KR100418914B1 - Process for Preparing Electrochemical Fluid Employing Polyaniline-coated Layered Silicate - Google Patents
Process for Preparing Electrochemical Fluid Employing Polyaniline-coated Layered Silicate Download PDFInfo
- Publication number
- KR100418914B1 KR100418914B1 KR10-2001-0049116A KR20010049116A KR100418914B1 KR 100418914 B1 KR100418914 B1 KR 100418914B1 KR 20010049116 A KR20010049116 A KR 20010049116A KR 100418914 B1 KR100418914 B1 KR 100418914B1
- Authority
- KR
- South Korea
- Prior art keywords
- polyaniline
- layered clay
- electrorheological fluid
- composite particles
- fluid
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M171/00—Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
- C10M171/001—Electrorheological fluids; smart fluids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
- C10N2020/02—Viscosity; Viscosity index
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
본 발명은 폴리아닐린-층상점토 복합입자를 분산입자로 갖는 전기유변유체의 제조방법및 그로부터 제조되는 전기유변유체에 관한 것이다. 본 발명은 아미노실란이 처리된 층상점토의 표면에 폴리아닐린을 분산중합시켜 수득한 폴리아닐린-층상점토 복합입자를 탈도핑시킨 다음, 이를 분산매질에 분산시켜 전기유변유체를 제조하는 방법 및 그로부터 제조되는 전기유변유체를 제공한다. 본 발명에 의하면, 전기유변유체의 분산입자로서 전기장 부하시 입자들이 사슬을 형성하게 되는 높은 종횡비의 폴리아닐린-층상점토 복합입자를 사용함에 따라, 종래의 전기유변유체에 사용된 입자들에 비해 다른 형태의 사슬을 형성시킴으로써, 높은 항복응력을 갖는 전기유변유체를 제조할 수 있게 되었다.The present invention relates to a method for producing an electrorheological fluid having polyaniline-layered clay composite particles as dispersed particles, and to an electrorheological fluid produced therefrom. The present invention is a method for producing an electrorheological fluid by dedoping the polyaniline-layered clay composite particles obtained by dispersion polymerization of polyaniline on the surface of the layered clay treated with aminosilane, and then dispersing it in a dispersion medium and the electricity produced therefrom. Provides a rheological fluid. According to the present invention, by using a high aspect ratio polyaniline-layered clay composite particles in which particles form chains under an electric field load as the dispersed particles of the electrofluidic fluid, the particles are different from those used in the conventional rheological fluids. By forming the chain, it is possible to prepare an electrorheological fluid having a high yield stress.
Description
본 발명은 폴리아닐린-층상점토 복합입자를 분산입자로 갖는 전기유변유체의 제조방법에 관한 것이다. 좀 더 구체적으로, 본 발명은 아미노실란이 처리된 층상점토의 표면에 폴리아닐린을 분산중합시켜 수득한 폴리아닐린-층상점토 복합입자를 탈도핑시킨 다음, 이를 분산매질에 분산시켜 전기유변유체를 제조하는 방법 및 그로부터 제조되는 전기유변유체에 관한 것이다.The present invention relates to a method for producing an electrorheological fluid having polyaniline-layered clay composite particles as dispersed particles. More specifically, the present invention is a method for producing an electrofluidic fluid by dedoping the polyaniline-layered clay composite particles obtained by dispersion polymerization of polyaniline on the surface of the layered clay treated with aminosilane, and then dispersed in a dispersion medium And it relates to an electrorheological fluid produced therefrom.
전기유변유체는 1947년 윈슬로우(W. Winslow)에 의해 처음으로 보고되었으며, 적은 양의 수분을 함유한 실리카 입자를 전기가 흐르지 않는 절연 오일에 현탁시킨 현탁액에 외부로부터 강한 전기장이 가해질 때, 전기장이 가해지지 않았을 때에 비하여 유체의 특성이 고체와 같이 거동한다. 이는, 입자들의 계면편극화(interfacial polarization)에 의하여 분산된 실리카 미립자들이 전기장에 응답하여 전극간을 연결하는 섬유형태로 배열하기 때문에 나타나는 현상이다. 이러한 현상의 응답시간은 10-3초 수준으로 매우 빠르고 가역적이여서, 전기 신호를 기계적 장치에 전달하는 우수한 매개체로서 활용이 가능하여, 미국특허 제4,720,087호, 제 4,733,758호 등에는 상기 전기유변유체를 이용한 클러치, 엔진 마운트, 고속 밸브, 진동제어용 능동현수장치 등을 비롯한 많은 기계 장치들이 개시되어 있다. 상기 전기유변유체의 분산불질로서는 실리카, 제올라이트, 백토 등의 무기물이나 탈도핑된 전도성 고분자가 사용되고 있는 바, 그 예로서, 미국특허 제 4,687,589호 및 5,417,871호에는 비수계 고분자 및 무기물입자를 이용하여 넓은 온도범위에서 활성을 갖는 전기유변유체를 제조하는 방법이 개시되어 있으며, 미국특허 제 5,595,680호 및 제 5,771,897호에는 폴리아닐린 및 고분자-극성물질 복합재료를 분산물질로 이용하여 전기유변유체를 제조하는 방법이 개시되어 있다.The electrofluid was first reported by W. Winslow in 1947. When a strong electric field from the outside is applied to a suspension in which silica particles containing small amounts of water are suspended in non-flowing insulating oil. The properties of the fluid behave like solids as compared to when not added. This is a phenomenon that occurs because the silica particles dispersed by interfacial polarization of the particles are arranged in the form of fibers connecting the electrodes in response to the electric field. The response time of this phenomenon is very fast and reversible at the level of 10 -3 seconds, and thus can be utilized as an excellent medium for transmitting an electrical signal to a mechanical device. US Pat. Nos. 4,720,087, 4,733,758, etc. Many mechanical devices are disclosed, including clutches, engine mounts, high speed valves, active suspensions for vibration control, and the like. As the dispersing impurity of the electrorheological fluid, inorganic materials such as silica, zeolite, and clay or dedoped conductive polymers are used. For example, US Pat. A method of producing an electrorheological fluid having activity in a temperature range is disclosed, and U.S. Patent Nos. 5,595,680 and 5,771,897 disclose a method for producing an electrorheological fluid using polyaniline and a polymer-polar composite as a dispersion. Is disclosed.
그러나, 종래의 전기유변유체는 낮은 항복응력으로 인하여 대형 기계장치에 적용할 수 없다는 단점이 계속되고 있기 때문에, 이를 극복하기 위하여 새로운 전기유변유체를 제조할 수 있는 방법을 개발하여야 할 필요성이 계속되고 있다.However, the drawback continues that conventional electro-fluids cannot be applied to large machinery due to low yield stress. Therefore, there is a continuing need to develop a method for manufacturing a new electro-fluid to overcome this problem. have.
이에, 본 발명자들은 전기유변유체의 분산물질로 종래에 사용되던 실리카, 제올라이트 등을 새로운 물질로 대체하고자 예의 노력한 결과, 높은 종횡비를 가지는 점토입자에 탈도핑된 폴리아닐린을 코팅하여 전기유변유체의 분산입자로 사용하면 종래의 전기유변유체에 비해서 높은 항복응력을 보이는 새로운 전기유변유체를 제조할 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.Accordingly, the present inventors have made diligent efforts to replace silica, zeolite, and the like, which have been conventionally used as a dispersion material of the electrorheological fluid, with a new material. Thus, the present inventors coated undoped polyaniline on clay particles having a high aspect ratio and dispersed particles of the electrorheological fluid. When used as confirmed that it can be produced a new electro-fluid fluid showing a higher yield stress than the conventional electro-fluidic fluid, and came to complete the present invention.
결국, 본 발명의 주된 목적은 폴리아닐린-층상점토 복합입자를 분산입자로 함유하는 전기유변유체의 제조방법을 제공하는 것이다.After all, the main object of the present invention is to provide a method for producing an electrorheological fluid containing polyaniline-layered clay composite particles as dispersed particles.
본 발명의 다른 목적은 상기 방법에 의하여 제조되는 전기유변유체를 제공하는 것이다.Another object of the present invention is to provide an electrorheological fluid produced by the above method.
도 1a는 γ-메타크릴옥시프로필트리메톡시실란(γ-methacryloxypropyltrimethoxysilane)이 처리된 카올리나이트의 미세구조를 보여주는 전자현미경(SEM) 사진이다.FIG. 1A is an electron microscope (SEM) photograph showing the microstructure of kaolinite treated with γ-methacryloxypropyltrimethoxysilane.
도 1b는 본 발명의 유변체에 사용되는 분산입자인 탈도핑된 폴리아닐린-층상점토의 미세구조를 보여주는 전자현미경 사진이다.Figure 1b is an electron micrograph showing the microstructure of the undoped polyaniline-layered clay, which is a dispersed particle used in the rheology of the present invention.
도 1c는 종래의 분산입자인 탈도핑된 폴리아닐린 입자의 미세구조를 보여주는 전자현미경 사진이다.Figure 1c is an electron micrograph showing the microstructure of the conventional undoped polyaniline particles dispersed particles.
도 2는 15중량부의 폴리아닐린-유기층상점토 복합입자를 함유한 전기 유변유체가 0 내지 3kV/mm 세기의 전기장 하에서 보이는 전단응력을 전단속도에 대한 함수로 나타낸 그래프이다.FIG. 2 is a graph showing the shear stress as a function of shear rate of an electric rheological fluid containing 15 parts by weight of polyaniline-organic clay composite particles under an electric field of 0-3 kV / mm intensity.
도 3은 분산입자로서 폴리아닐린-층상점토 복합입자를 사용한 전기 유변유체 및 폴리아닐린을 사용한 전기유변유체의 항복응력을 세기의 전기장의 세기의 함수로 나타낸 그래프이다.FIG. 3 is a graph showing the yield stress as a function of the electric field strength of the electric rheology fluid using polyaniline-layered clay composite particles and the electric rheology fluid using polyaniline as dispersed particles.
도 4는 본 발명의 폴리아닐린-유기층상점토 복합입자를 사용한 전기유변유체가 보이는 항복응력의 상승을 설명하는 모식도이다.Figure 4 is a schematic diagram illustrating the increase in yield stress seen by the electrorheological fluid using the polyaniline-organic layered clay composite particles of the present invention.
본 발명의 전기유변유체 제조방법은 아미노실란이 처리된 층상점토 표면에 폴리아닐린을 분산중합시켜 폴리아닐린-층상점토 복합입자를 수득하는 공정; 상기 복합입자를 탈도핑시키는 공정; 및, 상기 탈도핑된 폴리아닐린-유기층상점토 복합입자를 분산매질에 분산시키는 공정을 포함한다.The method of producing an electrorheological fluid of the present invention comprises the steps of: dispersing and polymerizing polyaniline on the surface of a layered clay treated with aminosilane to obtain a polyaniline-layered clay composite particle; Dedoping the composite particles; And dispersing the undoped polyaniline-organic layered clay composite particles in a dispersion medium.
이하, 본 발명의 전도성 고분자가 코팅된 유기치환 층상점토를 이용한 전기유변유체의 제조방법을 공정별로 나누어 보다 구체적으로 설명하고자 한다.Hereinafter, the method of preparing an electro-fluidic fluid using the organic-substituted layered clay coated with the conductive polymer of the present invention will be described in more detail by process.
제 1공정: 폴리아닐린 분산중합 First step : polyaniline dispersion polymerization
아미노실란이 처리된 층상점토 표면에 폴리아닐린을 분산중합시켜 폴리아닐린-층상점토 복합입자를 수득한다: 이때, 아미노실란이 처리된 층상점토로는 γ-메타크릴옥시프로필트리메톡시실란(γ-methacryloxypropyltrimethoxysilane), γ-메타크릴옥시프로필메틸디에틸실란(γ-methacryloxypropylmethyldiethoxysilane), γ-메타크옥시프로필트리에톡시실란(γ-methacryloxypropyltriethoxysilane), γ-아미노프로필트리메톡시실란(γ-aminopropyltrimethoxysilane), γ-메타크릴옥시프로필트리에톡시실란(γ-methacryloxypropyltriethoxysilane) 등의 실란 화합물이 표면에 처리된 종횡비 500 이상의 스멕타이트(smectite), 카올리나이트(kaolinite), 층상 복수산화물(layered double hydroxide) 등이 사용된다. 한편, 상기 아미노실란이 처리된 층상점토의 표면에 중합되는 아미노실란이 처리된 폴리아닐린의 양은 층상점토 100중량부에 폴리아닐린 100 내지 500중량부가 중합되도록 한다.Polyaniline was dispersed and polymerized on the surface of the layered clay treated with aminosilane to obtain a polyaniline-layered clay composite particle. In this case, the layered clay treated with aminosilane was γ-methacryloxypropyltrimethoxysilane. γ-methacryloxypropylmethyldiethoxysilane, γ-methacryloxypropyltriethoxysilane, γ-methacryloxypropyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-meta Aspect ratios having a silane compound such as γ-methacryloxypropyltriethoxysilane, etc., on the surface of which are treated are smectite, kaolinite, layered double hydroxide and the like having an aspect ratio of 500 or more. On the other hand, the amount of aminosilane-treated polyaniline polymerized on the surface of the layered clay treated with the aminosilane allows 100 to 500 parts by weight of polyaniline to 100 parts by weight of the layered clay.
제 2공정: 탈도핑 Second Process : Dedoping
상기 복합입자를 탈도핑시킨다: 상기 폴리아닐린-층상점토 복합입자는 산성 혼입물(dopant)의 영향으로 과도한 전도도를 보이는 바, 전기 유변유체에 적합한 전도도를 가지는 복합입자로 전환시키기 위하여 수산화 암모늄, 수산화 나트륨 및 수산화 칼륨 및 수산화 칼슘등의 염기성 수용액에 12 내지 48시간 동안 처리하여 탈도핑된 폴리아닐린-층상점토 복합입자를 수득한다.De-doped the composite particles: The polyaniline-layered clay composite particles exhibited excessive conductivity under the influence of acidic dopants, so that ammonium hydroxide and sodium hydroxide were converted to composite particles having conductivity suitable for the rheological fluid. And basic aqueous solutions such as potassium hydroxide and calcium hydroxide for 12 to 48 hours to obtain undoped polyaniline-layered clay composite particles.
제 3공정: 전기유변유체의 제조 Third Step : Preparation of Electrorheological Fluids
상기 탈도핑된 폴리아닐린-층상점토 복합입자를 분산매질에 분산시켜 전기유변유체를 제조한다: 이때, 분산매질로는 점도가 0.05 내지 0.3Pa·s, 비중이 0.8내지 1.0g/cm3인 실리콘오일 또는 미네랄 오일을 사용하며, 상기 분산매질에 분산되는 폴리아닐린-층상점토는 분산매질 100중량부에 대하여 폴리아닐린-유기층상점토 복합입자가 10 내지 100중량부가 되도록 한다.The undoped polyaniline-layered clay composite particles are dispersed in a dispersion medium to prepare an electrorheological fluid: wherein the dispersion medium is a silicone oil having a viscosity of 0.05 to 0.3 Pa · s and a specific gravity of 0.8 to 1.0 g / cm 3 . Or mineral oil, and the polyaniline-layered clay dispersed in the dispersion medium is 10 to 100 parts by weight of the polyaniline-organic layered clay composite particles with respect to 100 parts by weight of the dispersion medium.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited to these examples according to the gist of the present invention.
실시예 1: 폴리아닐린-유기층상점토 복합입자를 실리콘 오일에 분산시킨 전기유변유체의 제조 Example 1 Preparation of an Electro-Rheological Fluid Dispersing Polyaniline-Organic Layered Clay Composite Particles in Silicone Oil
먼저, γ-메타크릴옥시프로필트리메톡시실란(γ-methacryloxypropyltrimethoxysilane)이 처리된 카올리나이트(종횡비>500)를 5℃의 1N HCl수용액에 분산시키고 약 30분 동안 초음파로 처리한 다음, 0.55mol의 아닐린과 1.375mol의 암모늄퍼설페니트(ammonium persulfate, 이하 `APS`라 함)를 가하고(APS/아닐린=2.5 mol/mol) 24시간 동안 교반하여, 층상점토의 표면에 폴리아닐린을 분산중합시켰다. 생성된 폴리아닐린-층상점토 복합입자를 거름종이를 이용하여 여과하고, 에탄올과 증류수를 이용하여 수회 세척하여 잔류 모노머와 APS를제거하였다. 이어, 3%(v/v) NH4OH수용액에 상기 폴리아닐린-층상점토 복합입자를 처리하여 중화시킨 다음, 다시 여과 및 세척하고, 이를 건조, 밀링(milling)하여 탈도핑된 폴리아닐린-층상점토 복합입자를 수득하였다. 마지막으로, 상기 폴리아닐린-층상점토 복합입자를 실리콘 오일(Shin Etsu Chemical, 점도=0.1Pa·s, 비중=0.96g/cm3) 중량 100에 대하여 복합입자가 15중량부가 되도록 칭량하여 직접 실리콘 오일에 가하고 24시간 동안 마그네틱 교반기(magentic stirrer)를 사용하여 교반하여 전기유변유체를 제조하였다.First, kaolinite (aspect ratio> 500) treated with γ-methacryloxypropyltrimethoxysilane was dispersed in 1N HCl aqueous solution at 5 ° C., sonicated for about 30 minutes, and then 0.55 mol of aniline And 1.375 mol of ammonium persulfate (hereinafter referred to as 'APS') were added (APS / aniline = 2.5 mol / mol) and stirred for 24 hours to disperse-polymerize polyaniline on the surface of layered clay. The resulting polyaniline-layered clay composite particles were filtered using a filter paper and washed several times with ethanol and distilled water to remove residual monomers and APS. Subsequently, the polyaniline-layered clay composite particles were treated with 3% (v / v) NH 4 OH aqueous solution, neutralized, filtered and washed again, dried, milled, and then undoped polyaniline-layered clay composite. The particles were obtained. Finally, the polyaniline-layered clay composite particles were weighed so that the composite particles were 15 parts by weight based on 100 wt% of silicone oil (Shin Etsu Chemical, viscosity = 0.1 Pa · s, specific gravity = 0.96 g / cm 3 ), and directly The mixture was stirred for 24 hours using a magnetic stirrer to prepare an electrorheological fluid.
비교 실시예 1: 폴리아닐린을 이용한 전기유변유체 제조 Comparative Example 1 Preparation of Electro-Rheological Fluid Using Polyaniline
폴리아닐린-유기층상점토 복합입자를 대신하여 순수한 폴리아닐린을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 전기유변유체를 제조하였다.An electrorheological fluid was prepared in the same manner as in Example 1, except that pure polyaniline was used in place of the polyaniline-organic layered clay composite particles.
도 1a, 도 1b 및 도 1c는 각각, 실시예 1의 γ-메타크릴옥시프로필트리메톡시실란이 처리된 카올리나이트, 탈도핑된 폴리아닐린-카올리나이트 복합입자 및 비교 실시예 1의 탈도핑된 폴리아닐린의 미세구조를 보여주는 전자현미경(SEM) 사진이다. 도 1a, 1b 및 1c로부터, 종래의 폴리아닐린 입자는 구형의 형태를 보이는 반면, 본 발명의 분산입자는 점토의 형상과 유사하게 높은 종횡비를 가지는 형태로 존재함을 확인할 수 있었다.1A, 1B and 1C show the finest of kaolinite treated with γ-methacryloxypropyltrimethoxysilane of Example 1, undoped polyaniline-kaolinite composite particles, and undoped polyaniline of Comparative Example 1, respectively. SEM image showing the structure. 1a, 1b and 1c, while the conventional polyaniline particles show a spherical shape, it was confirmed that the dispersed particles of the present invention exist in the form having a high aspect ratio similar to the shape of the clay.
한편, 이상의 실시예 1에서 제조된 전기유변유체의 유변체로서의 특성을 조사하기 위하여 각 유변체들의 항복응력을 측정하였다. 항복응력은 패럴렐플레이트타입(parallel plate type)의 레오미터(ARES, Rheometric Scientific Co.)를 사용하여 1 내지 20s-1의 전단속도(shear rate) 범위에서 전단응력(shear stress)을 측정하여 조사하였다. 패럴렐플레이트의 지름은 50cm이고 갭(gap)의 크기는 0.5mm로 유지하면서, 발전기(Glassman, Model EL5P8L)을 이용하여 상온에서 다양한 세기의 전기장을 발생시켜 실험을 수행하였다. 도 2는 15중량부의 폴리아닐린-층상점토 복합입자를 함유한 전기유변유체가 0 내지 3kV/mm세기의 전기장 하에서 보이는 전단응력을 전단속도에 대한 함수로 나타낸 그래프이고, 도 3은 분산입자로서 폴리아닐린-층상점토 복합입자를 사용한 전기유변유체 및 폴리아닐린을 사용한 전기유변유체의 항복응력을 세기의 전기장의 세기의 함수로 나타낸 그래프이다. 도 2 및 도 3에서, 폴리아닐린-층상점토 복합입자를 분산입자로 갖는 본 발명의 유변체는 3kV/mm에서 폴리아닐린-층상점토 복합입자를 사용한 전기유변유체는 약 1.2kPa정도의 높은 항복응력을 보이며, 이는 폴리아닐린을 분산입자로 갖는 종래의 전기유변유체에 비하여 현저히 높아진 항복응력임을 확인할 수 있다.On the other hand, in order to investigate the characteristics of the electrorheological fluid prepared in Example 1 as a rheology, yield stress of each of the rheology was measured. Yield stress was investigated by measuring shear stress in a shear rate range of 1 to 20s -1 using a parallel plate type rheometer (ARES, Rheometric Scientific Co.). . Parallel plate diameter is 50cm and the gap (gap) while maintaining the size of 0.5mm, using an electric generator (Glassman, Model EL5P8L) to generate an electric field of varying intensity at room temperature, the experiment was performed. FIG. 2 is a graph showing the shear stress as a function of shear rate of an electrorheological fluid containing 15 parts by weight of polyaniline-layered clay composite particles under an electric field of 0-3 kV / mm intensity, and FIG. Yield stress of the rheological fluid using layered clay composite particles and the rheological fluid using polyaniline as a function of the electric field strength of the intensity. In Figures 2 and 3, the rheology of the present invention having a polyaniline-layered clay composite particles as dispersed particles, the electro-rheological fluid using polyaniline-layered clay composite particles at 3kV / mm shows a high yield stress of about 1.2kPa , It can be confirmed that the yield stress is significantly higher than the conventional electro-fluidic fluid having a polyaniline as a dispersed particle.
도 4는 본 발명의 폴리아닐린-층상점토 복합입자를 사용한 전기유변유체가 보이는 항복응력의 상승을 설명하는 모식도이다. 전기장이 무부하시에는 폴리아닐린-층상점토 복합입자로 구성된 전기유변유체는 일반적인 서스펜전(suspension) 시스템과 비슷하다. 그러나, 전기장이 부하시에는 입자들이 사슬을 형성하게 되는데, 높은 종횡비의 특징을 가지고 있는 폴리아닐린-층상점토 복합입자는 이웃에 있는 입자나 사슬과 접촉함으로써 기존의 전기유변유체에 사용된 입자들에 비해 다른 형태의 사슬을 형성하게 되고, 이로 인하여 높은 항복응력을 가질 수 있게 된다.Figure 4 is a schematic diagram illustrating the increase in yield stress seen by the electrorheological fluid using the polyaniline-layered clay composite particles of the present invention. Under no electric field, the rheological fluid, consisting of polyaniline-layered clay composite particles, is similar to a typical suspension system. However, when the electric field is loaded, the particles form chains. Polyaniline-layered clay composite particles, which have a high aspect ratio, are in contact with neighboring particles or chains, compared to those used in conventional rheological fluids. It forms a different type of chain, which allows it to have a high yield stress.
이상에서 상세하게 설명하고 입증한 바와 같이, 본 발명에서는 아미노실란이 처리된 층상점토의 표면에 폴리아닐린을 분산중합시켜 수득한 폴리아닐린-층상점토 복합입자를 탈도핑시킨 다음, 이를 분산매질에 분산시켜 전기유변유체를 제조하는 방법 및 그로부터 제조되는 전기유변유체를 제공한다. 전도성 고분자가 코팅된 유기치환 층상점토를 분산입자로 갖는 전기유변유체의 제조방법 및 그로부터 제조되는 전기유변유체를 제공한다. 본 발명에 의하면, 전기유변유체의 분산입자로서 전기장 부하시 입자들이 사슬을 형성하게 되는 높은 종횡비의 폴리아닐린-층상점토 복합입자를 사용함에 따라, 종래의 전기유변유체에 사용된 입자들에 비해 다른 형태의 사슬을 형성시킴으로써, 높은 항복응력을 갖는 전기유변유체를 제조할 수 있게 되었다.As described and demonstrated in detail above, in the present invention, the polyaniline-layered clay composite particles obtained by dispersion-polymerizing polyaniline on the surface of the layered clay treated with aminosilane are undoped, and then dispersed in a dispersion medium, thereby Provided are a method of preparing a rheological fluid and an electrorheological fluid prepared therefrom. Provided are a method for preparing an electrorheological fluid having an organic substituted layered clay coated with a conductive polymer as dispersed particles, and an electrorheological fluid prepared therefrom. According to the present invention, by using a high aspect ratio polyaniline-layered clay composite particles in which particles form chains under an electric field load as the dispersed particles of the electrofluidic fluid, the particles are different from those used in the conventional rheological fluids. By forming the chain, it is possible to prepare an electrorheological fluid having a high yield stress.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시태양일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above in detail the specific parts of the present invention, for those skilled in the art, these specific descriptions are only preferred embodiments, which are not intended to limit the scope of the present invention. Will be obvious. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2001-0049116A KR100418914B1 (en) | 2001-08-14 | 2001-08-14 | Process for Preparing Electrochemical Fluid Employing Polyaniline-coated Layered Silicate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2001-0049116A KR100418914B1 (en) | 2001-08-14 | 2001-08-14 | Process for Preparing Electrochemical Fluid Employing Polyaniline-coated Layered Silicate |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20030015069A KR20030015069A (en) | 2003-02-20 |
KR100418914B1 true KR100418914B1 (en) | 2004-02-14 |
Family
ID=27719260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2001-0049116A KR100418914B1 (en) | 2001-08-14 | 2001-08-14 | Process for Preparing Electrochemical Fluid Employing Polyaniline-coated Layered Silicate |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100418914B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100389151C (en) * | 2006-03-01 | 2008-05-21 | 武汉化工学院 | Method of preparing 3-D ordered multiporous polymer with hole contg. nano photocatalyst |
CN109078589A (en) * | 2018-06-29 | 2018-12-25 | 合肥灵宁科技有限公司 | Floating bead/polyaniline/alumina core-shell structure composite material and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02305895A (en) * | 1989-04-19 | 1990-12-19 | Natl Res Dev Corp | Electro-rheological fluid |
EP0516394A1 (en) * | 1991-05-27 | 1992-12-02 | Bridgestone Corporation | Electrorheological fluid |
JPH05271679A (en) * | 1992-03-27 | 1993-10-19 | Tonen Corp | Electroviscous fluid |
US5595680A (en) * | 1991-10-10 | 1997-01-21 | The Lubrizol Corporation | Electrorheological fluids containing polyanilines |
US5879582A (en) * | 1994-08-19 | 1999-03-09 | The Lubrizol Corporation | Electrorheological fluids of polar solids and organic semiconductors |
-
2001
- 2001-08-14 KR KR10-2001-0049116A patent/KR100418914B1/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02305895A (en) * | 1989-04-19 | 1990-12-19 | Natl Res Dev Corp | Electro-rheological fluid |
EP0516394A1 (en) * | 1991-05-27 | 1992-12-02 | Bridgestone Corporation | Electrorheological fluid |
US5595680A (en) * | 1991-10-10 | 1997-01-21 | The Lubrizol Corporation | Electrorheological fluids containing polyanilines |
JPH05271679A (en) * | 1992-03-27 | 1993-10-19 | Tonen Corp | Electroviscous fluid |
US5879582A (en) * | 1994-08-19 | 1999-03-09 | The Lubrizol Corporation | Electrorheological fluids of polar solids and organic semiconductors |
Also Published As
Publication number | Publication date |
---|---|
KR20030015069A (en) | 2003-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kim et al. | Synthesis and electrorheological characterization of polyaniline and Na+-montmorillonite clay nanocomposite | |
Choi et al. | Synthesis of exfoliated polyacrylonitrile/Na− MMT nanocomposites via emulsion polymerization | |
Lim et al. | Improved electrorheological effect in polyaniline nanocomposite suspensions | |
Cho et al. | Electrorheological characterization of polyaniline-coated poly (methyl methacrylate) suspensions | |
US20090152513A1 (en) | Polar molecule dominated electrorheological fluid | |
KR20110130628A (en) | Manufacturing method of nano-structured composites using gelation materials | |
Ao et al. | Zwitterionic silica-based hybrid nanoparticles for filtration control in oil drilling conditions | |
Lu et al. | Electrorheological properties of suspensions based on polyaniline-montmorillonite clay nanocomposite | |
Cabuk et al. | Synthesis, characterization and electrorheological properties of biodegradable chitosan/bentonite composites | |
KR100418914B1 (en) | Process for Preparing Electrochemical Fluid Employing Polyaniline-coated Layered Silicate | |
Jun et al. | Fabrication of electric-stimuli responsive polyaniline/laponite composite and its viscoelastic and dielectric characteristics | |
KR20010019614A (en) | Electrorheological Fluids Dispersed Multi-Phase | |
Chin et al. | Dispersion stability and electrorheological properties of polyaniline particle suspensions stabilized by poly (vinyl methyl ether) | |
JP7061406B2 (en) | Electrorheological fluid | |
Kim et al. | Synthesis and electrorheological characterization of emulsion polymerized SAN‐clay nanocomposite suspensions | |
KR100593483B1 (en) | Electro-fluidic fluid comprising polyaniline / titanium dioxide composite as conductive particles and method for producing same | |
Kim et al. | Electrorheological semi-active damper: Polyaniline based ER system | |
CN106010734A (en) | Rough-surface polyaniline/polypyrrole copolymer nano-fiber electrorheological fluid and preparation method thereof | |
JPH06503605A (en) | Electrorheological fluid containing polyaniline | |
CN104725761A (en) | Preparation method of novel ABS resin based material | |
Kim et al. | Physical and electroresponsive characteristics of the intercalated styrene‐acrylonitrile copolymer/clay nanocomposite under applied electric fields | |
KR20110050136A (en) | Electrorheological fluids using silica/polyaniline core/shell nanospheres and fabrication method | |
KR100479739B1 (en) | Synthesis and electrorheology of semiconducting polyaniline-coated polymethyl methacrylate microsphere suspensions | |
US5475043A (en) | Material with variable viscoelasticity | |
US20040232378A1 (en) | Electro-rheological fluid comprising polyaniline-clay nanocomposite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20100201 Year of fee payment: 7 |
|
LAPS | Lapse due to unpaid annual fee |