KR100843953B1 - Separation, recovery high purity V2O5 and MoO3 from waste catalyst of petrochemisty with vanadium and molybdenum - Google Patents

Separation, recovery high purity V2O5 and MoO3 from waste catalyst of petrochemisty with vanadium and molybdenum Download PDF

Info

Publication number
KR100843953B1
KR100843953B1 KR1020060092186A KR20060092186A KR100843953B1 KR 100843953 B1 KR100843953 B1 KR 100843953B1 KR 1020060092186 A KR1020060092186 A KR 1020060092186A KR 20060092186 A KR20060092186 A KR 20060092186A KR 100843953 B1 KR100843953 B1 KR 100843953B1
Authority
KR
South Korea
Prior art keywords
vanadium
molybdenum
moo
solvent
concentration
Prior art date
Application number
KR1020060092186A
Other languages
Korean (ko)
Other versions
KR20080026448A (en
Inventor
박재호
Original Assignee
박재호
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박재호 filed Critical 박재호
Priority to KR1020060092186A priority Critical patent/KR100843953B1/en
Publication of KR20080026448A publication Critical patent/KR20080026448A/en
Application granted granted Critical
Publication of KR100843953B1 publication Critical patent/KR100843953B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/009General processes for recovering metals or metallic compounds from spent catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • C22B34/22Obtaining vanadium
    • C22B34/225Obtaining vanadium from spent catalysts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/34Obtaining molybdenum
    • C22B34/345Obtaining molybdenum from spent catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 탈황촉매, 니모촉매, 코모촉매 등의 석유화학 폐촉매를 고온소다 배소하여 수침출한 용액에서 바나듐 및 몰리브덴 성분만을 용매추출 및 농축을 통하여 침전시키는 과정을 거쳐서 V2O5 및 MoO3로 분리, 회수하는 방법에 관한 것이다. 이러한 본 발명의 특징은 바나듐 및 몰리브덴 성분을 용매추출을 통하여 연속적으로 분리, 회수할 수 있을 뿐만 아니라 종래의 단순한 소다배소 처리공정에 비해, 발생되는 암모늄 폐수를 10∼75% 줄이고, V2O5 및 MoO3 순도를 99% 이상 올릴 수 있으며, 수침출된 바나듐 및 몰리브덴 성분을 99% 이상 회수할 수 있다는 것이다.In the present invention, V 2 O 5 and MoO 3 are precipitated by extracting and concentrating only vanadium and molybdenum components in a solution obtained by roasting petrochemical waste catalysts such as desulfurization catalyst, nimo catalyst, and como catalyst at high temperature soda. The present invention relates to a method for separating and recovering a furnace. The characteristics of the present invention are not only able to continuously separate and recover the vanadium and molybdenum components through solvent extraction, but also reduce the generated ammonium wastewater by 10 to 75% compared to the conventional simple soda roasting process, and V 2 O 5 And 99% or more of MoO 3 purity, and 99% or more of water-leached vanadium and molybdenum components.

[색인어][Index]

바나듐, 몰리브덴, 고순도 V2O5, 고순도 MoO3, 석유화학 폐촉매, 용매추출, 암모늄 폐수, 회수율Vanadium, molybdenum, high purity V 2 O 5 , high purity MoO 3 , petrochemical waste catalyst, solvent extraction, ammonium wastewater, recovery rate

Description

바나듐 및 몰리브덴이 함유된 석유화학 폐촉매로부터 고순도 V2O5 및 MoO3의 분리, 회수{Separation, recovery high purity V2O5 and MoO3 from waste catalyst of petrochemisty with vanadium and molybdenum}Separation, recovery high purity V2O5 and MoO3 from waste catalyst of petrochemisty with vanadium and molybdenum}

도1은 본 발명의 처리 공정도1 is a process flow chart of the present invention

본 발명은 석유화학 폐촉매 중에 함유된 유가금속중 바나듐 및 몰리브덴 성분을 고온 소다배소하여 수침출한 용액에서 용매추출을 통하여 바나듐 및 몰리브덴 성분만을 효과적으로 추출,농축하여 침전시켜 고순도의 V2O5 및 MoO3를 제조하는 방법에 관한 것으로, 자원재활용 측면에서 훼로바나듐 및 훼로몰리브덴 제조시 원료로 이용할 수 있는 산업상 유용한 회수 방법에 관한 것이다.The present invention effectively extracts, concentrates and precipitates only vanadium and molybdenum components through solvent extraction in a solution obtained by roasting vanadium and molybdenum components in valuable metals contained in a petrochemical waste catalyst at high temperature soda roasting, and then precipitates them with high purity of V 2 O 5 and The present invention relates to a method for producing MoO 3 , and relates to an industrially useful recovery method that can be used as a raw material for producing ferovanadium and feromolybdenum in terms of resource recycling.

일반적으로 폐촉매 중에 함유된 유가금속 중 바나듐 및 몰리브덴 성분은 고온 소다배소를 한 다음 수침출, 선택적 침전 및 하소공정을 거쳐서 바나듐은 V2O5형태로 회수하고, 몰리브덴은 MoO3, CaMoO3 또는 MoS3 형태로 회수하고 있으며, 잔사는 알루미나 성분이 대다수이므로 요업분야에 원료로 쓰이거나 시멘트 제조시 열원 으로 이용되고 있다.In general, vanadium and molybdenum components of valuable metals contained in spent catalysts are recovered by V 2 O 5 form after high temperature soda roasting, followed by water leaching, selective precipitation and calcination, and molybdenum is converted into MoO 3 , CaMoO 3 or It is recovered in the form of MoS 3 , and since the residue is mostly alumina, it is used as a raw material in ceramics or as a heat source when manufacturing cement.

상기의 방법은 목적성분의 순도 및 회수율 측면에서 바나듐의 경우 회수율 95%, 순도 98% 정도의 V2O5를 제조할 수 있으나, 몰리브덴의 경우는 회수율 60∼80%, 순도 85∼95%의 저급 MoO3를 합성할 수 있다. 또한 MoO3 합성시 회수율을 높이기 위해 용액의 온도를 최대 90℃까지 올려야 한다. 이는 순도가 낮고 경제성이 떨어지므로 국내의 경우 고순도 MoO3를 양산하지 못하고 있다.In the above method, V 2 O 5 having a recovery rate of about 95% and a purity of about 98% can be produced in terms of purity and recovery rate of the target component, but in the case of molybdenum, a recovery rate of 60 to 80% and a purity of 85 to 95% are achieved. Lower MoO 3 can be synthesized. In addition, the temperature of the solution should be raised to a maximum of 90 ℃ to increase the recovery rate in the synthesis of MoO 3 . This is because of low purity and low economic feasibility, domestic production of high-purity MoO 3 is not produced.

본 발명은 상술한 바와 같이 종래의 고온 소다배소법에 의해 합성되는 저순도 저회수율의 MoO3 및 중급의 V2O5의 제조방법에서 벗어나 몰리브덴 및 바나듐만을 선택적으로 상온상압하에서 추출, 농축할 수 있는 용매추출법을 도입하여 고순도 V2O5 및 MoO3를 기존방법에 비하여 상대적으로 적은 에너지 비용으로 99% 이상 회수할 수 있는 제조방법을 제공하는데 그 목적이 있다. 상기한 목적을 달성하기 위하여 본 발명에서는 고온 소다배소후 수침출한 용액에서 바나듐 및 몰리브덴을 VO3 - 및 MoO4 2-의 음이온 화합물 상태로 용매로 추출하고, 용매로부터 목적성분인 몰리브덴 및 바나듐만을 알카리 수용액의 음이온 화합물 상태로 재추출하여 농축한 후에, 몰리브덴만을 다시 추출, 농축함으로써 고순도 V2O5 및 MoO3를 제조하는 방법을 제공하는 것이다. 특히 본 발명은 용매추출시 농축비에 따라서 V2O5 및 MoO3 합성시 발생되는 고농도 난분해성인 암모늄 폐수를 10∼75% 줄일 수 있는 부수적인 효과도 얻을 수 있는 방법을 제공한다.As described above, only molybdenum and vanadium can be selectively extracted and concentrated under normal temperature and atmospheric pressure, deviating from the manufacturing method of low purity low recovery MoO 3 and intermediate V 2 O 5 synthesized by the conventional high temperature soda roasting method. The purpose of the present invention is to provide a method for recovering 99% or more of high purity V 2 O 5 and MoO 3 with relatively low energy cost by introducing a solvent extraction method. In order to achieve the above object, in the present invention, vanadium and molybdenum are extracted as a solvent in an anionic compound state of VO 3 - and MoO 4 2- in a water-leached solution after high temperature soda roasting, and only molybdenum and vanadium, which are target components, are removed from the solvent. The present invention provides a method for producing high purity V 2 O 5 and MoO 3 by re-extracting and concentration of an aqueous alkali solution into an anionic compound, followed by extracting and concentrating only molybdenum again. In particular, the present invention provides a method for obtaining a secondary effect of reducing the high concentration of hardly degradable ammonium wastewater generated by the synthesis of V 2 O 5 and MoO 3 depending on the concentration ratio during solvent extraction 10 to 75%.

본 발명에 대하여 첨부된 도면을 참조하여 보다 상세히 설명하기로 한다.The present invention will be described in more detail with reference to the accompanying drawings.

본 발명에서는 수용성인 NaVO3와 Na2MoO4를 만들기 위하여, 폐촉매를 2배 반응몰비의 Na2CO3을 넣고 잘 혼합되어 반응하도록 rotary kiln으로 950℃로 4시간 배소 후, 폐촉매 부피의 3∼5배의 부피비로 물을 가하여 85℃ 30분 침출하면, 고온 배소 시 형성된 고형물 NaVO3(S)와 Na2MoO4(S)를 수용성 NaVO3()와 Na2MoO4() 형태로 침출하였다. 또한 폐촉매가 침출된 수용액에는 Al2O3, Fe2O3, SiO2, NiO 등이 0.1% 이하로 소량 침출되었고, Na2O는 1∼5% 침출되었다. 이는 몰리브덴 및 바나듐의 합성시 순도를 떨어뜨릴 수 있다. 특히 Na2O의 나트륨은 세척시 바나듐의 경우 나트륨이 거의 대부분 제거되나, 몰리브덴의 경우는 50% 이상은 제거가 되지 않았다. 따라서 나트륨을 포함한 불순물을 상온상압 하에서 제거하고 고순도 V2O5 및 MoO3를 만들기 위해서는, 첨부된 도면의 '용매추출/농축Ⅰ'공정에서 식(1)과 (2)와 같이 수용액에서 VO3 -및 MoO4 2-를 추출물인 R3NHVO3 및 R3NH2MoO4 상태로 용매에 추출하고 나트륨 및 불순물은 추출이 안된 수용액으로 잔류시켜 일반폐수로 배출하였다.In the present invention, in order to make the water-soluble NaVO 3 and Na 2 MoO 4 , the waste catalyst was added to a 2-fold molar ratio of Na 2 CO 3, and then mixed with the rotary kiln at 950 ° C. for 4 hours, and then the waste catalyst volume When water was added at a volume ratio of 3 to 5 times and leached at 85 ° C. for 30 minutes, the solids NaVO 3 (S) and Na 2 MoO 4 (S) formed during high temperature roasting were dissolved in water-soluble NaVO 3 ( ) and Na 2 MoO 4 ( ) Leached in form. In addition, Al 2 O 3 , Fe 2 O 3 , SiO 2 , NiO and the like were leached in a small amount of 0.1% or less in the aqueous solution in which the spent catalyst was leached, and Na 2 O was leached from 1 to 5%. This may lower the purity in the synthesis of molybdenum and vanadium. In particular, the sodium of Na 2 O is almost removed in the case of vanadium, but more than 50% of the molybdenum was not removed. Therefore, in order to remove impurities including sodium at room temperature and make high purity V 2 O 5 and MoO 3 , in the 'solvent extraction / concentration I' process of the accompanying drawings, VO 3 in an aqueous solution as shown in equations (1) and (2) - and extracting MoO 4 2- to extract the R 3 NHVO 3 and R 3 NH 2 MoO 4 as the solvent and sodium conditions and residual impurities by the interruption of the extract solution was discharged into the normal waste water.

NaVO3+HCl+R3N ↔ R3NHVO3+NaCl … (1)NaVO 3 + HCl + R 3 N ↔ R 3 NHVO 3 + NaCl... (One)

Na2MoO4+2HCl+R3N ↔ R3NH2MoO4+2NaCl … (2)Na 2 MoO 4 + 2HCl + R 3 N ↔ R 3 NH 2 MoO 4 + 2NaCl. (2)

상온상압하에서 식 (1),(2)의 바나듐 및 몰리브덴의 추출은 소다배소한 침출수용액에서 용매 TIOA(tri-isooctylamine) 즉 R3N에 가장 잘 추출된다. 이때 R3N은 탄소기가 8이며 iso 구조를 갖는 용매이며 원액을 쓰면 점성이 높아 추출시간이 길어지므로 kerosene에 부피비로 희석하여 사용한다. TIOA/kerosene의 희석비는 20∼30%/70∼80%가 추출시간 및 효율측면에서 가장 바람직하다. 추출시에는 효율을 높이기 위하여 잘 섞어주어야 하는데, 실험실에서는 분액깔대기를 진탕기에 부착해서 통상 400rpm 이상에서 믹싱하며, pilot이상의 중대형일 경우도 M/S(mixer & settler)의 mixer에서 모터로 400rpm 이상에서 믹싱한다. 믹싱시 상기용매 대 침출수용액의 부피비 즉, O/A(Organic/Aqueous)비는 충돌횟수가 가장 큰 1로 맞추면 추출효율이 가장 좋다. 믹싱 시간은 길어지면 M/S가 증대되어 설비투자가 많이 들어가는 단점이 발생할 수 있으므로 최대 2분 이하로 조정해야한다. 따라서 용매 TIOA를 상기와 같이 조정하고, 침출수용액의 바나듐 및 몰리브덴의 몰비만큼 산을 투여한 후에, O/A=1에서 믹싱시간을 2분 이하로 유지하고 400rpm 이상에서 믹싱하면 믹싱단수를 2단이 되도록 조정할 수 있다. 믹싱 후 혼합액을 10∼30분 안정화시키면 비중차에 의해 바나듐 및 몰리브덴을 추출한 상기용매는 상등액이 되고 잔류 수용액은 하등액이 되어 층분리된다. 여기서 상등액은 용매가 바나듐 및 몰리브덴을 화합물 상태로 추출해서 추출물(extract)이라하며 친유성이고, 하등액은 용질이 제거되고 남은 층 즉 추출잔류물(raffinate)이라하며 친수성이다. 실시 예로 바나듐 및 몰리브덴의 농도가 각각 1%인 소다배소한 침출수용액 1ℓ에 몰비만큼 즉, 35%염산 36㎖를 투여하고, 상기용매로 O/A=1, 믹싱시간 2분, 층분리시간 30분으로 하여 대기압 상온에서 분액깔대기를 진탕기에 세팅하여 400rpm으로 추출하면 '추출둥온 곡선'의 조작단수가 약 1.5단이 산출되었다. 참고로 상기 (1),(2)식에서 염산대신 황산을 사용하여도 무방하다.Extraction of vanadium and molybdenum of the formulas (1) and (2) under normal temperature and atmospheric pressure is best extracted with the solvent TIOA (tri-isooctylamine), that is, R 3 N in soda-treated leachate. At this time, R 3 N is a solvent having a carbon group of 8 and iso structure, and the viscosity is high when the stock solution is used, so the extraction time is long, so dilute to kerosene by volume ratio. The dilution ratio of TIOA / kerosene is most preferably 20-30% / 70-80% in terms of extraction time and efficiency. When extracting, the mixture should be mixed well to increase the efficiency.In the laboratory, the separatory funnel is attached to the shaker and mixed at 400rpm or more.In the case of medium and large pilots or above, even at 400rpm or more from the mixer of M / S (mixer & settler) motor. Mix When mixing, the volume ratio of the solvent to the leachate, that is, the O / A (Organic / Aqueous) ratio, is set to 1, which has the greatest number of collisions, so that the extraction efficiency is the best. If the mixing time is long, the M / S increases, which may cause a lot of equipment investment. Therefore, the mixing time should be adjusted to 2 minutes or less. Therefore, after adjusting the solvent TIOA as described above and administering the acid by the molar ratio of vanadium and molybdenum in the leachate, the mixing time is maintained at 2 minutes or less at O / A = 1 and mixing at 400 rpm or more. Can be adjusted to When the mixture is stabilized for 10 to 30 minutes after mixing, the solvent from which vanadium and molybdenum are extracted due to a specific gravity difference becomes a supernatant, and the remaining aqueous solution becomes a supernatant and is separated. In this case, the supernatant is called extract (extract) by extracting vanadium and molybdenum in a compound state and is lipophilic, and the lower layer is hydrophilic and is called remaining layer (raffinate) after the solute is removed. In an example, 36 ml of 35% hydrochloric acid was administered to 1 L of soda-baked leachate having 1% concentration of vanadium and molybdenum, and O / A = 1, mixing time 2 minutes, and layer separation time 30, respectively. In minutes, the separation funnel was set to a shaker at atmospheric pressure at room temperature, and extracted at 400 rpm. For reference, sulfuric acid may be used instead of hydrochloric acid in the above formulas (1) and (2).

이어서 추출물은 알카리 수용액으로 재추출하는 역추출을 실시하였다. 반응식은 식 (3),(4)와 같이 용매는 R3N으로 재생되고 바나듐 및 몰리브덴 화합물은 각각 NH4VO3(NaVO3)와 (NH4)2MoO4(Na2MoO4)형태로 수용액으로 추출되었다.Subsequently, the extract was subjected to back extraction with an alkaline aqueous solution. The reaction scheme is as shown in equations (3) and (4), the solvent is regenerated with R 3 N and the vanadium and molybdenum compounds are in the form of NH 4 VO 3 (NaVO 3 ) and (NH 4 ) 2 MoO 4 (Na 2 MoO 4 ), respectively. Extracted with aqueous solution.

R3NHVO3+NH4OH(NaOH) ↔ R3N+NH4VO3(NaVO3)+H2O … (3)R 3 NHVO 3 + NH 4 OH (NaOH) ↔ R 3 N + NH 4 VO 3 (NaVO 3 ) + H 2 O. (3)

R3NH2MoO4+2NH4OH(2NaOH) ↔ R3N+(NH4)2MoO4(Na2MoO4)+2H2O … (4)R 3 NH 2 MoO 4 + 2NH 4 OH (2NaOH) ↔ R 3 N + (NH 4 ) 2 MoO 4 (Na 2 MoO 4 ) + 2H 2 O. (4)

식 (3),(4)에서 추출물인 R3NHVO3 및 R3NH2MoO4는 역추출제인 알카리 수용액 즉 가성소다 및 암모니아 수용액으로 상온상압 하에서 역추출한다. 이때 침출수용액 대비 역추출 수용액의 바나듐 및 몰리브덴의 농도가 높을수록 반응효율 및 회수율도 커진다. 그러므로 알카리 수용액의 부피를 소다배소한 침출수용액 보다 2∼4배 줄여서 즉 O/A=2∼4, 역추출단수 2단, 믹싱시간 2분 이하, 믹싱 400rpm이상, 층분리시간 10∼30분으로 하여 역추출하면, 바나듐 및 몰리브덴의 농도가 상기 침출수용액 대비 2∼4배 자동적으로 농축되며, 역추출수용액의 바나듐 및 몰리브덴의 회수 이후 발생하는 암모늄 폐수도 농축비 만큼 줄어들게 된다. 실시 예로 상기 바나듐 및 몰리브덴의 농도가 각각 1%인 소다배소한 침출수용액 1ℓ를 용매 1ℓ에 추출시킨 추출물 1ℓ를, O/A=2 즉 0.5ℓ 가성소다 5% 용액으로 믹싱시간 2분, 층분리시간 30분으로 하여 대기압 상온에서 분액깔대기를 진탕기에 세팅하여 400rpm으로 역추출하면, 역추출 1단에서 바나듐 및 몰리브덴의 농도가 각각 1.8%, 2단에서 각각 0.2%로 역추출되었다. 이는 1단에서 1.8% 즉 1.8배 농축됨을 알 수 있다. 상기 폐수의 경우 1단 및 2단이 각각 0.5ℓ이나, 향류다단 추출에서는 2단의 0.5ℓ가 1단으로 유입되어 결국 농도가 2%이고 부피가 0.5ℓ인 역추출 수용액이 배출된다. 결과적으로 상기 실험을 통해 침출수용액 대비 2배농축의 역추출 수용액을 얻을 수 있고 바나듐 및 몰리브덴의 회수 이후 발생하는 암모늄 폐수도 50% 저감할 수 있는 것을 알 수 있었다.The extracts R 3 NHVO 3 and R 3 NH 2 MoO 4 in the formulas (3) and (4) are back extracted under normal pressure with an aqueous alkali solution, that is, a caustic soda and ammonia solution. At this time, the higher the concentration of vanadium and molybdenum in the reverse extraction solution compared to the leachate solution, the greater the reaction efficiency and recovery. Therefore, the volume of alkaline aqueous solution is reduced by 2 ~ 4 times than the soda-baked leachate solution, namely O / A = 2 ~ 4, 2 stages of back extraction stage, mixing time 2 minutes or less, mixing 400rpm or more, bed separation time 10 ~ 30 minutes. By reverse extraction, the concentration of vanadium and molybdenum is automatically concentrated 2 to 4 times compared to the leachate, and the ammonium wastewater generated after the recovery of vanadium and molybdenum from the reverse extraction solution is also reduced by the concentration ratio. For example, 1 L of an extract of 1 L of soda-baked leachate with 1% concentration of vanadium and molybdenum, respectively, was mixed with O / A = 2, that is, 0.5 L caustic 5% solution for 2 minutes, and layer separation. When the separation funnel was set to a shaker at atmospheric pressure at room temperature for 30 minutes and back extracted at 400 rpm, the concentration of vanadium and molybdenum was reversely extracted at 1.8% in the first stage and 0.2% at the second stage, respectively. It can be seen that the concentration is 1.8% or 1.8 times in the first stage. In the waste water, the first stage and the second stage are 0.5 L, respectively, but in countercurrent multi-stage extraction, 0.5 L of the second stage is introduced into the first stage, and eventually the back extraction aqueous solution having a concentration of 2% and a volume of 0.5 L is discharged. As a result, it can be seen that the reverse extraction aqueous solution of twice the concentration compared to the leachate solution can be obtained, and the ammonium wastewater generated after the recovery of vanadium and molybdenum can also be reduced by 50%.

여기서 용매는 다시 추출공정으로 재순환시키고, 농축액은 첨부된 도면의 바나듐 침전공정에서 황산암모늄, 염산 또는 황산으로 수용액의 pH 8.0으로 조절하여 아래식 (5),(6)과 같이 침전시켰다. 침전된 NH4VO3(S)는 수화물인 sludge 상태이므로 하소하여 오렌지색의 분말인 V2O5(S)를 수득하였다.Here, the solvent was recycled back to the extraction process, and the concentrate was adjusted to pH 8.0 of the aqueous solution with ammonium sulfate, hydrochloric acid or sulfuric acid in the vanadium precipitation step of the accompanying drawings to precipitate as shown in Equations (5) and (6). The precipitated NH 4 VO 3 (S) was calcined as a hydrated sludge to obtain V 2 O 5 (S) as an orange powder.

NH4VO3() ←pH조정[HCl(H2SO4)]→ NH4VO3(S)+β … (5)NH 4 VO 3 ( l ) ← pH adjustment [HCl (H 2 SO 4 )] → NH 4 VO 3 (S) + β. (5)

2NaVO3()+(NH4)2SO4 ←pH조정[HCl(H2SO4)]→ 2NH4VO3(S)+Na2SO4+β … (6)2 NaVO 3 ( L ) + (NH 4 ) 2 SO 4 ← pH adjustment [HCl (H 2 SO 4 )] → 2NH 4 VO 3 (S) + Na 2 SO 4 + β. (6)

여기서 β는 염과 물이다.Where β is salt and water.

상기식 (3),(4)에서 역추출제인 가성소다 및 암모니아 수용액은 선택적으로 사용할 수 있으나, NH4VO3는 물에 대한 용해도가 중성영역에서 바나듐 농도가 0.5%부터 과포화 되어 침전됨을 알 수 있었다. 이는 용매추출 공정에서 원활한 액흐름에 방해가 되므로 역추출시 바나듐 농도를 고려하여 약 0.5% 이하의 농도에서는 암모니아 수용액만 사용하고, 0.5% 이상에서는 가성소다와 암모니아 수용액을 혼합하여 사용하였다. 첨부된 도면의 (가)와 (나) 흐름의 표기는 바나듐 침전공정 전의 농축액에서 암모니아 수용액으로 역추출해서 여과한 액은 (가)흐름, 가성소다 및 암모니아 수용액으로 역추출해서 여과한 액은 (나) 흐름으로 통과시켜 몰리브덴 침전을 수행하였다. 전술한 '용매추출Ⅰ'공정에서는 바나듐 및 몰리브덴을 상온상압 하에서 용매에 선택적으로 추출시킴으로 하등액인 raffinate에 Al2O3, Fe2O3, SiO2, Na2O, NiO 등이 남으므로 바나듐 침전공정에서는 자연적으로 불순물이 제거되었다. 또한 (6)식에서 NH4VO3(S)에 흡착된 나트륨은 여과 및 세척공정에서 NH4VO3(S)를 2회 세척에 의해 200ppm 이하로 낮출 수 있었다. 그리고 (5),(6)식에서 상온상압하에서 수침출액 대비 반응효율은높고, 반응시간은 짧게 나타났다. 세척된 NH4VO3(S)를 건조로에 넣고 500℃ 2시간 하소하여 고순도 V2O5을 수득하였다.In the above formulas (3) and (4), caustic soda and ammonia aqueous solution may be selectively used, but NH 4 VO 3 may be precipitated due to supersaturation of vanadium concentration from 0.5% in the neutral region in water solubility. there was. Since this hinders the smooth liquid flow in the solvent extraction process, in consideration of the vanadium concentration during back extraction, only ammonia aqueous solution was used at a concentration of about 0.5% or less, and caustic soda and ammonia aqueous solution were used at 0.5% or more. (A) and (B) flows in the accompanying drawings indicate that the filtered solution was extracted by back-extraction with aqueous ammonia solution from the concentrated solution before the vanadium precipitation process. B) Molybdenum precipitation was carried out by passing through the flow. In the above-mentioned 'solvent extraction I' process, vanadium and molybdenum are selectively extracted in a solvent under normal temperature and atmospheric pressure, so that Al 2 O 3 , Fe 2 O 3 , SiO 2 , Na 2 O, NiO, etc. remain in the lower liquid raffinate, and vanadium precipitation The process naturally removed impurities. In addition, the sodium adsorbed on NH 4 VO 3 (S) in the formula (6) was able to lower the NH 4 VO 3 (S) to 200ppm or less by washing twice in the filtration and washing process. And in (5) and (6), the reaction efficiency was higher and the reaction time was shorter than the water leachate at room temperature and normal pressure. The washed NH 4 VO 3 (S) was put in a drying furnace and calcined at 500 ° C. for 2 hours to obtain high purity V 2 O 5 .

본 발명에서 첨부된 도면의 '용매추출/농축Ⅱ' 공정에서는 (나)흐름을 원료로 해서 용매추출을 실시하였다. 조건은 앞서 상술한 '용매추출/농축Ⅰ'공정과 유사하게 진행하였다. 본 공정에서는 식(7)과 같이 수용액에서 MoO4 2-와 앞 공정에서 미량의 반응하지 않은 VO3 -을 R3NH2MoO4 및 R3NHVO3 상태로 용매에 추출하였고, 염화암모늄, 염화나트륨, 황산나트륨등이 포함된 암모늄 폐수가 발생하였다.In the 'solvent extraction / concentration II' process of the accompanying drawings in the present invention, solvent extraction was performed using (b) flow as a raw material. The conditions were carried out similarly to the 'solvent extraction / concentration I' process described above. In this process formula VO 3 in a small amount of unreacted MoO 4 2- and the previous process in an aqueous solution, such as (7) was extracted in a solvent with R 3 NH 2 MoO 4, and R 3 3 NHVO state, ammonium chloride, sodium chloride Ammonium wastewater containing sodium sulfate, etc. was generated.

Na2MoO4+(NH4)2MoO4+Na2SO4+NaVO3+NH4VO3+4R3N+6HCl ↔ 2R3NH2MoO4+2R3NHVO3+3NaCl+3NH4Cl+Na2SO4 … (7)Na 2 MoO 4 + (NH 4 ) 2 MoO 4 + Na 2 SO 4 + NaVO 3 + NH 4 VO 3 + 4R 3 N + 6HCl ↔ 2R 3 NH 2 MoO 4 + 2R 3 NHVO 3 + 3NaCl + 3NH 4 Cl + Na 2 SO 4 ... (7)

이어서 식(8)과 같이 용매는 R3N으로 재생되고 미량의 바나듐 및 몰리브덴 화합물은 각각 NH4VO3 및 (NH4)2MoO4 형태로 수용액으로 역추출 되었다.The solvent was then regenerated with R 3 N and trace amounts of vanadium and molybdenum compounds were back extracted into aqueous solutions in the form of NH 4 VO 3 and (NH 4 ) 2 MoO 4 , respectively.

R3NH2MoO4+R3NHVO3+3NH4OH ↔ 2R3N+(NH4)2MoO4+NH4VO3+3H2O … (8)R 3 NH 2 MoO 4 + R 3 NHVO 3 +3 NH 4 OH 2 R 3 N + (NH 4 ) 2 MoO 4 + NH 4 VO 3 + 3H 2 O. (8)

역추출시 암모니아 수용액의 부피를 줄여서 2∼4배로 농축시켰더니, 차기공정인 몰리브덴 침전공정에서 반응시간은 짧게, 반응효율은 높게 나타났으며, 암모늄 폐수도 자연적으로 농축비 만큼 줄었다. 농축액을 염산 또는 황산을 첨가하여 수용액의 pH3.0으로 조절하여 식(9)와 같이 (NH4)2MoO4(S)로 침전시켰다.When back-extraction, the volume of the ammonia solution was reduced to 2 to 4 times. In the next molybdenum precipitation, the reaction time was short and the reaction efficiency was high. The concentrated solution was adjusted to pH 3.0 of the aqueous solution by adding hydrochloric acid or sulfuric acid to precipitate into (NH 4 ) 2 MoO 4 (S) as shown in the formula (9).

(NH4)2MoO4() ←pH조정[HCl(H3SO4)]→ (NH4)2MoO4(S)+β … (9)(NH 4 ) 2 MoO 4 ( ) ← pH adjustment [HCl (H 3 SO 4 )] → (NH 4 ) 2 MoO 4 (S) + β. (9)

여기서 β는 염과 물이다.Where β is salt and water.

여과/세척 공정에서는 (9)식에서 (NH4)2MoO4(S)에 흡착된 바나듐을 2회 세척에 의하여 250ppm까지 낮출 수 있었으며, 세척된 (NH4)2MoO4(S)를 건조로에 넣고 500℃ 2시간 하소하여 고순도 MoO3을 얻을 수 있었다. 참고로 '용매추출/농축Ⅱ' 공정을 제외하고 (나)흐름을 대상으로 몰리브덴 침전을 실시하면 (NH4)2MoO4(S)에 10% 내외의 나트륨이 흡착되었다. 이를 2회 세척 후 분석해본 결과 나트륨이 5% 내외가 되어서 고순도 MoO3를 얻을 수 없었다. 세척된 (NH4)2MoO4(S)를 용출, 침전시켜 재결정법으로 다시 침전시키면 나트륨이 약 0.5% 함유되었다. 그러나 (나)흐름을 대상으로 '용매추출/농축Ⅱ'공정을 실시하면 나트륨 흡착량이 0.02% 이하가 되므로 고순도 MoO3를 얻을 수 있었다.In the filtration / washing process, the vanadium adsorbed to (NH 4 ) 2 MoO 4 (S) in formula (9) was lowered to 250 ppm by two washings, and the washed (NH 4 ) 2 MoO 4 (S) was transferred to a drying furnace. The mixture was calcined at 500 ° C. for 2 hours to obtain high purity MoO 3 . For reference, except for the 'solvent extraction / concentration II' process, when molybdenum precipitation was carried out in (B), about 10% of sodium was adsorbed to (NH 4 ) 2 MoO 4 (S). After washing twice, the result was analyzed that sodium was about 5%, so that high purity MoO 3 could not be obtained. The washed (NH 4 ) 2 MoO 4 (S) was eluted, precipitated, and precipitated again by recrystallization to contain about 0.5% sodium. However, when the (solvent extraction / concentration II) process was carried out on the (b) flow, high purity MoO 3 was obtained since the sodium adsorption amount became 0.02% or less.

상기 공정에서 (NH4)2MoO4(S)를 필터링한 여과액은 미 반응된 바나듐 및 몰리브덴 0.2% 이하로 존재하는데, 이를 회수하기 위해 '용매추출Ⅲ'을 실시하였다. 즉 반응식 (1),(2)와 유사하게 추출시켜 추출물은 '용매추출/농축Ⅰ'공정으로 재순환시키고, 추출 잔류물인 염화암모늄 또는 황산암모늄 폐수가 여과액 만큼 발생하였다. 이렇게 하여 수침출된 바나듐 및 몰리브덴은 약 99% 회수할 수 있었다. 또한 용매추출Ⅱ,Ⅲ에서 발생하는 암모늄 폐수는 용매추출Ⅰ,Ⅱ에서 알카리 수용액의 농축량 만큼 발생하므로 농축할수록 폐수발생량은 줄음을 알 수 있었다.In the process, the filtrate filtered with (NH 4 ) 2 MoO 4 (S) was present in 0.2% or less of unreacted vanadium and molybdenum, and 'solvent extraction III' was performed to recover it. In other words, the extract was recycled in the same manner as in Schemes (1) and (2), and the extract was recycled to the 'solvent extraction / concentration I' process, and the ammonium chloride or ammonium sulfate wastewater of the extraction residue was generated as much as the filtrate. Thus, about 99% of vanadium and molybdenum water-leached were recovered. In addition, the ammonium wastewater generated in solvent extraction II and III was generated as much as the concentration of alkaline aqueous solution in solvent extraction I and II.

이와 같이 본 발명의 구체적인 실시 예는 다음과 같다.As such, specific embodiments of the present invention are as follows.

몰리브덴과 바나듐 함량이 5% 들어있는 폐촉매 5kg을 탄사나트륨 1.4kg과 믹싱 후 rotary kiln에 넣고 950℃ 4시간 배소 후, 15 증류수에 85℃에서 30분 침출시켜 1차액의 수침출액을 만들고, 재차 침출시켜 2차액의 수침출액을 제조하였다. TIOA 30%를 kerosene으로 희석한 용매를, 구비된 분액깔대기와 진탕기를 이용하여 상비1/1에서 믹싱시간 2분, 분리시간 30분으로 하고, 추출2단 역추출2단으로 하여 각각의 액과 용매추출 및 역추출을 실시했다. 역추출된 농축액은 황산암모늄, 염산 또는 황산을 이용하여 pH 3.0에서 (NH4)2MoO4, pH 8.0에서 NH4VO3로 각각 침전시켰으며, 각각 2회 세척하여 전기로에서 500℃ 2시간 건조시켰다.Molybdenum and vanadium content of 5% containing spent catalyst 5kg to 1.4kg tansa sodium and after mixing after 4 hours into the rotary kiln 950 ℃ roasting, followed by leaching for 30 minutes at 85 ℃ in 15 of distilled water to create a number of leachate first difference, Leaching again to prepare a secondary water leachate. The solvent diluted with 30% TIOA with kerosene was mixed with a separatory funnel and a shaker at mixing ratio of 1 min for 2 minutes and separation time of 30 min. Solvent extraction and back extraction were performed. Back-extraction of the concentrate is stylized each precipitation at pH 3.0 by using ammonium sulfate, hydrochloric acid or sulfuric acid in a (NH 4) 2 MoO 4, pH 8.0 with NH 4 VO 3, respectively, twice washed with 500 ℃ second time Drying in an electric furnace I was.

아래표의 수치는 각 공정에서 샘플링하여 ICP 분석을 한 수치(ppm)이다.The figures in the table below are the values (ppm) of ICP analysis sampled at each process.

표1. 1차액(고농도 (나)흐름의 경우)Table 1. 1st amount (in case of high concentration (b) flow)

Figure 112006507458593-pat00001
Figure 112006507458593-pat00001

참고) n은 검출되지 않음을 의미Note n means not detected

상기 표에서 순도는 V2O5 및 MoO3가 각각 99.0% 와 99.7%이며, 농축비는 농축액Ⅰ과 Ⅱ에서 각각 약 1.8배 농축되어 수침출액 대비 최종 3.6배 농축되었고, 암모늄 폐수는 농축액Ⅰ과 Ⅱ에서 각각 45% 줄어서 수침출액 대비 최종 15% 줄었다. 회수율은 반응후액의 경우 용매추출Ⅲ으로 회수하므로, 폐수로 빠지는 바나듐과 몰리브덴만 lose로 발생하게 되어 99.7% 회수가 되었다. 반응효율은 반응후액의 잔존하는 농도가 적을 수록 커지므로 바나듐 및 몰리브덴이 각각 98% 및 95%가 되었다. 즉 고농도로 갈수록 표1,2를 비교하면 동일시간에서 반응효율이 커짐을 알 수 있다.In the table, the purity of V 2 O 5 and MoO 3 was 99.0% and 99.7%, respectively, and the concentration ratio was about 1.8 times concentrated in Concentrate I and II, respectively, to 3.6 times the final concentration compared to the water leachate, and the ammonium wastewater was concentrated in Concentrate I and 45% reduction in II, resulting in a final 15% reduction in water leachate. The recovery rate was recovered by solvent extraction III in the case of the reaction after-treatment, so that only vanadium and molybdenum lost to the wastewater were lost, resulting in 99.7% recovery. The reaction efficiency increased as the remaining concentration of the reaction solution decreased, resulting in vanadium and molybdenum being 98% and 95%, respectively. That is, the higher the concentration, the greater the reaction efficiency at the same time compared to Tables 1 and 2 can be seen.

표2. 2차액(저농도 (가)흐름의 경우)Table 2. Secondary Amount (For Low Density (A) Flows)

Figure 112006507458593-pat00004
Figure 112006507458593-pat00004

상기 표에서 순도는 V2O5 및 MoO3가 각각 99.3% 와 99.6%이며, 농축비는 농축액Ⅰ에서 수침출액 대비 약 4배 농축되었고, 암모늄 폐수는 4배 농축됨에 따라 수침출액 대비 75% 줄었다. 회수율은 폐수로 빠지는 바나듐이 약 1%이므로 99%가 되었다. 반응효율은 바나듐 및 몰리브덴이 각각 92% 및 60%가 되었다. 즉 저농도로 갈수록 표1,2를 비교하면 동일시간에서 반응효율이 떨어짐을 알 수 있다.In the table, the purity of V 2 O 5 and MoO 3 was 99.3% and 99.6%, respectively, and the concentration ratio was about 4 times higher than that of the water leachate in Concentrate I, and ammonium wastewater was reduced by 75% as the water leachate was concentrated 4 times. . The recovery was 99% because the vanadium falling into the wastewater was about 1%. The reaction efficiency was 92% and 60% for vanadium and molybdenum, respectively. In other words, the lower the concentration, compared to Table 1, 2 it can be seen that the reaction efficiency is reduced at the same time.

이상에서 살펴본 바와 같이 본 발명은 탈황촉매, 니모촉매, 코모촉매 등의 석유화학 폐촉매를, 고온 소다배소하여 수침출한 용액에서, 바나듐과 몰리브덴 성분만을 용매추출 및 농축을 통하여 침전시켜 고순도 V2O5와 MoO3로 효과적으로 분리, 회수할 수 있다.The invention As described above is to precipitate petrochemical waste catalyst such as a desulfurization catalyst, Nemo catalyst, Como catalyst, in the number of leach solution to a high temperature soda roasting, only vanadium and molybdenum components through solvent extraction and concentration of high purity V 2 O 5 and MoO 3 can be effectively separated and recovered.

상기의 본 발명은 페촉매중에 함유된 바나듐 및 몰리브덴 성분을 용매추출을 통하여 연속적으로 분리, 회수할 뿐만 아니라, 농축방법에 의해 수침출액 대비 침전공정 후 발생하는 고농도 난분해성인 암모늄 폐수를 10∼75% 줄일 수 있으며, 바나듐 및 몰리브덴을 고농도로 농축 할수록 V2O5와 MoO3 합성시 반응효율을 높일 수 있다. 또한 용매추출시 바나듐과 몰리브덴 성분만을 선택적으로 추출하므로 V2O5와 MoO3 순도를 99% 이상 올릴 수 있으며, 미합성된 반응후액의 여과액내 남아있는 저농도 바나듐 및 몰리브덴은 최종 용매추출로 추출할 수 있으므로 99% 이상 회수할 수 있는 여러 가지 장점이 있다.In the present invention, the vanadium and molybdenum components contained in the catalyst are not only continuously separated and recovered through solvent extraction, but also the highly concentrated hardly degradable ammonium wastewater generated after the precipitation process compared to the water leachate by the concentration method is 10 to 75. %, And the higher the concentration of vanadium and molybdenum, the higher the reaction efficiency in the synthesis of V 2 O 5 and MoO 3 . In addition, since only vanadium and molybdenum components are selectively extracted during solvent extraction, the purity of V 2 O 5 and MoO 3 can be increased by 99% or more, and the low concentration of vanadium and molybdenum remaining in the filtrate of the unsynthesized reaction solution can be extracted by the final solvent extraction. There are various advantages that can recover more than 99%.

Claims (4)

삭제delete 바나듐 및 몰리브덴이 함유된 석유화학 폐촉매를 소다배소한 침출수용액에서, 희석제인 kerosene에 용매 TIOA를 부피비로 20∼30%되게 희석하고, 상기용매 대 침출수용액의 부피비 즉 O/A(Organic/Aqueous)=1에서 믹싱단수2단, 믹싱시간 2분 이하, 층분리시간 10∼30분으로 하여 바나듐 및 몰리브덴을 선택적으로 상온상압 하에서 추출할 수 있도록 함을 특징으로 한 용매추출방법In a leachate containing soda-baked petrochemical waste catalyst containing vanadium and molybdenum, dilute the solvent TIOA in a volume ratio of 20 to 30% in kerosene as a diluent, and the volume ratio of the solvent to the leachate, ie, O / A (Organic / Aqueous). The solvent extraction method characterized in that vanadium and molybdenum can be selectively extracted under normal temperature and atmospheric pressure with 2 steps of mixing stage, 2 minutes or less mixing time and 10-30 minutes of layer separation time. 삭제delete 삭제delete
KR1020060092186A 2006-09-20 2006-09-20 Separation, recovery high purity V2O5 and MoO3 from waste catalyst of petrochemisty with vanadium and molybdenum KR100843953B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060092186A KR100843953B1 (en) 2006-09-20 2006-09-20 Separation, recovery high purity V2O5 and MoO3 from waste catalyst of petrochemisty with vanadium and molybdenum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060092186A KR100843953B1 (en) 2006-09-20 2006-09-20 Separation, recovery high purity V2O5 and MoO3 from waste catalyst of petrochemisty with vanadium and molybdenum

Publications (2)

Publication Number Publication Date
KR20080026448A KR20080026448A (en) 2008-03-25
KR100843953B1 true KR100843953B1 (en) 2008-07-03

Family

ID=39413876

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060092186A KR100843953B1 (en) 2006-09-20 2006-09-20 Separation, recovery high purity V2O5 and MoO3 from waste catalyst of petrochemisty with vanadium and molybdenum

Country Status (1)

Country Link
KR (1) KR100843953B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102328954B (en) * 2011-08-04 2013-06-26 佛山市邦普循环科技有限公司 Method for recovering vanadium from lithium vanadium phosphate power battery for electric automobile

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4440734A (en) 1981-03-24 1984-04-03 Gouvernement Du Quebec Process for the recovery of sulfuric acid
JPS6071527A (en) 1983-09-29 1985-04-23 Ube Ind Ltd Method for recovering vanadium from ash after burning or unburned carbon
KR100277503B1 (en) 1998-06-12 2001-01-15 곽영훈 Separation and recovery of nickel, vanadium and molybdenum from petroleum desulfurization spent catalyst
KR20010043377A (en) * 1998-05-08 2001-05-25 잭 비이 에드링턴 Process to recover molybdenum and vanadium metals from spent catalyst by alkaline leaching
KR100554403B1 (en) 2002-05-16 2006-02-22 유정근 Recovery of V, W, and Ti components from waste de-Nox catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4440734A (en) 1981-03-24 1984-04-03 Gouvernement Du Quebec Process for the recovery of sulfuric acid
JPS6071527A (en) 1983-09-29 1985-04-23 Ube Ind Ltd Method for recovering vanadium from ash after burning or unburned carbon
KR20010043377A (en) * 1998-05-08 2001-05-25 잭 비이 에드링턴 Process to recover molybdenum and vanadium metals from spent catalyst by alkaline leaching
KR100277503B1 (en) 1998-06-12 2001-01-15 곽영훈 Separation and recovery of nickel, vanadium and molybdenum from petroleum desulfurization spent catalyst
KR100554403B1 (en) 2002-05-16 2006-02-22 유정근 Recovery of V, W, and Ti components from waste de-Nox catalyst

Also Published As

Publication number Publication date
KR20080026448A (en) 2008-03-25

Similar Documents

Publication Publication Date Title
US20230115288A1 (en) Processing for the extraction of rare earth elements
EP3093354B1 (en) Scandium recovery method
Zeng et al. A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurisation catalysts: Part II: Separation and purification
CN106282608B (en) A method of decomposing Scheelite-Wolframite Mixed Mine
JP6583445B2 (en) Method for producing high purity scandium oxide
KR101787230B1 (en) Method for recovering metals
CN104726724B (en) The method that scandium is extracted from lateritic nickel ore
AU2017222881B2 (en) Method for recovering scandium
KR101487549B1 (en) A Separation and Recovery Process of Metals from Petroleum Desulfurization Waste Catalyst
CN104862503B (en) The method that scandium is extracted from lateritic nickel ore
KR101461733B1 (en) The method for recovering of value metals efficiently from Ni-Fe compound
CN111560518B (en) Treatment method of copper-containing molybdenum concentrate
KR100843953B1 (en) Separation, recovery high purity V2O5 and MoO3 from waste catalyst of petrochemisty with vanadium and molybdenum
WO2016201456A1 (en) Method for comprehensive black-shale ore processing
AU2014360655B2 (en) Process for producing refined nickel and other products from a mixed hydroxide intermediate
AU2006260586A1 (en) Chemical beneficiation of raw material, containing tantalum-niobium
CA2949580A1 (en) Process for selective acid leaching nickel and cobalt from a mixed hydroxide intermediate
EP3091093B1 (en) Scandium recovery process
JP7360091B2 (en) Solvent extraction method and method for producing cobalt aqueous solution
CN108913876A (en) A kind of method that Rare Earth Mine microwave decomposition-high acidic oils extract high-purity cerium
JP6128166B2 (en) Method for producing scandium oxide
CN118579824A (en) Method for preparing high-purity scandium oxide from crude hydrogen scandium oxide
KR101654214B1 (en) Method for recovering scandium from a residue produced upon smelting low-grade nickel ore
CN111334676A (en) Treatment method of spent rare earth-containing catalyst
CN117185350A (en) Method for producing niobium oxide by using niobium tantalum iron

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130524

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140430

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150528

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160623

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170727

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180614

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190429

Year of fee payment: 12