KR101044338B1 - Dye sensitized solar cell comprising negative electrode including nano oxide layer adsorbed with dye and polyatomic anion and preparation method thereof - Google Patents

Dye sensitized solar cell comprising negative electrode including nano oxide layer adsorbed with dye and polyatomic anion and preparation method thereof Download PDF

Info

Publication number
KR101044338B1
KR101044338B1 KR1020090083697A KR20090083697A KR101044338B1 KR 101044338 B1 KR101044338 B1 KR 101044338B1 KR 1020090083697 A KR1020090083697 A KR 1020090083697A KR 20090083697 A KR20090083697 A KR 20090083697A KR 101044338 B1 KR101044338 B1 KR 101044338B1
Authority
KR
South Korea
Prior art keywords
dye
solar cell
sensitized solar
oxide
oxide layer
Prior art date
Application number
KR1020090083697A
Other languages
Korean (ko)
Other versions
KR20110025573A (en
Inventor
한치환
윤경훈
이학수
조태연
배상훈
전세미나
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020090083697A priority Critical patent/KR101044338B1/en
Publication of KR20110025573A publication Critical patent/KR20110025573A/en
Application granted granted Critical
Publication of KR101044338B1 publication Critical patent/KR101044338B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2036Light-sensitive devices comprising an oxide semiconductor electrode comprising mixed oxides, e.g. ZnO covered TiO2 particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 나노 산화물 입자 표면에 염료 및 다원자음이온이 흡착되어 있는 나노 산화물층이 형성된 음극계 전극을 포함하는 염료감응 태양전지 및 이의 제조방법에 관한 것이다. 본 발명은 염료 및 다원자음이온이 나노 산화물 입자 표면에 표면공백이 최소화되도록 흡착되어 있는 나노 산화물층이 형성된 음극계 전극을 포함하는 염료감응 태양전지 및 이의 제조방법을 제공하며, 본 발명에 따른 염료감응 태양전지는 개방전압 및 충진계수가 향상되어 광전변환 효율이 향상될 수 있다.The present invention relates to a dye-sensitized solar cell including a cathode-based electrode having a nano oxide layer on which a dye and polyatomic ion are adsorbed on a surface of a nano oxide particle, and a method of manufacturing the same. The present invention provides a dye-sensitized solar cell and a method for manufacturing the same, including a cathode-based electrode having a nano-oxide layer having a dye and polyatomic ions adsorbed on the surface of the nano-oxide particles to minimize surface space. Sensitized solar cells can be improved in the open-circuit voltage and the filling factor can be improved photoelectric conversion efficiency.

염료감응 태양전지, 개방전압, 충진계수, 광전변환 효율, 나노 산화물, 염료, 다원자음이온, 표면공백 Dye-Sensitized Solar Cell, Open Voltage, Fill Factor, Photoelectric Conversion Efficiency, Nano Oxide, Dye, Polyatomic Ion, Surface Blank

Description

염료 및 다원자음이온이 흡착된 나노 산화물층을 포함한 음극계 전극을 포함하는 염료감응 태양전지 및 이의 제조방법{DYE SENSITIZED SOLAR CELL COMPRISING NEGATIVE ELECTRODE INCLUDING NANO OXIDE LAYER ADSORBED WITH DYE AND POLYATOMIC ANION AND PREPARATION METHOD THEREOF}Dye-sensitized solar cell comprising a cathode-based electrode comprising a nano oxide layer adsorbed with dyes and polyatomic ions and a method for manufacturing the same

본 발명은 염료 및 다원자음이온이 흡착된 나노 산화물층을 포함한 음극계 전극을 포함하는 염료감응 태양전지 및 이의 제조방법에 관한 것으로, 보다 상세하게는 나노 산화물 입자 표면에 염료 및 다원자음이온이 표면 공백이 최소화되도록 흡착된 나노 산화물층을 포함한 음극계 전극을 포함하여 구성됨으로써 광전변환 효율이 향상된 염료감응 태양전지 및 이의 제조방법에 관한 것이다.The present invention relates to a dye-sensitized solar cell including a cathode-based electrode including a nano oxide layer adsorbed with a dye and a polyatomic ion, and a method of manufacturing the same. The present invention relates to a dye-sensitized solar cell having an improved photoelectric conversion efficiency by including a cathode electrode including a nano oxide layer adsorbed to minimize voids, and a method of manufacturing the same.

최근 심각한 환경오염 문제와 화석 에너지 고갈로 차세대 청정 에너지 개발에 대한 중요성이 증대되고 있다. 그 중에서도 태양전지는 태양 에너지를 직접 전기 에너지로 전환시키는 장치로서, 공해가 적고, 자원이 무한적이며 반영구적인 수명을 가지고 있어 미래 에너지 문제를 해결할 수 있는 에너지원으로 기대되고 있 다. Recently, the importance of developing the next generation of clean energy is increasing due to serious environmental pollution and depletion of fossil energy. Among them, solar cell is a device that directly converts solar energy into electrical energy. It is expected to be an energy source that can solve future energy problems due to its low pollution, infinite resources and a semi-permanent life.

이와 같은 태양전지를 물질별로 크게 구분하면 무기물 태양전지(inorganic solar cell), 염료감응 태양전지(dye-sensitized solar cell) 및 유기물 태양전지(organic solar cell)가 있다.The solar cells are classified into materials according to the material, and there are inorganic solar cells, dye-sensitized solar cells, and organic solar cells.

무기물 태양전지로서 단결정 실리콘이 주로 사용되고 있고, 이러한 단결정 실리콘계 태양전지는 박막형 태양전지로 제조될 수 있는 장점을 가지나, 많은 비용이 소요되고, 안정성이 낮은 문제점을 가지고 있다. Single crystal silicon is mainly used as an inorganic solar cell, and such single crystal silicon-based solar cell has an advantage of being manufactured as a thin-film solar cell, but has a problem of high cost and low stability.

염료감응 태양전지는 기존의 p-n 접합에 의한 실리콘 태양전지와는 달리, 가시광선의 빛을 흡수하여 전자-홀 쌍(electron-hole pair)을 생성할 수 있는 감광성 염료 분자와, 생성된 전자를 전달하는 전이금속 산화물을 주된 구성 재료로 하는 광전기화학적 태양전지이다. 염료감응 태양전지는 기존 실리콘을 기반으로 하는 태양 전지와 비교했을 때 빛과 열에 대한 장시간 노출에도 견딜 수 있으며, 저렴하고 용이하게 에너지를 생산할 수 있다.Dye-sensitized solar cells, unlike conventional silicon solar cells by pn junctions, are capable of absorbing visible light to produce electron-hole pairs and photosensitive dye molecules that deliver the generated electrons. It is a photoelectrochemical solar cell using a transition metal oxide as a main constituent material. Dye-sensitized solar cells can withstand long-term exposure to light and heat, compared to conventional silicon-based solar cells, and can produce energy inexpensively and easily.

지금까지 알려진 염료감응 태양전지 중 대표적인 예로서 스위스의 그라첼(Gratzel) 등에 의하여 발표된 것이 있다(미국등록특허 제4,927,721호 및 제5,350,644호). 그라첼 등에 의해 제안된 염료감응 태양전지는 염료 분자가 입혀진 나노입자 이산화티탄(TiO2)으로 이루어지는 반도체 전극과, 백금 또는 탄소가 코팅된 대향 전극과, 이들 전극 사이에 채워진 전해질 용액으로 구성되어 있다. 이 광전기화학적 태양전지는 기존의 실리콘 태양전지에 비하여 전력당 제조 원가가 저렴하여 주목받아 왔다. 이러한 그라첼이 개발한 염료감응 태양전지 기술은 값비싼 실리콘 태양 전지의 저렴한 대안으로 유망하다는 사실을 보여 주었다. As a representative example of dye-sensitized solar cells known so far, there are those published by Gratzel et al. (US Pat. Nos. 4,927,721 and 5,350,644). The dye-sensitized solar cell proposed by Gratzel et al. Consists of a semiconductor electrode composed of nanoparticle titanium dioxide (TiO 2 ) coated with dye molecules, a counter electrode coated with platinum or carbon, and an electrolyte solution filled between these electrodes. . This photoelectrochemical solar cell has attracted attention due to the low manufacturing cost per power compared to the conventional silicon solar cell. The dye-sensitized solar cell technology developed by Gratzel has proved to be promising as an inexpensive alternative to expensive silicon solar cells.

상술한 바와 같이 염료감응 태양전지는 기존의 실리콘 태양 전지에 비해 제조 단가가 저렴하고 투명한 전극으로 인해 건물 외벽 유리창이나 유리 온실 등에 응용이 가능하다는 이점이 있으나, 광전변환 효율이 낮아서 실제 적용에는 제한이 있는 상황이다.As described above, dye-sensitized solar cells have advantages in that they are inexpensive to manufacture compared to conventional silicon solar cells and can be applied to glass walls or glass greenhouses for building exterior walls due to transparent electrodes. It is a situation.

태양 전지의 광전변환 효율은 태양빛의 흡수에 의해 생성된 전자의 양에 비례하므로, 광전변환 효율을 증가시키기 위해서는 태양빛의 흡수를 증가시키거나 염료의 흡착량을 높여 전자의 생성량을 늘일 수도 있고, 또는 생성된 여기전자가 전자-홀 재결합에 의해 소멸되는 것을 막아줄 수도 있다.Since the photoelectric conversion efficiency of a solar cell is proportional to the amount of electrons generated by the absorption of sunlight, in order to increase the photoelectric conversion efficiency, the production of electrons may be increased by increasing the absorption of sunlight or by increasing the amount of dye adsorption. Alternatively, the generated exciton can be prevented from disappearing by electron-hole recombination.

단위면적당 염료의 흡착량을 늘이기 위해서는 산화물 반도체의 입자를 나노미터 수준의 크기로 제조하여야 하며 태양빛의 흡수를 높이기 위해 백금전극의 반사율을 높이거나, 수 마이크로 크기의 산화물 반도체에 광산란자를 섞어서 제조하는 방법 등이 개발되어 있다. 그러나 이러한 종래 방법으로는 태양 전지의 광전변환 효율 향상에 한계가 있으며, 따라서 효율 향상을 위한 새로운 기술 개발이 절실 히 요청되고 있는 실정이다.In order to increase the amount of dye adsorption per unit area, the particles of the oxide semiconductor should be manufactured in nanometer size, and the reflectance of the platinum electrode may be increased to increase the absorption of sunlight, or the light scatterer may be mixed with several micro-sized oxide semiconductors. Methods have been developed. However, such a conventional method has a limitation in improving the photoelectric conversion efficiency of the solar cell, and thus, there is an urgent demand for developing a new technology for improving the efficiency.

본 발명자들은 염료감응 태양전지의 광전변환 효율을 향상시키기 방안을 모색하였고, 염료감응 태양전지의 광전변환 효율을 감소시키는 전압 강하 현상을 개선하기 위한 예의 연구를 거듭한 결과, 염료감응 태양전지의 음극계 전극 제조시 나노 산화물 입자 표면에 염료와 특정 다원자음이온을 표면공백이 최소화되도록 흡착시켜 나노 산화물층을 제조하는 경우, 전압을 높여 염료감응 태양전지의 광전변환 효율을 향상시킬 수 있는 것을 알게 되어 본 발명을 완성하기에 이르렀다.The present inventors have sought ways to improve the photoelectric conversion efficiency of the dye-sensitized solar cell, and as a result of intensive studies to improve the voltage drop phenomenon that reduces the photoelectric conversion efficiency of the dye-sensitized solar cell, the cathode of the dye-sensitized solar cell When manufacturing a nano electrode layer by adsorbing dye and specific polyatomic ions to the surface of the nano oxide particles to minimize the surface space when manufacturing the electrode, it is found that the voltage can be increased to improve the photoelectric conversion efficiency of the dye-sensitized solar cell. The present invention has been completed.

본 발명의 목적은 염료감응 태양전지의 문제점인 낮은 광전변환 효율을 개선할 수 있는, 광전변환 효율이 향상된 염료감응 태양전지 및 이의 제조방법을 제공하기 위한 것이다.SUMMARY OF THE INVENTION An object of the present invention is to provide a dye-sensitized solar cell having improved photoelectric conversion efficiency and a method of manufacturing the same, which can improve low photoelectric conversion efficiency, which is a problem of dye-sensitized solar cells.

상기의 목적을 달성하기 위하여, 본 발명은,In order to achieve the above object, the present invention,

투명 전도성 산화물층이 형성된 투명 기판 상에 나노 산화물층을 형성하는 단계(단계 1);Forming a nano oxide layer on the transparent substrate on which the transparent conductive oxide layer is formed (step 1);

염료; 인산리튬(Li3PO4), 탄산리튬(Li2CO3), 황산리튬(Li2SO4), 인산이수소리튬(LiH2PO4), 인산나트륨(Na3PO4) 및 인산일나트륨(NaH2PO4)으로 이루어진 군으로부터 선택된 알칼리금속 다원자음이온염 및 유기용매를 혼합한 염료용액에 상기 나노 산화물층이 형성된 투명기판을 담지하여 나노 산화물 입자 표면에 염료 및 상기 다원자음이온을 흡착시킴으로써 음극계 전극을 제조하는 단계(단계 2);dyes; Lithium Phosphate (Li 3 PO 4 ), Lithium Carbonate (Li 2 CO 3 ), Lithium Sulphate (Li 2 SO 4 ), Lithium Dibasic Sodium Phosphate (LiH 2 PO 4 ), Sodium Phosphate (Na 3 PO 4 ) and Monosodium Phosphate (NaH 2 PO 4 ) adsorbs the dye and the polyatomic ion on the surface of the nano oxide particles by supporting a transparent substrate having the nano oxide layer formed on a dye solution mixed with an alkali metal polyatomic anion salt selected from the group consisting of (NaH 2 PO 4 ). Preparing a cathode electrode (step 2);

투명 전도성 산화물층이 형성된 투명 기판의 상부에 금속층을 형성하여 양극계 전극을 제조하는 단계(단계 3); 및 Preparing a bipolar electrode by forming a metal layer on the transparent substrate on which the transparent conductive oxide layer is formed (step 3); And

상기 단계 2에서 제조된 음극계 전극과 단계 3에서 제조된 양극계 전극을 대향시켜 접합시킨 후 전해액을 주입하는 단계(단계 4)를 포함하는 염료감응 태양전지의 제조방법을 제공한다.It provides a method of manufacturing a dye-sensitized solar cell comprising a step (step 4) of injecting an electrolytic solution after the anode electrode prepared in step 2 and the anode electrode prepared in step 3 are bonded to each other.

또한, 본 발명은 나노 산화물 입자 표면에 염료 및 다원자음이온이 흡착되어 있는 나노 산화물층이 형성된 음극계 전극을 포함하는 것을 특징으로 하는 염료감응 태양전지를 제공한다.In addition, the present invention provides a dye-sensitized solar cell comprising a negative electrode having a nano-oxide layer on which the dye and polyatomic ions are adsorbed on the surface of the nano-oxide particles.

이하, 본 발명을 상세하게 설명한다. EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명은,The present invention,

투명 전도성 산화물층이 형성된 투명 기판 상에 나노 산화물층을 형성하는 단계(단계 1);Forming a nano oxide layer on the transparent substrate on which the transparent conductive oxide layer is formed (step 1);

염료; 인산리튬(Li3PO4), 탄산리튬(Li2CO3), 황산리튬(Li2SO4), 인산이수소리튬(LiH2PO4), 인산나트륨(Na3PO4) 및 인산일나트륨(NaH2PO4)으로 이루어진 군으로부터 선택된 알칼리금속 다원자음이온염 및 유기용매를 혼합한 염료용액에 상기 나노 산화물층이 형성된 투명기판을 담지하여 나노 산화물 입자 표면에 염료 및 다원자음이온을 흡착시킴으로써 음극계 전극을 제조하는 단계(단계 2);dyes; Lithium Phosphate (Li 3 PO 4 ), Lithium Carbonate (Li 2 CO 3 ), Lithium Sulphate (Li 2 SO 4 ), Lithium Dibasic Sodium Phosphate (LiH 2 PO 4 ), Sodium Phosphate (Na 3 PO 4 ) and Monosodium Phosphate (NaH 2 PO 4 ) by adsorbing a dye and polyatomic ion on the surface of the nano-oxide particles by supporting a transparent substrate having the nano-oxide layer in a dye solution mixed with an alkali metal polyatomic anion salt selected from the group consisting of (NaH 2 PO 4 ) Preparing a cathode electrode (step 2);

투명 전도성 산화물층이 형성된 투명 기판의 상부에 금속층을 형성하여 양극계 전극을 제조하는 단계(단계 3); 및Preparing a bipolar electrode by forming a metal layer on the transparent substrate on which the transparent conductive oxide layer is formed (step 3); And

상기 단계 2에서 제조된 음극계 전극과 단계 3에서 제조된 양극계 전극을 대향시켜 접합시킨 후 전해액을 주입하는 단계(단계 4)를 포함하는 염료감응 태양전지의 제조방법을 제공한다.It provides a method of manufacturing a dye-sensitized solar cell comprising a step (step 4) of injecting an electrolytic solution after the anode electrode prepared in step 2 and the anode electrode prepared in step 3 are bonded to each other.

하기에서 본 발명에 따른 염료감응 태양전지의 제조방법을 도면을 참조하여 구체적으로 설명한다.Hereinafter, a method of manufacturing a dye-sensitized solar cell according to the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명의 일 실시형태에 따라 제조된 염료감응 태양전지의 측단면도이다.1 is a side cross-sectional view of a dye-sensitized solar cell prepared according to one embodiment of the invention.

단계 1은 투명 전도성 산화물층이 형성된 투명 기판 상에 나노 산화물층을 형성하는 단계이다.Step 1 is a step of forming a nano oxide layer on a transparent substrate on which a transparent conductive oxide layer is formed.

본 발명에서 사용되는 투명 기판(1)으로는 유리 기판 또는 투명한 플라스틱 기판을 사용할 수 있으며, 상기 투명한 플라스틱 기판으로는 폴리에틸렌테레프탈레이드(PET), 폴리에틸렌나프탈레이트(PEN), 폴리에틸렌(PE), 폴리에테르설폰(PES), 폴리카보네이트(PC), 폴리아릴레이트(PAR), 폴리이미드(PI) 등을 사용할 수 있으나, 이에 제한되는 것은 아니다.As the transparent substrate 1 used in the present invention, a glass substrate or a transparent plastic substrate may be used, and the transparent plastic substrate may be polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethylene (PE), or polyether. Sulfon (PES), polycarbonate (PC), polyarylate (PAR), polyimide (PI) and the like can be used, but is not limited thereto.

상기 투명 기판(1)의 상부에는 투명 전도성 산화물층이 형성되며, 투명 전도성 산화물층의 소재로는 불소가 도핑된 틴 옥사이드(FTO), 인듐틴옥사이드(ITO), 인듐징크옥사이드(IZO), 인듐징크틴옥사이드(IZTO), 알루미늄징크옥사이드 (AZO), 인듐틴옥사이드-은-인듐틴옥사이드(ITO-Ag-ITO), 인듐징크옥사이드-은-인듐징크옥사이드(IZO-Ag-IZO), 인듐징크틴옥사이드-은-인듐징크틴옥사이드 (IZTO-Ag-IZTO), 알루미늄징크옥사이드-은-알루미늄징크옥사이드(AZO-Ag-AZO) 등을 사용할 수 있으며, 특히 불소가 도핑된 틴 옥사이드(FTO)가 바람직하다. 이러한 투명 전도성 산화물층은 스퍼터링(sputtering), 화학기상증착(CVD), 증기증착(evaporation), 열산화(thermal oxidation), 전기화학적 증착(electrochemical anodization(deposition)) 중 어느 한 방법에 의해 형성될 수 있다.A transparent conductive oxide layer is formed on the transparent substrate 1, and as the material of the transparent conductive oxide layer, fluorine-doped tin oxide (FTO), indium tin oxide (ITO), indium zinc oxide (IZO), and indium Zinc Tin Oxide (IZTO), Aluminum Zinc Oxide (AZO), Indium Tin Oxide-Silver-Indium Tin Oxide (ITO-Ag-ITO), Indium Zinc Oxide-Silver-Indium Zinc Oxide (IZO-Ag-IZO), Indium Zinc Tin oxide-silver-indium zinc tin oxide (IZTO-Ag-IZTO), aluminum zinc oxide-silver-aluminum zinc oxide (AZO-Ag-AZO) and the like can be used, in particular fluorine-doped tin oxide (FTO) desirable. The transparent conductive oxide layer can be formed by any one of sputtering, chemical vapor deposition (CVD), evaporation, thermal oxidation, and electrochemical anodization (deposition). have.

이후 상기 투명 전도성 산화물층에 나노 산화물층을 형성한다. 상기 나노 산화물층은 전이금속산화물, 특히 이산화티탄으로 구비될 수 있으며, 이산화티탄이 포함된 조성물이 닥터 블레이드법, 스크린 프린팅법 등에 의해 도포되어 형성될 수 있다.Thereafter, a nano oxide layer is formed on the transparent conductive oxide layer. The nano oxide layer may be provided with a transition metal oxide, in particular titanium dioxide, a composition containing titanium dioxide may be applied by a doctor blade method, a screen printing method and the like.

단계 2는 염료; 인산리튬(Li3PO4), 탄산리튬(Li2CO3), 황산리튬(Li2SO4), 인산이수소리튬(LiH2PO4), 인산나트륨(Na3PO4) 및 인산일나트륨(NaH2PO4)으로 이루어진 군으로부터 선택된 알칼리금속 다원자음이온염 및 유기용매를 혼합한 염료용액에 상기 나노 산화물층이 형성된 투명기판(1)을 담지하여 나노 산화물 입자(40) 표면에 염료(50) 및 다원자음이온(60)을 흡착시킴으로써 음극계 전극을 제조하는 단계로서, 본 발명의 염료감응 태양전지의 제조방법에서 핵심적인 단계에 해당한다.Step 2 comprises a dye; Lithium Phosphate (Li 3 PO 4 ), Lithium Carbonate (Li 2 CO 3 ), Lithium Sulphate (Li 2 SO 4 ), Lithium Dibasic Sodium Phosphate (LiH 2 PO 4 ), Sodium Phosphate (Na 3 PO 4 ) and Monosodium Phosphate (NaH 2 PO 4 ) on the surface of the nano oxide particles (40) by carrying a transparent substrate (1) having the nano oxide layer formed on a dye solution mixed with an alkali metal polyatomic anion salt selected from the group consisting of (NaH 2 PO 4 ) 50) and preparing a negative electrode by adsorbing the polyatomic ion 60, which corresponds to a key step in the manufacturing method of the dye-sensitized solar cell of the present invention.

본 발명의 일 실시형태에 있어서, 상기 염료용액은 유기 용매에 염료 50 내지 95 중량% 및 상기 알칼리금속 다원자음이온염 5 내지 50 중량%를 용해시켜 제조될 수 있다.In one embodiment of the present invention, the dye solution may be prepared by dissolving 50 to 95% by weight of the dye and 5 to 50% by weight of the alkali metal polyatomic anion salt in an organic solvent.

상기 유기 용매로는 에탄올, 메탄올, 프로판올, 이소프로판올, 아세토니트릴 등을 사용할 수 있으며, 염료로는 루테늄(Ru) 복합체를 포함하여 가시광을 흡수할 수 있는 물질을 사용할 수 있고, 이외에도 가시광내의 장파장 흡수를 개선하여 효율을 향상시키는 염료 및 전자 방출이 용이한 새로운 타입의 염료를 사용할 수 있음은 물론이다.Ethanol, methanol, propanol, isopropanol, acetonitrile, etc. may be used as the organic solvent, and as a dye, a material capable of absorbing visible light, including a ruthenium (Ru) complex, may be used. Of course, it is possible to use dyes that improve and improve efficiency and new types of dyes that are easy to emit electrons.

염료 및 상기 알칼리금속 다원자음이온염을 용해시킨 염료용액 내에 단계 1에서 제조한 나노 산화물층이 형성된 투명기판(1)을 담지시킨 후, 염료(50) 및 다원자음이온(60)이 나노 산화물 입자(40)의 표면에 충분히 흡착될 수 있을 시간동안 유지시켜 나노 산화물 입자(40)의 표면에 염료 및 다원자음이온을 표면공백이 최소 화되도록 흡착시킴으로써 음극계 전극(10)을 제조한다.After the transparent substrate 1 having the nano oxide layer prepared in step 1 was formed in a dye and a dye solution in which the alkali metal polyatomic anion salt was dissolved, the dye 50 and the polyatomic ion 60 were nano oxide particles. The cathode 10 is manufactured by adsorbing dyes and polyatomic ions to the surface of the nano-oxide particles 40 so as to minimize the surface blanks by maintaining them for a time enough to be adsorbed on the surface of the 40.

단계 3은 투명 전도성 산화물층이 형성된 투명 기판(1)의 상부에 금속층(30)을 형성하여 양극계 전극(20)을 제조하는 단계이다.Step 3 is a step of forming a bipolar electrode 20 by forming a metal layer 30 on the transparent substrate 1 on which a transparent conductive oxide layer is formed.

상기 단계 1에서와 동일하게 투명 전도성 산화물층을 투명 기판(1) 상에 형성한 후, 상기 투명 전도성 산화물층에 금속층(30)을 형성하여 양극계 전극(20)을 제조할 수 있다.As in step 1, the transparent conductive oxide layer may be formed on the transparent substrate 1, and then the anode layer 20 may be manufactured by forming the metal layer 30 on the transparent conductive oxide layer.

상기 금속층(30)은 통전이 가능한 물질로 구성되는데, 바람직하게는 백금(Pt) 등과 같은 귀금속 물질로 구비될 수 있다. 백금(Pt)은 반사도가 좋아서, 투과된 가시광이 태양전지의 내부로 반사되어 광흡수의 효율에 유리하다. 또한, 백금(Pt) 이외에도 저항값이 낮은 다른 귀금속 물질도 사용할 수 있음은 물론이다.The metal layer 30 is made of a material that can be energized. Preferably, the metal layer 30 may be made of a precious metal material such as platinum (Pt). Platinum (Pt) has a good reflectivity, the transmitted visible light is reflected into the interior of the solar cell is advantageous for the efficiency of light absorption. In addition, in addition to platinum (Pt), other precious metal materials having a low resistance value can also be used.

단계 4는 상기 단계 2에서 제조된 음극계 전극(10)과 단계 3에서 제조된 양극계 전극(20)을 대향시켜 접합시킨 후 전해액을 주입하는 단계이다.Step 4 is a step of injecting an electrolyte after bonding the cathode-based electrode 10 prepared in Step 2 and the anode-based electrode 20 prepared in Step 3 to face each other.

본 발명의 일 실시형태에 있어서, 상기 음극계 전극(10)과 양극계 전극(20)을 대향시켜 접합시킨 후 양극계 전극(20)에 미세 홀을 형성하여 전해액을 주입한 후, 상기 구멍을 고분자 수지를 이용하여 밀봉함으로써 염료감응 태양전지를 제조할 수 있다.In one embodiment of the present invention, the cathode-based electrode 10 and the anode-based electrode 20 are opposed to each other, and then the hole is formed by injecting electrolyte by forming fine holes in the anode-based electrode 20. The dye-sensitized solar cell can be manufactured by sealing using a polymer resin.

본 발명은 염료; 인산리튬(Li3PO4), 탄산리튬(Li2CO3), 황산리튬(Li2SO4), 인산이수소리튬(LiH2PO4), 인산나트륨(Na3PO4) 및 인산일나트륨(NaH2PO4)으로 이루어진 군으로부터 선택된 알칼리금속 다원자음이온염 및 유기용매를 혼합한 염료용액에 상기 나노 산화물층이 형성된 투명기판을 담지함으로써 나노 산화물 입자 표면에 염료 및 다원자음이온이 흡착된 나노 산화물층을 포함하는, 염료감응 태양전지의 음극계 전극을 제공한다.The present invention is a dye; Lithium Phosphate (Li 3 PO 4 ), Lithium Carbonate (Li 2 CO 3 ), Lithium Sulphate (Li 2 SO 4 ), Lithium Dibasic Sodium Phosphate (LiH 2 PO 4 ), Sodium Phosphate (Na 3 PO 4 ) and Monosodium Phosphate The dye and polyatomic ions are adsorbed on the surface of the nano oxide particles by supporting a transparent substrate having the nano oxide layer formed on a dye solution mixed with an alkali metal polyatomic anion salt selected from the group consisting of (NaH 2 PO 4 ) and an organic solvent. It provides a negative electrode of the dye-sensitized solar cell, including a nano oxide layer.

또한, 본 발명은 염료; 인산리튬(Li3PO4), 탄산리튬(Li2CO3), 황산리튬(Li2SO4), 인산이수소리튬(LiH2PO4), 인산나트륨(Na3PO4) 및 인산일나트륨(NaH2PO4)으로 이루어진 군으로부터 선택된 알칼리금속 다원자음이온염 및 유기용매를 혼합한 염료용액에 상기 나노 산화물층이 형성된 투명기판을 담지함으로써 나노 산화물 입자 표면에 염료 및 다원자음이온이 흡착된 나노 산화물층이 형성된 음극계 전극을 포함하는, 염료감응 태양전지를 제공한다.In addition, the present invention is a dye; Lithium Phosphate (Li 3 PO 4 ), Lithium Carbonate (Li 2 CO 3 ), Lithium Sulphate (Li 2 SO 4 ), Lithium Dibasic Sodium Phosphate (LiH 2 PO 4 ), Sodium Phosphate (Na 3 PO 4 ) and Monosodium Phosphate The dye and polyatomic ions are adsorbed on the surface of the nano oxide particles by supporting a transparent substrate having the nano oxide layer formed on a dye solution mixed with an alkali metal polyatomic anion salt selected from the group consisting of (NaH 2 PO 4 ) and an organic solvent. It provides a dye-sensitized solar cell comprising a negative electrode formed with a nano oxide layer.

상기 음극계 전극에서 나노 산화물 입자의 표면에 염료 및 다원자음이온이 흡착되어 있는 나노 산화물층을 형성하는 방법은 상술한 바와 같다.The method of forming the nano oxide layer in which the dye and polyatomic anion are adsorbed on the surface of the nano oxide particles in the cathode electrode is as described above.

도 2는 종래의 염료감응 태양전지의 측단면을 나타내는 도면이다. 도 1과 도 2를 비교하면, 본 발명에 따라 제조된 염료감응 태양전지(100)에서 음극계 전극(10)에는 염료(50) 및 다원자음이온(60)이 나노 산화물 입자(40)의 표면에 표면공백이 최소화되도록 흡착되어 있다(도 1 참조). 그러나 종래기술에 따른 염료감응 태양전지의 음극계 전극(10) 제조방법으로는 나노 산화물 입자(40) 표면에 표면공 극을 최소화하여 염료를 흡착시킬 수 없기 때문에 도 2에 나타난 바와 같이 염료(50)가 나노 산화물 입자(40) 표면에 듬성듬성 흡착된다.2 is a side cross-sectional view of a conventional dye-sensitized solar cell. 1 and 2, in the dye-sensitized solar cell 100 manufactured according to the present invention, a dye 50 and a polyatomic ion 60 are formed on the surface of the nano-oxide particle 40 in the negative electrode 10. Is adsorbed to minimize surface blanks (see FIG. 1). However, the method of manufacturing the negative electrode 10 of the dye-sensitized solar cell according to the prior art does not allow dyes to be adsorbed by minimizing surface porosity on the surface of the nano-oxide particles 40, as shown in FIG. 2. ) Is adsorbed sparsely on the surface of the nano oxide particles 40.

나노 산화물 입자 표면에 염료 및 다원자음이온이 표면공백이 최소화되도록 흡착되어 있는 나노 산화물층이 형성된 음극계 전극을 포함하는 본 발명의 염료감응 태양전지의 경우, 염료가 나노 산화물 입자 표면에 듬성듬성 흡착된 나노 산화물층이 형성된 음극계 전극을 포함하는 염료감응 태양전지에 비해 개방전압 및 충진계수가 향상되어 광전변환 효율이 향상된다. 이러한 효과는 하기에서 보다 상세히 설명한다.In the dye-sensitized solar cell of the present invention including a negative electrode having a nano-oxide layer on which the dye and polyatomic ions are adsorbed on the surface of the nano-oxide particles to minimize surface blanks, the dye is sparsely adsorbed on the surface of the nano-oxide particles. Compared with the dye-sensitized solar cell including the cathode-based electrode having the nano oxide layer formed thereon, the open voltage and the filling coefficient are improved, thereby improving the photoelectric conversion efficiency. This effect is explained in more detail below.

본 발명은 염료 및 다원자음이온이 나노 산화물 입자 표면에 표면공백이 최소화되도록 흡착되어 있는 나노 산화물층이 형성된 음극계 전극을 포함하는 염료감응 태양전지 및 이의 제조방법을 제공하며, 본 발명에 따른 염료감응 태양전지는 개방전압 및 충진계수가 향상되어 광전변환 효율이 향상될 수 있다.The present invention provides a dye-sensitized solar cell and a method for manufacturing the same, including a cathode-based electrode having a nano-oxide layer having a dye and polyatomic ions adsorbed on the surface of the nano-oxide particles to minimize surface space. Sensitized solar cells can be improved in the open-circuit voltage and the filling factor can be improved photoelectric conversion efficiency.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred examples are provided to aid the understanding of the present invention, but the following examples are merely for exemplifying the present invention, and it will be apparent to those skilled in the art that various changes and modifications can be made within the scope and spirit of the present invention. It is natural that such variations and modifications fall within the scope of the appended claims.

<< 실시예Example >>

실시예Example 1 One

(1) 불소가 도핑된 틴 옥사이드 투명전도성 산화물층이 형성된 투명 유리 기판을 준비하였다. 상기 기판의 투명전도성 산화물층 상부에 이산화티탄을 포함하는 코팅용 조성물을 닥터블레이드법으로 도포하고, 500 ℃에서 30분 동안 열처리하여, 나노크기의 금속 산화물 간의 접촉 및 충진이 이루어지도록 하여 약 8 ㎛ 두께의 나노 산화물층을 형성시켰다. 이어서, 상기 나노 산화물층의 상부에 이산화티탄을 포함하는 코팅용 조성물을 동일한 방법으로 도포하고, 500 ℃의 온도에서 30분 동안 열처리하여 약 15 ㎛ 두께의 나노 산화물층을 형성시켰다. 0.2 mM의 루테늄 디티오시아네이트 2,2′-비피리딜-4,4′-디카르복실레이트와 0.2 mM의 인산리튬(Li3PO4)이 에탄올에 녹아있는 염료용액을 제조하였다. 여기에 상기 나노 산화물층이 형성된 기판을 24시간 동안 담지한 후 건조시켜 나노크기의 금속 산화물에 염료 및 인산이온을 흡착시켜 음극계 전극을 제조하였다. (1) A transparent glass substrate on which a fluorine-doped tin oxide transparent conductive oxide layer was formed was prepared. Applying a coating composition comprising titanium dioxide on the transparent conductive oxide layer of the substrate by a doctor blade method, and heat-treated at 500 ℃ for 30 minutes, so that the contact and filling between nano-sized metal oxide is made to about 8 ㎛ A thick nano oxide layer was formed. Subsequently, a coating composition including titanium dioxide was applied to the upper portion of the nano oxide layer by the same method, and heat-treated at a temperature of 500 ° C. for 30 minutes to form a nano oxide layer having a thickness of about 15 μm. A dye solution in which 0.2 mM ruthenium dithiocyanate 2,2'-bipyridyl-4,4'-dicarboxylate and 0.2 mM lithium phosphate (Li 3 PO 4 ) was dissolved in ethanol was prepared. The substrate having the nano oxide layer formed thereon was supported for 24 hours and then dried to adsorb dyes and phosphate ions to the nano-sized metal oxide to prepare a negative electrode.

(2) 불소가 도핑된 틴 옥사이드 투명전도성 산화물층이 형성된 투명 유리 기판을 준비하였다. 상기 기판의 투명전도성 산화물층 상부에 육염화백금산(H2PtCl6)이 녹아있는 2-프로판올 용액을 떨어뜨린 후, 450 ℃에서 30분 동안 열처리하여 백금층을 형성시켜 양극계 전극을 제조하였다. (2) A transparent glass substrate on which a fluorine-doped tin oxide transparent conductive oxide layer was formed was prepared. A 2-propanol solution in which chloroplatinic acid (H 2 PtCl 6 ) was dissolved was dropped on the transparent conductive oxide layer of the substrate, and then thermally treated at 450 ° C. for 30 minutes to form a platinum layer, thereby preparing an anode-based electrode.

(3) 제조된 음극계 전극의 나노 산화물층과 양극계 전극의 백금층이 서로 대 향하도록 한 후, SURLYN(Du Pont사 제조)으로 이루어지는 약 60 ㎛ 두께의 열가소성 고분자층을 형성한 후, 130 ℃의 오븐에 넣어 2분 동안 유지하여 두 전극을 부착하여 밀봉하였다. 다음으로, 음극계 전극과 양극계 전극을 관통하는 미세 홀을 형성하고 이 홀을 통해 두 전극 사이의 공간에 전해질 용액을 주입한 다음, 다시 홀의 외부를 접착제로 밀봉하였다. 여기서, 전해질 용액은 3-메톡시프로피오니트릴(3-Methoxypropionitrile) 용매에 0.1M LiI, 0.05M I2, 0.5M 4-터트-부틸피리딘(4-tert-butylpyridine)과 이온성액체인 0.6M 1-에틸-1-메틸피롤리디늄 아이오다이드(1-Ethyl-1-methylpyrrolidinium iodide)를 녹여서 제조하였다. (3) After the nano-oxide layer of the prepared cathode electrode and the platinum layer of the anode electrode were opposed to each other, a thermoplastic polymer layer having a thickness of about 60 μm made of SURLYN (manufactured by Du Pont) was formed, and then 130 Placed in an oven at ℃ ℃ was kept for 2 minutes to attach and seal the two electrodes. Next, fine holes penetrating the cathode electrode and the anode electrode were formed, an electrolyte solution was injected into the space between the two electrodes through the hole, and then the outside of the hole was sealed with an adhesive. Here, the electrolyte solution is 0.1M LiI, 0.05MI 2 , 0.5M 4-tert-butylpyridine in a 3-Methoxypropionitrile solvent and 0.6M 1 as an ionic liquid. -Ethyl-1-methylpyrrolidinium iodide (1-Ethyl-1-methylpyrrolidinium iodide) was prepared by melting.

비교예Comparative example 1 One

염료 용액 제조 시에, 0.2 mM의 루테늄 디티오시아네이트 2,2′-비피리딜-4,4′-디카르복실레이트가 녹아있는 염료용액을 제조한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다. In preparing the dye solution, the same method as in Example 1 except for preparing a dye solution in which 0.2 mM ruthenium dithiocyanate 2,2'-bipyridyl-4,4'-dicarboxylate was prepared. Was carried out.

시험예Test Example

상기 실시예 1 및 비교예 1에서 제조한 염료감응 태양전지의 광전변환 효율을 평가하기 위하여 하기와 같은 방법으로 광전압 및 광전류를 측정하여 광전기적 특성을 관찰하고, 이를 통하여 얻어진 전류밀도(Isc), 전압(Voc), 및 충진계수(fillfactor, ff)를 이용하여 광전변환 효율(ηe)를 하기 수학식 1로 계산하였다. In order to evaluate the photoelectric conversion efficiency of the dye-sensitized solar cells prepared in Example 1 and Comparative Example 1 by measuring the optical voltage and photocurrent in the following manner to observe the photoelectric characteristics, the current density obtained through this (I sc ), The voltage (V oc ), and the fill factor (ff factor) to calculate the photoelectric conversion efficiency (η e ) by the following equation (1).

이때, 광원으로는 제논 램프(Xenon lamp, Oriel)를 사용하였으며, 상기 제논 램프의 태양조건(AM 1.5)은 표준 태양전지를 사용하여 보정하였다. At this time, Xenon lamp (Oriel) was used as the light source, and the solar condition (AM 1.5) of the xenon lamp was corrected using a standard solar cell.

ηe = (Voc × Isc × ff) / (Pine)η e = (V oc × I sc × ff) / (P ine )

상기 수학식 1에서, (Pine)는 100 ㎽/㎠(1 sun)을 나타낸다. In Equation 1, (P ine ) represents 100 ㎽ / ㎠ (1 sun).

상기와 같이 측정된 값들을 하기 표 1에 나타내었다. The values measured as above are shown in Table 1 below.

구분division 전류밀도(㎃/cm2)Current density (㎃ / cm 2 ) 개방전압(Voc)Open Voltage (Voc) 충진계수Fill factor 광전변환 효율(%)Photoelectric conversion efficiency (%) 실시예 1Example 1 14.64014.640 0.7050.705 0.6250.625 6.4546.454 비교예 1Comparative Example 1 14.72514.725 0.6500.650 0.6060.606 5.8015.801

상기 표 1에 나타낸 바와 같이, 본 발명에 따른 실시예 1을 이용하여 제조된 인산리튬염을 포함하는 염료 용액에 의해 제조된 염료감응 태양전지는 비교예 1과 같이 종래 사용되었던 염료만 녹아있는 용액을 사용하여 제조된 염료감응 태양전지와 비교할 때 개방전압 및 충진계수가 향상되어 광전변환 효율이 향상된 것을 확인할 수 있었다.As shown in Table 1, the dye-sensitized solar cell prepared by the dye solution containing a lithium phosphate salt prepared using Example 1 according to the present invention is a solution in which only the dye used in the prior art as in Comparative Example 1 is dissolved Compared with the dye-sensitized solar cell manufactured by using the open voltage and the filling coefficient was confirmed that the improved photoelectric conversion efficiency.

도 1은 본 발명의 일 실시형태에 따라 제조된 염료감응 태양전지의 측단면도이다. 1 is a side cross-sectional view of a dye-sensitized solar cell prepared according to one embodiment of the invention.

도 2는 종래의 염료감응 태양전지의 측단면을 나타내는 도면이다. 2 is a side cross-sectional view of a conventional dye-sensitized solar cell.

* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

1 : 투명 기판 100 : 염료감응 태양전지 1: transparent substrate 100: dye-sensitized solar cell

10 : 음극계 전극 20 : 양극계 전극10: cathode electrode 20: anode electrode

30 : 금속층 40 : 나노 산화물 입자30: metal layer 40: nano oxide particles

50 : 염료 60 : 다원자음이온50: dye 60: polyatomic ion

Claims (14)

투명 전도성 산화물층이 형성된 투명 기판 상에 나노 산화물층을 형성하는 단계(단계 1);Forming a nano oxide layer on the transparent substrate on which the transparent conductive oxide layer is formed (step 1); 염료 50 내지 95 중량% 및 인산리튬(Li3PO4), 탄산리튬(Li2CO3), 황산리튬(Li2SO4), 인산이수소리튬(LiH2PO4), 인산나트륨(Na3PO4) 및 인산일나트륨(NaH2PO4)으로 이루어진 군으로부터 선택된 알칼리금속 다원자음이온염 5 내지 50 중량%를 유기용매에 용해시켜 제조한 염료용액에 상기 나노 산화물층이 형성된 투명기판을 담지하여 나노 산화물 입자 표면에 염료 및 다원자음이온을 흡착시킴으로써 음극계 전극을 제조하는 단계(단계 2);50 to 95% by weight of dye and lithium phosphate (Li 3 PO 4 ), lithium carbonate (Li 2 CO 3 ), lithium sulfate (Li 2 SO 4 ), lithium disorbate phosphate (LiH 2 PO 4 ), sodium phosphate (Na 3 PO 4 ) and monosodium phosphate (NaH 2 PO 4 ) on the dye solution prepared by dissolving 5-50% by weight of an alkali metal polyatomic anion salt in an organic solvent to carry a transparent substrate having the nano oxide layer formed thereon. Preparing a cathode electrode by adsorbing dye and polyatomic anion to the surface of the nano oxide particle (step 2); 투명 전도성 산화물층이 형성된 투명 기판의 상부에 금속층을 형성하여 양극계 전극을 제조하는 단계(단계 3); 및Preparing a bipolar electrode by forming a metal layer on the transparent substrate on which the transparent conductive oxide layer is formed (step 3); And 상기 단계 2에서 제조된 음극계 전극과 단계 3에서 제조된 양극계 전극을 대향시켜 접합시킨 후 전해액을 주입하는 단계(단계 4)를 포함하는 염료감응 태양전지의 제조방법.A method of manufacturing a dye-sensitized solar cell comprising the step of injecting an electrolyte after bonding the cathode electrode prepared in step 2 and the anode electrode prepared in step 3 so as to face each other. 삭제delete 제1항에 있어서, The method of claim 1, 상기 유기 용매는 에탄올, 메탄올, 프로판올, 이소프로판올 및 아세토니트릴로 이루어진 군으로부터 선택되는 것을 특징으로 하는 염료감응 태양전지의 제조방법.The organic solvent is a method of manufacturing a dye-sensitized solar cell, characterized in that selected from the group consisting of ethanol, methanol, propanol, isopropanol and acetonitrile. 제1항에 있어서, The method of claim 1, 상기 염료는 루테늄계 염료인 것을 특징으로 하는 염료감응 태양전지의 제조방법.The dye is a method for producing a dye-sensitized solar cell, characterized in that the ruthenium-based dye. 제1항에 있어서,The method of claim 1, 상기 투명 전도성 산화물층은 불소가 도핑된 틴 옥사이드(FTO), 인듐틴옥사이드(ITO), 인듐징크옥사이드(IZO), 인듐징크틴옥사이드(IZTO), 알루미늄징크옥사이드 (AZO), 인듐틴옥사이드-은-인듐틴옥사이드(ITO-Ag-ITO), 인듐징크옥사이드-은-인듐징크옥사이드(IZO-Ag-IZO), 인듐징크틴옥사이드-은-인듐징크틴옥사이드 (IZTO-Ag-IZTO) 및 알루미늄징크옥사이드-은-알루미늄징크옥사이드(AZO-Ag-AZO)로 이루어진 군으로부터 선택된 투명 전도성 산화물로 형성되는 것을 특징으로 하는 염료감응 태양전지의 제조방법.The transparent conductive oxide layer is fluorine-doped tin oxide (FTO), indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), aluminum zinc oxide (AZO), indium tin oxide-silver Indium tin oxide (ITO-Ag-ITO), indium zinc oxide-silver-indium zinc oxide (IZO-Ag-IZO), indium zinc oxide-silver-indium zinc tin oxide (IZTO-Ag-IZTO) and aluminum zinc Method of manufacturing a dye-sensitized solar cell, characterized in that formed of a transparent conductive oxide selected from the group consisting of oxide-silver-aluminum zinc oxide (AZO-Ag-AZO). 제1항에 있어서,The method of claim 1, 상기 투명 기판은 유리 기판 또는 투명한 플라스틱 기판인 것을 특징으로 하는 염료감응 태양전지의 제조방법.The transparent substrate is a glass substrate or a transparent plastic substrate manufacturing method of the dye-sensitized solar cell, characterized in that. 제1항에 있어서, The method of claim 1, 상기 금속층은 백금층인 것을 특징으로 하는 염료감응 태양전지의 제조방법.The metal layer is a method of manufacturing a dye-sensitized solar cell, characterized in that the platinum layer. 제1항에 있어서,The method of claim 1, 상기 나노 산화물층은 이산화티탄을 포함하는 코팅용 조성물을 도포하여 형성되는 것을 특징으로 하는 염료감응 태양전지의 제조방법.The nano oxide layer is a method of manufacturing a dye-sensitized solar cell, characterized in that formed by applying a coating composition containing titanium dioxide. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020090083697A 2009-09-04 2009-09-04 Dye sensitized solar cell comprising negative electrode including nano oxide layer adsorbed with dye and polyatomic anion and preparation method thereof KR101044338B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090083697A KR101044338B1 (en) 2009-09-04 2009-09-04 Dye sensitized solar cell comprising negative electrode including nano oxide layer adsorbed with dye and polyatomic anion and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090083697A KR101044338B1 (en) 2009-09-04 2009-09-04 Dye sensitized solar cell comprising negative electrode including nano oxide layer adsorbed with dye and polyatomic anion and preparation method thereof

Publications (2)

Publication Number Publication Date
KR20110025573A KR20110025573A (en) 2011-03-10
KR101044338B1 true KR101044338B1 (en) 2011-06-29

Family

ID=43933091

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090083697A KR101044338B1 (en) 2009-09-04 2009-09-04 Dye sensitized solar cell comprising negative electrode including nano oxide layer adsorbed with dye and polyatomic anion and preparation method thereof

Country Status (1)

Country Link
KR (1) KR101044338B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9251962B2 (en) 2011-11-30 2016-02-02 Hyundai Motor Company Dye-sensitized solar cell module using thin glass substrate and method of manufacturing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101347198B1 (en) * 2012-05-03 2014-01-10 한국에너지기술연구원 Method of manufacturing coating agent of dye-sensitive solar cell surface, coating agent thereof and dye-sensitive solar cell coated with coating agent
KR101635758B1 (en) * 2014-06-18 2016-07-04 한국과학기술연구원 Sensitizing dye solution, working electrode prepared thereby, and dye-sensitized solar cell comprising the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070102268A (en) * 2006-04-14 2007-10-18 한국전자통신연구원 Transparent semiconductor electrode comprising light scattering oxide particles, and dye-sensitized solar cell by using the semiconductor electrode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070102268A (en) * 2006-04-14 2007-10-18 한국전자통신연구원 Transparent semiconductor electrode comprising light scattering oxide particles, and dye-sensitized solar cell by using the semiconductor electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9251962B2 (en) 2011-11-30 2016-02-02 Hyundai Motor Company Dye-sensitized solar cell module using thin glass substrate and method of manufacturing the same
US9570241B2 (en) 2011-11-30 2017-02-14 Hyundai Motor Company Dye-sensitized solar cell module using thin glass substrate and method of manufacturing the same

Also Published As

Publication number Publication date
KR20110025573A (en) 2011-03-10

Similar Documents

Publication Publication Date Title
JP5377327B2 (en) Photosensitized solar cell module and manufacturing method thereof
JP5422645B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
KR100994902B1 (en) Flexible dye-sensitized solar cell and preparation method thereof
JP4448478B2 (en) Dye-sensitized solar cell module
JP2004152613A (en) Dye-sensitized solar cell
JP4387652B2 (en) Carbon electrode and dye-sensitized solar cell provided with the same
JP5162347B2 (en) Dye-sensitized solar cell, method for producing the same, and dye-sensitized solar cell module
KR101044338B1 (en) Dye sensitized solar cell comprising negative electrode including nano oxide layer adsorbed with dye and polyatomic anion and preparation method thereof
KR101088676B1 (en) Electrolyte for dye-sensitized solarcell comprising pyrrolidinium iodide based ionic liquid, dye-sensitized solarcell comprising the electrolyte and preparation method of the dye-sensitized solarcell
KR101131055B1 (en) Dye sensitized solar cell comprising counter electrode having mesoporous carbon electrode deposited on transparent substrate and preparation method thereof
KR101088675B1 (en) Electrolyte for dye-sensitized solarcell comprising pyridinium iodide based ionic liquid, dye-sensitized solarcell comprising the electrolyte and preparation method of the dye-sensitized solarcell
KR20090123197A (en) Preparation method of titanium dioxide powder doped with erbium ion and ytterbium ion and its application to dye-sensitized solar cell as scattering layer
KR20100106837A (en) Method for sealing dye sensitized solar cell and method for preparing comprising the sealing method
Nursam et al. Low-cost monolithic dye-sensitized solar cells fabricated on single conductive substrate
WO2012053327A1 (en) Dye-sensitized solar cell module and method for manufacturing same
KR101125821B1 (en) Dye sensitized solar cell comprising negative electrode including nano oxide layer adsorbed with dye and titanate coupling agent and preparation method thereof
KR101350350B1 (en) Dye-sensitized solar cell of cylinder-like structure with phase change materials and the module thereof
KR20130019849A (en) Dye-sensitized solarcell
KR20120080796A (en) Dye sensitized solar cell comprising multi-functional oxide layer and preparation method thereof
KR101070774B1 (en) Nanogel-type electrolyte for dye-sensitized solarcell, preparation method thereof and dye-sensitized solarcell using the same
KR101541599B1 (en) Dye solar cell with electrolyte aqueous solution and method of manufacturing the same
KR20130118636A (en) Dye-sensitized solar cell and the fabricating method of the same
US20130327374A1 (en) Photoelectric conversion device and photoelectric conversion device module
KR20180053607A (en) Dye-Sensitized Solar Cell and the fabricating method of the same
KR101555425B1 (en) Compositions for insulation coating of semiconducting layers and fabricating method of dye-sensitive solar cells using them

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140609

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150618

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160610

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170322

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180416

Year of fee payment: 8