KR100427505B1 - Fabrication method of negative electrode for use in nickel/methal hydryde secondary battery - Google Patents
Fabrication method of negative electrode for use in nickel/methal hydryde secondary battery Download PDFInfo
- Publication number
- KR100427505B1 KR100427505B1 KR10-2001-0057698A KR20010057698A KR100427505B1 KR 100427505 B1 KR100427505 B1 KR 100427505B1 KR 20010057698 A KR20010057698 A KR 20010057698A KR 100427505 B1 KR100427505 B1 KR 100427505B1
- Authority
- KR
- South Korea
- Prior art keywords
- nickel
- hydrogen storage
- storage alloy
- negative electrode
- secondary battery
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/06—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
니켈/수소저장합금 2차 전지용 음극판 제조방법이 게시된다. 본 발명의 니켈/수소저장합금 2차 전지용 음극판의 제조방법은 다수의 관통공이 형성된 판상의 섬유재에 소정의 금속을 피복하여 전기 전도성을 부여하는 단계; 전도성이 부여된 섬유재를 니켈 도금하여 집전체를 제조하는 단계; 수소저장합금, 바인더 및 물을 혼합하여 페이스트를 제조하는 단계; 집전체의 관통공에 페이스트를 충전하는 단계; 및 집전체에 충전된 페이스트를 건조시키는 단계를 포함한다. 전술한 본 발명의 니켈/수소저장합금 2차 전지용 음극판의 제조방법에 의하면, 수소저장합금이 집전체의 내부에 충전되므로, 수소저장합금의 탈리 현상이 최소화되어 2차 전지의 싸이클 수명이 현저하게 향상시킬 수 있으며, 집전체와 수소저장합금 사이의 접촉저항이 크게 감소되어, 2차 전지의 고율방전특성이 현저하게 향상시킬 수 있다.Disclosed is a method for producing a negative electrode plate for a nickel / hydrogen storage alloy secondary battery. The method of manufacturing a negative electrode plate for a nickel / hydrogen storage alloy secondary battery of the present invention comprises the steps of applying electrical conductivity by coating a predetermined metal on a plate-like fiber material having a plurality of through holes; Manufacturing a current collector by nickel-plating a fibrous material imparted with conductivity; Preparing a paste by mixing a hydrogen storage alloy, a binder, and water; Filling paste into the through hole of the current collector; And drying the paste filled in the current collector. According to the method of manufacturing the negative electrode plate for the nickel / hydrogen storage alloy secondary battery of the present invention described above, since the hydrogen storage alloy is charged inside the current collector, the detachment phenomenon of the hydrogen storage alloy is minimized and the cycle life of the secondary battery is remarkably increased. The contact resistance between the current collector and the hydrogen storage alloy can be greatly reduced, and the high rate discharge characteristics of the secondary battery can be remarkably improved.
Description
본 발명은 충전 및 방전이 가능한 2차 전지의 음극판 제조방법에 관한 것으로서, 특히, 니켈/수소저장합금 2차 전지에 적용되는 음극판의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a negative electrode plate of a secondary battery capable of charging and discharging, and more particularly, to a method of manufacturing a negative electrode plate applied to a nickel / hydrogen storage alloy secondary battery.
최근 전자 기술의 급속한 발달로 인하여, 전기, 전자 기기의 포터블(Portable)화, 소형화, 경량화가 진행되면서, 니켈/수소저장합금 전지와 같은 고성능의 2차 전지에 대한 수요가 급격하게 증가하는 추세에 있다.Recently, due to the rapid development of electronic technology, as portable, miniaturized, and lightweight electronics and electronic devices have progressed, the demand for high performance secondary batteries such as nickel / hydrogen storage alloy batteries is rapidly increasing. have.
이와 같은 니켈/수소저장합금 2차 전지에서, 음극판은 전지의 충전 및 방전시, 수소를 방출하거나 흡수하며, 과충전시에는, 양극판에서 발생하는 가스를 흡수하여 소비한다. 이에 따라, 니켈/수소저장합금 2차 전지의 성능(예를 들어, 전지의 충전 및 방전 싸이클 수명, 고율방전특성 등)은 음극판의 성능에 따라 크게 좌우된다.In such a nickel / hydrogen storage alloy secondary battery, the negative electrode plate releases or absorbs hydrogen during charging and discharging of the battery, and absorbs and consumes gas generated in the positive electrode plate during overcharging. Accordingly, the performance of the nickel / hydrogen storage alloy secondary battery (for example, the charge and discharge cycle life of the battery, high rate discharge characteristics, etc.) greatly depends on the performance of the negative electrode plate.
본 명세서에서는 종래의 니켈/수소저장합금 2차 전지용 음극판 제조방법으로서, 한국과학기술연구원(KIST : Korea Institute of Science and Techology)에 의해 "페이스트식(Paste-type) 수소저장합금 전극의 제조방법"이란 명칭으로 미합중국에 출원되어 등록된 미국특허 제5,682,592호에 대해 간략히 설명한다.In the present specification, as a method of manufacturing a negative electrode plate for a conventional nickel / hydrogen storage alloy secondary battery, a method of manufacturing a paste-type hydrogen storage alloy electrode by the Korea Institute of Science and Technology (KIST) is disclosed. US Patent No. 5,682,592 filed and registered in the United States under the name is briefly described.
상기 미국특허 제5,682,592호에 따르면, 상기 음극판은 분말 형태의 활물질(즉, 수소저장합금(Metal Hydryde), 바인더(Binder), 도전재(Conductor) 및 물을 소정비율로 혼합하여 반죽한 후, 상기 수소저장합금 반죽을 집전체인 니켈 스크린(Nickel Screen)의 표면에 피복한 다음, 건조 및 압착하여 제조된다.According to the U.S. Patent No. 5,682,592, the negative electrode plate is kneaded by mixing an active material in powder form (i.e., a hydrogen storage alloy, a binder, a conductive material, and water at a predetermined ratio), and The hydrogen storage alloy dough is coated on the surface of a nickel screen (Nickel Screen), which is a current collector, and then dried and pressed.
그러나, 전술한 바와 같은 종래 기술의 제조방법에 의해 제조된 니켈/수소저장합금 2차 전지용 음극판에서는, 수소저장합금이 니켈 스크린의 외벽에 피복되어 있으므로, 방전시, 미분화된 수소저장합금이 전극으로부터 분리되는 탈리 현상이 발생하는 문제점을 가지고 있다. 이에 따라, 종래의 제조방법에 의해 제조되는 음극판을 적용한 니켈/수소저장합금 2차 전지의 싸이클 수명은, 도1을 참조하면, 약 500회 정도만의 충방전으로 방전용량이 약 80%에 도달할 정도로 저하된다.However, in the negative electrode plate for nickel / hydrogen storage alloy secondary batteries manufactured by the above-described prior art manufacturing method, since the hydrogen storage alloy is coated on the outer wall of the nickel screen, the micronized hydrogen storage alloy is discharged from the electrode during discharge. There is a problem that a detachment phenomenon occurs. Accordingly, the cycle life of the nickel / hydrogen storage alloy secondary battery to which the negative electrode plate manufactured by the conventional manufacturing method is applied, with reference to FIG. 1, the discharge capacity may reach about 80% with only about 500 charge / discharge cycles. To a degree.
더욱이, 전술한 종래 기술의 제조방법에 의해 제조된 음극판에서는, 집전체(즉, 니켈 스크린)의 표면에 수소저장합금이 피복되어 있으므로, 집전체와 수소저장합금 간의 접촉저항이 증가되어 전기 전도성이 저하된다. 이에 따라, 종래의 제조방법에 의해 제조되는 음극판을 적용한 니켈/수소저장합금 2차 전지의 고율방전특성은, 5시간 동안의 방전율이 100%라는 가정하에서 도2를 참조하면, 1시간 동안의 방전율이 95%를 초과하지 못할 정도로 열악하다.Furthermore, in the negative electrode plate manufactured by the above-described prior art manufacturing method, since the hydrogen storage alloy is coated on the surface of the current collector (i.e. nickel screen), the contact resistance between the current collector and the hydrogen storage alloy is increased and electrical conductivity is improved. Degrades. Accordingly, the high-rate discharge characteristic of the nickel / hydrogen storage alloy secondary battery to which the negative electrode plate manufactured by the conventional manufacturing method is applied is based on the assumption that the discharge rate for 5 hours is 100%. This is poor enough not to exceed 95%.
본 발명은 상기한 종래 기술의 문제점을 효과적으로 해결할 수 있는 니켈/수소저장합금 2차 전지용 음극판의 제조방법을 제공함에 그 목적이 있다.An object of the present invention is to provide a method for manufacturing a negative electrode plate for nickel / hydrogen storage alloy secondary battery that can effectively solve the above problems of the prior art.
도1은 종래 니켈/수소저장합금 2차 전지의 싸이클 수명특성을 개략적으로 나타내는 그래프이다.1 is a graph schematically showing cycle life characteristics of a conventional nickel / hydrogen storage alloy secondary battery.
도2는 종래 니켈/수소저장합금 2차 전지의 고율방전특성을 개략적으로 나타내는 그래프이다.2 is a graph schematically showing high rate discharge characteristics of a conventional nickel / hydrogen storage alloy secondary battery.
도3은 본 발명의 일실시예에 따른 니켈/수소저장합금 2차 전지용 음극판의 제조방법을 나타내는 순서도이다.Figure 3 is a flow chart showing a manufacturing method of a negative electrode plate for nickel / hydrogen storage alloy secondary battery according to an embodiment of the present invention.
도4는 본 발명에 따른 제조방법에 의해 제조되는 음극판을 적용한 니켈/수소저장합금 2차 전지의 구성을 나타내는 사시도이다.Figure 4 is a perspective view showing the configuration of a nickel / hydrogen storage alloy secondary battery to which the negative electrode plate produced by the manufacturing method according to the present invention.
도5는 본 발명에 따른 제조방법에 의해 제조되는 음극판을 적용한 니켈/수소저장합금 2차 전지의 싸이클 수명특성을 나타내는 그래프이다.5 is a graph showing cycle life characteristics of a nickel / hydrogen storage alloy secondary battery to which a negative electrode plate manufactured by a manufacturing method according to the present invention is applied.
도6은 본 발명에 따른 제조방법에 의해 제조되는 음극판을 적용한 니켈/수소저장합금 2차 전지의 고율방전특성을 나타내는 그래프이다.6 is a graph showing high rate discharge characteristics of a nickel / hydrogen storage alloy secondary battery to which a negative electrode plate manufactured by a manufacturing method according to the present invention is applied.
도7은 본 발명의 다른 실시예에 따른 니켈/수소저장합금 2차 전지용 음극판의 제조방법에서, 집전체를 제조하는 방법을 나타내는 순서도이다.7 is a flowchart illustrating a method of manufacturing a current collector in a method of manufacturing a negative electrode plate for a nickel / hydrogen storage alloy secondary battery according to another embodiment of the present invention.
상기한 목적을 달성하기 위한 본 발명의 일면은 니켈/수소저장합금 2차 전지용 음극판의 제조방법에 관한 것이다. 본 발명의 니켈/수소저장합금 2차 전지용 음극판의 제조방법은 다수의 관통공이 형성된 판상의 섬유재에 소정의 금속을 피복하여 전기 전도성을 부여하는 A)단계; 상기 전도성이 부여된 섬유재를 니켈 도금하여 집전체를 제조하는 B)단계; 상기 수소저장합금, 바인더 및 물을 혼합하여 페이스트를 제조하는 C)단계; 상기 집전체의 관통공에 상기 페이스트를 충전하는 D)단계; 및 상기 집전체에 충전된 페이스트를 건조시키는 E)단계를 포함한다.One aspect of the present invention for achieving the above object relates to a method for producing a negative electrode plate for nickel / hydrogen storage alloy secondary battery. A method of manufacturing a negative electrode plate for a nickel / hydrogen storage alloy secondary battery of the present invention comprises the steps of A) providing electrical conductivity by coating a predetermined metal on a plate-like fibrous material on which a plurality of through holes are formed; B) step of manufacturing a current collector by nickel plating the conductive material imparted; C) step of preparing a paste by mixing the hydrogen storage alloy, a binder and water; Filling the paste into the through hole of the current collector; And E) drying the paste filled in the current collector.
이하, 첨부된 도3 내지 도7을 참조하여 본 발명의 바람직한 실시예에 따른 니켈/수소저장합금 2차 전지용 음극판의 제조방법에 대하여 상세히 설명한다.Hereinafter, a method of manufacturing a negative electrode plate for a nickel / hydrogen storage alloy secondary battery according to a preferred embodiment of the present invention will be described in detail with reference to FIGS. 3 to 7.
도3은 본 발명에 따른 니켈/수소저장합금 2차 전지용 음극판의 제조방법을 나타내는 순서도이다. 도3을 참조하면, 본 발명에 따른 니켈/수소저장합금 2차 전지용 음극판의 제조방법에서는, 먼저, 다수의 관통공을 포함하는 섬유재를 판상(Plate-shaped)의 섬유재(이하, "섬유 펠트(Felt)"라 함)로 변형한다. 그리고, 상기 섬유펠트를 질산은(AgNO3) 용액과 환원제 용액에 적셔, 상기 섬유 펠트의 표면에 은(Ag)을 피복시킨다(S310). 즉, 섬유 펠트의 표면에 전도성을 부여한다. 상기 섬유재로는 폴리프로필렌(Polypropylene)이 사용될 수 있으며, 통상적으로 수십 ㎛의 크기를 가지는 수소저장합금 입자가 충전될 수 있도록 상기 각각의 관통공은 수백 ㎛의 크기를 가지는 것이 바람직하다. 상기 환원제 용액은 질산은 용액내의 은이온을 환원시켜 석출하기 위한 용액으로서, 자이안산나트륨, 수소화붕소나트륨, 하이드라진, 포르말린, 개미산염 중 선택되는 어느 하나가 사용될 수 있다.3 is a flowchart illustrating a method of manufacturing a negative electrode plate for a nickel / hydrogen storage alloy secondary battery according to the present invention. Referring to FIG. 3, in the method for manufacturing a negative electrode plate for a nickel / hydrogen storage alloy secondary battery according to the present invention, first, a fiber material including a plurality of through holes is plate-shaped fiber material (hereinafter, referred to as “fiber” To "Felt". Then, the fiber felt is wetted with a silver nitrate (AgNO 3 ) solution and a reducing agent solution to coat silver (Ag) on the surface of the fiber felt (S310). That is, conductivity is given to the surface of the fiber felt. Polypropylene (Polypropylene) may be used as the fiber material, and each through hole is preferably several hundred μm in size so that hydrogen storage alloy particles having a size of several tens of μm may be filled. The reducing agent solution is a solution for reducing and depositing silver ions in the silver nitrate solution, and any one selected from sodium nitrate, sodium borohydride, hydrazine, formalin, and formate may be used.
상기 은이 피복된 섬유 펠트는 니켈 전기도금하여(S320), 니켈 펠트, 즉 집전체를 제조한다. 이와 같이 제조된 집전체의 상단부 일측에는 전류가 공급되는 단자가 형성된다.The silver-coated fiber felt is nickel electroplated (S320) to produce a nickel felt, that is, a current collector. One end of the current collector manufactured as described above is provided with a terminal to which a current is supplied.
그리고, 음극판의 활물질인 수소저장합금 분말에 바인더와 물을 소정비율로 혼합하여 수소저장합금 페이스트(Paste)를 제조한다(S330). 상기 수소저장합금으로는 수십㎛의 직경을 가지는 AB5계 합금(예를 들어, MmNi3.55Co0.75Mn0.4Al0.3(Mm: Misch metal, 희토류 금속의 합금), MmNi4.3Mn0.4Al0.3등)과 AB2계 합금(예를 들어, Ti1-xZrxV0.5Ni1.1Fe0.2Mn0.2등) 중 선택되는 어느 하나가 이용될 수 있다. 여기서, 상기 수소저장합금 분말은 니켈(Ni) 또는 구리(Cu) 또는 상기 니켈과 구리의 혼합물 중 어느 하나로 코팅되는 것이 바람직하다. 이러한 경우, 전지의 자기방전억제, 고온부식억제, 고율충방전 특성이 향상될 수 있다. 한편, 상기 바인더로는 PTFE(Polytetrafluoroethylene 및 503H), HPMC(Hydroxypropyl methyl cellulose), CMC(Carboxymethyl cellulose, sodium salt) 등의 고분자 물질이 사용될 수 있다. 바람직하기로는, 상기 페이스트에 도전재(Conductor), 예를 들어 니켈 분말, 구리 분말, 흑연 분말 등이 첨가된다.Then, a binder and water are mixed with a hydrogen storage alloy powder which is an active material of a negative electrode plate at a predetermined ratio to prepare a hydrogen storage alloy paste (Saste) (S330). Examples of the hydrogen storage alloy include an AB 5 alloy having a diameter of several tens of micrometers (for example, MmNi 3.55 Co 0.75 Mn 0.4 Al 0.3 (Mm: Misch metal, an alloy of rare earth metals), MmNi 4.3 Mn 0.4 Al 0.3, and the like); Any one selected from among AB 2 based alloys (eg, Ti 1-x Zr x V 0.5 Ni 1.1 Fe 0.2 Mn 0.2, etc.) may be used. Here, the hydrogen storage alloy powder is preferably coated with any one of nickel (Ni) or copper (Cu) or a mixture of nickel and copper. In this case, the self discharge suppression, high temperature corrosion inhibition, high rate charge and discharge characteristics of the battery can be improved. Meanwhile, the binder may be a polymer material such as PTFE (Polytetrafluoroethylene and 503H), HPMC (Hydroxypropyl methyl cellulose), or CMC (Carboxymethyl cellulose, sodium salt). Preferably, a conductive material such as nickel powder, copper powder, graphite powder, or the like is added to the paste.
그런 다음, 상기 수소저장합금 페이스트를 집전체의 관통공내에 채워 충전한다(S340). 이러한 경우, 상기 충전단계(S340)는 수소저장합금 페이스트를 집전체 상에 얹어 놓은 다음 닥터 블레이드(주걱 칼) 등으로 집전체의 관통공 내로 밀어넣는 닥터 블레이드 방식으로 이루어지는 것이 바람직하지만, 이에 국한되는 것은 아니고, 집전체를 수소저장합금 페이스트 용액내에 함침시켜 이루어질 수 있다. 이와 같이, 본 발명의 음극판 제조방법에서는, 상기 수소저장합금 페이스트가 집전체의 관통공내에 충전되므로, 충방전시, 상기 수소저장합금이 집전체로부터 탈리되는 것을 방지할 수 있다.Then, the hydrogen storage alloy paste is filled in the through hole of the current collector (S340). In this case, the filling step (S340) is preferably made of a doctor blade method to put the hydrogen storage alloy paste on the current collector and then pushed into the through hole of the current collector with a doctor blade (scoop blade) or the like, but is not limited thereto. The current collector may be impregnated in a hydrogen storage alloy paste solution. As described above, in the negative electrode plate manufacturing method of the present invention, since the hydrogen storage alloy paste is filled in the through hole of the current collector, it is possible to prevent the hydrogen storage alloy from being detached from the current collector during charging and discharging.
이어, 상기 수소저장합금 페이스트가 충전된 집전체를 대기 중에서 1차 건조시킨 후에, 80 - 130℃의 열풍으로 2차 건조시킨다(S350).Subsequently, the current collector filled with the hydrogen storage alloy paste is first dried in the air, and then secondarily dried with hot air at 80 to 130 ° C. (S350).
그런 다음, 상기 집전체와 전극 활물질 및 활물질 서로 간의 접촉이 원활하게 이루어지고, 음극판의 두께가 감소되도록 집전체를 압착하여(S360), 니켈/수소저장합금 2차 전지용 음극판을 제조한다. 상기 음극판에서, 상기 집전체의 단자에 전류가 공급되는 경우, 상기 수소저장합금은 집전체를 통해 전류를 제공받는다.Then, contact between the current collector, the electrode active material and the active material is smoothly made, and the current collector is pressed to reduce the thickness of the negative electrode plate (S360), thereby manufacturing a negative electrode plate for nickel / hydrogen storage alloy secondary batteries. In the negative electrode plate, when a current is supplied to a terminal of the current collector, the hydrogen storage alloy receives a current through the current collector.
도4는 본 발명에 따른 제조방법에 의해 제조되는 음극판을 적용한 니켈/수소저장합금 2차 전지의 구성을 나타내는 사시도이다. 도4를 참조하면, 본 발명의 방법에 의해 제조되는 음극판(12)은 양(+)극주(10a)와 음(-)극주(10b)를 구비한 하우징(10)에 내장되며, 음극주(10b)와 연결된다. 그리고, 상기 양극주(10a)는 양극판(14)과 연결되며, 상기 음극판(12)과 양극판(14)의 사이에는 세퍼레이터(16)가 장착된다.Figure 4 is a perspective view showing the configuration of a nickel / hydrogen storage alloy secondary battery to which the negative electrode plate produced by the manufacturing method according to the present invention. Referring to FIG. 4, the negative electrode plate 12 manufactured by the method of the present invention is embedded in a housing 10 having a positive pole 10a and a negative pole 10b. 10b). The positive electrode column 10a is connected to the positive electrode plate 14, and a separator 16 is mounted between the negative electrode plate 12 and the positive electrode plate 14.
이와 같이 본 발명의 제조방법에 의해 제조된 음극판을 적용한 니켈/수소저장합금 2차 전지의 싸이클 수명은, 도5를 참조하면, 충전과 방전을 약 1,000회 반복할 경우에 방전용량이 약 80%에 근접하게 될 정도로 향상된다. 구체적으로 설명하면, 종래 기술의 제조방법에 의해 제조된 음극판을 적용한 2차 전지의 방전용량은 약 500회 정도 충전과 방전을 반복하면 약 80%에 도달하는데 비해(도1참조), 본 발명의 음극판을 적용한 2차 전지의 방전용량은 약 1,000회 정도 충전과 방전을 반복할 때 약 80%에 도달하게 된다(도5참조).As described above, the cycle life of the nickel / hydrogen storage alloy secondary battery to which the negative electrode plate manufactured by the manufacturing method of the present invention is applied is about 80% when the charge and discharge are repeated about 1,000 times. It is improved enough to be close to. Specifically, the discharge capacity of the secondary battery using the negative electrode plate manufactured by the prior art manufacturing method reaches about 80% when repeated charging and discharging about 500 times (see Fig. 1), of the present invention The discharge capacity of the secondary battery to which the negative electrode plate is applied reaches about 80% when charging and discharging is repeated about 1,000 times (see FIG. 5).
또한, 본 발명의 제조방법에 의해 제조된 음극판을 적용한 니켈/수소저장합금 2차 전지의 고율방전특성은, 종래 기술에서와 같이 5시간 동안의 방전율이 100%라는 가정하에서 도6을 참조하면, 1시간 동안의 방전율 역시 100%에 근접할 정도로 향상된다. 구체적으로 설명하면, 전지의 전압이 0.8V(Voltage)로 될 때까지, 종래 기술의 제조방법에 의해 제조된 음극판을 적용한 2차 전지의 방전율은 95%를 초과하는 것이 불가능한데 비해(도2참조), 본 발명의 음극판을 적용한 2차 전지의 방전율은 95%를 초과하게 된다.(도6참조).In addition, the high-rate discharge characteristics of the nickel / hydrogen storage alloy secondary battery to which the negative electrode plate manufactured by the manufacturing method of the present invention is applied are referred to FIG. 6 under the assumption that the discharge rate is 100% for 5 hours as in the prior art. The discharge rate during 1 hour is also improved to near 100%. Specifically, the discharge rate of the secondary battery to which the negative electrode plate manufactured by the prior art manufacturing method is impossible to exceed 95% until the voltage of the battery becomes 0.8 V (Voltage) (see FIG. 2). ), The discharge rate of the secondary battery to which the negative electrode plate of the present invention is applied exceeds 95% (see Fig. 6).
한편, 전술한 실시예에서는 섬유 펠트에 은을 피복하여 전기 전도성을 부여한 다음, 니켈 전기도금하여 집전체를 제조하는 것으로 도시되고 설명되었으나, 이에 국한되는 것은 아니다. 도7을 참조하면, 본 발명의 다른 실시예에 따른 집전체 제조방법에서는, 염화팔라듐(PdCl2) 또는 염화주석(SnCl2)을 이용하여 섬유 펠트의 표면에 팔라듐 또는 주석과 같은 금속을 피복시켜 전도성을 부여하고(S710), 니켈 무전해도금을 수행한 다음(S720), 니켈 전기도금을 수행하여(S730), 니켈 펠트(즉, 집전체)를 제조할 수 있다. 바람직하기로는, 상기 니켈 펠트를 질소 또는 환원 분위기에서 200 - 500℃로 탄화시키고(S740), 상기 니켈 펠트내의 섬유재(즉, 폴리프로필렌)를 제거하므로써(S750), 상기 니켈 펠트의 표면에 형성된 관통공의 직경을 수백 ㎛ 이상으로 확장시킬 수 있다.On the other hand, in the above-described embodiment is shown and described as to prepare a current collector by applying silver to the fiber felt to give the electrical conductivity, and then nickel electroplating, but is not limited thereto. Referring to FIG. 7, in the current collector manufacturing method according to another embodiment of the present invention, palladium chloride (PdCl 2) or tin chloride (SnCl 2) is used to coat a metal such as palladium or tin on the surface of the fiber felt to improve conductivity. To give (S710), after performing electroless nickel plating (S720), and then conducting nickel electroplating (S730), it is possible to manufacture a nickel felt (that is, a current collector). Preferably, the nickel felt is carbonized at 200 to 500 ° C. in a nitrogen or reducing atmosphere (S740), and by removing the fiber material (ie, polypropylene) in the nickel felt (S750), the surface of the nickel felt is formed. The diameter of the through hole can be extended to several hundred micrometers or more.
한편, 상기와 같은 본 발명의 다른 실시예에 따른 방법에 의해 제조된 집전체를 이용하여 니켈/수소저장합금 2차 전지용 음극판을 제조하는 방법은 전술한 실시예에 동일하므로, 이에 대한 상세한 설명은 생략한다.On the other hand, the method for producing a negative electrode plate for nickel / hydrogen storage alloy secondary battery using the current collector manufactured by the method according to another embodiment of the present invention as described above is the same as the above embodiment, a detailed description thereof Omit.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나, 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.Although the present invention has been described with reference to the embodiments shown in the drawings, this is merely exemplary, and it will be understood by those skilled in the art that various modifications and equivalent other embodiments are possible. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.
전술한 본 발명의 니켈/수소저장합금 2차 전지용 음극판의 제조방법에 의하면, 다수의 관통공을 포함하는 섬유재를 판상으로 변형한 다음, 상기 관통공을 수소저장합금으로 충전한다. 따라서, 본 발명의 제조방법에 의해 제조된 음극판을 적용한 2차 전지는 기본 재질이 섬유재이므로 무게가 경량화된다. 또한, 상기 섬유재의 관통공에 충전함으로써, 활물질의 충전 또는 도포가 용이하다. 따라서, 본 발명의 제조방법에 의해 제조된 음극판을 적용한 2차 전지의 싸이클 수명이 현저하게 향상될 수 있다.According to the method for manufacturing a negative electrode plate for nickel / hydrogen storage alloy secondary batteries of the present invention described above, the fiber material including a plurality of through holes is deformed into a plate shape, and then the through holes are filled with a hydrogen storage alloy. Therefore, the secondary battery to which the negative electrode plate manufactured by the manufacturing method of the present invention is applied is light in weight because the base material is a fiber material. Moreover, filling or application | coating of an active material is easy by filling in the through-hole of the said fiber material. Therefore, the cycle life of the secondary battery to which the negative electrode plate manufactured by the manufacturing method of the present invention is applied can be remarkably improved.
또한, 상기와 같이 수소저장합금이 집전체의 내부에 충전되므로, 집전체와 수소저장합금 사이의 접촉저항이 크게 감소되어, 본 발명의 제조방법에 의해 제조된 음극판을 적용한 2차 전지의 고율방전특성이 현저하게 향상될 수 있다.In addition, since the hydrogen storage alloy is charged inside the current collector as described above, the contact resistance between the current collector and the hydrogen storage alloy is greatly reduced, so that the high rate discharge of the secondary battery to which the negative electrode plate manufactured by the manufacturing method of the present invention is applied. Properties can be significantly improved.
더욱이, 전술한 효과로 인해, 본 발명의 제조방법에 의해 제조된 음극판이적용되는 2차 전지는 초고율충방전특성 및 초장수명을 요구하는 산업용 전지에 적합하게 이용될 수 있다.Moreover, due to the above-described effects, the secondary battery to which the negative electrode plate produced by the manufacturing method of the present invention is applied can be suitably used for industrial batteries requiring ultra high rate charging and discharging characteristics and ultra long life.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2001-0057698A KR100427505B1 (en) | 2001-09-18 | 2001-09-18 | Fabrication method of negative electrode for use in nickel/methal hydryde secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2001-0057698A KR100427505B1 (en) | 2001-09-18 | 2001-09-18 | Fabrication method of negative electrode for use in nickel/methal hydryde secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20030024468A KR20030024468A (en) | 2003-03-26 |
KR100427505B1 true KR100427505B1 (en) | 2004-04-30 |
Family
ID=27724548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2001-0057698A KR100427505B1 (en) | 2001-09-18 | 2001-09-18 | Fabrication method of negative electrode for use in nickel/methal hydryde secondary battery |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100427505B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100871903B1 (en) * | 2007-04-26 | 2008-12-05 | 전남대학교산학협력단 | Method for surface modification of hydrogen storage alloy |
HUE065127T2 (en) | 2017-05-15 | 2024-05-28 | Lg Energy Solution Ltd | Electrode for all-solid-state battery and method for manufacturing same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55155469A (en) * | 1979-05-23 | 1980-12-03 | Matsushita Electric Ind Co Ltd | Negative electrode for nickel-cadmium storage battery |
JPH02253557A (en) * | 1989-03-24 | 1990-10-12 | Furukawa Battery Co Ltd:The | Manufacture of hydrogen storage battery |
KR970018821A (en) * | 1995-09-30 | 1997-04-30 | 윤종용 | Battery electrode plate and manufacturing method thereof |
KR19980023035A (en) * | 1996-09-25 | 1998-07-06 | 손욱 | Battery negative electrode manufacturing method |
KR19980026465A (en) * | 1996-10-09 | 1998-07-15 | 손욱 | Method of manufacturing hydrogen electrode |
KR20020046622A (en) * | 2000-12-15 | 2002-06-21 | 박동필 | Negative electrode for Nickel/Metal Hydryde secondary battery and Fabrication method thereof |
-
2001
- 2001-09-18 KR KR10-2001-0057698A patent/KR100427505B1/en not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55155469A (en) * | 1979-05-23 | 1980-12-03 | Matsushita Electric Ind Co Ltd | Negative electrode for nickel-cadmium storage battery |
JPH02253557A (en) * | 1989-03-24 | 1990-10-12 | Furukawa Battery Co Ltd:The | Manufacture of hydrogen storage battery |
KR970018821A (en) * | 1995-09-30 | 1997-04-30 | 윤종용 | Battery electrode plate and manufacturing method thereof |
KR19980023035A (en) * | 1996-09-25 | 1998-07-06 | 손욱 | Battery negative electrode manufacturing method |
KR19980026465A (en) * | 1996-10-09 | 1998-07-15 | 손욱 | Method of manufacturing hydrogen electrode |
KR20020046622A (en) * | 2000-12-15 | 2002-06-21 | 박동필 | Negative electrode for Nickel/Metal Hydryde secondary battery and Fabrication method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20030024468A (en) | 2003-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3495814B2 (en) | Battery electrode and lithium secondary battery having the electrode | |
CN104979559A (en) | Nano-copper coated porous nano silicon composite material as well as preparation method and application thereof | |
JP2010161076A (en) | Anode material for lithium ion secondary battery, and fabricating method thereof | |
WO2014195324A2 (en) | Core-shell type anode active material for lithium secondary batteries, method for preparing the same and lithium secondary batteries containing the same | |
JP3151801B2 (en) | Battery electrode substrate and method of manufacturing the same | |
JP4227581B2 (en) | Electrode structure and secondary battery | |
KR100427505B1 (en) | Fabrication method of negative electrode for use in nickel/methal hydryde secondary battery | |
JP2007194024A (en) | Current collector and electrode used for energy-storing element | |
Hermann et al. | Metal hydride batteries research using nanostructured additives | |
CN106098415A (en) | A kind of nano-porous film capacitor electrode material and preparation method thereof | |
KR101835587B1 (en) | Electrode structure and electrochemical cell using the same | |
JPH07320742A (en) | Electrode for alkaline storage battery and manufacture thereof | |
KR100359896B1 (en) | Negative electrode for Nickel/Metal Hydryde secondary battery and Fabrication method thereof | |
JP2013008813A (en) | Capacitor | |
JP2001093520A (en) | Hydrogen storage alloy electrode and preparation thereof | |
JPS63138646A (en) | Cylindrical nonaqueous electrolyte cell | |
JPH10112326A (en) | Electrode for alkaline secondary battery | |
JPH10334899A (en) | Manufacture of alkaline storage battery and its electrode | |
JP3397216B2 (en) | Nickel plate, method of manufacturing the same, and alkaline storage battery using the same | |
JP4531874B2 (en) | Nickel metal hydride battery | |
JPH04269454A (en) | Nickel electrode for alkaline battery | |
JP4085434B2 (en) | Alkaline battery electrode | |
JPH0636768A (en) | Electrode substrate for alkaline storage battery, its manufacture, and electrode for alkaline storage battery using it | |
JPH11176429A (en) | Manufacture of electrode for battery | |
JPH10334894A (en) | Manufacture of alkaline storage battery and its electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20110404 Year of fee payment: 8 |
|
LAPS | Lapse due to unpaid annual fee |