KR100865724B1 - Method for atomic layer deposition of copper layer - Google Patents
Method for atomic layer deposition of copper layer Download PDFInfo
- Publication number
- KR100865724B1 KR100865724B1 KR1020020038061A KR20020038061A KR100865724B1 KR 100865724 B1 KR100865724 B1 KR 100865724B1 KR 1020020038061 A KR1020020038061 A KR 1020020038061A KR 20020038061 A KR20020038061 A KR 20020038061A KR 100865724 B1 KR100865724 B1 KR 100865724B1
- Authority
- KR
- South Korea
- Prior art keywords
- copper
- precursor
- hydrogen atom
- copper precursor
- film
- Prior art date
Links
- 239000010949 copper Substances 0.000 title claims abstract description 78
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 67
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 66
- 238000000034 method Methods 0.000 title claims abstract description 40
- 238000000231 atomic layer deposition Methods 0.000 title claims abstract description 24
- 239000012691 Cu precursor Substances 0.000 claims abstract description 34
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 31
- 239000000758 substrate Substances 0.000 claims abstract description 13
- 238000010926 purge Methods 0.000 claims abstract description 12
- 238000006243 chemical reaction Methods 0.000 claims abstract description 10
- 239000006227 byproduct Substances 0.000 claims abstract description 6
- 239000010410 layer Substances 0.000 claims description 27
- 230000004888 barrier function Effects 0.000 claims description 8
- 238000000151 deposition Methods 0.000 claims description 8
- 239000011229 interlayer Substances 0.000 claims description 8
- 238000009792 diffusion process Methods 0.000 claims description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- -1 copper halogen compound Chemical class 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- 238000005498 polishing Methods 0.000 claims description 2
- 238000005530 etching Methods 0.000 claims 1
- 238000005229 chemical vapour deposition Methods 0.000 abstract description 17
- 238000005240 physical vapour deposition Methods 0.000 abstract description 15
- 238000011109 contamination Methods 0.000 abstract description 5
- 238000010301 surface-oxidation reaction Methods 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 22
- 150000001875 compounds Chemical class 0.000 description 12
- 238000010586 diagram Methods 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000000376 reactant Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000001819 mass spectrum Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 238000003795 desorption Methods 0.000 description 3
- 229910004200 TaSiN Inorganic materials 0.000 description 2
- 229910010037 TiAlN Inorganic materials 0.000 description 2
- 229910008482 TiSiN Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000006557 surface reaction Methods 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 229910017489 Cu I Inorganic materials 0.000 description 1
- 239000002156 adsorbate Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010291 electrical method Methods 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- GCSJLQSCSDMKTP-UHFFFAOYSA-N ethenyl(trimethyl)silane Chemical compound C[Si](C)(C)C=C GCSJLQSCSDMKTP-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000000427 thin-film deposition Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45553—Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/06—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/28556—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32357—Generation remote from the workpiece, e.g. down-stream
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
본 발명은 웨이퍼의 오염이나 표면 산화를 방지하면서 물리기상증착법 및 화학기상증착법에 의한 얇은 시드층 형성의 어려움을 극복하는데 적합한 구리막의 원자층증착법을 제공하기 위한 것으로, 본 발명은 반응기 내에 기판을 로딩시키는 단계; 상기 반응기 내에 구리전구체를 공급하여 상기 기판 상에 상기 구리전구체를 화학흡착시키는 단계; 상기 구리전구체 중 미반응 구리전구체를 퍼지시키는 단계; 상기 반응기내에 수소원자빔을 공급하여 상기 화학흡착된 구리전구체와의 반응을 유도하여 구리막을 증착하는 단계; 및 상기 구리전구체와 상기 수소원자빔의 반응부산물을 퍼지시키는 단계를 포함한다.The present invention provides an atomic layer deposition method of a copper film suitable for overcoming the difficulty of forming a thin seed layer by physical vapor deposition and chemical vapor deposition while preventing contamination of the wafer and surface oxidation. Making a step; Supplying a copper precursor into the reactor to chemisorb the copper precursor onto the substrate; Purging the unreacted copper precursor of the copper precursor; Supplying a hydrogen atom beam into the reactor to induce a reaction with the chemisorbed copper precursor to deposit a copper film; And purging the reaction byproduct of the copper precursor and the hydrogen atom beam.
구리막, 원자층증착법, 구리전구체, 수소원자빔Copper film, atomic layer deposition, copper precursor, hydrogen atom beam
Description
도 1은 본 발명의 실시예에 따른 구리막의 원자층 증착법을 설명하기 위한 타이밍도,1 is a timing diagram for explaining an atomic layer deposition method of a copper film according to an embodiment of the present invention;
도 2는 구리-유기물 화합물과 수소원자빔의 표면 반응을 도시한 도면,2 is a diagram showing the surface reaction of a copper-organic compound and a hydrogen atom beam;
도 3은 Cu(hfac)이 흡착된 표면에 수소원자를 주입할 때 생성-탈착하는 탈착종의 매스스펙트럼도,Figure 3 is a mass spectrum diagram of the desorption species generated and desorbed when hydrogen atoms are injected into the surface of Cu (hfac) adsorbed,
도 4는 구리막의 원자층증착을 수행하기 위한 장치의 구조도,4 is a structural diagram of an apparatus for performing atomic layer deposition of a copper film;
도 5a 내지 도 5c는 본 발명의 실시예에 따른 구리배선의 형성 방법을 도시한 공정 단면도.
5A to 5C are cross-sectional views illustrating a method of forming a copper wiring according to an embodiment of the present invention.
*도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings
21 : 기판 22 : 층간절연막21
23 : 다마신패턴 24 : 확산장벽층23: damascene pattern 24: diffusion barrier layer
25 : 구리시드층 26 : 구리막
25
본 발명은 반도체소자의 제조 방법에 관한 것으로, 특히 구리막의 원자층증착법에 관한 것이다.BACKGROUND OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to an atomic layer deposition method of a copper film.
반도체소자의 집적도 증가 추세에 따라 금속배선의 재료 및 공정 방법의 한계와 개선 필요성이 크게 대두되고 있으며 많은 연구와 개발이 진행되고 있다. 개발 방향의 한 축으로서 구리 배선이라는 공정 방법이 제안되고 있다. As the integration density of semiconductor devices increases, limitations and necessity of improvement of materials and processing methods of metal wirings are emerging, and many researches and developments are being conducted. As one axis of the development direction, a process method called copper wiring has been proposed.
구리배선을 형성하는 방법으로는 물리기상증착법(PVD), 화학기상증착법(CVD) 또는 전기적 방법(전기도금, 무전극증착) 등이 알려져 있으며, 현재는 특히 전기적 방법을 이용한 배선 형성이 실용화되고 있다.As a method of forming copper wiring, physical vapor deposition (PVD), chemical vapor deposition (CVD) or electrical methods (electroplating, electrodeless deposition) and the like are known. .
그러나, 물리기상증착법(PVD)은 매립특성이 매우 나쁘다는 문제점을 갖고 있고, 화학기상증착법(CVD)은 대부분 증착속도가 느리고 매우 거친 표면의 박막을 형성하는 문제점을 갖고 있으며, 전기적 방법은 전해질이 포함된 수용액 속에서 이루어지기 때문에 오염의 문제나 표면의 산화, 낮은 생산량과 함께 반드시 웨이퍼 전면에 전도체 물질인 시드층(seed layer)을 미리 형성해야한다는 문제점을 갖고 있다. 특히, 선폭의 감소 및 콘택/비아홀의 종횡비 증가로 인하여 시드층을 매우 얇고 컨포멀(conformal)하게 증착하는 기술이 필요하다. 이러한 시드층은 물리기상증착법으로는 형성하기 어렵고, 일반적인 화학기상증착법으로도 얇게 형성하는 것이 어렵기 때문에 시드층을 형성하기 위한 새로운 공정 방법이 요구되고 있다.However, physical vapor deposition (PVD) has a problem of very poor landfill characteristics, and chemical vapor deposition (CVD) has a problem of forming a thin film having a very rough deposition rate and a very rough surface. Because it is made in the contained aqueous solution, there is a problem in that a seed layer, which is a conductive material, must be formed on the entire surface of the wafer in advance, along with problems of contamination, oxidation of the surface, and low yield. In particular, there is a need for a technique that deposits the seed layer very thin and conformally due to the reduction in line width and the increase in aspect ratio of the contact / via holes. Since the seed layer is difficult to be formed by physical vapor deposition and thinly formed by general chemical vapor deposition, a new process method for forming a seed layer is required.
본 발명은 상기한 종래기술의 문제점을 해결하기 위해 안출한 것으로, 웨이퍼의 오염이나 표면 산화를 방지하면서 물리기상증착법 및 화학기상증착법에 의한 얇은 시드층 형성의 어려움을 극복하는데 적합한 구리막의 원자층증착법을 제공하는데 그 목적이 있다.
The present invention has been made to solve the above problems of the prior art, and the atomic layer deposition method of the copper film suitable for overcoming the difficulty of forming a thin seed layer by physical vapor deposition and chemical vapor deposition while preventing contamination of the wafer and surface oxidation. The purpose is to provide.
상기 목적을 달성하기 위한 본 발명의 구리막의 원자층 증착법은 반응기 내에 기판을 로딩시키는 단계; 상기 반응기 내에 구리전구체를 공급하여 상기 기판 상에 상기 구리전구체를 화학흡착시키는 단계; 상기 구리전구체 중 미반응 구리전구체를 퍼지시키는 단계; 상기 반응기내에 수소원자빔을 공급하여 상기 화학흡착된 구리전구체와의 반응을 유도하여 구리막을 증착하는 단계; 및 상기 구리전구체와 상기 수소원자빔의 반응부산물을 퍼지시키는 단계를 포함하는 것을 특징으로 한다.Atomic layer deposition of the copper film of the present invention for achieving the above object comprises the steps of loading a substrate in a reactor; Supplying a copper precursor into the reactor to chemisorb the copper precursor onto the substrate; Purging the unreacted copper precursor of the copper precursor; Supplying a hydrogen atom beam into the reactor to induce a reaction with the chemisorbed copper precursor to deposit a copper film; And purging the reaction by-product of the copper precursor and the hydrogen atom beam.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시예를 첨부 도면을 참조하여 설명하기로 한다.Hereinafter, the preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the technical idea of the present invention. .
후술할 본 발명은 원자층증착법(ALD)을 구리배선 공정에 적용하는 기술이다. 원자층증착법을 위해서는 적어도 두가지 이상의 화합물이 필요하며, 그 화합물들을 펄스 형태로 반응기에 주입하여 표면에 화학흡착시키고, 흡착물과 다음에 들어오는 반응물과 표면에서만 반응하여 원하는 물질만을 표면에 형성하고 나머지 생성물들은 표면으로부터 완전히 탈착되어 배기되어야 한다. The present invention to be described later is a technique of applying the atomic layer deposition method (ALD) to the copper wiring process. At least two compounds are required for atomic layer deposition, and the compounds are injected into the reactor in the form of pulses and chemically adsorbed to the surface, and only the desired substances are formed on the surface by reacting only with the adsorbate and the next reactant. They must be completely removed from the surface and evacuated.
구리나 텅스텐과 같이 단원자 형태의 금속을 증착하기 위한 원자층증착법을 적용하는 것은 어려운 점이 있다. 그 중에서도 표면에만 화학흡착하면서 동시에 후속 주입되는 반응물과 표면에서만 반응하여 원하는 물질을 증착할 수 있는 두가지 이상의 반응물들을 채택하기가 어려우며, 더욱이 저온에서 이루어질 수 있는 반응물들을 채택하기가 어렵다.It is difficult to apply atomic layer deposition to deposit monoatomic metals such as copper or tungsten. Among them, it is difficult to adopt two or more reactants capable of depositing a desired material by reacting only on the surface with a subsequent chemically adsorbed surface at the same time, and moreover, it is difficult to adopt reactants that can be made at low temperatures.
본 발명에서 채택한 반응물은 금속유기화학기상증착(MOCVD)공정에서 적용되는 널리 알려진 구리 전구체(Cu precursor)이다. 구리 전구체는 구리원소(Cu)에 유기물(Organic; Org)이 결합된 구리-유기물(Cu-Org) 화합물이다.The reactants employed in the present invention are well known copper precursors applied in metalorganic chemical vapor deposition (MOCVD) processes. The copper precursor is a copper-organic (Cu-Org) compound in which an organic (Org) is bonded to a copper element (Cu).
예를 들면, 증기압이 낮은 Cu(hfac)2 화합물과 같은 구리 Ⅱ가 (CuⅡ) 화합물과 구리 Ⅱ가 화합물에 비해 증기압이 높아 증착속도가 빠르며 150℃∼250℃의 저온에서 고순도의 구리 박막 증착을 가능하게 하는 구리 Ⅰ가(CuⅠ) 화합물을 이용한다. 현재까지 개발된 여러 가지 구리 Ⅰ가 화합물들 중 (hfac)Cu(TMVS) 화합물은 상온에서 액상으로 존재하며 고순도 구리 박막을 낮은 온도에서 증착할 수 있게 하여 현재 전세계적으로 가장 많이 사용되고 있는 대표적인 구리 전구체이다. For example, copper II, such as Cu (hfac) 2 compound with low vapor pressure, has higher vapor pressure than copper II and copper II compounds, resulting in faster deposition rates and high purity copper thin film deposition at low temperatures of 150 ° C to 250 ° C. A copper I (Cu I) compound is used which makes it possible. Among the various copper I compounds developed so far, (hfac) Cu (TMVS) compounds exist in liquid phase at room temperature and enable the deposition of high-purity copper thin films at low temperatures. to be.
후술한 실시예에서는 잘 알려진 구리전구체를 이용하여 원자층증착법을 위한 별도의 구리전구체를 필요로 하지 않고, 구리전구체와 반응하는 환원물질로서 수소원자빔을 이용한다. In the examples described below, a hydrogen atom beam is used as a reducing material reacting with the copper precursor without requiring a separate copper precursor for atomic layer deposition using a well-known copper precursor.
도 1은 본 발명의 실시예에 따른 구리막의 원자층 증착법을 설명하기 위한 타이밍도이다.1 is a timing diagram illustrating an atomic layer deposition method of a copper film according to an embodiment of the present invention.
도 1을 참조하면, 반응기내에 구리막이 증착될 기판을 로딩시킨 후, 반응기내로 T1시간동안 구리-유기물 화합물을 공급하여 기판 표면에 구리-유기물 화합물을 화학흡착시킨다.Referring to Figure 1, after loading a substrate to be a copper film it is deposited in the reactor, copper during the T 1 time in the reactor - to supply the organic compound of copper to the substrate surface-adsorbed chemical compounds of organic matter.
계속해서, 미반응 구리-유기물 화합물을 제거하기 위해 T2시간동안 퍼지가스로서 아르곤, 질소와 같은 비활성가스를 공급한 후, 반응기내에 환원가스인 수소원자빔을 T3시간동안 공급한다. Subsequently, in order to remove the unreacted copper-organic compound, after supplying an inert gas such as argon and nitrogen as a purge gas for T 2 hours, a hydrogen atom beam as a reducing gas is supplied into the reactor for T 3 hours.
다음으로, 반응부산물을 제거하기 위해 T4시간동안 퍼지가스로서 아르곤, 질소와 같은 비활성가스를 공급한다.Next, an inert gas such as argon and nitrogen is supplied as a purge gas for T 4 hours to remove the reaction byproduct.
도 1의 구리-유기물 화합물 공급, 퍼지, 수소원자빔 공급, 퍼지의 과정을 1사이클로 하고, 원하는 두께의 구리막을 증착하기 위해 원하는 사이클만큼 과정을 반복한다. The process of supplying the copper-organic compound, purge, hydrogen atom beam supply, and purge of FIG. 1 is one cycle, and the process is repeated for a desired cycle to deposit a copper film having a desired thickness.
도 2는 구리-유기물 화합물과 수소원자빔의 표면 반응을 도시한 도면이다.2 is a diagram showing the surface reaction of a copper-organic compound and a hydrogen atom beam.
도 2를 참조하면, 기판 표면에 구리-유기물 화합물(Cu-Org)이 화학흡착된 상태에서 수소원자빔(H)을 공급하면, 구리-유기물 화합물(Cu-Org)내 유기물(Org)과 수소원자(H)가 반응하여 휘발성 반응물(Org-H)을 생성시키며, 기판 표면에는 구리 막(Cu)만 잔류한다.Referring to FIG. 2, when the hydrogen atom beam (H) is supplied in a state in which the copper-organic compound (Cu-Org) is chemisorbed on the surface of the substrate, the organic material (Org) and hydrogen in the copper-organic compound (Cu-Org) are hydrogenated. The atoms (H) react to form volatile reactants (Org-H), and only the copper film (Cu) remains on the substrate surface.
도 1및 도 2에서 적용된 구리전구체(Cu-precursor)인 구리-유기물 화합물로는 구리 Ⅰ가 화합물인 Cu(Ⅰ)-(β-디케노네이트)-L(L은 루이스계 리간드) 또는 구리Ⅱ가 화합물인 Cu(Ⅱ)-(β-디케노네이트)2를 이용한다.The copper-organic compound, which is a copper precursor (Cu-precursor) applied in FIGS. 1 and 2, is Cu (I)-(β-dikenonate) -L (L is a Lewis ligand) or copper II, in which copper I is a compound. Cu (II)-(β-dikenonate) 2 as a compound is used.
일반적으로 구리전구체는 크게 +1과 +2가의 화합물로 나누어져 있으며, 구리-유기화합물은 고진공하에서 웨이퍼 표면에서 Cu-(β-디케노네이트)의 형태로 화학흡착하며, 온도가 높으면 구리가 생성되거나 또는 유기물들이 분해되어 표면을 오염시키는 문제가 있다.In general, copper precursors are largely divided into +1 and +2 valent compounds. Copper-organic compounds chemisorb in the form of Cu- (β-dikenonate) on the wafer surface under high vacuum. Or organic matters decompose to contaminate the surface.
그러나, Cu-(β-디케노네이트)로 화학흡착되어 있는 표면을 수소원자빔에 노출시키면, (β-디케노네이트) 그룹은 β-디케톤(diketone)을 형성하여 일정 온도 이상이 되면 표면에서 탈착되어 배기된다.However, when the surface chemisorbed with Cu- (β-dikenonate) is exposed to a hydrogen atom beam, the (β-dikenonate) group forms β-diketone and the surface becomes above a certain temperature. Detachable and exhausted from
도 3은 Cu(hfac)이 흡착된 표면에 수소원자를 주입할 때 생성-탈착하는 탈착종의 매스스펙트럼도이며, 구리-유기물 화합물로는 Cu(hfac)(vtms)[hfac=hexafluoroacetyacetonate, vtms=vinyltrimethylsilane)를 이용하였다.FIG. 3 is a mass spectrum diagram of desorption species generated and desorbed when hydrogen atoms are injected onto Cu (hfac) -adsorbed surfaces, and Cu (hfac) (vtms) [hfac = hexafluoroacetyacetonate, vtms = vinyltrimethylsilane) was used.
도 3의 결과는, 먼저 구리 표면에 Cu(hfac)(vtms)을 소량 도징(dosing)하여 Cu(hfac)만 흡착한 상태에서 수소원자빔을 표면에 입사하여 탈착되는 탈착종에 대해 QMS(Quadrupole Mass Spectrometer)로 동시에 분석한 스펙트럼이다.The result of FIG. 3 is QMS (Quadrupole) for the desorption species which first do a small amount of Cu (hfac) (vtms) onto the copper surface and adsorb the hydrogen atom beam onto the surface while desorbing only Cu (hfac). Spectrum analyzed simultaneously with Mass Spectrometer.
도 3에서 볼 수 있듯이, Cu(hfac)이 흡착되어 있는 기판 표면에 수소원자를 주입하게 되면 Dhfac을 생성 및 탈착하게 되어, 매스스펙트럼(mass spectrum)에서 Dhfac의 분해물인 CF3기와 Dhfac에서 CF3가 탈착된 Dhfac-CF3가 나타난다. 즉, hfac기가 수소원자와 반응하여 H-hfac을 생성 및 표면에서 탈착하고 표면에는 구리원자만 남게 됨을 알 수 있다.As shown in FIG. 3, Cu (hfac) is when the introduction of hydrogen atoms to the substrate surface adsorbed is generated and desorbing Dhfac, mass spectrum (mass spectrum) CF 3 in the degradation products of CF 3 groups Dhfac of Dhfac in Dhfac-CF 3 is desorbed. In other words, it can be seen that the hfac group reacts with the hydrogen atom to generate and desorb H-hfac from the surface, leaving only copper atoms on the surface.
한편, 수소원자를 공급하는 방법은 먼저 작은 영역에서 원자층증착법을 수행하는 경우에는 가열된 구리 튜브(tube)나 구리 와이어(wire)를 수소분자가 지나가면서 열에 의해 원자로 분해시키는 방법이 있다.On the other hand, a method of supplying hydrogen atoms is a method of decomposing the heated copper tube or copper wire into atoms by heat while passing through the hydrogen molecules when atomic layer deposition is performed in a small region.
다른 방법으로는 대규모의 반도체에 사용하는 웨이퍼에 대해서는 리모트 플라즈마(remote plasma)를 적용하는 방법이다. Another method is to apply a remote plasma to a wafer used for a large semiconductor.
도 4는 구리막의 원자층증착을 수행하기 위한 장치의 구조도로서, 웨이퍼위에 샤워헤드(10)가 있으며, 이는 구리전구체와 환원가스가 공급되는 주입구(11)와 수소분자가 들어가서 수소원자를 형성하는 주입구(12)를 분리하여 각각이 다른 배출구멍(13,14)에서 방출되도록 고안한 것이다. 여기서, 수소원자는 리모트플라즈마에 의해 생성되며, RF(Radio Frequency) 플라즈마 등의 방법으로 수소원자발생부(15)에서 수소분자를 수소원자로 분해하여 얻는다. 리모트 플라즈마에 의해 생성된 수소원자가 안정하게 웨이퍼 표면까지 도달하기 위해서는 10-3torr∼10-8torr의 고진공이 필요하다.4 is a structural diagram of an apparatus for performing atomic layer deposition of a copper film, which has a
한편, 구리전구체로는 구리-유기물 화합물외에도 구리할로겐화합물을 이용할 수 있으며, 구리막의 원자층증착이 이루어지는 반응기는 상온∼300℃의 저온을 유 지한다.Meanwhile, as the copper precursor, a copper halogen compound may be used in addition to the copper-organic compound, and the reactor in which the atomic layer deposition of the copper film is carried out maintains a low temperature of room temperature to 300 ° C.
도 5a 내지 도 5c는 본 발명의 실시예에 따른 구리배선의 형성 방법을 도시한 공정 단면도이다.5A to 5C are cross-sectional views illustrating a method of forming a copper wiring according to an embodiment of the present invention.
도 5a에 도시된 바와 같이, 반도체 소자를 형성하기 위한 여러 요소가 형성된 기판(21) 상부에 층간절연막(22)을 형성하고, 싱글다마신(single damascene) 혹은 듀얼 다마신(dual damascene)법으로 비아(via) 및/또는 트렌치(trench)로 이루어진 다마신 패턴(23)을 형성한다. 이후 다마신 패턴(23) 형성시에 발생된 부산물을 제거하기 위해 클리닝(cleaning)을 실시한다.As shown in FIG. 5A, an
여기서, 층간절연막(22)은 저유전 상수(low k)를 갖는 절연물질로 형성한다. 클리닝 공정은 다마신 패턴(23)의 바닥을 이루는 하지층이 텅스텐, 알루미늄등의 금속일 경우에는 RF플라즈마의 이용이 가능하며, 하지층이 구리일 경우에는 리액티브 클리닝(reactive cleaning)법을 적용한다.Here, the
도 5b에 도시된 바와 같이, 다마신 패턴(23)을 포함한 층간 절연막(22)의 표면에 확산장벽층(barrier metal; 24)을 형성한다. 이때 확산장벽층(24)으로는 PVD TiN, CVD TiN 및 MOCVD TiN 박막이나, PVD Ta, PVD TaN, CVD Ta, CVD TaN, CVD WN, PVD TiAlN, PVD TiSiN, PVD TaSiN, CVD TiAlN, CVD TiSiN, CVD TaSiN 박막의 적용이 가능하다.As shown in FIG. 5B, a
다음으로, 확산장벽층(24)상에 도 1에 도시된 타이밍도에 따라 구리시드층(25)을 얇게 증착한다. 이때, 원자층증착법을 이용하면, 비록 다마신패턴의 종횡비가 크더라도 균일하게 오버행(overhang) 또는 보이드(void)없이 구리시 드층(25)을 증착할 수 있다.Next, a thin
다음으로, 전기적방법인 전기도금법(electro-plating) 또는 무전해도금법(electroless plating)으로 다마신 패턴(23)이 매립될 때까지 구리시드층(25)상에 구리를 증착하여 구리막(26)을 형성한다.Next, the
도 5c에 도시된 바와 같이, 화학적기계적연마(chemical mechanical polishing)로 층간절연막(22)의 표면이 노출될때까지 구리막(26), 구리시드층(25) 및 확산장벽층(24)을 연마하여 다마신 패턴(23)내에 구리배선(26a)을 형성한다. 이때, 다마신패턴(23)내에는 확산장벽층(24a)과 구리시드층(25a)도 잔류한다.As shown in FIG. 5C, the
전술한 실시예에 의하면, 구리시드층(25)을 원자층증착법을 이용하여 증착하기 때문에 계단 도포성이 100%에 가깝고, 원자층증착법은 잘 알려진 바와 같이 화학기상증착법보다는 저온 공정이고, 표면거칠기가 매우 작은 매끈한 박막을 형성할 수 있어 구리배선(26a)의 브릿지(bridge)나 씨닝(thinning) 등의 불량 발생을 억제한다.According to the above-described embodiment, since the
종래 구리막의 금속유기화학기상증착법(Metal Organic CVD)은 수mtorr∼수십 torr의 저진공하에서만 이루어지고, 0.01mtorr 이하의 압력에서는 화학기상반응을 할 수 없다고 알려져 있다. 그러나, 본 발명은 원자층증착챔버내 압력이 통상적인 물리기상증착(PVD) 공정이 이루어지는 고진공 분위기와 동일하게 이루어질 수 있기 때문에 웨이퍼에 대한 불순물 오염을 제거할 수 있다.Metal organic chemical vapor deposition (Metal Organic CVD) of a copper film is conventionally performed only under low vacuum of several mtorr to several tens of torr, and it is known that chemical vapor reaction cannot be performed at a pressure of 0.01 mtorr or less. However, the present invention can eliminate impurity contamination on the wafer since the pressure in the atomic layer deposition chamber can be made to be the same as in a high vacuum atmosphere in which a conventional physical vapor deposition (PVD) process is performed.
본 발명의 기술 사상은 상기 바람직한 실시예에 따라 구체적으로 기술되었으나, 상기한 실시예는 그 설명을 위한 것이며 그 제한을 위한 것이 아님을 주의하여 야 한다. 또한, 본 발명의 기술 분야의 통상의 전문가라면 본 발명의 기술 사상의 범위 내에서 다양한 실시예가 가능함을 이해할 수 있을 것이다.
Although the technical spirit of the present invention has been described in detail according to the above preferred embodiment, it should be noted that the above embodiment is for the purpose of description and not of limitation. In addition, those skilled in the art will understand that various embodiments are possible within the scope of the technical idea of the present invention.
상술한 바와 같은 본 발명은 큰 종횡비를 갖는 홀을 완벽하게 매립할 수 있어 듀얼 다마신과 같은 후속 화학적기계적연마공정 등에서 보이드없이 진행되므로 불량발생율을 감소시킬 수 있는 효과가 있다.As described above, the present invention can completely fill holes having a large aspect ratio, so that the defects can be reduced since the process proceeds without voids in subsequent chemical mechanical polishing processes such as dual damascene.
또한, 매우 얇은 두께까지 두께 조절이 가능하기 때문에 전기적 증착공정의 시드층으로서 사용할 수 있고, 고진공하에서 진행할 수 있으므로 웨이퍼에 대한 오염이나 산화를 억제할 수 있는 효과가 있다.In addition, since the thickness can be adjusted to a very thin thickness, it can be used as a seed layer of the electrical deposition process, and can proceed under high vacuum, thereby preventing contamination and oxidation of the wafer.
또한, 환원물질로서 수소원자빔을 이용하므로 구리막내 불순물 함유량을 낮출 수 있어 후속 열처리 등에서도 매우 낮은 비저항과 높은 EM(ElectroMigration) 저항력을 갖는 구리배선을 형성할 수 있는 효과가 있다.
In addition, since the hydrogen atom beam is used as the reducing material, the impurity content in the copper film can be lowered, and thus there is an effect of forming a copper wiring having very low specific resistance and high EM (ElectroMigration) resistance even in subsequent heat treatment.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020038061A KR100865724B1 (en) | 2002-07-02 | 2002-07-02 | Method for atomic layer deposition of copper layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020038061A KR100865724B1 (en) | 2002-07-02 | 2002-07-02 | Method for atomic layer deposition of copper layer |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20040003386A KR20040003386A (en) | 2004-01-13 |
KR100865724B1 true KR100865724B1 (en) | 2008-10-29 |
Family
ID=37314395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020020038061A KR100865724B1 (en) | 2002-07-02 | 2002-07-02 | Method for atomic layer deposition of copper layer |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100865724B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015099452A1 (en) * | 2013-12-24 | 2015-07-02 | 주식회사 유피케미칼 | Copper metal film, method for manufacturing same, and method for forming copper wiring for semiconductor device using same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010073825A (en) * | 2000-01-20 | 2001-08-03 | 윤종용 | Method for forming metal interconnection in semiconductor device and contact structure fabricated thereby |
-
2002
- 2002-07-02 KR KR1020020038061A patent/KR100865724B1/en not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010073825A (en) * | 2000-01-20 | 2001-08-03 | 윤종용 | Method for forming metal interconnection in semiconductor device and contact structure fabricated thereby |
Also Published As
Publication number | Publication date |
---|---|
KR20040003386A (en) | 2004-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7262125B2 (en) | Method of forming low-resistivity tungsten interconnects | |
US8101521B1 (en) | Methods for improving uniformity and resistivity of thin tungsten films | |
JP4974676B2 (en) | Formation method of barrier film | |
JP5173098B2 (en) | Conformal lining layer for damascene metallization | |
US7348042B2 (en) | Continuous method for depositing a film by modulated ion-induced atomic layer deposition (MII-ALD) | |
US6416822B1 (en) | Continuous method for depositing a film by modulated ion-induced atomic layer deposition (MII-ALD) | |
US8026605B2 (en) | Interconnect structure and method of manufacturing a damascene structure | |
US7589017B2 (en) | Methods for growing low-resistivity tungsten film | |
US7144806B1 (en) | ALD of tantalum using a hydride reducing agent | |
US6037001A (en) | Method for the chemical vapor deposition of copper-based films | |
US6066196A (en) | Method for the chemical vapor deposition of copper-based films and copper source precursors for the same | |
US20020164421A1 (en) | Sequential method for depositing a film by modulated ion-induced atomic layer deposition (MII-ALD) | |
WO2002091437A2 (en) | Tisin barrier formation with treatment in n2/h2 plasma and in silane | |
US20070264816A1 (en) | Copper alloy layer for integrated circuit interconnects | |
US6593236B2 (en) | Method of forming a metal wiring in a semiconductor device with copper seed | |
US6436826B1 (en) | Method of forming a metal wiring in a semiconductor device | |
KR100383759B1 (en) | Method of forming a copper metal wiring in a semiconductor drvice | |
US6468907B2 (en) | Method of manufacturing a copper wiring in a semiconductor device | |
TWI609095B (en) | Methods for manganese nitride integration | |
KR100865724B1 (en) | Method for atomic layer deposition of copper layer | |
CN117882184A (en) | Method of forming metal liner for interconnect structure | |
KR100622639B1 (en) | Method of manufacturing a semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
LAPS | Lapse due to unpaid annual fee |