KR100652649B1 - METHOD OF MAKING WC-Co FEEDSTOCK POWDERS WITH Co FILMS FOR THERMAL SPRAYING - Google Patents

METHOD OF MAKING WC-Co FEEDSTOCK POWDERS WITH Co FILMS FOR THERMAL SPRAYING Download PDF

Info

Publication number
KR100652649B1
KR100652649B1 KR1020040107057A KR20040107057A KR100652649B1 KR 100652649 B1 KR100652649 B1 KR 100652649B1 KR 1020040107057 A KR1020040107057 A KR 1020040107057A KR 20040107057 A KR20040107057 A KR 20040107057A KR 100652649 B1 KR100652649 B1 KR 100652649B1
Authority
KR
South Korea
Prior art keywords
powder
coating
film
cobalt
spray coating
Prior art date
Application number
KR1020040107057A
Other languages
Korean (ko)
Other versions
KR20060069623A (en
Inventor
김진홍
백경호
성병근
황순영
오상록
Original Assignee
재단법인 포항산업과학연구원
주식회사 서머텍 코리아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원, 주식회사 서머텍 코리아 filed Critical 재단법인 포항산업과학연구원
Priority to KR1020040107057A priority Critical patent/KR100652649B1/en
Publication of KR20060069623A publication Critical patent/KR20060069623A/en
Application granted granted Critical
Publication of KR100652649B1 publication Critical patent/KR100652649B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

본 발명은 Co 기지 내에 수 ㎛ 이하 크기의 WC 입자들이 균일하게 분포된 미세 조직을 가지는 입도 분포 15~45 ㎛ 인 분말 과립 표면에 두께 수 ㎛ 의 코발트 막을 균일하게 형성시킴으로써, 용사 코팅 공정 중 고온 노출에 따른 코팅재의 탈탄(脫炭) 및 상분해 현상을 최대한 억제하는 효과를 통해 WC-Co계 용사 코팅재의 내마모 특성을 향상시킴과 동시에 코팅 적층 효율을 향상시킬 수 있는 WC-Co계 용사 코팅용 분말 제조 방법을 제공한다. The present invention uniformly forms a cobalt film having a thickness of several μm on the surface of a powder granule having a particle size distribution of 15 to 45 μm having a uniform microstructure in which WC particles having a size of several μm or less are uniformly distributed in a Co matrix, thereby exposing a high temperature during the spray coating process. WC-Co-based spray coating for improving the wear resistance of the WC-Co-based spray coating material and improving the coating lamination efficiency through the effect of suppressing decarburization and phase decomposition of the coating material Provided is a powder manufacturing method.

WC-Co, 용사코팅, 탈탄, Co막WC-Co, thermal spray coating, decarburization, Co film

Description

코발트 막이 형성된 텅스텐 카바이드-코발트계 용사 코팅용 분말 제조 방법{METHOD OF MAKING WC-Co FEEDSTOCK POWDERS WITH Co FILMS FOR THERMAL SPRAYING}Powder manufacturing method for tungsten carbide-cobalt-based spray coating with cobalt film {METHOD OF MAKING WC-Co FEEDSTOCK POWDERS WITH Co FILMS FOR THERMAL SPRAYING}

도 1은 통상의 WC-Co계 용사용 분말의 형상 및 단면 미세 조직을 보여주는 사진도,1 is a photograph showing the shape and cross-sectional microstructure of a conventional WC-Co-based thermal spray powder,

도 2는 나노 구조 WC-Co계 용사용 분말의 형상 및 단면 미세 조직을 보여주는 사진도,Figure 2 is a photograph showing the shape and cross-sectional microstructure of the nano-structured WC-Co-based thermal spray powder,

도 3 은 본 발명으로 제조된 Co 막이 형성된 WC-12Co 용사용 분말의 형상(좌상측) 및 단면 미세 조직(우상측)을 주사전자현미경 (Scanning Electron Microscopy, SEM)을 통해 관찰한 결과 사진도,Figure 3 is a photograph of the result of observing the shape (left upper side) and the cross-sectional microstructure (right upper side) of the Co-formed WC-12Co thermal spray powder prepared by the present invention through a scanning electron microscope (Scanning Electron Microscopy, SEM),

도 4는 본 발명의 Co 막이 형성된 용사용 분말을 사용하여 제조된 WC-12Co코팅재의 X-ray diffraction (XRD) 측정 결과도.Figure 4 is a X-ray diffraction (XRD) measurement results of the WC-12Co coating material prepared using the thermal spray powder formed of the Co film of the present invention.

본 발명은 텅스텐 카바이드-코발트(WC-Co)계 용사 코팅용 분말 제조 방법에 관한 것으로, 특히 용사 코팅재 제조 시 WC의 탈탄 및 상분해를 억제하고 코팅 적층 효율을 높이기 위하여 각 WC-Co 분말 입자 표면에 균일한 Co 막을 형성시키는 분말 제조 방법을 제공한다.The present invention relates to a tungsten carbide-cobalt (WC-Co) spray coating powder manufacturing method, and in particular to the surface of each WC-Co powder particles in order to suppress the decarburization and phase decomposition of the WC and to improve the coating lamination efficiency during the spray coating material manufacturing Provided is a powder production method for forming a uniform Co film.

WC-Co계 용사 코팅재는 대표적인 내마모용 코팅 소재로서 현재 가장 많이 사용되고 있는 용사 코팅재의 조성은 WC-12%Co이다(이하, %는 중량%를 의미함). WC-Co계 용사 코팅재를 제조하는 방법으로는 용사 코팅법의 하나인 고속화염용사법(High Velocity Oxy-Fuel Flame Spraying, HVOF)을 이용하여 입도가 수 십 마이크로미터 정도인 WC-Co 분말재를 모재 표면에 가열 분사함으로써 수 백 마이크로미터의 코팅층을 제조하는 방법이 가장 보편적이다.WC-Co-based spray coating is a typical wear-resistant coating material, the composition of the most commonly used thermal spray coating is WC-12% Co (hereinafter,% means weight%). As a method of manufacturing the WC-Co-based spray coating material, using a high velocity flame spraying method (HVOF), one of the spray coating methods, the WC-Co powder having a particle size of several tens of micrometers is used as the base material. The most common method of producing a coating layer of several hundred micrometers by heating and spraying the surface.

현재 상업화된 WC-Co계 용사용 분말 소재는 통상 다음과 같은 방법으로 제조되고 있다. 평균 입경 수 마이크로 미터인 WC 분말과 Co 분말을 각각 75~93%와 25~7%를 혼합한 후 유기 바인더(Binder) 등 첨가제와 함께 수중에 분산하여 슬러리(Slurry)로 만든다. 이 슬러리를 분무 건조하여 용사 코팅 공정에 적합한 입도가 수 십 마이크로미터 정도인 구형 분말로 만든 후 진공 또는 불활성 분위기 하에서 1100~1300℃ 온도로 소결하여 최종 용사용 분말로 제조한다.Currently commercialized WC-Co-based thermal spray powder material is usually manufactured by the following method. 75-93% and 25-7% of WC powder and Co powder having an average particle diameter of several micrometers are mixed, respectively, and then dispersed in water with additives such as an organic binder to make a slurry. The slurry is spray dried to form a spherical powder having a particle size of several tens of micrometers suitable for a spray coating process, and then sintered at a temperature of 1100 to 1300 ° C. under vacuum or an inert atmosphere to prepare a final spray powder.

이 밖에도 특히 분말 내 WC 입자 크기가 수십에서 수백 나노인 나노 구조 WC-Co계 분말 소재에 대하여 다양한 제조 방법이 있다. 미국특허 6,025,034 (2000)는 기존 마이크론 구조 분말 제조 방법과 유사한 방법으로 제조된 나노 구조 WC-Co계 용사용 분말 제조 방법에 대하여 명기하고 있으며, 미국특허 5,882,376 (1999)는 W 염(Salt)과 Co 염의 혼합액으로부터 WC-Co계 용사용 분말을 제조하는 방법에 대하여 명시하고 있다.In addition, there are various manufacturing methods, particularly for nanostructured WC-Co-based powder materials in which the WC particle size in the powder is tens to hundreds of nanometers. U.S. Patent 6,025,034 (2000) specifies a nanostructured WC-Co-based thermal spray powder manufacturing method prepared by a method similar to a conventional micron structure powder production method, US Patent 5,882,376 (1999) W salt (Salt) and Co The method for producing the WC-Co thermal spray powder from the mixed solution of salt is specified.

상기한 방법으로 제조된 WC-Co계 용사용 분말 소재들은 통상 15~45 마이크로 미터의 입도를 가지는 구형의 과립들로 구성되어 있으며, 각 분말 과립은 Co 기지 내에 수 마이크로 미터 이하 크기의 WC 입자들이 균일하게 분포된 미세 조직을 가진다.WC-Co-based thermal spray powder materials prepared by the above method are generally composed of spherical granules having a particle size of 15 to 45 micrometers, and each powder granule has a size of several micrometers or less in the Co base. It has a uniformly distributed microstructure.

상기한 WC-Co계 용사용 분말을 용사 코팅 공정에 적용하는 경우, 용사 열원 내에서 고온 노출에 따라 WC입자의 탈탄(脫炭) 및 상분해가 발생한다. 이에 따라 코팅재 내에 충격에 취약한 W2C, (W,Co)6C, (W,Co)12C 등이 생성되고, WC 입자가 Co 기지 내에 고용되어 코팅재 내에 WC 경화상의 분율이 감소되는 등의 코팅재 내마모성 저하 요인들이 발생하게 된다. 특히 WC입자를 나노 크기로 미세화시킨 나노 구조 WC-Co계 용사용 분말 소재를 사용하는 경우에는 기존의 마이크론 구조 소재에 비해 WC 입자의 부피 대비 표면적이 크게 증가하게 되어 코팅재의 탈탄(脫炭) 및 상분해 문제가 극심하게 발생한다.When the above-mentioned WC-Co-based thermal spraying powder is applied to a thermal spray coating process, decarburization and phase decomposition of WC particles occur with high temperature exposure in a thermal spraying heat source. As a result, W 2 C, (W, Co) 6 C, (W, Co) 12 C, etc., which are susceptible to impact, are generated in the coating material, and WC particles are dissolved in the Co base to reduce the fraction of WC cured phase in the coating material. Degradation factors of wear resistance of the coating material are generated. In particular, when using the nano-structured WC-Co spray powder material in which the WC particles are micronized, the surface area of the WC particles is significantly increased compared to the conventional micron-structured material, thereby decarburizing the coating material and Phase decomposition problems are extremely severe.

도 1은 통상의 WC-Co계 용사용 분말의 형상 및 단면 미세 조직을 보여주는 사진이다. 도 2는 나노 구조 WC-Co계 용사용 분말의 형상 및 단면 미세 조직을 보여주는 사진이다. 이와 같이 기존의 WC-Co계 용사용 분말은 많은 양의 WC가 각 분말 과립 표면에 불규칙적으로 드러나 있으며, 용사 공정 중 고온의 열원에 우선적으로 노출되어 탈탄 및 상분해됨으로써 코팅재의 내마모 특성을 저하시키는 문제를 발생시키게 된다.1 is a photograph showing the shape and cross-sectional microstructure of a conventional WC-Co-based thermal spray powder. Figure 2 is a photograph showing the shape and cross-sectional microstructure of the nano-structured WC-Co-based thermal spray powder. As described above, the conventional WC-Co thermal spray powder has a large amount of WC irregularly exposed on the surface of each powder granule, and is first exposed to a high temperature heat source during the thermal spraying process, thereby decarburizing and phase decomposition to reduce the wear resistance of the coating material. Cause problems.

본 발명은WC-Co계 용사 코팅재의 탈탄 및 상분해 문제를 해결하기 위해 연구 발명된 것으로, 특히 기존의 용사 코팅용 소재인 WC-12Co계 분말의 각 과립 표면에 균일한 코발트 막을 형성시킴으로써 용사 코팅 공정 중 고온 노출에 따른 코팅재의 탈탄(脫炭) 및 상분해 현상을 최대한 억제함과 동시에 코팅 적층 효율을 향상시키는 것을 특징으로 하는 WC-Co계 용사 코팅용 분말 제조 방법을 제공하는 것을 목적으로 한다. The present invention has been studied to solve the problem of decarburization and phase decomposition of the WC-Co-based spray coating material, in particular spray coating by forming a uniform cobalt film on the surface of each granule of the conventional spray coating material WC-12Co-based powder It is an object of the present invention to provide a powder manufacturing method for spray coating of WC-Co-based spray, characterized in that the coating decay efficiency of the coating material is minimized and the coating lamination efficiency is improved at the same time. .

이와 같은 목적을 달성하기 위하여, 본 발명은 기존의 용사 코팅 공정에 적용되는 분말 소재와 동일한 입도 15~45 ㎛의 분말 과립 표면에 두께 수 ㎛의 균일한 코발트 막을 형성시키는 WC-Co계 용사 코팅용 분말 제조 방법을 제공한다.In order to achieve the above object, the present invention is a WC-Co-based spray coating for forming a uniform cobalt film having a thickness of several ㎛ on the surface of the powder granules having a particle size of 15 ~ 45 ㎛ the same as the powder material applied in the conventional spray coating process Provided is a powder manufacturing method.

본 발명의 Co 막 형성 방법을 적용하기 위한 원소재 분말은 통상의 용사용 WC-Co계 분말 제조 방법과 동일한 방법으로 제조될 수 있다. 즉 WC성분과 Co 성분이 함유된 슬러리를 분무 건조하여 구상의 분말로 만든 후 열처리함으로써, 15~45 ㎛의 입도 분포를 가지며 각 분말 과립의 Co 기지 내에 수 ㎛ 이하 크기의 WC 입자들이 균일하게 분포된 미세 조직을 가지는 분말로 제조한다.The raw material powder for applying the Co film forming method of the present invention can be produced by the same method as a conventional thermal spraying WC-Co-based powder production method. That is, by spray-drying the slurry containing the WC component and the Co component into spherical powders, and then heat-treating them, they have a particle size distribution of 15 to 45 µm and uniformly distribute WC particles of several micrometers or less in the Co matrix of each powder granule. It is made into a powder having a fine tissue.

본 발명의 각 과립 표면에 두께 수 ㎛ 의 Co 막을 형성하는 방법으로는 졸-겔 피복법, 화학 증착법, 스퍼터링(Sputtering)법, 기계적 합금화법 등이 모두 적용될 수 있으며, 특히, 졸-겔 피복법은 비교적 공정이 단순하고 용이하여 경제적이며 균일한 Co막 형성이 가능한 방법이다. 졸-겔 피복법으로 WC-Co계 원소재 분말 과립 표면에 Co 막을 형성시키는 과정은 (1) 코발트 화합물 졸 용액의 제조, (2) 원소재 분말 과립에 대한 코발트 화합물의 피복 처리, (3) 열처리 및 환원 처리의 3단계로 나뉜다.As a method of forming a Co film having a thickness of several μm on the surface of each granule of the present invention, sol-gel coating method, chemical vapor deposition method, sputtering method, mechanical alloying method, or the like may be all applied, and in particular, the sol-gel coating method Relatively simple process is easy and economical and uniform Co film formation is possible. The process of forming a Co film on the surface of WC-Co-based raw material powder granules by the sol-gel coating method includes (1) preparing a cobalt compound sol solution, (2) coating a cobalt compound on raw material powder granules, and (3) It is divided into three stages of heat treatment and reduction treatment.

본 발명의 Co 막 두께는 1~10 ㎛ 두께로 하는 것이 바람직하다. 각 분말 과립 표면에 형성된 Co 막의 두께가 1 ㎛ 이하이면 상기한 상분해 억제 및 코팅 적층 효율 향상 효과를 기대하기 어렵고, 또한 Co 막의 두께가 두꺼울수록 이에 따른 효과는 증대되나 10 ㎛ 이상이 되면 이로 인해 제조된 코팅재의 조성이 변화되고 입도 증가에 따라 용사 코팅 공정에 적합하지 않은 크기의 분말 분율이 커지는 문제점이 발생할 수 있다. 또한 두꺼운 Co 코팅 공정은 본 발명의 Co 막 형성 공정 비용 및 시간을 증대시키므로 본 발명의 적용성 및 경제성을 고려할 때 Co 막 두께는 1~10 ㎛ 두께 범위로 하는 것이 가장 바람직하다It is preferable that the Co film thickness of this invention shall be 1-10 micrometers in thickness. When the thickness of the Co film formed on the surface of each powder granule is 1 μm or less, it is difficult to expect the above effect of inhibiting phase decomposition and improving the coating lamination efficiency. Also, the thicker the Co film, the greater the effect thereof. As the composition of the prepared coating material is changed and the particle size is increased, there may be a problem that the powder fraction of the size which is not suitable for the spray coating process is increased. In addition, since the thick Co coating process increases the cost and time of the Co film forming process of the present invention, considering the applicability and economy of the present invention, the Co film thickness is most preferably in the range of 1 to 10 μm.

본 발명의 Co 막 형성 방법을 적용한 WC-Co계 용사용 분말을 사용하여 코팅재를 제조할 때 용사 코팅법으로는 기존의 고속화염용사법이나 플라즈마 용사법 등 다양한 용사 코팅법을 사용할 수 있으며, 특히 고속화염용사법은 화염 온도 및 화염 내 분말 입자 비행 속도 등을 고려할 때 바람직한 방법이다. 또한 본 발명으로 제조된 분말 소재는 입도, 조성 및 형상 등 그 특성 측면에서 기존의 WC-Co계 용사용 분말과 유사하므로 용사 코팅 공정 조건들은 통상의 조건을 적용할 수 있다.When manufacturing a coating material using the WC-Co-based thermal spray powder to which the Co film forming method of the present invention is applied, various thermal spray coating methods such as a conventional high speed flame spraying method or a plasma spraying method may be used. The thermal spraying method is a preferable method considering the flame temperature and the flying speed of powder particles in the flame. In addition, the powder material prepared by the present invention is similar to the conventional WC-Co-based thermal spray powder in terms of its characteristics such as particle size, composition and shape, the spray coating process conditions can be applied to conventional conditions.

본 발명은 Co 기지 내에 수 ㎛ 이하 크기의 WC 입자들이 균일하게 분포된 미세 조직을 가지는 입도 분포 15~45 ㎛ 인 분말 과립 표면에 두께 수 ㎛ 의 코발트 막을 균일하게 형성시킴으로써 용사 코팅 공정 중 고온 노출에 따른 코팅재의 탈탄 및 상분해 현상을 최대한 억제함과 동시에 코팅 적층 효율을 향상시킬 수 있는 WC-Co계 용사 코팅용 분말 제조 방법을 제공한다. The present invention uniformly forms a cobalt film having a thickness of several μm on the surface of a powder granule having a particle size distribution of 15 to 45 μm having a uniform microstructure in which WC particles having a size of several μm or less are uniformly distributed in the Co matrix, thereby preventing exposure to high temperature during the spray coating process. It provides a powder manufacturing method for the WC-Co-based spray coating that can suppress the decarburization and phase decomposition of the coating material as possible, and at the same time improve the coating lamination efficiency.

본 발명을 통해 각 분말 과립 표면에 균일한 Co 막을 형성하게 되면 용사 공정 중 고온 노출시 금속계 Co 막이 우선적으로 용융되므로 과립 내 WC 입자들의 탈탄 및 상분해 현상을 효과적으로 억제할 수 있을 뿐만 아니라 모재 또는 기 적층된 코팅층 표면에 충돌하여 적층될 때에도 결합력이 증가되어 반발력으로 튀겨 나가는 분말의 수를 줄일 수 있으므로 코팅 적층 효율 또한 증대되는 효과를 얻을 수 있다.If a uniform Co film is formed on the surface of each powder granule through the present invention, the metal-based Co film is preferentially melted at high temperature during the thermal spraying process, thereby effectively preventing decarburization and phase decomposition of the WC particles in the granule, as well as the base material or the base. Even when collided with the laminated coating layer surface, the bonding force is increased, so that the number of powders splashed out by the repulsive force can be reduced, thereby increasing the coating lamination efficiency.

이하 실시예를 통하여 본 발명의 작용을 보다 구체적으로 설명한다. Through the following examples will be described in more detail the operation of the present invention.

[실시예]EXAMPLE

본 발명의 Co막 형성을 위한 원소재 분말은 현재 가장 많이 사용되고 있는 WC-12%Co 조성으로 하여 용사 코팅용 분말 제조 시 통상적으로 사용되는 제조 방법, 즉 WC성분과 Co 성분이 함유된 슬러리를 분무 건조하여 구상의 분말로 만든 후 열처리하는 과정으로 제조되었다. 제조된 원소재 분말의 형상 및 단면 미세 조직은 도 2에 도시한 것과 동일하다.The raw material powder for forming the Co film of the present invention is sprayed with a slurry containing a WC component and a Co component, which is commonly used in the manufacture of a spray coating powder using the WC-12% Co composition, which is currently used the most. It was prepared by drying to make a spherical powder and heat treatment. The shape and cross-sectional microstructure of the prepared raw material powder are the same as shown in FIG.

본 실시예에서는 본 발명의 특징인 WC-Co계 원소재 분말 과립 표면의 균일한 Co 막 형성을 위한 방법으로 졸-겔 피복법을 사용하였다. 그러나, 본 실시예로 인해 Co 막 형성을 위한 방법이 졸-겔 피복법으로 제한되지는 않으며, 본 발명에서 제공한 것과 동일한 효과를 가질 수 있는 Co 막을 제조하는 데는 화학 증착법, 스퍼터링(Sputtering)법, 기계적 합금화법 등이 다양한 방법이 적용될 수 있다.In this embodiment, the sol-gel coating method was used as a method for forming a uniform Co film on the surface of the WC-Co-based raw material powder granules which is a feature of the present invention. However, due to the present embodiment, the method for forming the Co film is not limited to the sol-gel coating method, and the chemical vapor deposition method and the sputtering method may be used to prepare the Co film, which may have the same effect as that provided in the present invention. Various methods may be applied, such as mechanical alloying.

졸-겔 피복법으로 WC-Co계 원소재 분말 과립 표면에 Co 막을 형성시키는 과정은 (1) 코발트 화합물 졸 용액의 제조, (2) 원소재 분말 과립에 대한 코발트 화 합물의 피복 처리, (3) 열처리 및 환원 처리의 3단계로 나뉜다.The process of forming a Co film on the surface of the WC-Co-based raw material powder granules by the sol-gel coating method includes (1) preparing a cobalt compound sol solution, (2) coating the cobalt compound on the raw material powder granules, (3 ) It is divided into three stages of heat treatment and reduction treatment.

(1) 코발트 화합물 졸 용액 제조(1) Cobalt Compound Sol Solution Preparation

우선 코발트 아세테이트와 에탄올을 1:10 몰(mol) 비로 혼합한 용액에 증류수와 질산을 적정 양 첨가하여 투명한 코발트화합물 졸 용액의 제조한다. 이 때 증류수의 양은 아세테이트 화합물의 가수분해와 관계되어 있으므로 피복에 적당한 양인 코발트 아세테이트 1몰당 증류수 10몰을 선택하였다. 또한, 코발트 수화물의 침전을 방지하기 위하여 질산을 첨가하였으며, 투명 졸 용액의 제조에 필요한 질산 양은 코발트 아세테이트 1몰 당 2~2.5몰을 선택하였다. 이와 같은 조성으로 혼합된 코발트화합물 졸 용액을 60℃로 유지된 반응 용기에서 계속 교반하면서 용액의 점도 조절한다. 이때에 졸 용액의 농도를 높이기 위하여 투명 졸 용액을 초기 용액의 50%가 될 때까지 가열 증발시킨다.First, an appropriate amount of distilled water and nitric acid are added to a solution in which cobalt acetate and ethanol are mixed at a ratio of 1:10 mol (mol) to prepare a transparent cobalt compound sol solution. At this time, since the amount of distilled water is related to the hydrolysis of the acetate compound, 10 mol of distilled water was selected per mol of cobalt acetate, which is a suitable amount for coating. In addition, nitric acid was added to prevent precipitation of cobalt hydrate, and the amount of nitric acid required for preparing the transparent sol solution was selected from 2 to 2.5 mol per mol of cobalt acetate. The cobalt compound sol solution mixed in this composition is continuously stirred in a reaction vessel maintained at 60 ° C. to adjust the viscosity of the solution. At this time, in order to increase the concentration of the sol solution, the transparent sol solution is evaporated by heating until it becomes 50% of the initial solution.

(2) 원소재 분말 과립에 대한 코발트 화합물의 피복 처리(2) Coating treatment of cobalt compound on raw material powder granules

제조된 코발트화합물 졸 용액에 WC-Co계 원소재 분말을 침적시킨 후, 균일한 분산과 표면 손상 방지를 위해 초음파 교반기를 사용하여 피복 처리한다.WC-Co-based raw material powder was deposited on the prepared cobalt compound sol solution, and then coated using an ultrasonic stirrer to prevent uniform dispersion and surface damage.

(3) 열처리 및 환원 처리(3) heat treatment and reduction treatment

피복이 끝난 분말은 필터를 이용하여 졸 용액에서 걸러내어 분리한 후 60℃에서 24시간 가량 서서히 건조시킨다. 이 때에 각 분말 과립 표면에 형성된 피막은 α-Co(NO3)26H2O 조성을 가지며, 이를 200℃에서 열처리하여 Co3 O4 조성의 코발트 산화물 피막으로 변환시킨다. 최종적으로 수소 분위기 로에서 300~500℃온도 범위로 환원 처리함으로써 각 분말 과립 표면의 막을 금속 코발트 피막으로 변화시킨다.The coated powder is separated from the sol solution using a filter and separated, and then slowly dried at 60 ° C. for about 24 hours. At this time, the film formed on the surface of each powder granule has a composition of α-Co (NO 3 ) 2 6H 2 O, which is converted to a cobalt oxide film having a Co 3 O 4 composition by heat treatment at 200 ° C. Finally, the film of each powder granule surface is changed into a metal cobalt film by reducing treatment in a hydrogen atmosphere furnace in a temperature range of 300 to 500 ° C.

도 3 은 이와 같은 방법으로 제조된 Co 막이 형성된 WC-12Co 용사용 분말의 형상(좌상측) 및 단면 미세 조직(우상측)을 주사전자현미경 (Scanning Electron Microscopy, SEM)을 통해 관찰한 결과를 도시한 것이다. 도 3 에는 또한 SEM내에서 텅스텐(W)과 코발트(Co)의 X-ray 검출 결과를 바탕으로 동일 관찰 영역에서 각 성분의 분포를 측정한 결과도 함께 도시하였다. 그림에 보인 바와 같이, 특히 Co의 X-ray 검출결과로부터 본 방법을 통해 각 WC-12Co 과립 표면에 두께 수 마이크로 미터의 Co 막을 형성시킬 수 있었으며, 이를 통해 각 과립은 WC 입자가 드러나지 않은 표면 형상을 가진다는 것을 알 수 있다. 또한 이와 같은 Co 막 형성 방법을 통해 과립 내에 존재하는 WC 입자 및 기공의 크기나 분포 등 원소재 과립의 특성은 변화되지 않았다.Figure 3 shows the result of observing the shape (upper left) and the cross-sectional microstructure (upper right) of the Co-coated WC-12Co thermal sprayed powder prepared by the above method through a scanning electron microscope (Scanning Electron Microscopy, SEM) It is. 3 also shows the results of measuring the distribution of each component in the same observation region based on the X-ray detection results of tungsten (W) and cobalt (Co) in the SEM. As shown in the figure, in particular, from the X-ray detection results of Co, this method enabled the formation of a Co film with a thickness of several micrometers on the surface of each WC-12Co granule. It can be seen that In addition, the characteristics of the raw material granules such as the size and distribution of the WC particles and pores present in the granules were not changed through the Co film forming method.

본 발명의 방법으로 제조된 분말을 사용한 WC-12Co코팅재의 제조에는 고속화염용사법을 이용하였다. 코팅재는 판형의 스테인레스 강 모재를 블라스팅(Blasting) 처리한 후 고속화염용사법을 사용하여 모재 표면에 약 200 ㎛ 두께의 코팅층을 적층시키는 방법으로 제조하였으며, 이 때 용사 코팅 공정 조건은 기존의 WC-12Co 용사용 분말을 사용하는 경우와 동일한 조건을 적용하였다. The high-speed flame spraying method was used for the manufacture of the WC-12Co coating material using the powder produced by the method of the present invention. The coating material was manufactured by laminating a plate-shaped stainless steel base material by blasting and then laminating a coating layer having a thickness of about 200 μm on the surface of the base material by using a high speed flame spraying method. The same conditions as in the case of using a thermal spraying powder were applied.

도 4는 본 발명의 Co 막이 형성된 용사용 분말을 사용하여 제조된 WC-12Co코팅재의 X-ray diffraction (XRD) 측정 결과를 도시한 것이다. 도 4에는 비교를 위해 Co 막 형성 공정을 거치지 않은 동일한 원소재 분말을 사용하여 제조된 WC-12Co코팅재에 대한 XRD 측정 결과도 함께 도시하였다. 그림에서 35°부근의 WC 상의 주 피크(peak)(■로 표시됨)와 40°부근의 W2C상의 주 피크(★로 표시됨)간의 상대적인 강도 차이를 통해 알 수 있는 바와 같이, 본 발명의 Co 막을 형성시키지 않은 경우는 W2C 상의 주 피크 강도가 WC에 비해 오히려 크나, Co 막을 형성시킨 분말을 사용함으로 인해 W2C 상의 주 피크강도가 현저히 감소된 것을 알 수 있으며, 이를 통해 본 발명의 방법이 코팅재 제조시 WC의 탈탄 및 상분해 억제에 상당한 효과가 있음을 확인할 수 있다.Figure 4 shows the X-ray diffraction (XRD) measurement results of the WC-12Co coating material prepared using the thermal spray powder formed of the Co film of the present invention. Figure 4 also shows the XRD measurement results for the WC-12Co coating material prepared using the same raw material powder not subjected to the Co film forming process for comparison. Main peak (peak) on the 35 ° close to the WC in the figure as it can be seen via the relative strength difference between the (marked with ■) and 40 ° vicinity (shown as ★) of the main peak in the W 2 C, of the present invention Co When the film is not formed, the main peak intensity of the W 2 C phase is larger than that of the WC, but it can be seen that the main peak intensity of the W 2 C phase is significantly reduced by using the powder formed with the Co film. It can be seen that the method has a significant effect on the suppression of decarburization and phase decomposition of the WC in preparing the coating material.

표 1 은 본 발명의 Co 막이 형성된 용사용 분말을 사용하여 제조된 WC-12Co코팅재와 Co 막 형성 공정을 거치지 않은 비교 코팅재의 내마모 특성 및 이에 영향을 미치는 기공도, 경도 등 특성을 평가한 결과를 종합하여 정리한 것이다. 표에 보인 바와 같이 코팅재의 밀도 및 기공도는 측정 오차 범위 내에서 유사한 값을 가지나, 상분해 정도를 나타내는 비 WC/WC 피크비는 본 발명의 Co 막 형성을 통해 크게 감소하였으며 이를 통해 코팅층의 경도가 증가하고, 최종적으로 내마모 특성이 향상되는 결과를 얻었다. 또한 표 1의 동일 공정 조건에서 제작한 코팅층의 두께 비교 결과에 보인 바와 같이, 코팅층의 각 분말 과립 표면에 Co 막을 형성시킴에 따라 적층시 과립간 결합력이 증대되어 코팅 적층 효율이 50% 이상 향상되는 효과를 가졌다. Table 1 shows the results of evaluating the wear resistance and porosity, hardness, etc. of the WC-12Co coating material prepared using the thermal sprayed powder formed with the Co film of the present invention and the comparative coating material not subjected to the Co film forming process. This is a summary. As shown in the table, the density and porosity of the coating material had similar values within the measurement error range, but the ratio WC / WC peak ratio indicating the degree of phase decomposition was greatly reduced through the formation of the Co film of the present invention. Increased and finally the wear resistance was improved. In addition, as shown in the comparison results of the thickness of the coating layer produced in the same process conditions of Table 1, by forming a Co film on the surface of each powder granule of the coating layer, the inter-granular bonding strength is increased during lamination, thereby improving the coating lamination efficiency by 50% or more. Had the effect.

[표 1] 본 발명의 Co 형성 방법을 적용하여 제조돤 WC-12Co 분말로 제조된 용사 코팅재의 특성[Table 1] Characteristics of the thermal spray coating prepared by applying the Co forming method of the present invention WC-12Co powder

특성 평가 항목Characteristic evaluation item 발명재 (Co 막 형성 분말 사용)Invention material (using Co film forming powder) 비교재 (기존 WC-12Co 분말 사용)Comparative material (using existing WC-12Co powder) 비WC/WC피크비 (Non-WC/WC peak ratio)Non-WC / WC peak ratio 0.980.98 1.461.46 밀도 (Density (g/cm3))Density (g / cm3) 12.9112.91 13.0313.03 기공도 (Porosity (area %))Porosity (Porosity (area%)) 2.302.30 1.811.81 경도 (Hardness (Hv. 500 g))Hardness (Hv. 500 g) 1228±431228 ± 43 1157±661157 ± 66 마모손실 (Wear loss (mg))Wear loss (mg) 28.728.7 36.436.4 코팅두께 (Coat thickness (㎛))Coating thickness (㎛) 610610 390390

본 발명의 Co막 형성을 통한 상기의 효과는 WC-12%Co 외의 다른 조성을 가지는 WC-Co계 용사 코팅재에서도 동등한 수준으로 얻어질 것으로 판단된다. The above effect through the formation of the Co film of the present invention is considered to be obtained at the same level in the WC-Co-based spray coating material having a composition other than WC-12% Co.

본 발명은 기존의 용사 코팅 공정에 적용되는 분말 소재와 동일한 입도 분포 및 미세 조직을 가지는 분말 과립 표면에 두께 수 마이크로 미터의 코발트 막을 형성시킴으로써, WC-Co계 용사 코팅재 제조 시 고온 노출에 따른 탈탄 및 상분해를 매우 효과적으로 억제시킬 수 있는 용사용 분말 제조 방법을 제공하며, 이를 통해 코팅재의 내마모 특성을 향상시킬 수 있을 뿐 만 아니라 코팅 적층 효율을 증대시킬 수 있는 효과가 있다. The present invention forms a cobalt film having a thickness of several micrometers on the surface of a powder granule having the same particle size distribution and microstructure as a powder material applied to a conventional spray coating process, thereby decarburization and high temperature exposure during the production of a WC-Co-based spray coating material. Provided is a thermal spray powder manufacturing method that can effectively inhibit the phase decomposition, thereby improving the wear resistance of the coating material as well as the effect of increasing the coating lamination efficiency.

Claims (4)

Co 기지 내에 1 ㎛ 이하의 WC 입자들이 균일하게 분포된 미세 조직을 가지는 입도 분포 15~45 ㎛ 인 WC-Co계 분말 과립 표면에 두께 1~10 ㎛의 균일한 코발트 막을 졸-겔 피복법, 화학 증착법, 스퍼터링법, 기계적 합금화법 중의 하나의 방법에 의해 형성시킴으로써 용사 코팅 공정 중 고온 노출에 따른 코팅재의 탈탄 및 상분해 현상을 최대한 억제함과 동시에 코팅 적층 효율을 향상시키는 것을 특징으로 하는 코발트 막이 형성된 WC-Co계 용사 코팅용 분말 제조 방법.A sol-gel coating method, chemically, applying a uniform cobalt film having a thickness of 1 to 10 μm to the surface of a WC-Co-based powder granule having a particle size distribution of 15 to 45 μm having a uniform microstructure in which WC particles of 1 μm or less are uniformly distributed in the Co matrix. Cobalt film is formed by forming by one of deposition, sputtering, and mechanical alloying methods to minimize the decarburization and phase decomposition of the coating material due to high temperature exposure during the thermal spray coating process and to improve the coating lamination efficiency. WC-Co spray coating powder production method. 삭제delete 삭제delete 청구항 1에 있어서, The method according to claim 1, 상기 졸-겔 피복법은 코발트 화합물 졸 용액을 제조하는 단계, 원소재 분말 과립에 대한 코발트 화합물의 피복 처리하는 단계, 열처리 및 환원 처리하는 3단계로 이루어지는 것을 특징으로 하는 코발트 막이 형성된 텅스텐 카바이드-코발트계 용사 코팅용 분말 제조 방법.The sol-gel coating method comprises the steps of preparing a cobalt compound sol solution, coating the cobalt compound on the raw material powder granules, heat treatment and reduction treatment, tungsten carbide-cobalt formed with a cobalt film Powder production method for thermal spray coating.
KR1020040107057A 2004-12-16 2004-12-16 METHOD OF MAKING WC-Co FEEDSTOCK POWDERS WITH Co FILMS FOR THERMAL SPRAYING KR100652649B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040107057A KR100652649B1 (en) 2004-12-16 2004-12-16 METHOD OF MAKING WC-Co FEEDSTOCK POWDERS WITH Co FILMS FOR THERMAL SPRAYING

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040107057A KR100652649B1 (en) 2004-12-16 2004-12-16 METHOD OF MAKING WC-Co FEEDSTOCK POWDERS WITH Co FILMS FOR THERMAL SPRAYING

Publications (2)

Publication Number Publication Date
KR20060069623A KR20060069623A (en) 2006-06-22
KR100652649B1 true KR100652649B1 (en) 2006-12-01

Family

ID=37163550

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040107057A KR100652649B1 (en) 2004-12-16 2004-12-16 METHOD OF MAKING WC-Co FEEDSTOCK POWDERS WITH Co FILMS FOR THERMAL SPRAYING

Country Status (1)

Country Link
KR (1) KR100652649B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101490970B1 (en) 2013-04-16 2015-02-06 고등기술연구원연구조합 Manufacturing method for ultra fine composite powder of tungsten carbide and cobalt

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102085258B1 (en) * 2016-09-08 2020-03-05 주식회사 세원하드페이싱 High flow thermal sprayed particles and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182944A (en) 1983-04-01 1984-10-17 Tatsuro Kuratomi Hard carbide composite sintered high speed steel and its production
US4801472A (en) * 1987-08-24 1989-01-31 Gte Product Corporation Process for coating tungsten carbide with cobalt metal
JPH07223101A (en) * 1994-02-07 1995-08-22 Mitsubishi Materials Corp Surface covered sintered hard alloy cutting tool
KR960021295A (en) * 1994-12-26 1996-07-18 김만제 Carbon coating method of thermal spray carbide-metal cermet powder
JPH10147852A (en) 1996-11-20 1998-06-02 Koei Seiko Kk Wc-co type thermal spraying material and its production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182944A (en) 1983-04-01 1984-10-17 Tatsuro Kuratomi Hard carbide composite sintered high speed steel and its production
US4801472A (en) * 1987-08-24 1989-01-31 Gte Product Corporation Process for coating tungsten carbide with cobalt metal
JPH07223101A (en) * 1994-02-07 1995-08-22 Mitsubishi Materials Corp Surface covered sintered hard alloy cutting tool
KR960021295A (en) * 1994-12-26 1996-07-18 김만제 Carbon coating method of thermal spray carbide-metal cermet powder
JPH10147852A (en) 1996-11-20 1998-06-02 Koei Seiko Kk Wc-co type thermal spraying material and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101490970B1 (en) 2013-04-16 2015-02-06 고등기술연구원연구조합 Manufacturing method for ultra fine composite powder of tungsten carbide and cobalt

Also Published As

Publication number Publication date
KR20060069623A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
KR101554047B1 (en) Metal Powder
KR100751742B1 (en) Spray powder, thermal spraying process using it, and sprayed coating
KR101439694B1 (en) Zn-Mg ALLOY COATED STEEL SHEET AND MEHTDOD FOR MANUFACTURING THE SAME
Friedman et al. Fabrication of self-lubricating cobalt coatings on metal surfaces
Li et al. Characterization of hydroxyapatite/nano-zirconia composite coatings deposited by high velocity oxy-fuel (HVOF) spray process
JP2010133021A (en) Particle for thermal spraying
CN112247142B (en) Double-hard-phase double-bonding-phase metal carbide ceramic powder with core-shell structure and preparation method thereof
CN114182249B (en) Method for improving corrosion resistance of cold-sprayed double-layer coating
JP2713458B2 (en) Method for producing electrically deposited high temperature gas corrosion resistant layer
KR100652649B1 (en) METHOD OF MAKING WC-Co FEEDSTOCK POWDERS WITH Co FILMS FOR THERMAL SPRAYING
Gautam et al. Microstructure and wear behavior of single layer (CrN) and multilayered (SiN/CrN) coatings on particulate filled aluminum alloy composites
EP0748879B1 (en) Method for producing a TiB2-based coating and the coated article so produced
Sadreddini et al. Tribological properties of Ni–P–SiO 2 nanocomposite coating on aluminum
EP1256636B1 (en) Thermal insulating material with an essentially magnetoplumbitic crystal structure
CN1456707A (en) Laser melten inter metallic compounds/ceramic composite coatings and preparation thereof
KR101189184B1 (en) Sintered body for thermal barrier coating, method for manufacturing the same and method for manufacturing double-layered thermal barrier using the same
CN109852851A (en) A kind of low wear rate material and preparation method thereof
CN117570136A (en) Brake disc of high-speed train and preparation method and application thereof
WO2001012431A1 (en) Multimodal structured hardcoatings made from micro-nanocomposite materials
EP3083108B1 (en) Method of making a chromium containing coating
CN1793058A (en) Process for preparing large particle spherical metal ceramic nano composite spraying powder
Itoh et al. Rotary powder bed chemical vapour deposition of titanium nitride on spherical iron powder
CN112647108B (en) Method for promoting thermal growth of chromium oxide protective film of nickel-based alloy with low chromium content
EP4183893A1 (en) Fe-based alloy and alloy powder
CN116334522A (en) Nanometer rare earth oxide and WC-CoCr doped spray powder, coating and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090925

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee