는, 하위) 40MHz 대역, STA 2는 그 다음의 40MHz 대역을 사용할 수 있다.
반면, 제1 필드가 '1'인 경우, STA 1은 상위(또는, 하위) 스트림이 할당되고, STA 2는 그 다음 스트림이 순차적으로 할당될 수 있다. 이때, 각 스트림에 따른 빔포밍 방식은 사전에 지정되어 있거나, 제3 필드 또는 제4 필드에서 스트림에 따른 빔포밍 방식에 대한 보다 구체적인 정보가 포함될 수도 있다.
각 STA은 AP에 의해 전송되는 UL MU 트리거 프레임(2910)을 기반으로 UL MU 데이터 프레임(UL MU Data frame, 2921, 2922, 2923)을 AP에 전송한다. 여기서, 각 STA은 AP로부터 UL MU 트리거 프레임(2910)을 수신 후 SIFS 이후에 UL MU 데이터 프레임(2921, 2922, 2923)을 AP에 전송할 수 있다.
각 STA은 UL MU 트리거 프레임(2910)의 자원 할당 정보를 기반으로 UL MU OFDMA 전송을 위한 특정한 주파수 자원 또는 UL MU MIMO 전송을 위한 공간적 스트림을 결정할 수 있다.
구체적으로, UL MU OFDMA 전송의 경우, 각 STA은 서로 다른 주파수 자원을 통해 동일한 시간 자원 상에서 상향링크 데이터 프레임을 전송할 수 있다.
여기서, STA 1 내지 STA 3 각각은 UL MU 트리거 프레임(2910)에 포함된 STA ID/주소 정보 및 자원 할당 정보를 기반으로 상향링크 데이터 프레임 전송을 위한 서로 다른 주파수 자원을 할당 받을 수 있다. 예를 들어, STA ID/주소 정보가 STA 1 내지 STA 3을 순차적으로 지시하고, 자원 할당 정보가 주파수 자원 1, 주파수 자원 2, 주파수 자원 3을 순차적으로 지시할 수 있다. 이 경우, STA ID/주소 정보를 기반으로 순차적으로 지시된 STA 1 내지 STA 3은 자원 할당 정보를 기반으로 순차적으로 지시된 주파수 자원 1, 주파수 자원 2, 주파수 자원 3을 각각 할당 받을 수 있다. 즉, STA 1은 주파수 자원 1, STA 2는 주파수 자원 2, STA 3은 주파수 자원 3을 통해 상향링크 데이터 프레임(2921, 2922, 2923)을 AP로 전송할 수 있다.
또한, UL MU MIMO 전송의 경우, 각 STA은 복수의 공간적 스트림 중 적어도 하나의 서로 다른 스트림을 통해 동일한 시간 자원 상에서 상향링크 데이터 프레임을 전송할 수 있다.
여기서, STA 1 내지 STA 3 각각은 UL MU 트리거 프레임(2910)에 포함된 STA ID/주소 정보 및 자원 할당 정보 기반으로 상향링크 데이터 프레임 전송을 위한 공간적 스트림을 할당 받을 수 있다. 예를 들어, STA ID/주소 정보가 STA 1 내지 STA 3을 순차적으로 지시하고, 자원 할당 정보가 공간적 스트림 1, 공간적 스트림 2, 공간적 스트림 3을 순차적으로 지시할 수 있다. 이 경우, STA ID/주소 정보를 기반으로 순차적으로 지시된 STA 1 내지 STA 3은 자원 할당 정보 기반으로 순차적으로 지시된 공간적 스트림 1, 공간적 스트림 2, 공간적 스트림 3을 각각 할당 받을 수 있다. 즉, STA 1은 공간적 스트림 1, STA 2는 공간적 스트림 2, STA 3은 공간적 스트림 3을 통해 상향링크 데이터 프레임(2921, 2922, 2923)을 AP로 전송할 수 있다.
상향링크 데이터 프레임(2921, 2922, 2923)을 전달하는 PPDU는 L-part 없이도 새로운 구조로도 구성이 가능하다.
또한, UL MU MIMO 전송이거나 20MHz 미만의 서브밴드 형태의 UL MU OFDMA 전송의 경우, 상향링크 데이터 프레임(2921, 2922, 2923)을 전달하는 PPDU의 L-part는 SFN 형태(즉, 모든 STA이 동일한 L-part 구성과 내용을 동시에 전송)로 전송될 수 있다. 반면, 20MHz 이상의 서브밴드 형태의 UL MU OFDMA 전송의 경우, 상향링크 데이터 프레임(2921, 2922, 2923)을 전달하는 PPDU의 L-part는 각 STA이 할당된 대역에서 20MHz 단위로 각각 L-part가 전송될 수 있다.
UL MU 트리거 프레임(2910)의 정보로 상향링크 데이터 프레임을 충분히 구성할 수 있다면, 상향링크 데이터 프레임(2921, 2922, 2923)을 전달하는 PPDU 내 HE-SIG 필드(즉, 데이터 프레임의 구성 방식에 대한 제어 정보를 전송하는 영역)도 필요 없을 수 있다. 예를 들어, HE-SIG-A 필드 및/또는 HE-SIG-B가 전송되지 않을 수 있다. 또한, HE-SIG-A 필드와 HE-SIG-C 필드는 전송되고, HE-SIG-B 필드는 전송되지 않을 수 있다.
AP는 각 STA으로부터 수신한 상향링크 데이터 프레임(2921, 2922, 2923)에 대한 응답으로 ACK 프레임(ACK frame, 2930)(또는 BA 프레임)을 전송할 수 있다. 여기서, AP는 각 STA으로부터 상향링크 데이터 프레임(2921, 2922, 2923)을 수신하고 SIFS 이후에 ACK 프레임(2930)을 각 STA에게 전송할 수 있다.
만일, 기존의 ACK 프레임의 구조를 동일하게 이용한다면, 6 옥텟 크기를 가지는 RA 필드에 UL MU 전송에 참여하는 STA들의 AID(혹은, 부분 AID(Partial AID))를 포함하여 구성할 수 있다.
또는, 새로운 구조의 ACK 프레임을 구성한다면 DL SU 전송 또는 DL MU 전송을 위한 형태로 구성이 가능하다.
AP는 수신에 성공한 UL MU 데이터 프레임에 대한 ACK 프레임(2930)만을 해당 STA에게 전송할 수 있다. 또한, AP는 ACK 프레임(2930)을 통해 수신 성공 여부를 ACK 또는 NACK으로 알려줄 수 있다. 만약 ACK 프레임(2930)이 NACK 정보를 포함한다면, NACK에 대한 이유나 그 후의 절차를 위한 정보(예를 들어, UL MU 스케줄링 정보 등)도 포함할 수 있다.
또는, ACK 프레임(2930)을 전달하는 PPDU는 L-part 없이 새로운 구조로 구성할 수도 있다.
ACK 프레임(2930)은 STA ID 혹은 주소 정보를 포함할 수도 있으나, UL MU 트리거 프레임(2910)에서 지시된 STA의 순서를 동일하게 적용한다면, STA ID 혹은 주소 정보를 생략할 수도 있다.
또한, ACK 프레임(2930)의 TXOP(즉, L-SIG 보호 구간)을 연장하여 다음의 UL MU 스케줄링을 위한 프레임이나, 다음의 UL MU 전송을 위한 보정 정보 등을 포함하는 제어 프레임이 TXOP 내 포함될 수도 있다.
한편, UL MU 전송을 위하여 STA들 간에 동기를 맞추는 등의 보정(adjustment) 과정을 추가될 수도 있다.
도 30 내지 32는 본 발명의 일 실시예에 따른 OFDMA 다중 사용자(multi-user) 전송 방식에서 자원 할당 단위를 예시하는 도면이다.
DL/UL OFDMA 전송 방식이 사용될 때, PPDU 대역폭 내에서 n개의 톤(tone)(또는 서브캐리어(subcarrier)) 단위로 복수 개의 자원 유닛(Resource Unit)이 정의될 수 있다.
자원 유닛은 DL/UL OFDMA 전송을 위한 주파수 자원의 할당 단위를 의미한다.
하나의 STA에게 DL/UL 주파수 자원으로 하나 이상의 자원 유닛이 할당되어, 복수 개의 STA에게 각각 서로 다른 자원 유닛이 할당될 수 있다.
도 30에서는 PPDU 대역폭이 20MHz인 경우를 예시한다.
20MHz PPDU 대역폭(bandwidth)의 중심 주파수 영역에는 7개의 DC 톤들이 위치할 수 있다. 또한, 20MHz PPDU 대역폭의 양측에는 6개의 레프트 가드 톤들(left guard tones) 및 5개의 라이트 가드 톤들(right guard tones)이 각각 위치할 수 있다.
도 30(a)와 같은 자원 유닛 구성 방식에 따르면, 하나의 자원 유닛은 26개의 톤으로 구성될 수 있다. 또한, 도 30(b)와 같은 자원 유닛 구성 방식에 따르면, 하나의 자원 유닛은 52개의 톤으로 구성되거나 26개의 톤으로 구성될 수 있다. 또한, 도 30(c)와 같은 자원 유닛 구성 방식에 따르면, 하나의 자원 유닛은 106개의 톤으로 구성되거나 26개의 톤으로 구성될 수 있다. 또한, 도 30(d)와 같은 자원 유닛 구성 방식에 따르면, 하나의 자원 유닛은 242개의 톤으로 구성될 수 있다.
26 톤으로 구성된 자원 유닛은 2개의 파일럿 톤을 포함할 수 있으며, 52 톤으로 구성된 자원 유닛은 4개의 파일럿 톤을 포함할 수 있으며, 106 톤으로 구성된 자원 유닛은 4개의 파일럿 톤을 포함할 수 있다.
도 30(a)와 같이 자원 유닛이 구성되는 경우, 20MHz 대역에서 DL/UL OFDMA 전송을 위해 최대 9개의 STA까지 지원할 수 있다. 또한, 도 30(b)와 같이 자원 유닛이 구성되는 경우, 20MHz 대역에서 DL/UL OFDMA 전송을 위해 최대 5개의 STA까지 지원할 수 있다. 또한, 도 30(c)와 같이 자원 유닛이 구성되는 경우, 20MHz 대역에서 DL/UL OFDMA 전송을 위해 최대 3개의 STA까지 지원할 수 있다. 또한, 30(d)와 같이 자원 유닛이 구성되는 경우, 20MHz 대역은 하나의 STA에게 할당될 수 있다.
DL/UL OFDMA 전송에 참여하는 STA의 수 및/또는 해당 STA이 전송하는 혹은 수신하는 데이터의 양 등에 기반하여 도 30(a) 내지 도 30(d) 중에 어느 하나의 자원 유닛 구성 방식이 적용되거나 또는, 도 30(a) 내지 도 30(d)이 조합된 자원 유닛 구성 방식이 적용될 수 있다.
도 31에서는 PPDU 대역폭이 40MHz인 경우를 예시한다.
40MHz PPDU 대역폭의 중심 주파수 영역에는 5개의 DC 톤들이 위치할 수 있다. 또한, 40MHz PPDU 대역폭의 양측에는 12개의 레프트 가드 톤들 및 11개의 라이트 가드 톤들이 각각 위치할 수 있다.
도 31(a)와 같은 자원 유닛 구성 방식에 따르면, 하나의 자원 유닛은 26개의 톤으로 구성될 수 있다. 또한, 도 31(b)와 같은 자원 유닛 구성 방식에 따르면, 하나의 자원 유닛은 52개의 톤으로 구성되거나 26개의 톤으로 구성될 수 있다. 또한, 도 31(c)와 같은 자원 유닛 구성 방식에 따르면, 하나의 자원 유닛은 106개의 톤으로 구성되거나 26개의 톤으로 구성될 수 있다. 또한, 도 31(d)와 같은 자원 유닛 구성 방식에 따르면, 하나의 자원 유닛은 242개의 톤으로 구성될 수 있다. 또한, 도 31(e)과 같은 자원 유닛 구성 방식에 따르면, 하나의 자원 유닛은 484개의 톤으로 구성될 수 있다.
26 톤으로 구성된 자원 유닛은 2개의 파일럿 톤을 포함할 수 있으며, 52 톤으로 구성된 자원 유닛은 4개의 파일럿 톤을 포함할 수 있으며, 106 톤으로 구성된 자원 유닛은 4개의 파일럿 톤을 포함할 수 있으며, 242 톤으로 구성된 자원 유닛은 8개의 파일럿 톤을 포함할 수 있으며, 484 톤으로 구성된 자원 유닛은 16개의 파일럿 톤을 포함할 수 있다.
도 31(a)와 같이 자원 유닛이 구성되는 경우, 40MHz 대역에서 DL/UL OFDMA 전송을 위해 최대 18개의 STA까지 지원할 수 있다. 또한, 도 31(b)와 같이 자원 유닛이 구성되는 경우, 40MHz 대역에서 DL/UL OFDMA 전송을 위해 최대 10개의 STA까지 지원할 수 있다. 또한, 도 31(c)와 같이 자원 유닛이 구성되는 경우, 40MHz 대역에서 DL/UL OFDMA 전송을 위해 최대 6개의 STA까지 지원할 수 있다. 또한, 31(d)와 같이 자원 유닛이 구성되는 경우, 40MHz 대역에서 DL/UL OFDMA 전송을 위해 최대 2개의 STA까지 지원할 수 있다. 또한, 31(e)와 같이 자원 유닛이 구성되는 경우, 해당 자원 유닛은 40MHz 대역에서 SU DL/UL 전송을 위해 1개의 STA에 할당될 수 있다.
DL/UL OFDMA 전송에 참여하는 STA의 수 및/또는 해당 STA이 전송하는 혹은 수신하는 데이터의 양 등에 기반하여 도 31(a) 내지 도 31(e) 중에 어느 하나의 자원 유닛 구성 방식이 적용되거나 또는, 도 31(a) 내지 도 31(e)이 조합된 자원 유닛 구성 방식이 적용될 수 있다.
도 32에서는 PPDU 대역폭이 80MHz인 경우를 예시한다.
80MHz PPDU 대역폭의 중심 주파수 영역에는 7개의 DC 톤들이 위치할 수 있다. 다만, 80MHz PPDU 대역폭이 하나의 STA에 할당된 경우에(즉, 996 톤으로 구성된 자원 유닛이 하나의 STA에 할당된 경우) 중심 주파수 영역에는 5개의 DC 톤들이 위치할 수 있다. 또한, 80MHz PPDU 대역폭의 양측에는 12개의 레프트 가드 톤들 및 11개의 라이트 가드 톤들이 각각 위치할 수 있다.
도 32(a)와 같은 자원 유닛 구성 방식에 따르면, 하나의 자원 유닛은 26개의 톤으로 구성될 수 있다. 또한, 도 32(b)와 같은 자원 유닛 구성 방식에 따르면, 하나의 자원 유닛은 52개의 톤으로 구성되거나 26개의 톤으로 구성될 수 있다. 또한, 도 32(c)와 같은 자원 유닛 구성 방식에 따르면, 하나의 자원 유닛은 106개의 톤으로 구성되거나 26개의 톤으로 구성될 수 있다. 또한, 도 32(d)와 같은 자원 유닛 구성 방식에 따르면, 하나의 자원 유닛은 242개의 톤으로 구성되거나 26개의 톤으로 구성될 수 있다. 도 32(e)와 같은 자원 유닛 구성 방식에 따르면, 하나의 자원 유닛은 484개의 톤으로 구성되거나 26개의 톤으로 구성될 수 있다. 도 32(f)와 같은 자원 유닛 구성 방식에 따르면, 하나의 자원 유닛은 996개의 톤으로 구성될 수 있다.
26 톤으로 구성된 자원 유닛은 2개의 파일럿 톤을 포함할 수 있으며, 52 톤으로 구성된 자원 유닛은 4개의 파일럿 톤을 포함할 수 있으며, 106 톤으로 구성된 자원 유닛은 4개의 파일럿 톤을 포함할 수 있으며, 242 톤으로 구성된 자원 유닛은 8개의 파일럿 톤을 포함할 수 있으며, 484 톤으로 구성된 자원 유닛은 16개의 파일럿 톤을 포함할 수 있으며, 996 톤으로 구성된 자원 유닛은 16개의 파일럿 톤을 포함할 수 있다.
도 32(a)와 같이 자원 유닛이 구성되는 경우, 80MHz 대역에서 DL/UL OFDMA 전송을 위해 최대 37개의 STA까지 지원할 수 있다. 또한, 도 32(b)와 같이 자원 유닛이 구성되는 경우, 80MHz 대역에서 DL/UL OFDMA 전송을 위해 최대 21개의 STA까지 지원할 수 있다. 또한, 도 32(c)와 같이 자원 유닛이 구성되는 경우, 80MHz 대역에서 DL/UL OFDMA 전송을 위해 최대 13개의 STA까지 지원할 수 있다. 또한, 32(d)와 같이 자원 유닛이 구성되는 경우, 80MHz 대역에서 DL/UL OFDMA 전송을 위해 최대 5개의 STA까지 지원할 수 있다. 또한, 32(e)와 같이 자원 유닛이 구성되는 경우, 80MHz 대역에서 DL/UL OFDMA 전송을 위해 최대 3개의 STA까지 지원할 수 있다. 또한, 32(f)와 같이 자원 유닛이 구성되는 경우, 해당 자원 유닛은 80MHz 대역에서 SU DL/UL 전송을 위해 1개의 STA에 할당될 수 있다.
DL/UL OFDMA 전송에 참여하는 STA의 수 및/또는 해당 STA이 전송하는 혹은 수신하는 데이터의 양 등에 기반하여 도 32(a) 내지 도 32(f) 중에 어느 하나의 자원 유닛 구성 방식이 적용되거나 또는, 도 32(a) 내지 도 32(f)이 조합된 자원 유닛 구성 방식이 적용될 수 있다.
이외에도 도면에는 도시하지 않았으나, PPDU 대역폭이 160MHz인 경우의 자원 유닛의 구성 방식도 제안될 수 있다. 이 경우, 160MHz PPDU의 대역폭은 도 32에서 상술한 80MHz PPDU 대역폭이 2번 반복된 구조를 가질 수 있다.
상술한 자원 유닛 구성 방식에 따라 결정된 전체 자원 유닛 중 DL/UL OFDMA 전송을 위해 일부의 자원 유닛만이 이용될 수도 있다. 예를 들어, 20MHz 내에서 도 30(a)과 같이 자원 유닛이 구성되는 경우, 9개 미만의 STA에게 각각 하나씩 자원 유닛이 할당되고, 나머지 자원 유닛은 어느 STA에게도 할당되지 않을 수 있다.
DL OFDMA 전송의 경우, PPDU의 데이터 필드는 각 STA에게 할당된 자원 유닛 단위로 주파수 영역(frequency domain)에서 다중화되어 전송된다.
반면, UL OFDMA 전송의 경우, 각 STA 별로 각각 자신이 할당 받은 자원 유닛 단위로 PPDU의 데이터 필드를 구성하고 동시에 AP에게 전송할 수 있다. 이처럼 각 STA이 동시에 PPDU를 전송하므로, 수신단인 AP 입장에서는 각 STA으로부터 전송되는 PPDU의 데이터 필드가 주파수 영역(frequency domain)에서 다중화되어 전송되는 것으로 인식될 수 있다.
또한, DL/UL OFDMA 전송과 DL/UL MU-MIMO 전송이 동시에 지원되는 경우, 하나의 자원 유닛은 공간 영역(spatial domain)에서 복수의 스트림으로 구성될 수 있다. 그리고, 하나의 STA에게 DL/UL 공간 자원(spatial resource)으로서 하나 이상의 스트림이 할당되어, 복수 개의 STA에게 각각 서로 다른 스트림이 할당될 수 있다.
예를 들어, 도 30(c)에서 106 톤으로 구성되는 자원 유닛은 공간 영역(spatial domain)에서 복수의 스트림으로 구성되어 DL/UL OFDMA와 DL/UL MU-MIMO를 동시에 지원할 수 있다.
이상으로 IEEE 802.11ax WLAN 시스템에 관하여 설명하였다. 이하에서는 본 발명의 실시예에 따른 DL/UL MU 데이터 전송 방법에 관하여 상세히 후술하기로 한다.
ACK 지시 정보의 DL MU 전송
AP가 STA들에게 DL MU 프레임을 전송하는 경우(즉, AP가 MAC 프레임을 STA들에게 DL MU 전송하는 경우), DL MU 프레임을 수신한 각 STA들은 수신한 DL MU 프레임에 대한 응답으로서 ACK/BA 프레임을 AP로 전송할 수 있다. 이 경우, STA들은 ACK/BA 프레임을 UL SU 또는 UL MU 전송할 수 있다. 각 STA들이 ACK/BA 프레임을 UL MU 전송하는 경우, ACK/BA 프레임의 UL MU 전송을 위한 ACK 지시(indication) 정보가 요구될 수 있다. 여기서, ACK 지시 정보는 DL MU 데이터 필드를 통해 전송된 데이터에 대한 응답인 ACK/BA 프레임의 UL MU 전송을 위한 정보를 나타낼 수 있다. 이하에서는 설명의 편의를 위해 ACK 프레임과 BA 프레임을 통칭하여 ‘ACK 프레임’이라 지칭하기로 한다.
본 발명의 일 실시예에 따른 ACK 지시 정보는 자원 할당 정보, 대역폭 정보, 채널 정보, MCS 정보, PPDU 최대 길이 정보 등 다양한 정보를 포함할 수 있다.
- 자원 할당 정보(Resource allocation information)
: ACK 프레임을 UL MU 전송하기 위해 각 STA 별로 할당된 UL MU 자원(주파수 자원 및/또는 공간 자원)에 관한 정보이다. ACK 프레임이 주파수 다중화되어 UL MU 전송되는 경우, 자원 할당 정보는 ACK 프레임을 전송하기 위해 각 STA에 할당된 주파수 자원에 관한 정보가 포함되어 있을 수 있다. 이 경우, 자원 할당 정보는 ACK 프레임을 나르는 UL MU PPDU의 대역폭에 대응하는 톤 플랜(도 30 내지 32 참조)을 기준으로 각 STA에 할당된 주파수 자원 정보를 포함할 수 있다.
일 실시예로서, 자원 할당 정보는 각 STA별로 어떤 주파수 대역에서 몇 번째 자원 유닛을 사용하여 ACK 프레임을 UL MU 전송할지에 관하여 알려줄 수 있다. 예를 들어, 자원 할당 정보는 STA 1에게 20MHz 대역폭의 1번째 52톤 자원 유닛을 이용하여 ACK 프레임을 전송할 것을 알려줄 수 있다.
다른 실시예로서, 자원 할당 방법이 표 13과 같이 테이블화되어 있는 경우, 자원 할당 정보는 각 STA에 할당된 자원에 대응하는 대응하는 인덱스 값을 제공할 수도 있다.
다만, 대역폭(20MHz/40MHz/80MHz) 별로 자원 할당 방법을 모두 테이블화하는 것은 오버헤드가 지나치게 증가한다는 문제점이 발생할 수 있다. 따라서, 오버헤드를 줄이기 위해 20MHz 대역폭의 자원 할당 방법이 테이블화될 수 있으며, 자원 할당 정보는 각 STA에 할당된 자원에 대응하는 인덱스 값을 제공할 수 있다. 이 경우, 자원 할당 정보와 함께 대역폭이나 채널 정보가 추가로 제공될 수 있다. 예를 들어, 하나의 STA에 484 톤 자원 유닛이 할당되는 경우, 해당 STA에 대한 자원 할당 정보는 인덱스 시작 값으로서 242 톤 자원 유닛을 지시할 수 있으며, 대역폭 정보는 40MHz를 지시할 수 있다.
이외에도, 자원 할당 정보는 ACK 프레임을 전송하기 위해 각 STA에 할당된 공간 자원에 관한 정보가 포함되어 있을 수 있다.
ACK 프레임의 UL MU 전송을 위한 자원 할당 정보의 포맷은, HE-SIG B 필드에서 DL MU 프레임의 DL MU 전송을 위한 자원 할당 정보의 포맷과 동일하거나 상이할 수 있다.
- 대역폭 정보
: UL MU 전송할 ACK 프레임을 나르는 UL MU PPDU의 대역폭(20MHz/40MHz/80MHz/160MHz)에 관한 정보이다.
- 채널 정보
: 각 STA에 할당된 주파수 자원의 대역폭이 20MHz를 초과하는 경우, 각 STA 별로 몇 번째 20MHz 채널이 할당되었는지를 지시하는 정보이다. 예를 들어, 채널 정보가 ‘00’인 경우 첫 번째 20MHz 채널, ‘01’인 경우 두 번째 채널이 할당되었음을 지시할 수 있다.
상기 대역폭 정보와 채널 정보는 다양한 형식으로 동시에 제공될 수 있다.
일 실시예로서, 대역폭 정보와 채널 정보는 비트맵 형식으로 제공될 수 있다. 예를 들어, STA 1에 대한 대역폭 정보와 채널 정보가 ‘1100’인 경우, STA 1에는 80MHz(20MHz*4 bits) 대역폭 중 1번째 및 2번째 20MHz 채널의 주파수 자원이 할당되었음을 의미한다. 즉, 비트맵에 포함된 비트 수(n)는 대역폭 정보(20MHz*n)를 지시할 수 있으며, ‘1’ 비트 값을 갖는 비트의 위치는 채널 정보를 지시할 수 있다.
다른 실시예로서, 대역폭 정보와 채널 정보는 테이블 형식으로 제공될 수 있다. 이 경우, 대역폭 정보 및 채널 정보를 테이블 형식으로 나타내는 데 3 bits가 요구될 수 있다. 예를 들어, 대역폭 정보 및 채널 정보가 ‘000’~’011’임은 ‘첫 번째 20MHz 채널~네 번째 20MHz 채널’이 할당되었음을 각각 지시할 수 있으며, ‘100’은 ‘첫 번째 40MHz 채널’, ‘101’은 ‘두 번째 40MHz 채널’, ‘111’은 ‘80MHz 채널’이 할당되었음을 각각 지시할 수 있다.
상술한 실시에들은 예시에 불과하며, 대역폭 정보와 채널 정보는 다양한 실시예로서 구성될 수 있다.
- MCS 정보
: UL MU 전송할 ACK 프레임에 적용되는 MCS 레벨에 관한 정보이다.
MCS 정보는 4~5 bits의 비트 사이즈로 구성되어 ACK 프레임에 적용되는 MCS 레벨을 직접 지시할 수 있다. 이 경우, MCS 정보는 시스템에서 정의된 모든 MCS 레벨에 관하여 지시할 수 있다.
또는, 강인한(robust) 전송을 위해 UL MU 전송되는 ACK 프레임에는 더 낮은 MCS 레벨이 적용된다고 가정해볼 때, MCS 정보는 ACK 프레임에 적용되는 MCS 레벨과 DL MU 프레임에 적용되는 MCS 레벨에 대한 차이 값을 지시할 수 있다. 예를 들어,
*MCS 정보가 ‘00’인 경우, ACK 프레임은 DL MU 프레임과 동일한 MCS 레벨이 적용됨을 지시하고,
*MCS 정보가 ‘01’인 경우, ACK 프레임에 적용된 MCS 레벨은 DL MU 프레임에 적용된 MCS 레벨보다 한 단계 낮은 MCS 레벨이 적용됨을 지시하고,
*MCS 정보가 ‘10’인 경우, ACK 프레임에 적용된 MCS 레벨은 DL MU 프레임에 적용된 MCS 레벨보다 두 단계 낮은 MCS 레벨이 적용됨을 지시하고,
*MCS 정보가 ‘11’인 경우, ACK 프레임에 적용된 MCS 레벨은 DL MU 프레임에 적용된 MCS 레벨보다 세 단계 낮은 MCS 레벨이 적용됨을 지시할 수 있다.
여기서, 더 높은/낮은 MCS 레벨이란 심볼 당 데이터 비트 수가 더 높은/낮은 변조 방식을 지시하는 MCS 레벨을 의미하거나, 또는 변조 방식이 동일한 경우 더 높은/낮은 코드 레이트를 지시하는 MCS 레벨을 의미할 수 있다. MCS 레벨이 낮을수록 강인한(robust) 전송에 유리하다.
또는, MCS 정보는 DL MU 프레임에 적용되는 MCS 레벨과 무관하게 강인한 전송을 위한 낮은 MCS 레벨만 선택적으로 지시할 수 있다. 예를 들어,
*MCS 정보가 ‘00’인 경우, MCS 0 레벨(예를 들어, BPSK 변조 및 1/2 코드 레이트 코딩)을 지시하고,
*MCS 정보가 ‘01’인 경우, MCS 1 레벨(예를 들어, QPSK 변조 및 1/2 코드 레이트 코딩)을 지시하고,
*MCS 정보가 ‘10’인 경우, MCS 2 레벨(예를 들어, QPSK 변조 및 3/4 코드 레이트 코딩)을 지시하고,
*MCS 정보가 ‘11’인 경우, MCS 3 레벨(예를 들어, 16QAM 변조 및 1/2 코드 레이트 코딩)을 지시할 수 있다.
- PPDU의 최대 길이 정보(또는 ACK 프레임의 최대 길이 정보)
: ACK 프레임을 나르는 UL MU PPDU의 최대 길이 정보이다. 또는, UL MU PPDU가 나르는 ACK 프레임들 중 가장 긴 길이를 갖는 ACK 프레임의 길이 정보이다.
각 STA별로 전송되는 ACK 프레임들은 UL MU 전송 시 사용되는 UL MU 주파수 자원 및 적용되는 MCS 레벨에 따라 서로 다른 길이를 가질 수 있으나, 간섭(interference) 방지를 위해 모두 같은 길이를 갖도록 패딩되어 전송될 수 있다. 따라서, 각 STA들은 자신이 전송해야 하는 UL MU PPDU(및/또는 ACK 프레임)의 길이를 최대 UL MU PPDU 길이(및/또는 ACK 프레임의 최대 길이 정보)와 동일해지도록 패딩하는 경우, 최대 UL MU PPDU의 길이 정보(및/또는 ACK 프레임의 최대 길이 정보)가 필요할 수 있다. UL MU PPDU의 최대 길이는 마이크로 세컨드(micro second, us) 단위로 표현되거나 심볼(symbol) 수 단위로 표현될 수 있다.
UL MU PPDU의 최대 길이가 심볼 수 단위로 표현되는 경우, 항상 포함되는 물리 프리앰블의 40us를 제외하여 심볼 수를 계산함으로써 심볼 수에 대한 시그널링 오버헤드를 줄일 수 있다.
예를 들어, BPSK 변조 및 1/2 코드 레이트의 MCS 레벨이 적용되며, 26 톤 자원 유닛을 이용하여 전송되는 UL MU PPDU의 길이는 약 400us이며, 여기서 물리 프리앰블을 제외하여 심볼 수를 계산하면, 대략 26 심볼이 된다. 이러한 UL MU PPDU의 최대 길이를 고려하면, UL MU PPDU의 최대 길이 정보의 비트 사이즈는 5 bits이 될 수 있다(00000: 1 심볼~11111: 32 심볼).
- 기타
상술한 정보들 외에 버퍼 상태(buffer status report) 정보, 채널 상태(channel status report) 정보, STA들의 랜덤 액세스(random access)를 위한 트리거 정보, CP(Cyclic Prefix) 길이 정보, STBC 사용 여부, 코딩 방법 등 ACK 프레임의 UL MU 전송을 위한 다양한 트리거 정보가 포함될 수 있다.
상술한 정보들은 실시예에 따라 별도의 기설정된 방식으로 시그널링되거나, DL MU 프레임의 시그널링 방식과 동일한 방식으로 시그널링될 수도 있다. 또한, 상술한 정보들은 선택적으로 ACK 지시 정보에 포함될 수 있으며, 상술한 정보들 외에 추가적인 정보가 ACK 지시 정보에 포함될 수 있다.
이하에서는 상술한 ACK 지시 정보를 전송하는 방법에 관하여 도 33 및 34를 참조하여 제안하고자 한다.
ACK 지시 정보를 전송하는 방법은 이하와 같이 크게 2가지로 구분될 수 있다.
1. 물리 프리앰블에 포함되어 전송
2. 데이터 필드에 포함되어 전송
ACK 지시 정보가 물리 프리앰블에 포함되어 전송되는 실시예는 도 33과 관련하여, 데이터 필드에 포함되어 전송되는 실시예는 도 34 내지 36과 관련하여 이하에서 후술하기로 한다.
도 33은 ACK 지시 정보가 물리 프리앰블에 포함된 20MHz DL MU PPDU의 일 실시예를 도시한 도면이다.
도 33을 참조하면, 20MHz DL MU PPDU는 물리 프리앰블 및 물리 프리앰블에 뒤따르는 데이터 필드를 포함할 수 있다. 보다 상세하게는, 20MHz DL MU PPDU는 L-STF 필드→L-LTF 필드→L-SIG 필드→RL-SIG(Repeated L-SIG) 필드→HE-SIG A 필드→HE-SIG B 필드→ HE-STF 필드→HE-LTF 필드→HE-SIG C 필드 순서로 구성될 수 있다. 상술한 필드의 순서는 실시예에 따라 변경될 수 있으며, 특정 필드가 추가될 수 있으며, 일부 필드는 포함되지 않을 수 있다.
ACK 지시 정보는 이러한 물리 프리앰블의 HE-SIG B 필드 또는 HE-SIG B 필드에 포함될 수 있다.
1. HE-SIG B 필드에 포함되는 경우
ACK 지시 정보는 물리 프리앰블의 HE-SIG B 필드에 포함되어 DL MU 전송될 수 있다. 여기서, HE-SIG B 필드는 DL MU PPDU(DL MU 전송되는 PPDU)의 수신 STA들에 의해 공통적으로 요구되는 ‘공통 정보(또는 공통 필드(common field))’와 수신 STA 별로 개별적으로 요구되는 ‘사용자 특정 정보(또는 사용자 특정 필드(user specific field))’를 포함할 수 있다.
일 실시예로서, ACK 지시 정보는 HE-SIG B 필드의 공통 정보 또는 사용자 특정 정보에 포함될 수 있다. 예를 들어, ACK 지시 정보가 수신 STA 전체에 대한 지시 정보를 포함하는 경우, 해당 ACK 지시 정보는 HE-SIG B 필드의 공통 정보에 포함될 수 있다. 또는, ACK 지시 정보가 수신 STA 별 지시 정보를 포함하는 경우, 해당 ACK 지시 정보는 HE-SIG B 필드의 사용자 특정 정보에 포함될 수 있다.
다른 실시예로서, ACK 지시 정보는 HE-SIG B 필드의 공통 정보 및 사용자 특정 정보에 포함될 수 있다. 보다 상세하게는, ACK 지시 정보에 포함된 수신 STA 전체에 대한 ACK 서브 지시 정보는 공통 정보에 포함될 수 있으며, ACK 지시 정보에 포함된 수신 STA 별 ACK 서브 지시 정보는 사용자 특정 정보에 포함될 수 있다.
예를 들어, ACK 프레임 전송을 위한 수신 STA ‘전체’의 UL MU 자원 할당 정보(즉, 서브 지시 정보)는, 공통 정보에 포함될 수 있다. 또는, ACK 프레임 전송을 위한 수신 STA 별 UL MU 자원 할당 정보(또는 서브 지시 정보)는, 사용자 특정 정보에 포함될 수 있다. 또한, 수신 STA 별로 ACK 프레임에 적용되는 MCS 레벨에 관한 정보는 사용자 특정 정보에 포함될 수 있다. 또는, 수신 STA 별로 적용되는 MCS 레벨이 동일한 경우, 해당 MCS 레벨에 관한 정보는 공통 정보에 포함될 수 있다. 또한, 수신 STA별 전송하는 ACK 프레임이 모두 같은 길이를 갖도록 패딩된다고 가정하면, ACK 프레임의 최대 길이 정보(즉, 서브 지시 정보)는 공통 정보에 포함될 수 있다.
이외에도, ACK 지시 정보에 포함된 서브 지시 정보는 특성에 따라 공통 정보 또는 사용자 특정 정보에 포함될 수 있으며, 상술한 실시예에 한정되는 것은 아니다.
2. HE-SIG C 필드에 포함되는 경우
ACK 지시 정보는 물리 프리앰블의 HE-SIG C 필드에 포함되어 DL MU 전송될 수 있다.
앞서 상술한 바와 같이 20MHz DL MU PPDU의 경우, HE-SIG B 필드까지는 64 FFT가 사용되고, HE-STF부터 256(4*64) FFT가 사용될 수 있다. 이 경우, 각 STA들은 HE-SIG B 필드에 포함된 DL MU 자원 할당 정보를 이용하여 자신에게 할당된 DL MU 자원에 관한 정보를 획득할 수 있다. HE-SIG C 필드는 HE-STF 뒤에 위치하므로, 각 STA에 개별적으로 할당된 자원을 이용하여 전송될 수 있으며, 따라서 HE-SIG C 필드는 각 STA에 특정한 정보를 전송하는 데 사용될 수 있다. 따라서, AP는 이러한 HE-SIG C 필드에 각 STA 별 ACK 프레임 전송을 위한 ACK 지시 정보를 DL MU 전송할 수 있다.
이렇듯 물리 프리앰블에 포함된 ACK 지시 정보는 DL MU PPDU를 통해 각 STA으로 DL MU 전송될 수 있으며, 각 STA은 수신한 ACK 지시 정보에 따라 자신에게 할당된 UL MU 자원을 이용하여 ACK 프레임을 UL MU 전송할 수 있다.
도 34는 ACK 지시 정보가 데이터 필드에 포함된 20MHz DL MU PPDU의 일 실시예를 도시한 도면이다. 도 34에서 도시된 필드들에 관한 설명은 도 6, 7, 및 17과 관련하여 상술한 바와 같으므로, 중복되는 설명은 생략한다.
ACK 지시 정보는 다양한 실시예로서 데이터 필드에 포함될 수 있다. 예를 들어, 데이터 필드가 A-MPDU를 포함하는 경우, ACK 지시 정보는 A-MPDU에 포함된 적어도 하나의 MPDU의 MAC 헤더에 포함될 수 있다. 또는, ACK 지시 정보는 A-MPDU에 포함된 적어도 하나의 MPDU의 MAC 프레임 바디에 포함될 수 있다. 이하에서는 ACK 지시 정보가 MAC 헤더에 포함된 실시예를 중심으로 설명하기로 한다.
일 실시예로서, ACK 지시 정보는 MAC 헤더에 포함된 프레임 컨트롤 필드에 포함될 수 있다. 종래에는, 프레임 컨트롤 필드에 포함된 To DS 필드와 From DS 필드의 비트 값이 각각 ‘1’인 옵션은 메쉬(mesh) BSS를 지시하기 위해 사용되었는데, 본 발명에서는 이러한 옵션을 MAC 헤더 내의 ACK 지시 정보 포함 여부를 지시하는 지시자로서 사용할 수 있다. 따라서 To DS 필드와 From DS 필드 값이 각각 ‘1’로 설정된 경우(즉, ACK 지시 정보를 포함함을 지시하는 경우), 주소 4(address 4) 필드(6 octets)는 ACK 지시 정보를 전송하기 위한 필드로서 사용될 수 있다.
다른 실시예로서, ACK 지시 정보는 MAC 헤더에 포함된 컨트롤 필드에 포함될 수 있다. 보다 상세하게는, ACK 지시 정보는 HT 포맷 MPDU의 MAC 헤더에 포함된 HT 컨트롤 필드(4 octets)에 포함될 수 있다. 또는, ACK 지시 정보는 802.11ax 시스템에서 새롭게 정의된 HE 포맷 MPDU의 MAC 헤더에 포함된 HE 컨트롤 필드에 포함될 수 있다.
여기서, HE 컨트롤 필드(4 octets)는 HT 컨트롤 필드가 802.11ax 시스템에 맞게 새롭게 구성된 필드일 수 있다. 또는, HE 컨트롤 필드(10 octets)는 상술한 주소 4 필드(6 octets)와 HT 컨트롤 필드(4 octets)가 합쳐져서 새롭게 구성된 필드일 수 있다. 또는, HE 컨트롤 필드는 HT 포맷에서 4 octets으로 구성된 HT 컨트롤 필드를 대신하여 4~6octets 사이즈를 갖도록 새롭게 구성된 필드일 수 있다.
상술한 바와 같이, ACK 지시 정보는 다양한 실시예로서 MAC 헤더에 포함된 다양한 필드에 포함될 수 있다. 이 경우, MAC 헤더는 ACK 지시 정보를 포함하고 있음을 지시하는 지시자를 추가로 포함하고 있을 수 있다. 이하에서는 이러한 지시자에 관한 다양한 실시예에 관하여 후술하기로 한다.
ACK 지시 정보가 포함되어 있음을 지시하는 지시자
A-MPDU 서브 프레임은 포함하고 있는 MAC 헤더가 ACK 지시 정보를 포함하고 있음을 지시하는 지시자를 포함하고 있을 수 있다. 지시자는 다양한 실시예로서 A-MPDU의 서브 프레임에 포함될 수 있다.
1) 제1 실시예
지시자는 ACK 지시 정보를 포함하는 MAC 헤더와 대응하는 MPDU 델리미터(delimiter) 필드에 포함될 수 있다. 보다 상세하게는, 하나의 A-MPDU 서브 프레임에 포함된 MPDU 델리미터 필드는 상기 A-MPDU 서브 프레임에 포함된 MAC 헤더가 ACK 지시 정보를 포함하고 있음을 지시하는 지시자를 포함할 수 있다. 예를 들어, MPDU 델리미터 필드에 포함된 예비 비트들(4 bits) 중 특정 비트(1 bit)는 지시자로서 기능을 수행할 수 있다. 만일, 지시자 기능을 수행하는 특정 비트 값이 기설정된 값(예를 들어, ‘1’)로 설정된 경우, 상기 지시자를 포함하는 MAC 헤더는 ACK 지시 정보를 포함하고 있음을 지시할 수 있다.
또한, MPDU 델리미터 필드에 포함된 지시자는 해당 MPDU 델리미터 필드와 대응하는 MPDU가 802.11ax 시스템에서 새롭게 정의된 HE 컨트롤 필드를 포함하고 있음을 추가로 지시할 수 있다. 보다 상세하게는, 하나의 A-MPDU 서브 프레임에 포함된 MPDU 델리미터 필드는 상기 A-MPDU 서브 프레임에 포함된 MPDU가 HE 컨트롤 필드를 포함하고 있음을 추가로 지시할 수 있다. 이때, ACK 지시 정보는 HE 컨트롤 필드에 포함될 수 있다. 이 경우 해당 HE 컨트롤 필드를 포함하는 MPDU는 HT 컨트롤 레퍼 프레임에 해당하지 않을 수 있다.
2) 제2 실시예
만일, 802.11ax 시스템에서 ACK 지시 정보를 포함하는 MPDU의 타입 또는 서브 타입이 새롭게 정의되는 경우, 지시자는 새롭게 정의된 타입 또는 서브 타입으로서 상기 MPDU 내 MAC 헤더의 프레임 컨트롤 필드에 포함될 수 있다. 즉, MPDU의 타입 또는 서브 타입은 지시자로서 해당 MPDU가 MAC 헤더 내에 ACK 지시 정보를 포함하는 MPDU임을 지시할 수 있다. 이 경우, 지시자로서의 타입 또는 서브 타입은 802.11ax 시스템에서 새로 정의될 수 있다.
3) 제3 실시예
만일, ACK 지시 정보를 포함하는 MPDU가 HT 컨트롤 필드를 포함하는 HT 포맷 프레임(예를 들어, HT 컨트롤 래퍼(wrapper) 프레임)에 해당하는 경우, 상기 HT 컨트롤 필드 내의 특정 비트는 지시자로서의 기능을 수행할 수 있다. 보다 상세하게는, HT 컨트롤 필드 내에 포함된 예비 비트들 중 특정 비트는 지시자로서의 기능을 수행할 수 있으며, 해당 특정 비트가 기설정된 값으로 설정된 경우, 해당 HT 컨트롤 필드는 ACK 지시 정보를 포함하고 있음을 지시할 수 있다.
4) 제4 실시예
도 35는 HT 포맷의 컨트롤 필드를 도시한 도면이다. 도 35를 참조하면, 컨트롤 필드의 첫 번째 비트는 해당 컨트롤 필드가 VHT 포맷의 VHT 컨트롤 필드임을 지시하는 지시자로서의 기능을 수행할 수 있다. 예를 들어, 컨트롤 필드의 첫 번째 비트의 값이 기설정된 값(예를 들어, ‘1’)으로 설정된 경우, 해당 컨트롤 필드는 VHT 컨트롤 필드임을 지시할 수 있다.
이와 유사하게, HT 컨트롤 필드의 두 번째 비트(예비 비트)(3510)는 해당 컨트롤 필드가 ACK 지시 정보를 포함하며, 802.11ax 시스템에서 새로이 정의된 HE 포맷의 HE 컨트롤 필드임을 지시하는 지시자로서의 기능을 수행할 수 있다. 예를 들어, 컨트롤 필드의 첫 번째 비트가 VHT 포맷을 지시하고, 두 번째 비트(3510)가 ACK 지시 정보를 포함함(또는, HE 포맷을)을 지시하는 경우(또는, 두 번째 비트(3510)가 기설정된 값(예를 들어, ‘1’)으로 설정된 경우), 해당 컨트롤 필드는 ACK 지시 정보를 포함하는 HE 컨트롤 필드임을 지시할 수 있다.
HE 컨트롤 필드는 HT 컨트롤 필드를 이용하여 새롭게 구성될 수 있으며 HE 컨트롤 필드의 구성에 관한 보다 상세한 설명은 도 36과 관련하여 이하에서 후술하기로 한다.
5) 제5 실시예
지시자는 MAC 헤더에 포함된 필드들 중 특정 필드에 포함될 수 있다. 보다 상세하게는, 지시자는 MAC 헤더에 포함된 필드들 중 재해석이 가능한 특정 필드에 포함될 수 있다.
예를 들어, 도 34와 관련하여 상술한 바와 같이, 종래에는, 프레임 컨트롤 필드에 포함된 To DS 필드와 From DS 필드의 비트 값이 각각 ‘1’인 옵션은 메쉬(mesh) BSS를 지시하기 위해 사용되었는데, 본 발명에서는 이러한 옵션을 MAC 헤더 내의 ACK 지시 정보 포함 여부를 지시하는 지시자로서 사용할 수 있다. 따라서, To DS 필드와 From DS 필드의 비트 값이 각각 ‘1’로 설정된 경우, 주소 4(address 4) 필드를 ACK 지시 정보를 전송하기 위한 필드로서 사용될 수 있다. 이 경우, To DS 필드와 From DS 필드가 지시자로서의 기능을 수행할 수 있으며, To DS 필드 및 From DS 필드를 통해 상기 필드들을 포함한 MAC 헤더는 ACK 지시 정보를 포함하고 있음을 지시할 수 있다.
또는, 다른 예로서, MAC 헤더에 포함된 특정 주소 필드에 포함된 특정 비트(예를 들어, AID 필드의 최상위 비트로부터 12번째 비트(B12))는 지시자로서의 기능을 수행할 수 있다.
*이상으로 지시자의 다양한 실시예에 관하여 살펴보았다. 지시자는 이외에도 다양한 실시예로서 MAC 헤더에 포함되어, 해당 MAC 헤더가 ACK 지시 정보를 포함하고 있음을 지시할 수 있으며, 상술한 실시예에 한정되는 것은 아니다.
이하에서는 제4 실시예와 관련하여 상술한 HE 컨트롤 필드의 구성에 관하여 상세히 후술하기로 한다.
도 36은 본 발명의 일 실시예에 따른 HE 컨트롤 필드를 도시한 도면이다.
도 36에서 HE 컨트롤 필드에 포함된 일부 필드들에 대한 설명은 HT 컨트롤 필드에 포함된 일부 필드들에 대한 설명(도 8과 관련하여 상술)이 동일하게 적용될 수 있다. 따라서, 이하에서는 HT 컨트롤 필드와의 차이점을 중심으로 HE 컨트롤 필드에 관하여 설명하기로 한다. 도 36에 도시한 필드들은 독립적으로 존재할 수 있으며, 선택적으로 HE 컨트롤 필드에 포함될 수 있으며, 필드들의 순서와 비트 사이즈 역시 실시예에 따라 변경될 수 있다.
도 36을 참조하면, HE 컨트롤 필드는 HT 컨트롤 포맷과는 다르게, 지시자 및 ACK 지시 정보를 포함할 수 있다. 또한, 앞서 상술한 바와 같이, HE 컨트롤 필드의 첫 번째 비트는 해당 컨트롤 비트가 VHT 포맷임을 지시하고, 두 번째 비트는 해당 컨트롤 비트가 HE 포맷임을 지시할 수 있다.
도 36(a)는 DL MU 전송되는 HE 컨트롤 필드를 도시한 도면이다.
도 36(a)를 참조하면, HE 컨트롤 필드는 ACK 프레임의 UL MU 전송을 위한 ACK 채널 정보, 버퍼 상태 요청(buffer status report request) 정보(1 bit)(3630), 및 채널 상태 정보(channel status report)(1 bits)(미도시) 중 적어도 하나를 포함할 수 있다. 여기서, ACK 채널 정보는 ACK 프레임을 UL MU 전송하기 위해 각 STA에 할당된 UL MU 자원에 관한 정보인 ‘자원 할당(Resource Allocation; RU allocation) 정보’를 의미하는 것으로, 앞서 상술한 자원 할당 정보에 관한 설명 및 실시예가 동일하게 적용될 수 있다. 이 경우, ACK 채널 정보는 앞서 상술한 자원 할당 정보의 또 다른 실시예로서, ACK 채널 시작 인덱스 정보(4 bits)(3610)와 ACK 채널 듀레이션 정보(4 bits)(3620)를 포함할 수 있다.
‘하나의 ACK 채널’을 ACK 프레임을 위한 UL MU 자원의 최소 할당 단위라고 가정할 때, ACK 채널의 시작 인덱스 정보(3610)와 할당된 ACK 채널의 크기(또는 개수)를 지시하는 ACK 채널의 듀레이션 정보(3620)가 요구될 수 있다. 이 경우, ACK 채널의 시작 인덱스 정보(3610)와 듀레이션 정보(3620)의 비트 사이즈는 DL MU 자원이 할당될 수 있는 최대 STA(또는 사용자) 수에 기초하여 결정될 수 있다. 예를 들어, DL MU 자원(주파수 자원과 공간 자원 포함)이 할당될 수 있는 최대 STA 수가 16(2^4bits)인 경우, ACK 채널 시작 인덱스 정보(3610)와 ACK 채널 듀레이션 정보(3620)는 각각 4 bits의 비트 사이즈를 가질 수 있다.
만일, 각 STA 별로 할당되는 ACK 채널의 크기(또는 개수)를 모두 동일하게 설정하는 경우(즉, ACK 프레임에 적용되는 MCS 레벨을 고정하는 경우), ACK 채널의 듀레이션 정보(3620)는 별도로 필요하지 않을 수 있다. 또는, DL 프레임에 적용되는 MCS 레벨을 기초로 결정된 MCS 레벨을 ACK 프레임에 적용하는 경우, ACK 채널 정보는 DL 프레임에 적용되는 MCS 레벨과 ACK 프레임에 적용되는 MCS 레벨의 차이 값을 지시할 수 있다. 예를 들어, ACK 채널 정보는 ACK 프레임에 적용되는 MCS 레벨로부터 DL 프레임에 적용되는 MCS 레벨의 차이 값(보다 상세하게는, ACK 프레임에 적용되는 MCS 레벨- DL 프레임에 적용되는 MCS 레벨)으로서 ‘-2, -1, 0, 1’을 지시할 수 있으며, 2 bits의 비트 사이즈로 시그널링될 수 있다.
상술한 실시예에서 ACK 프레임에 적용되는 MCS 레벨에 따라 ACK 채널의 크기(또는 개수)는 고정된다고 가정한다.
이외에도, HE 컨트롤 필드는 앞서 상술한 ACK 지시 정보에 포함되는 다양한 정보들(예를 들어, 대역폭 정보, MCS 정보, PPDU 최대 길이 정보 등)을 더 포함할 수 있다.
도 36(b)는 UL MU 전송되는 HE 컨트롤 필드를 도시한 도면이다.
도 36(b)를 참조하면, HE 컨트롤 필드는 버퍼 상태 정보(8 bits)(3640-1, 3640-2)와 버퍼 상태 보고할 내용이 있는지 여부, 및 채널 정보 중 적어도 하나를 포함할 수 있다. 버퍼 상태 정보는 2개의 필드로 구성될 수 있으며, 각 필드의 비트 사이즈는 4 bits일 수 있다. 버퍼 상태 정보는 큐 사이즈(queue size), 액세스 카테고리(AC: Access Category), 백오프 카운트(backoff count) 등을 지시할 수 있다.
HE 컨트롤 필드에 포함될 수 있는 정보의 종류를 지시하는 타입 지시자는 HE 컨트롤 필드에 우선하는 필드(또는 앞서는 필드)에 포함될 수 있다.
오류 복구(Error Recovery)
DL MU PPDU의 데이터 필드가 A-MPDU로 구성된 경우, AP는 A-MPDU를 구성하는 모든 MPDU의 MAC 헤더마다 ACK 지시 정보를 포함시키거나, 일부 MPDU(예를 들어, A-MPDU를 구성하는 MPDU들 중 첫 번째 MPDU)의 MAC 헤더에 ACK 지시 정보를 포함시킬 수 있다.
만일 A-MPDU를 구성하는 모든 MPDU의 MAC 헤더마다 ACK 지시 정보를 포함시키는 경우, 중복되는 정보가 모든 MPDU에 포함되어 있어 오버헤드가 증가한다는 단점이 있다. 반대로, 일부 MPDU의 MAC 헤더에 ACK 지시 정보를 포함시키는 경우, 오버헤드가 줄어든다는 효과가 있으나, STA이 해당 일부 MPDU의 디코딩을 실패하는 경우, ACK 프레임을 UL MU 전송할 수 없다는 문제점이 존재한다. 이러한 문제점을 방지하기 위해, 일부 MPDU의 MAC 헤더에 ACK 지시 정보를 포함시키는 경우 일정한 오류 복구 절차가 필요할 수 있다. 이하에서는 본 발명의 일 실시예에 따른 오류 복구 절차에 관하여 상세히 후술하기로 한다.
도 37은 본 발명의 일 실시예에 따른 오류 복구 절차를 개략적으로 도시한 도면이다. 이하에서는 AP가 STA 1~4를 대상으로 DL MU 프레임(또는 DL 데이터)을 전송하고, 이러한 DL MU 프레임(또는 DL 데이터)을 수신한 STA 1~4는 수신한 DL MU 프레임(또는 DL 데이터)에 대한 응답으로서 ACK 프레임을 UL MU 전송하는 경우를 가정하여 설명하기로 한다.
도 37을 참조하면, AP는 DL MU 자원을 이용하여 DL MU 프레임(또는 DL 데이터)을 STA 1~4로 전송할 수 있다. 이 경우, 각 STA으로 전송되는 DL MU 프레임(또는 DL 데이터)의 일부 MAC 헤더에는 ACK 프레임의 UL MU 전송을 위한 ACK 지시 정보가 포함되어 있을 수 있다.
DL MU 프레임(또는 DL 데이터)을 정상적으로 수신한 각 STA 1, 2는, DL MU 프레임(또는 DL 데이터)을 수신한 뒤 소정의 시간 후에 DL MU 프레임(또는 DL 데이터)에 대한 응답으로서 ACK 프레임을 UL MU 전송할 수 있다. 이 경우, STA 1, 2는 수신한 DL MU 프레임(또는 DL 데이터)의 일부 MAC 헤더에 포함된 ACK 지시 정보가 지시하는 UL MU 자원을 이용하여 ACK 프레임을 UL MU 전송할 수 있다.
DL MU 프레임(또는 DL 데이터) 또는 ACK 지시 정보를 정상적으로 수신(또는 디코딩)하지 못한 STA 3, 4는 DL MU 프레임(또는 DL 데이터)에 대한 응답으로서 ACK 프레임을 UL MU 전송할 수 없다.
이 경우, AP는 STA 1, 2로부터 ACK 프레임을 UL MU 수신한 뒤 소정의 시간(예를 들어, SIFS) 후 ACK 프레임의 UL MU 전송에 실패한 STA 3, 4로 MU BAR 프레임을 DL MU 전송할 수 있다. 또는, AP는 DL MU 프레임(또는 DL 데이터)을 STA 3, 4로 재전송하기 위한 백오프 과정(backoff procedure) 후 채널 경쟁(channel contention)을 통해서 MU BAR 프레임을 DL MU 전송할 수 있다. MU BAR 프레임에는 ACK 프레임의 UL MU 전송에 실패한 STA들의 STA ID와 ACK 프레임의 UL MU 전송을 위한 새로운 지시 정보가 포함되어 있을 수 있다.
이 경우, STA 3, 4는 ACK 프레임을 UL MU 전송할 기회를 얻게 된다. STA 3, 4는 수신한 MU BAR을 기초로 ACK 프레임을 UL MU 전송할 수 있다.
AP가 MU BAR을 전송한 후에도 STA 3, 4가 ACK 프레임을 UL MU 전송하지 않는다면, AP는 STA 3, 4가 DL MU 프레임(또는 DL 데이터)을 제대로 디코딩지 못한 STA들이라 판단하고, DL MU 프레임(또는 DL 데이터)의 재전송 등의 후속 절차를 수행할 수 있다.
다른 실시예로서, DL MU 프레임(또는 DL 데이터)은 수신하였으나, ACK 지시 정보를 수신하지 못하여 ACK 프레임을 UL MU 전송하지 못한 STA들은 채널 경쟁(channel contention)을 통해 ACK 프레임을 UL SU 전송할 수 있다. 이때, ACK 프레임은 UL 프레임에 단독으로 포함된 스탠드-얼론(stand-alone) 프레임일 수도 있고, UL 프레임의 데이터 프레임에 피기백된 프레임일 수도 있다.
이 경우, AP는 STA들로부터 ACK 프레임이 수신되기를 계속 기다릴 수는 없으므로, 일정한 대기 시간을 설정하여 대기 시간 동안만 ACK 프레임의 UL SU 수신을 기다릴 수 있다. 대기 시간 동안 해당 STA들로부터 ACK 프레임이 수신되지 않는 경우, AP는 ACK 프레임을 전송하지 않은 STA들은 DL MU 프레임(또는 DL 데이터)을 제대로 디코딩하지 못한 STA들이라 판단하여 DL MU 프레임(또는 DL 데이터)의 재전송 등의 후속 절차를 수행할 수 있다.
또는, AP는 DL MU 프레임(또는 DL 데이터)을 재전송하기 위한 백오프 과정 중 또는 MU BAR 프레임을 전송하는 도중에, ACK 프레임의 UL MU 전송에 실패한 STA들로부터 BAR 요청 및/또는 ACK 프레임을 수신할 수 있다. 이 경우, AP는 수신한 BAR 요청 및/또는 ACK 프레임을 기초로 DL MU 프레임(또는 DL 데이터)의 재전송 및/또는 BAR 프레임 전송 등의 후속 절차를 수행할 수 있다.
다른 실시예로서, DL MU 프레임(또는 DL 데이터)은 수신하였으나, ACK 지시 정보를 수신하지 못하여 ACK 프레임을 UL MU 전송하지 못한 STA들은 랜덤 액세스(random access) 구간(예를 들어, 다음 랜덤 액세스 구간 또는 AP가 지정하는 랜덤 액세스 구간)에 AP로 BAR 프레임을 요청하거나 ACK 프레임을 직접 전송할 수 있다.
이 경우, AP는 STA들로부터 ACK 프레임의 수신 또는 BAR 프레임 요청을 계속 기다릴 수는 없으므로, 일정한 대기 시간을 설정하여 대기 시간 동안만 ACK 프레임 및 BAR 프레임 요청의 수신을 기다릴 수 있다. 대기 시간 동안 해당 STA들로부터 ACK 프레임 또는 BAR 프레임 요청이 수신되지 않는 경우, AP는 ACK 프레임을 전송하지 않은 STA들은 DL MU 프레임(또는 DL 데이터)을 제대로 디코딩하지 못한 STA들이라 판단하여 DL MU 프레임(또는 DL 데이터)의 재전송 등의 후속 절차를 수행할 수 있다.
또는, AP는 DL MU 프레임(또는 DL 데이터)을 재전송하기 위한 백오프 과정 중 또는 MU BAR 프레임을 전송하는 도중에, ACK 프레임의 UL MU 전송에 실패한 STA들로부터 BAR 요청 및/또는 ACK 프레임을 수신할 수 있다. 이 경우, AP는 수신한 BAR 요청 및/또는 ACK 프레임을 기초로 DL MU 프레임(또는 DL 데이터)의 재전송 및/또는 BAR 프레임 전송 등의 후속 절차를 수행할 수 있다.
도 38은 본 발명의 일 실시예에 따른 AP 장치의 DL MU 전송 방법을 나타낸 순서도이다. 본 순서도와 관련하여 상술한 실시예들이 동일하게 적용될 수 있다. 따라서, 이하에서는 중복되는 설명은 생략하기로 한다.
도 38을 참조하면, AP는 DL MU PPDU를 생성할 수 있다(S3810). 여기서 DL MU PPDU는 물리 프리앰블 및 데이터 필드를 포함할 수 있다. 데이터 필드는 적어도 하나의 MPDU를 포함할 수 있으며, 이때 상기 적어도 하나의 MPDU는 MAC 헤더와 MAC 프레임 바디를 포함할 수 있다. 또한, 상기 MAC 헤더는 상기 데이터 필드를 통해 전송된 데이터에 대한 응답인 ACK 프레임의 UL MU 전송을 위한 ACK 지시 정보를 포함한다.
다음으로, AP는 DL MU PPDU를 전송할 수 있다(S3820). 보다 상세하게는, AP는 생성한 DL MU PPDU를 DL 자원을 할당 받은 적어도 하나의 STA으로 전송할 수 있다.
도 39는 본 발명의 일 실시예에 따른 각 STA 장치의 블록도이다.
도 39에서, STA 장치(3910)는 메모리(3912), 프로세서(3911) 및 RF 유닛(3913)을 포함할 수 있다. 그리고 상술한 바와 같이 STA 장치는 HE STA 장치로서, AP 또는 non-AP STA가 될 수 있다.
RF 유닛(3913)은 프로세서(3911)와 연결되어 무선 신호를 송신/수신할 수 있다. RF 유닛(3913)은 프로세서(3911)로부터 수신된 데이터를 송수신 대역으로 업컨버팅하여 신호를 전송할 수 있다.
프로세서(3911)는 RF 유닛(3913)과 연결되어 IEEE 802.11 시스템에 따른 물리 계층 및/또는 MAC 계층을 구현할 수 있다. 프로세서(3911)는 상술한 도면 및 설명에 따른 본 발명의 다양한 실시예에 따른 동작을 수행하도록 구성될 수 있다. 또한, 상술한 본 발명의 다양한 실시예에 따른 STA(3910)의 동작을 구현하는 모듈이 메모리(3912)에 저장되고, 프로세서(3911)에 의하여 실행될 수 있다.
메모리(3912)는 프로세서(3911)와 연결되어, 프로세서(3911)를 구동하기 위한 다양한 정보를 저장한다. 메모리(3912)는 프로세서(3911)의 내부에 포함되거나 또는 프로세서(3911)의 외부에 설치되어 프로세서(3911)와 공지의 수단에 의해 연결될 수 있다.
또한, STA 장치(3910)는 한 개의 안테나(single antenna) 또는 다중 안테나(multiple antenna)를 포함할 수 있다.
도 39의 STA 장치(3910)의 구체적인 구성은, 전술한 본 발명의 다양한 실시예에서 설명한 사항들이 독립적으로 적용되거나 또는 2 이상의 실시예가 동시에 적용되도록 구현될 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
Claims (20)
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- WLAN(Wireless LAN) 시스템에서 STA(Station)의 하향링크(DL: Downlink) 다중 사용자(MU: Multi-User) 수신 방법에 있어서,
물리 프리앰블(physical preamble) 및 데이터 필드를 포함하는 DL MU PPDU(Physical Protocol Data Unit)를 수신하는 단계,
상기 데이터 필드는 적어도 하나의 MPDU(Mac Protocol Data Unit)를 포함하고, 상기 적어도 하나의 MPDU는 각각 MAC 헤더와 MAC 프레임 바디를 포함하고,
상기 MAC 헤더는 HT 컨트롤 필드를 포함하고,
상기 HT 컨트롤 필드는 상기 HT 컨트롤 필드의 포맷을 나타내는 포맷 지시자를 포함하고,
상기 포맷 지시자가 상기 HT 컨트롤 필드는 HE 포맷에 기초하여 구성됨을 나타내는 경우, (i) 상기 데이터 필드를 통해 전송된 데이터에 대한 응답인 ACK 프레임의 상향링크(UL: Uplink) MU 전송을 위한 ACK 지시(indication) 정보 및 (ii) 상기 ACK 지시 정보가 전송됨을 지시하는 지시자는 상기 HE 포맷에 기초하여 구성된 상기 HT 컨트롤 필드에 포함되고,
상기 ACK 지시 정보는 상기 ACK 프레임에 적용되는 MCS(Modulation and Coding Scheme) 레벨을 지시하는 MCS 레벨 정보를 포함하고,
상기 MCS 레벨 정보는 상기 WLAN(Wireless LAN) 시스템에서 정의되는 전체 MCS 레벨들 중 4개의 최하위 MCS 레벨들 중에서 하나를 나타내는, DL MU 수신 방법. - 제 11 항에 있어서,
상기 ACK 지시 정보는,
주파수 자원 할당 정보 및 상기 ACK 프레임을 나르는 UL MU PPDU의 길이 정보를 더 포함하는, DL MU 수신 방법. - 제 12 항에 있어서,
상기 주파수 자원 할당 정보는 상기 ACK 프레임의 UL MU 전송을 위해 할당된 자원 유닛을 지시하는 인덱스 값을 포함하는, DL MU 수신 방법. - 제 11 항에 있어서,
상기 MCS 레벨 정보는 MCS 레벨 0 내지 3 중 어느 하나를 지시하되,
상기 MCS 레벨 0은 BPSK 변조 및 1/2 코드 레이트 코딩을 지시하고, 상기 MCS 레벨 1은 QPSK 변조 및 상기 1/2 코드 레이트 코딩을 지시하고, 상기 MCS 레벨 2는 상기 QPSK 변조 및 3/4 코드 레이트 코딩을 지시하고, 상기 MCS 레벨 3은 16QAM 변조 및 상기 1/2 코드 레이트 코딩을 지시하는, DL MU 수신 방법. - 제 12 항에 있어서,
상기 길이 정보는 상기 UL MU PPDU 길이를 OFDM(Orthogonal Frequency Division Multiple) 심볼 개수 단위로 지시하는, DL MU 수신 방법. - WLAN(Wireless LAN) 시스템에서 하향링크(DL: Downlink) 다중 사용자(MU: Multi-User) 수신을 수행하는 STA(Station)의 하향링크(DL: Downlink) 다중 사용자(MU: Multi-User)에 있어서,
무선 신호를 송수신하는, RF 유닛; 및
상기 RF 유닛을 제어하는, 프로세서; 를 포함하고,
상기 프로세서는,
물리 프리앰블(physical preamble) 및 데이터 필드를 포함하는 DL MU PPDU(Physical Protocol Data Unit)를 수신하되,
상기 데이터 필드는 적어도 하나의 MPDU(Mac Protocol Data Unit)를 포함하고, 상기 적어도 하나의 MPDU는 각각 MAC 헤더와 MAC 프레임 바디를 포함하고,
상기 MAC 헤더는 HT 컨트롤 필드를 포함하고,
상기 HT 컨트롤 필드는 상기 HT 컨트롤 필드의 포맷을 나타내는 포맷 지시자를 포함하고,
상기 포맷 지시자가 상기 HT 컨트롤 필드는 HE 포맷에 기초하여 구성됨을 나타내는 경우, (i) 상기 데이터 필드를 통해 전송된 데이터에 대한 응답인 ACK 프레임의 상향링크(UL: Uplink) MU 전송을 위한 ACK 지시(indication) 정보 및 (ii) 상기 ACK 지시 정보가 전송됨을 지시하는 지시자는 상기 HE 포맷에 기초하여 구성된 상기 HT 컨트롤 필드에 포함되고,
상기 ACK 지시 정보는 상기 ACK 프레임에 적용되는 MCS(Modulation and Coding Scheme) 레벨을 지시하는 MCS 레벨 정보를 포함하고,
상기 MCS 레벨 정보는 상기 WLAN(Wireless LAN) 시스템에서 정의되는 전체 MCS 레벨들 중 4개의 최하위 MCS 레벨들 중에서 하나를 나타내는, STA 장치. - 제 16 항에 있어서,
상기 ACK 지시 정보는,
주파수 자원 할당 정보 및 상기 ACK 프레임을 나르는 UL MU PPDU의 길이 정보를 더 포함하는, STA 장치. - 제 17 항에 있어서,
상기 주파수 자원 할당 정보는 상기 ACK 프레임의 UL MU 전송을 위해 할당된 자원 유닛을 지시하는 인덱스 값을 포함하는, STA 장치. - 제 16 항에 있어서,
상기 MCS 레벨 정보는 MCS 레벨 0 내지 3 중 어느 하나를 지시하되,
상기 MCS 레벨 0은 BPSK 변조 및 1/2 코드 레이트 코딩을 지시하고, 상기 MCS 레벨 1은 QPSK 변조 및 상기 1/2 코드 레이트 코딩을 지시하고, 상기 MCS 레벨 2는 상기 QPSK 변조 및 3/4 코드 레이트 코딩을 지시하고, 상기 MCS 레벨 3은 16QAM 변조 및 상기 1/2 코드 레이트 코딩을 지시하는, STA 장치. - 제 17 항에 있어서,
상기 길이 정보는 상기 UL MU PPDU 길이를 OFDM(Orthogonal Frequency Division Multiple) 심볼 개수 단위로 지시하는, STA 장치.
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462058112P | 2014-10-01 | 2014-10-01 | |
US62/058,112 | 2014-10-01 | ||
US201562186334P | 2015-06-29 | 2015-06-29 | |
US62/186,334 | 2015-06-29 | ||
US201562194303P | 2015-07-20 | 2015-07-20 | |
US62/194,303 | 2015-07-20 | ||
PCT/KR2015/010379 WO2016053024A1 (ko) | 2014-10-01 | 2015-10-01 | 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치 |
KR1020177008872A KR102451044B1 (ko) | 2014-10-01 | 2015-10-01 | 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020177008872A Division KR102451044B1 (ko) | 2014-10-01 | 2015-10-01 | 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20220137804A KR20220137804A (ko) | 2022-10-12 |
KR102548620B1 true KR102548620B1 (ko) | 2023-06-29 |
Family
ID=55630971
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020177008872A KR102451044B1 (ko) | 2014-10-01 | 2015-10-01 | 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치 |
KR1020227034037A KR102548620B1 (ko) | 2014-10-01 | 2015-10-01 | 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020177008872A KR102451044B1 (ko) | 2014-10-01 | 2015-10-01 | 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치 |
Country Status (9)
Country | Link |
---|---|
US (2) | US10320529B2 (ko) |
EP (2) | EP3595218B1 (ko) |
JP (1) | JP6430635B2 (ko) |
KR (2) | KR102451044B1 (ko) |
CN (1) | CN106797294B (ko) |
AU (1) | AU2015324750B2 (ko) |
CA (1) | CA2963228C (ko) |
RU (1) | RU2680193C2 (ko) |
WO (1) | WO2016053024A1 (ko) |
Families Citing this family (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105940650B (zh) | 2014-01-28 | 2019-07-23 | 华为技术有限公司 | 数据传输的指示方法、接入点和终端 |
RU2680193C2 (ru) * | 2014-10-01 | 2019-02-18 | ЭлДжи ЭЛЕКТРОНИКС ИНК. | Способ передачи данных в системе беспроводной связи и устройство для его осуществления |
US10958391B2 (en) * | 2014-11-18 | 2021-03-23 | Qualcomm Incorporated | Tone plans for wireless communication networks |
WO2016089538A1 (en) * | 2014-12-03 | 2016-06-09 | Intel IP Corporation | Wireless device, method, and computer readable media for orthogonal frequency division multiple access (ofdma) allocations based on a basic tone resource unit or entire sub-channel |
ES2842299T3 (es) * | 2015-01-26 | 2021-07-13 | Huawei Tech Co Ltd | Sistema y método para comunicar un formato de trama multiplexada por división ortogonal de frecuencia (OFDM) |
EP3251380A4 (en) * | 2015-01-27 | 2018-01-03 | Telefonaktiebolaget LM Ericsson (publ) | Methods and arrangements for wlan communication of multi-user data in a single data packet |
US10257324B2 (en) * | 2015-01-30 | 2019-04-09 | Newracom, Inc. | Link adaptation for multi-user transmission in 802.11 systems |
US10116360B2 (en) * | 2015-04-23 | 2018-10-30 | Newracom, Inc. | Method and apparatus for uplink multi-user transmission in a high efficiency wireless LAN |
WO2017007266A1 (ko) * | 2015-07-07 | 2017-01-12 | 엘지전자 주식회사 | 무선랜 시스템에서 사운딩 동작 방법 및 이를 위한 장치 |
US10129001B2 (en) * | 2015-08-14 | 2018-11-13 | Newracom, Inc. | Block acknowledgment for multi-user transmissions in WLAN systems |
WO2017030295A1 (ko) | 2015-08-19 | 2017-02-23 | 엘지전자(주) | 무선 통신 시스템에서 채널 상태의 피드백 방법 및 이를 위한 장치 |
CN112566181B (zh) * | 2015-10-20 | 2024-05-17 | 华为技术有限公司 | 无线局域网中站点间直接通信的方法及相关设备 |
JP6664125B2 (ja) * | 2015-10-30 | 2020-03-13 | パナソニックIpマネジメント株式会社 | パケットフォーマット検出のための送信方法および送信装置 |
US10708279B2 (en) * | 2015-12-24 | 2020-07-07 | Electronics And Telecommunications Research Institute | Method and apparatus for transmitting data |
US10524289B2 (en) | 2015-12-25 | 2019-12-31 | Kabushiki Kaisha Toshiba | Wireless communication device |
KR102683073B1 (ko) | 2016-04-11 | 2024-07-10 | 주식회사 윌러스표준기술연구소 | 다중 사용자 캐스캐이딩 전송을 지원하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말 |
US10305659B2 (en) | 2016-04-12 | 2019-05-28 | Marvell World Trade Ltd. | Uplink multi-user transmission |
US10517006B2 (en) * | 2016-04-13 | 2019-12-24 | Qualcomm Incorporated | Techniques for reporting channel feedback in wireless communications |
US11083021B2 (en) | 2016-04-14 | 2021-08-03 | Qualcomm Incorporated | Random access resource unit allocation for a multiple BSSID network |
US10616884B2 (en) * | 2016-07-08 | 2020-04-07 | Qualcomm Incorporated | Techniques for signaling a transmit power headroom in a control field |
US10841973B2 (en) | 2016-07-20 | 2020-11-17 | Lg Electronics Inc. | Method for transceiving signal in wireless LAN system and device therefor |
US10595288B2 (en) * | 2016-08-21 | 2020-03-17 | Lg Electronics Inc. | Method for transmitting frame in wireless LAN system and wireless terminal using same |
CN114448768B (zh) | 2016-09-01 | 2024-09-20 | 松下电器(美国)知识产权公司 | 发送装置和发送方法 |
JP6798198B2 (ja) | 2016-09-05 | 2020-12-09 | ソニー株式会社 | 無線装置、無線制御方法およびプログラム |
WO2018066955A1 (ko) * | 2016-10-04 | 2018-04-12 | 엘지전자 주식회사 | 무선랜 시스템에서 프레임을 송신 또는 수신하기 위한 방법 및 이를 위한 장치 |
WO2018094214A1 (en) * | 2016-11-18 | 2018-05-24 | Yaron Alpert | Feedback parameters required by link adaptation |
EP4181413A1 (en) * | 2017-01-09 | 2023-05-17 | Wilus Institute of Standards and Technology Inc. | Wireless communication method and wireless communication terminal for signaling multi-user packet |
TWI848849B (zh) | 2017-02-21 | 2024-07-11 | 美商松下電器(美國)知識產權公司 | 通訊裝置及積體電路 |
US10880855B2 (en) * | 2017-04-25 | 2020-12-29 | Marvell Asia Pte, Ltd. | Null data packet (NDP) ranging measurement feedback |
US10735566B2 (en) * | 2017-06-23 | 2020-08-04 | Qualcomm Incorporated | Large media access control service data unit (MSDU) delivery |
CN110892750B (zh) * | 2017-07-06 | 2023-11-28 | 索尼公司 | 无线通信装置和方法 |
US10334534B2 (en) * | 2017-09-19 | 2019-06-25 | Intel Corporation | Multiuser uplink power control with user grouping |
US11109278B2 (en) * | 2017-10-20 | 2021-08-31 | Qualcomm Incorporated | Multiplexing clients of different generations in trigger-based transmissions |
MX2020007460A (es) | 2018-01-11 | 2020-09-14 | Guangdong Oppo Mobile Telecommunications Corp Ltd | Metodo de procesamiento basado en servicio, dispositivo terminal y dispositivo de red. |
CN107889167B (zh) * | 2018-01-16 | 2021-04-27 | 河南科技大学 | 多小区网络mumimo的吞吐量增强方法 |
US20190132879A1 (en) * | 2018-03-21 | 2019-05-02 | Xiaogang Chen | Scrambler initialization for multi-user clear to send transmission |
WO2019193153A1 (en) | 2018-04-06 | 2019-10-10 | Telefonaktiebolaget Lm Ericsson (Publ) | Bandwidth part switching |
CN110417518B (zh) * | 2018-04-26 | 2022-08-26 | 华为技术有限公司 | 基于harq技术的通信方法、设备及系统 |
CN110557773B (zh) * | 2018-06-01 | 2023-04-21 | 慧与发展有限责任合伙企业 | 使用从集中式存储库接收到的分类器对干扰设备分类 |
US10966280B1 (en) * | 2018-09-13 | 2021-03-30 | Nxp Usa, Inc. | Transmitting control or status information in an MPDU delimiter |
JP7165004B2 (ja) * | 2018-09-20 | 2022-11-02 | キヤノン株式会社 | 通信装置、通信装置の制御方法、およびプログラム |
US11190986B2 (en) * | 2018-10-15 | 2021-11-30 | Mediatek Singapore Pte. Ltd. | Mechanisms of status reporting and protected period setting for coordinated transmission in multiple AP system |
CN111132229B (zh) * | 2018-10-30 | 2023-09-22 | 华为技术有限公司 | 数据通信方法及相关装置 |
WO2020159309A1 (ko) * | 2019-02-01 | 2020-08-06 | 엘지전자 주식회사 | Harq를 위한 톤 재할당 |
EP3927056A4 (en) | 2019-02-15 | 2022-04-13 | Sony Group Corporation | COMMUNICATION DEVICE, AND COMMUNICATION METHOD |
US10517106B1 (en) | 2019-05-30 | 2019-12-24 | Cypress Semiconductor Corporation | Systems, methods, and devices for network request scheduling |
CN118487704A (zh) * | 2019-07-12 | 2024-08-13 | 交互数字专利控股公司 | Wlan系统中的反向兼容plcp ppdu设计 |
DE102020125365A1 (de) * | 2019-10-03 | 2021-04-08 | Mediatek Inc. | Physikalische-Protokolldateneinheit-Übertragungsverfahren, das durch eine Wireless-Fidelity-Mehrfachverbindungsvorrichtung eingesetzt wird |
US20210144589A1 (en) * | 2019-11-12 | 2021-05-13 | Mediatek Singapore Pte. Ltd. | Apparatus and methods for eht multi-band a-msdu operation |
CN113067664B (zh) * | 2019-12-16 | 2022-06-14 | 华为技术有限公司 | 一种数据接收方法,数据发送方法以及相关设备 |
EP4055891B1 (en) | 2019-12-19 | 2024-04-24 | British Telecommunications public limited company | Wireless network access point and method for operation thereof |
WO2021243520A1 (zh) * | 2020-06-01 | 2021-12-09 | 北京小米移动软件有限公司 | 确认ack反馈策略配置、ack反馈方法及装置、存储介质 |
CN115865571B (zh) * | 2020-06-05 | 2024-01-05 | 华为技术有限公司 | Ppdu的传输方法及相关装置 |
US11723115B2 (en) * | 2020-06-26 | 2023-08-08 | Cypress Semiconductor Corporation | WLAN decodability-based frame processing for power saving |
US11895603B2 (en) | 2020-11-25 | 2024-02-06 | Electronics And Telecommunications Research Institute | Frame structure and terminal synchronization method and apparatus in wireless communication system |
KR102661246B1 (ko) * | 2020-11-25 | 2024-04-26 | 한국전자통신연구원 | 무선 통신 시스템에서의 프레임 구조 및 단말 동기 방법 및 장치 |
JP2022091003A (ja) * | 2020-12-08 | 2022-06-20 | キヤノン株式会社 | 通信装置、通信装置の制御方法、およびプログラム |
US20220263624A1 (en) * | 2021-02-17 | 2022-08-18 | Mediatek Singapore Pte. Ltd. | Pilot Tone Design For Distributed-Tone Resource Units In 6GHz Low-Power Indoor Systems |
CN114040511B (zh) * | 2021-10-11 | 2023-05-16 | 深圳市联平半导体有限公司 | 通信设备及其obo计数器取值方法、电子设备和存储介质 |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2196496A1 (en) * | 1997-01-31 | 1998-07-31 | Stephen William Watson Michnick | Protein fragment complementation assay for the detection of protein-protein interactions |
KR100800795B1 (ko) | 2004-05-31 | 2008-02-04 | 삼성전자주식회사 | 통신 시스템에서 상향 링크 응답 정보 송/수신 방법 및 장치 |
JP2007288656A (ja) | 2006-04-19 | 2007-11-01 | Toyota Infotechnology Center Co Ltd | 無線通信装置、無線通信方法、および無線通信プログラム |
US20080126969A1 (en) * | 2006-08-03 | 2008-05-29 | Blomquist Michael L | Interface for medical infusion pump |
KR20090093800A (ko) * | 2008-02-29 | 2009-09-02 | 엘지전자 주식회사 | 무선통신 시스템에서 ack/nack 신호 전송방법 |
US8805782B2 (en) * | 2009-07-09 | 2014-08-12 | Oracle International Corporation | Representing an object as an aggregate of identifiable parts shareable by users of a collaboration system |
US8001873B2 (en) * | 2009-08-04 | 2011-08-23 | Cheng Chia Peng | Universal joint capable of replacing different tool sets |
CN105915316B (zh) * | 2009-08-26 | 2021-04-20 | 交互数字专利控股公司 | 用于在基站中使用的方法、基站及无线发射/接收单元 |
KR101758909B1 (ko) * | 2010-02-18 | 2017-07-18 | 엘지전자 주식회사 | 무선 랜에서 수신 확인 전송 방법 및 장치 |
US9337961B2 (en) * | 2010-06-15 | 2016-05-10 | Qualcomm Incorporated | Method and apparatus for sending very high throughput WLAN acknowledgment frames |
US9337954B2 (en) * | 2010-07-28 | 2016-05-10 | Qualcomm Incorporated | Protocol for channel state information feedback |
US10033485B2 (en) * | 2010-08-25 | 2018-07-24 | Qualcomm Incorporated | Managing acknowledgement messages from multiple destinations for multi user MIMO transmissions |
WO2012074316A2 (en) * | 2010-12-01 | 2012-06-07 | Lg Electronics Inc. | Method and apparatus of link adaptation in wireless local area network |
KR101487633B1 (ko) * | 2010-12-22 | 2015-01-29 | 엘지전자 주식회사 | 무선랜 시스템에서의 링크 적응 방법 및 장치 |
US8830815B2 (en) * | 2011-05-19 | 2014-09-09 | Qualcomm Incorporated | Preamble design for television white space transmissions |
EP2820909B1 (en) * | 2012-03-01 | 2017-09-06 | Interdigital Patent Holdings, Inc. | Multi-user parallel channel access in wlan systems |
WO2013169212A1 (en) * | 2012-05-11 | 2013-11-14 | Agency For Science, Technology And Research | Methods for determining information about a communication parameter and communication devices |
US9608789B2 (en) | 2012-05-11 | 2017-03-28 | Interdigital Patent Holdings, Inc. | Method and apparatus for transmitting acknowledgements in response to received frames |
US9504032B2 (en) * | 2012-09-13 | 2016-11-22 | Interdigital Patent Holdings, Inc. | Method, wireless transmit/receive unit (WTRU) and base station for transferring small packets |
US10014979B2 (en) * | 2012-11-13 | 2018-07-03 | Qualcomm Incorporated | Methods and apparatus for avoiding collisions due to hidden wireless nodes |
TWI649001B (zh) * | 2013-01-11 | 2019-01-21 | 內數位專利控股公司 | 中繼存取點(r-ap)及用於在r-ap中報告端站與r-ap之關聯的方法 |
US9853794B2 (en) * | 2013-02-20 | 2017-12-26 | Qualcomm, Incorporated | Acknowledgement (ACK) type indication and deferral time determination |
US20160330788A1 (en) * | 2013-12-31 | 2016-11-10 | Agency For Science, Technology And Research | Mobile radio communication devices and methods for controlling a mobile radio communication device |
EP3105957B1 (en) * | 2014-02-10 | 2019-04-03 | LG Electronics Inc. | Method and apparatus for indicating qos of d2d data in wireless communication system |
US10182362B2 (en) * | 2014-03-28 | 2019-01-15 | Intel IP Corporation | Mechanisms of virtual clear channel assessment for Wi-Fi devices |
WO2016008880A1 (en) * | 2014-07-14 | 2016-01-21 | KB Medical SA | Anti-skid surgical instrument for use in preparing holes in bone tissue |
KR20160008971A (ko) * | 2014-07-15 | 2016-01-25 | 뉴라컴 인코포레이티드 | 하향링크 다중 사용자 전송에 응답하는 상향링크 확인응답 |
US20160080115A1 (en) * | 2014-09-12 | 2016-03-17 | Samsung Electronics Co., Ltd. | Methods for efficient acknowledgement in wireless systems |
RU2680193C2 (ru) * | 2014-10-01 | 2019-02-18 | ЭлДжи ЭЛЕКТРОНИКС ИНК. | Способ передачи данных в системе беспроводной связи и устройство для его осуществления |
-
2015
- 2015-10-01 RU RU2017114864A patent/RU2680193C2/ru active
- 2015-10-01 WO PCT/KR2015/010379 patent/WO2016053024A1/ko active Application Filing
- 2015-10-01 CA CA2963228A patent/CA2963228C/en active Active
- 2015-10-01 EP EP19195600.2A patent/EP3595218B1/en active Active
- 2015-10-01 KR KR1020177008872A patent/KR102451044B1/ko active IP Right Grant
- 2015-10-01 CN CN201580053728.3A patent/CN106797294B/zh active Active
- 2015-10-01 US US15/516,325 patent/US10320529B2/en active Active
- 2015-10-01 EP EP15846594.8A patent/EP3203668B1/en active Active
- 2015-10-01 KR KR1020227034037A patent/KR102548620B1/ko active IP Right Grant
- 2015-10-01 AU AU2015324750A patent/AU2015324750B2/en active Active
- 2015-10-01 JP JP2017517294A patent/JP6430635B2/ja active Active
-
2019
- 2019-05-14 US US16/411,971 patent/US10608791B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
AU2015324750A1 (en) | 2017-04-27 |
KR20220137804A (ko) | 2022-10-12 |
CN106797294B (zh) | 2020-06-16 |
JP2017536004A (ja) | 2017-11-30 |
CA2963228A1 (en) | 2016-04-07 |
RU2017114864A3 (ko) | 2018-11-07 |
US10608791B2 (en) | 2020-03-31 |
RU2680193C2 (ru) | 2019-02-18 |
EP3203668A1 (en) | 2017-08-09 |
US20170310424A1 (en) | 2017-10-26 |
WO2016053024A1 (ko) | 2016-04-07 |
EP3595218B1 (en) | 2020-08-19 |
EP3203668B1 (en) | 2019-09-11 |
JP6430635B2 (ja) | 2018-11-28 |
US20190268098A1 (en) | 2019-08-29 |
CN106797294A (zh) | 2017-05-31 |
CA2963228C (en) | 2021-05-04 |
KR20170065523A (ko) | 2017-06-13 |
EP3595218A1 (en) | 2020-01-15 |
US10320529B2 (en) | 2019-06-11 |
AU2015324750B2 (en) | 2018-11-08 |
KR102451044B1 (ko) | 2022-10-06 |
EP3203668A4 (en) | 2018-05-16 |
RU2017114864A (ru) | 2018-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10608791B2 (en) | Data transmission method in wireless communication system and device therefor | |
US11019120B2 (en) | Data transmission method in wireless communication system, and apparatus therefor | |
KR102232863B1 (ko) | 무선 통신 시스템에서 상향링크 전송 방법 및 이를 위한 장치 | |
KR102051028B1 (ko) | 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치 | |
KR102493881B1 (ko) | 무선 통신 시스템의 데이터 전송 방법 및 장치 | |
KR102373578B1 (ko) | 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치 | |
US10405338B2 (en) | Data transmission method in wireless communication system and device therefor | |
US10128925B2 (en) | Method for uplink multi-user transmission in wireless communication system and apparatus therefor | |
US10278172B2 (en) | Method for transmitting frame in wireless communication system and device therefor | |
US10299261B2 (en) | Method and device for downlink multi-user transmission in wireless communication system | |
US10231215B2 (en) | Multi-user transmission method in wireless communication system and device therefor | |
US10575280B2 (en) | Data transmission method in wireless communication system and device therefor | |
WO2016003056A1 (ko) | 무선 통신 시스템에서 다중 사용자(multi-user) 상향링크 데이터 전송을 위한 방법 및 이를 위한 장치 | |
US20170338910A1 (en) | Data transmission method in wireless communication system and device therefor | |
KR102728503B1 (ko) | 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right |