KR100328108B1 - Semiconductor substrate polishing pad dresser, method of manufacturing the same, and chemicomechanical polishing method using the same dresser - Google Patents
Semiconductor substrate polishing pad dresser, method of manufacturing the same, and chemicomechanical polishing method using the same dresser Download PDFInfo
- Publication number
- KR100328108B1 KR100328108B1 KR1019997003204A KR19997003204A KR100328108B1 KR 100328108 B1 KR100328108 B1 KR 100328108B1 KR 1019997003204 A KR1019997003204 A KR 1019997003204A KR 19997003204 A KR19997003204 A KR 19997003204A KR 100328108 B1 KR100328108 B1 KR 100328108B1
- Authority
- KR
- South Korea
- Prior art keywords
- dresser
- lead alloy
- hard abrasive
- polishing
- abrasive particles
- Prior art date
Links
- 238000005498 polishing Methods 0.000 title claims abstract description 139
- 239000004065 semiconductor Substances 0.000 title claims abstract description 38
- 239000000758 substrate Substances 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims description 48
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- 239000002245 particle Substances 0.000 claims abstract description 136
- 229910000978 Pb alloy Inorganic materials 0.000 claims abstract description 68
- 229910052751 metal Inorganic materials 0.000 claims abstract description 64
- 239000002184 metal Substances 0.000 claims abstract description 64
- 239000000956 alloy Substances 0.000 claims abstract description 43
- 230000003750 conditioning effect Effects 0.000 claims abstract description 22
- 150000004767 nitrides Chemical class 0.000 claims abstract description 20
- 229910003460 diamond Inorganic materials 0.000 claims description 34
- 239000010432 diamond Substances 0.000 claims description 34
- 239000010936 titanium Substances 0.000 claims description 26
- 229910052719 titanium Inorganic materials 0.000 claims description 26
- 229910052804 chromium Inorganic materials 0.000 claims description 19
- 239000011651 chromium Substances 0.000 claims description 19
- 229910052726 zirconium Inorganic materials 0.000 claims description 17
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 16
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 14
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 14
- 239000000843 powder Substances 0.000 claims description 13
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 12
- 239000000126 substance Substances 0.000 claims description 12
- 230000008018 melting Effects 0.000 claims description 11
- 238000002844 melting Methods 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 8
- 238000000576 coating method Methods 0.000 claims description 6
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 5
- 239000004020 conductor Substances 0.000 claims description 4
- 239000002994 raw material Substances 0.000 claims description 3
- 239000011888 foil Substances 0.000 claims description 2
- 239000007795 chemical reaction product Substances 0.000 claims 1
- 229910017944 Ag—Cu Inorganic materials 0.000 abstract description 2
- 229910052709 silver Inorganic materials 0.000 abstract description 2
- 235000012431 wafers Nutrition 0.000 description 49
- 239000010410 layer Substances 0.000 description 34
- 229910052582 BN Inorganic materials 0.000 description 13
- 239000006061 abrasive grain Substances 0.000 description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- 238000005476 soldering Methods 0.000 description 10
- 150000002739 metals Chemical class 0.000 description 9
- 230000007547 defect Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 6
- 229910001220 stainless steel Inorganic materials 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 238000001493 electron microscopy Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 229910052580 B4C Inorganic materials 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 238000005219 brazing Methods 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 238000004070 electrodeposition Methods 0.000 description 4
- 238000011065 in-situ storage Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000007733 ion plating Methods 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229910018615 Si-Fe-C Inorganic materials 0.000 description 2
- 229910008300 Si—Fe—C Inorganic materials 0.000 description 2
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000007517 polishing process Methods 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000007518 final polishing process Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B53/00—Devices or means for dressing or conditioning abrasive surfaces
- B24B53/017—Devices or means for dressing, cleaning or otherwise conditioning lapping tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B53/00—Devices or means for dressing or conditioning abrasive surfaces
- B24B53/02—Devices or means for dressing or conditioning abrasive surfaces of plane surfaces on abrasive tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B53/00—Devices or means for dressing or conditioning abrasive surfaces
- B24B53/12—Dressing tools; Holders therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D18/00—Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
- B24D18/009—Tools not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D3/00—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
- B24D3/02—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
- B24D3/04—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic
- B24D3/06—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic metallic or mixture of metals with ceramic materials, e.g. hard metals, "cermets", cements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/304—Mechanical treatment, e.g. grinding, polishing, cutting
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Grinding-Machine Dressing And Accessory Apparatuses (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Abstract
반도체 기판용 연마패드의 연마표면에 슬라이딩 접촉시켜 연마패드의 컨디셔닝을 수행하기 위한 드레서에 있어서, 연마패드에 대향하는 표면을 갖는 지지부재와, 이 지지부재의 상기 표면을 피복하는 납합금재료층과, 이 납합금재료층에 분산하여 매몰, 지지되고, 그 각각의 일부가 상기 납합금재료층의 외부로 노출하고 있는 경질연마입자군을 포함하는 반도체 기판용 연마패드의 드레서. 각 경질연마입자와 상기 납합금의 접촉계면에서 경질연마입자의 표면이 금속탄화물층 및 금속질화물층 중 어느 한 층으로 피복되어 있다. 납합금으로는 Ag 계, Ag-Cu 계 등을 들 수 있다.A dresser for performing conditioning of a polishing pad by sliding contact with a polishing surface of a polishing pad for a semiconductor substrate, comprising: a support member having a surface facing the polishing pad, a lead alloy material layer covering the surface of the support member; And a hard abrasive particle group dispersed and supported in the lead alloy material layer, each of which is exposed to the outside of the lead alloy material layer. At the contact interface between each of the hard abrasive particles and the lead alloy, the surface of the hard abrasive particles is covered with any one of a metal carbide layer and a metal nitride layer. Examples of the lead alloys include Ag and Ag-Cu.
Description
웨이퍼의 폴리싱에 있어서는, 연마속도를 확보하면서 기계적 변형 등의 결함이 없는 연마법이 요구되는 종래의 기계적 연마법에서는 연마입자의 입경이나 연마하중을 크게함으로써 연마속도를 확보할 수 있다. 그러나, 연마에 의해 여러가지 결함이 생겨 연마속도의 확보와 피연마재를 결함없이 유지하는 일의 양립은 불가능하다. 그래서, 화학적 기계적 평탄화 (CMP : Chemical Mechanical Planarization) 라고 불리는 연마법이 고안되었다. 이 방법은 기계적 연마작용에 화학적 연마작용을 중첩하여 작용시킴으로써, 연마속도의 확보와 피연마재를 결함없이 유지하는 일의 양립을 가능하게 한 것이다. CMP 는 연마속도의 확보와피연마재를 결함없이 유지하는 일의 양립이 필요한 실리콘 웨이퍼의 최종 폴리싱 공정에서 널리 사용되고 있다. 또한 최근에는 장치의 고집적화에 수반되어 집적회로를 제조하는 소정의 단계에서, 웨이퍼나 웨이퍼 표면에 도전체·유전체층이 형성된 반도체 기판의 표면을 연마하는 것이 필요해졌다. 반도체 기판은 연마되어 높은 융기나 거칠기 등의 표면결함이 제거된다. 통상 이 공정은 웨이퍼 위에 여러가지의 장치 및 집적회로를 형성하는 동안 이루어진다. 이 연마공정에서는 실리콘 웨이퍼의 최종 폴리싱 공정과 마찬가지로, 연마속도의 확보와 결함없이 유지하는 일의 양립이 필요하다. 화학 슬러리를 도입함으로써, 반도체 표면에 보다 큰 연마제거속도 및 결함이 없는 화학적 또한 기계적 평탄화가 이루어진다. 일반적으로 CMP 공정은 얇으면서 평탄한 반도체 재료를, 제어된 압력 및 온도하에서 촉촉한 연마표면에 대해 유지하면서 회전시키는 공정을 포함한다.In polishing a wafer, in the conventional mechanical polishing method in which a polishing method is required while ensuring a polishing rate and no defects such as mechanical deformation, the polishing rate can be secured by increasing the particle size and polishing load of the abrasive grains. However, various defects are produced by polishing, and it is impossible to attain both the polishing rate and the maintenance of the polished material without defects. Thus, a polishing method called Chemical Mechanical Planarization (CMP) has been devised. This method superimposes the chemical polishing action on the mechanical polishing action, thereby making it possible to secure both the polishing rate and the maintenance of the polished material without defects. CMP has been widely used in the final polishing process of silicon wafers, which requires both ensuring the polishing rate and maintaining the abrasive without defects. In recent years, it has become necessary to polish the surface of a semiconductor substrate on which a conductor and a dielectric layer are formed on a wafer or a wafer surface at a predetermined stage of manufacturing an integrated circuit with high integration of the device. The semiconductor substrate is polished to remove surface defects such as high bumps and roughness. This process is typically done during the formation of various devices and integrated circuits on the wafer. In this polishing step, as in the final polishing step of the silicon wafer, it is necessary to secure both the polishing rate and the maintenance without defects. By introducing chemical slurries, higher polishing removal rates and defect-free chemical and mechanical planarization occur on the semiconductor surface. Generally, the CMP process involves rotating a thin, flat semiconductor material while maintaining a moist polishing surface under controlled pressure and temperature.
CMP 공정의 일례로서, 예컨대 5 내지 300 ㎚ 정도의 입경을 갖는 실리카입자를 가성소다, 암모니아 및 아민 등의 알칼리용액에 현탁시켜 pH 9 내지 12 정도로 만든 화학 슬러리와 폴리우레탄 수지 등으로 이루어지는 연마패드가 사용된다. 연마시에는 화학 슬러리를 흐르게 하면서 반도체 기판을 연마패드와 맞닿게 하여 상대회전시킴으로써 연마가 이루어진다. 그리고, 연마패드의 컨디셔닝법으로는 연마패드에 물 또는 화학 슬러리를 흐르게 하면서 다이아몬드 전착(電着) 연마재 또는 브러시 등을 사용한 브러싱에 의해 연마패드의 내부의 로딩, 이물질의 제거를 수행한다.As an example of the CMP process, for example, a polishing pad composed of a chemical slurry, a polyurethane resin, or the like, prepared by suspending silica particles having a particle diameter of about 5 to 300 nm in an alkaline solution such as caustic soda, ammonia, and amine, and having a pH of about 9 to 12, Used. In polishing, polishing is performed by relatively rotating the semiconductor substrate in contact with the polishing pad while flowing a chemical slurry. In the polishing method of the polishing pad, the inside of the polishing pad is removed and foreign substances are removed by brushing using a diamond electrodeposited abrasive or a brush while flowing water or a chemical slurry to the polishing pad.
CMP 공정에서 사용되는 드레서는 절삭이나 연삭에서 사용되는 종래의 공구와는 다음의 점에서 본질적으로 차이가 있다. 절삭공구에서는 경질연마입자가 소량 탈락해도 연마입자 탈락후의 신생면에 다른 연마입자가 남아 있으면 절삭능력이저하되지는 않는데 비해, CMP 드레서에서는 탈락한 연마입자가 연마패드나 반도체 기판표면을 손상시키기 때문에 연마입자의 소량의 탈락도 허용되지 않는다. 또한, 습식이고, 낮은 회전수로 사용되므로, 절삭공구에서 요구되는 내열성이나 극단적인 내마모성은 필요없다. 연마입자의 탈락이 문제가 되는 종래의 공구로서는 단일 입자가 비교적 큰 연마입자 (일반적으로는 직경 1 ㎜ 정도 이상) 를 금속지지재에 접합한 바이트가 있다. 그러나, CMP 공정에서 사용되는 드레서와는 다음의 점에서 본질적으로 차이가 있다. 종래의 바이트에서는 비교적 큰 연마입자 (일반적으로는 직경 1 ㎜ 정도 이상) 를 단일 입자로 접합하는데 비해, CMP 공정에서 사용되는 드레서는 비교적 작은 (직경 50 내지 300 ㎛) 연마입자를 단층의 면상으로 접합하고 있다. 또한 CMP 공정에서 사용되는 드레서는 습식으로 낮은 회전수로 사용되므로, 바이트에서 요구되는 내열성이나 극단적인 내마모성은 필요없다.The dresser used in the CMP process is essentially different from the conventional tools used in cutting or grinding in the following points. In the cutting tool, even if a small amount of hard abrasive grains are dropped, if other abrasive grains remain on the new surface after the abrasive grains are dropped, the cutting capacity does not decrease.However, in the CMP dresser, the dropped abrasive grains damage the polishing pad or the surface of the semiconductor substrate. Small drops of abrasive particles are also not allowed. In addition, since it is wet and used at a low rotation speed, there is no need for heat resistance or extreme abrasion resistance required for cutting tools. Conventional tools in which the removal of abrasive particles is a problem include a bite in which abrasive particles having relatively large single particles (generally about 1 mm or more in diameter) are bonded to a metal support material. However, it is essentially different from the dresser used in the CMP process in the following points. In the conventional bite, relatively large abrasive particles (generally about 1 mm in diameter or more) are bonded to a single particle, whereas the dresser used in the CMP process bonds relatively small (50 to 300 μm in diameter) abrasive particles into a single layer. Doing. In addition, the dresser used in the CMP process is wet and used at low rotational speeds, thus eliminating the heat and extreme wear resistance required by the bite.
종래의 연마패드의 컨디셔닝법에서는 다이아몬드 입자를 니켈 전착한 연마재를 사용한 컨디셔닝을 수행하고 있다. 니켈의 전착은 비교적 용이하게 금속지지부재에 적용할 수 있으므로 널리 이용되어 왔다. 그러나, 다이아몬드와의 접합강도가 충분치 못하여 자주 다아아몬드 입자의 탈락이나 결손이 발생되기 때문에 연마패드나 반도체 기판을 손상시키는 원인이 된다. 따라서 다이아몬드 입자의 탈락이 없는 드레서가 요구되고 있다.In the conventional polishing pad conditioning method, conditioning using an abrasive material in which nickel particles are electrodeposited with diamond is performed. Electrodeposition of nickel has been widely used because it can be applied to a metal support member relatively easily. However, since the bonding strength with diamond is insufficient, frequent dropping or deletion of diamond particles occurs, which causes damage to the polishing pad or the semiconductor substrate. Therefore, there is a need for a dresser without falling off of diamond particles.
따라서, 본 발명은 연마패드의 컨디셔닝에 있어서, 스크래치 손상을 최소한으로 억제하여 수율을 높이고, 안정된 연마속도가 얻어지는 드레서를 제공하는 것을 목적으로 한다.Therefore, an object of the present invention is to provide a dresser in which polishing damage is minimized in the conditioning of the polishing pad, thereby increasing the yield and obtaining a stable polishing rate.
또한 얕은 트랜치 격리(STI:Shallow Trench Isolation) 구조를 만들기 위해, CMP 연마나 층간절연막의 CMP 연마 등과 같이 특히 로딩으로 의한 연마속도의 저하가 문제가 되는 경우에는, 연마공정과 컨디셔닝공정이 별도인 경우에 비해 인 사이투 (in situ) 컨디셔닝이라고 불리는 연마하면서 동시에 컨디셔닝하는 방법이 효과적이다. 그러나, 한편으로 다이아몬드 탈락에 의한 스크래치 손상의 생성이 보다 현저해져서 다이아몬드 입자의 탈락이 없는 드레서에 의한 인 사이투 (in situ) 드레싱법의 확립이 요구되고 있다.In addition, in order to create a shallow trench isolation (STI) structure, in particular, when a decrease in polishing rate due to loading, such as CMP polishing or CMP polishing of an interlayer insulating film, is a problem, the polishing process and the conditioning process are separate. Compared to grinding and simultaneously conditioning, called in situ conditioning, it is effective. However, on the other hand, the generation of scratch damage due to diamond dropout becomes more remarkable, and there is a demand for establishing an in situ dressing method by a dresser without dropping of diamond particles.
발명의 개시Disclosure of the Invention
이와 같은 기술적 배경하에서, 본 발명에 의하면 다음과 같은 반도체 기판용 연마패드의 드레서, 그 제조방법 및 이 드레서를 사용하는 웨이퍼의 화학적 기계적 연마방법이 제공된다.Under such technical background, the present invention provides a dresser of a polishing pad for a semiconductor substrate, a manufacturing method thereof, and a chemical mechanical polishing method of a wafer using the dresser as follows.
본 발명에 따르면, 반도체 기판용 연마패드의 연마표면에 슬라이딩 접촉시켜 연마패드의 컨디셔닝을 수행하기 위한 드레서에 있어서, 연마패드에 대향하는 표면을 갖는 지지부재와, 이 지지부재의 상기 표면을 피복하는 납합금층과, 이 납합금층에 분산하여 매몰, 지지되고, 그 각각의 일부가 상기 납합금재료층의 외부로 노출하고 있는 경질연마입자군을 포함하고, 각 경질연마입자와 상기 납합금의 접촉계면에서 경질연마입자의 표면이 금속탄화물층 및 금속질화물층 중 어느 한 층으로 피복되어 있는 반도체 기판용 연마패드의 드레서가 제공된다.According to the present invention, a dresser for slidingly contacting a polishing surface of a polishing pad for a semiconductor substrate to perform polishing pad conditioning, comprising: a support member having a surface facing the polishing pad, and covering the surface of the support member; A lead alloy layer and a group of hard abrasive particles dispersed and supported in the lead alloy layer, each of which is exposed to the outside of the lead alloy material layer, wherein each of the hard abrasive particles and the lead alloy There is provided a dresser of a polishing pad for a semiconductor substrate, wherein the surface of the hard abrasive particles is coated with any one of a metal carbide layer and a metal nitride layer at a contact interface.
상기 반도체 기판용 연마패드의 드레서는 다음과 같은 방법으로 제조될 수 있으며, 상기 방법은, 연마패드에 대향하는 표면을 갖는 지지부재, 활성금속을 함유하는 납합금재료, 및 경질연마입자로 이루어지는 분말을 준비하는 단계, 이 지지부재의 상기 표면을 따라 상기 납합금재료를 층상으로 형성하는 단계, 이 납합금재료층의 표면에 상기 경질연마입자 분말을 균일하게 분포시켜 배치하는 단계, 및 상기 납합금재료 및 상기 경질연마입자 분말이 적용된 상기 지지부재를 진공가열로중에 삽입하고 이 진공가열로의 배기를 수행하여 진공상태를 이루고, 로내 온도를 650 내지 1200 ℃ 의 범위로 상승시켜 소정시간 유지하고, 또한 용융한 상기 납합금중에 상기 경질연마입자를 부분적으로 진입시키고, 이어서 로내 온도를 실온까지 낮추는 단계를 포함한다.The dresser of the polishing pad for the semiconductor substrate may be manufactured by the following method, which method comprises: a support member having a surface facing the polishing pad, a lead alloy material containing an active metal, and a powder containing hard abrasive particles Preparing a layer of the lead alloy material along the surface of the support member; distributing the hard abrasive particle powder uniformly on the surface of the lead alloy material layer; and arranging the lead alloy material. Inserting the support member to which the material and the hard abrasive particle powder were applied into the vacuum heating furnace and evacuating the vacuum heating furnace to achieve a vacuum state, the furnace temperature was raised to the range of 650 to 1200 ℃, and maintained for a predetermined time, And partially entering the hard abrasive particles into the molten lead alloy, and then lowering the furnace temperature to room temperature. The.
또한, 반도체 기판용 연마패드의 드레서의 제조방법은, 연마패드에 대향하는 표면을 갖는 지지부재, 및 납합금재료를 준비하는 단계, 활성금속피막, 활성금속 탄화물피막 및 활성금속 질화물피막으로 이루어지는 군에서 선택된 어느 1 종의 피막이 각 입자표면에 부착된 경질연마입자로 이루어지는 분말을 준비하는 단계, 이 지지부재의 상기 표면을 따라 상기 납합금재료를 층상으로 형성하는 단계, 이 납합금재료층의 표면에 상기 경질연마입자 분말을 균일하게 분포시켜 배치하는 단계, 및 상기 납합금재료 및 상기 경질연마입자 분말이 적용된 상기 지지부재를 진공가열로중에 삽입하고 이 진공가열로의 배기를 수행하여 진공상태를 이루고, 로내 온도를 650 내지 1200 ℃ 의 범위로 상승시켜 소정시간 유지하고, 또한 용융한 상기 납합금중에 상기 경질연마입자를 부분적으로 진입시키고, 이어서 로내 온도를 실온까지 낮추는 단계를 포함한다.In addition, a method for manufacturing a dresser of a polishing pad for a semiconductor substrate includes the steps of preparing a support member having a surface facing the polishing pad, and a lead alloy material, the group consisting of an active metal film, an active metal carbide film, and an active metal nitride film. Preparing a powder comprising hard abrasive particles, wherein any one of the coatings selected from the above is attached to the surface of each particle, forming the lead alloy material in a layer form along the surface of the support member, the surface of the lead alloy material layer Uniformly distributing the hard abrasive particle powder to the support member; and inserting the support member to which the lead alloy material and the hard abrasive particle powder are applied into a vacuum heating furnace and evacuating the vacuum heating furnace. The furnace temperature is raised to a range of 650 to 1200 ° C. for a predetermined time, and the hard alloy is melted in the molten lead alloy. Partly enter the abrasive particles and, followed by a step to lower the furnace temperature to room temperature.
납합금으로는 Ag 계, Ag-Cu 계 등을 들 수 있다. 바람직한 납합금의 융점은 650 내지 1200 ℃ 의 범위를 들 수 있다. 납합금재료의 형태로는 포일, 분말 등을 들 수 있다. 납합금중에 0.5 내지 20 wt% 의 활성금속, 특히 티탄, 크롬 및 지르코늄으로 이루어지는 군에서 선택된 1 종 이상이 함유되어 있는 경우에는 아무런 예비표면처리가 수행되지 않은 원료경질연마입자가 사용되는 경우가 많다. 납합금중에 활성금속이 함유되어 있지 않은 경우에는 원료경질연마입자에 예비표면처리를 수행해 둘 필요가 있다. 이 예비표면처리로서는 이온 플레이팅법, 진공증착법, 스퍼터링법, 혹은 CVD 법 등에 의해, 상기 활성금속으로 이루어지는 피막 또는 이 활성금속의 탄화물 또는 질화물로 이루어지는 피막을 원료경질연마입자의 표면에 형성하는 것이 바람직하다. 피막 두께의 바람직한 범위는 0.1 내지 10 ㎛ 이다. 경질연마입자로는 다이아몬드 입자, 입방정 질화붕소 (BN) 입자, 탄화붕소 (B4C) 입자 또는 탄화규소 (SiC) 입자가 바람직하다. 입자의 바람직한 사이즈는 50 내지 300 ㎛ 의 범위이다. 또한 드레서에 부착되는 입자의 바람직한 평균입자간격은 입자 사이즈의 0.1 내지 10 배이고, 바람직하게는 0.3 내지 5 배이다.Examples of the lead alloys include Ag and Ag-Cu. Melting | fusing point of a preferable lead alloy can mention the range of 650-1200 degreeC. Examples of the form of the lead alloy material include foil and powder. When the lead alloy contains 0.5 to 20 wt% of active metals, particularly one or more selected from the group consisting of titanium, chromium and zirconium, raw hard abrasive particles having no presurface treatment are often used. . If the lead alloy does not contain an active metal, it is necessary to carry out a preliminary surface treatment on the hard abrasive particles of the raw material. As this preliminary surface treatment, it is preferable to form the film which consists of the said active metal or the film which consists of carbides or nitrides of this active metal on the surface of a raw hard abrasive particle by ion plating method, vacuum deposition method, sputtering method, or CVD method. Do. The preferable range of the film thickness is 0.1-10 micrometers. As the hard abrasive particles, diamond particles, cubic boron nitride (BN) particles, boron carbide (B 4 C) particles or silicon carbide (SiC) particles are preferable. Preferred sizes of the particles range from 50 to 300 μm. Further, the preferred average particle spacing of the particles attached to the dresser is 0.1 to 10 times the particle size, preferably 0.3 to 5 times.
또한, 상기 지지부재로는 내식성이 우수한 스테인레스강이 바람직하고, 특히 페라이트계 스테인레스강을 사용하면 자성을 이용한 드레서의 취급 (핸드링) 에 유리하다.Further, as the support member, stainless steel having excellent corrosion resistance is preferable, and in particular, the use of ferritic stainless steel is advantageous for handling (handling) of the dresser using magnetism.
또한, 본 발명의 드레서에 의하면, 컨디셔닝 작업시에 경질연마입자의 탈락이 발생되기 힘들기 때문에, 웨이퍼 표면에 도전체층 및 유전체층으로 이루어지는 반도체 장치가 형성된 반도체 기판의 표면을 화학적 기계적 연마에 의해 평탄화하는 동안, 동시 병행작업으로서, 상기 드레서를 사용한 컨디셔닝 작업을 수행하여 연마패드의 로딩으로 인한 웨이퍼 연마속도의 저하를 효과적으로 억제할 수 있다.In addition, according to the dresser of the present invention, since hard abrasive particles are hardly eliminated during the conditioning operation, the surface of the semiconductor substrate on which the semiconductor device composed of the conductor layer and the dielectric layer is formed on the wafer surface is planarized by chemical mechanical polishing. In the meantime, as a simultaneous parallel operation, the conditioning operation using the dresser can be performed to effectively suppress the decrease in the wafer polishing rate due to the loading of the polishing pad.
본 발명은 반도체 기판의 평면화 연마공정에서 연마패드의 로딩이나 이물질을 제거할 때에 사용되는 드레서에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dresser used for loading a polishing pad or removing foreign matter in a planarization polishing process of a semiconductor substrate.
도 1 은 본 발명의 일실시형태에 관한 드레서의 모식적 단면도이다.BRIEF DESCRIPTION OF THE DRAWINGS It is typical sectional drawing of the dresser which concerns on one Embodiment of this invention.
발명의 실시형태Embodiment of the invention
본 발명에 의해 제조된 반도체 기판용 연마패드의 드레서는 경질연마입자의 탈락으로 인한 스크래치 손상을 최소한으로 억제할 수 있다. 그 결과, 가공정밀도가 높고, 수율이 높은 반도체 기판 및 반도체를 제조할 수 있게 된다.The dresser of the polishing pad for semiconductor substrates produced by the present invention can minimize the scratch damage due to the drop of hard abrasive particles. As a result, it is possible to manufacture semiconductor substrates and semiconductors with high processing accuracy and high yield.
다이아몬드 입자, 입방정 질화붕소 (BN) 입자, 탄화붕소 (B4C) 입자 또는 탄화규소 (SiC) 입자 등과 같은 경질연마입자와 납땜합금의 접합은, 경질연마입자와 납땜합금의 계면에 티탄, 크롬 또는 지르코늄 등과 같은 활성금속에서 선택된 1 종 이상의 금속의 탄화물층 또는 질화물층을 형성함으로써 현저하게 접합강도가 상승된다. 그리고, 계면의 금속탄화물층 또는 금속질화물층의 형성은 주사형 전자현미경에 부속된 에너지 분산형 X 선 분광법 및 ESCA (electron spectroscopy for chemical analysis) 를 사용하여 확인되었다. 본 발명자들은 납합금재료로서, 티탄, 크롬 또는 지르코늄 등과 같은 활성금속에서 선택된 1 종 이상을 0.5 내지 20 wt함유하는 합금재료를 사용함으로써, 경질연마입자와 납합금의 계면에 당해 금속의 탄화물층 또는 질화물층이 형성되는 것을 확인하였다. 또한, 경질연마입자로서, 티탄, 지르코늄 및 크롬 등과 같은 활성금속에서 선택된 1 종 이상으로 이루어지는 피막을 갖는 경질연마입자 또는 티탄, 지르코늄 및 크롬 등과 같은 활성금속의 탄화물 또는 질화물에서 선택된 1 종 이상으로 이루어지는 피막을 갖는 경질연마입자를 사용함으로써, 경질연마입자와 납합금의 계면에 금속탄화물층 또는 금속질화물층이 형성되는 것을 확인하였다.The joining of the hard abrasive particles and the braze alloy such as diamond particles, cubic boron nitride (BN) particles, boron carbide (B 4 C) particles, or silicon carbide (SiC) particles is performed at the interface between the hard abrasive particles and the solder alloy. Or bond strength is significantly increased by forming a carbide layer or a nitride layer of at least one metal selected from active metals such as zirconium or the like. In addition, formation of the metal carbide layer or the metal nitride layer at the interface was confirmed using energy dispersive X-ray spectroscopy and electron spectroscopy for chemical analysis (ESCA) attached to the scanning electron microscope. The present inventors use an alloy material containing 0.5 to 20 wt. Of one or more selected from active metals such as titanium, chromium or zirconium as a lead alloy material, thereby providing a carbide layer of the metal at the interface between the hard abrasive particles and the lead alloy. It was confirmed that a nitride layer was formed. Further, as the hard abrasive particles, hard abrasive particles having a coating made of one or more selected from active metals such as titanium, zirconium and chromium, or one or more selected from carbides or nitrides of active metals such as titanium, zirconium and chromium, etc. By using hard abrasive particles having a film, it was confirmed that a metal carbide layer or a metal nitride layer was formed at the interface between the hard abrasive particles and the lead alloy.
납합금에 함유되는 티탄, 크롬 또는 지르코늄 등과 같은 활성금속에서 선택된 1 종 이상을 0.5 내지 20 wt로 하는 이유는 0.5 wt보다 적은 함유량으로는 경질연마입자 - 납합금재료의 계면에 당해 금속의 탄화물층 또는 질화물이 형성되지 않기 때문이고, 20 wt를 초과하여 첨가해도 접합강도를 한 층 더 향상시킬 수는 없기 때문이다.The reason for using at least one selected from active metals such as titanium, chromium or zirconium contained in the lead alloy as 0.5 to 20 wt is a carbide layer of the metal at the interface of the hard abrasive particle-lead alloy material with a content of less than 0.5 wt. This is because no nitride is formed, and even if it is added in excess of 20 wt, the bonding strength cannot be further improved.
납합금재료를 융점이 650 내지 1200 ℃ 인 합금으로 하는 이유는 융점이 650 ℃ 미만인 납합금으로는 충분한 접합강도를 얻을 수 없고, 1200 ℃ 를 초과하는 납땜온도에서는 경질연마입자 또는 지지부재의 열화가 발생하여 바람직하지 않기 때문이다. 납합금재료의 두께는 연마입자 입경의 0.2 내지 1.5 배의 두께가 적당하다. 너무 얇으면 연마입자와 납땜합금의 접합강도가 낮아지고, 너무 두꺼우면 납재와 지지부재가 박리되기 쉽다.The reason that the lead alloy material is an alloy having a melting point of 650 to 1200 ° C. is that a lead alloy having a melting point of less than 650 ° C. does not provide sufficient bonding strength, and at the brazing temperature exceeding 1200 ° C., the hard abrasive particles or the support member deteriorate. This is because it is not preferable to occur. The thickness of the lead alloy material is suitably 0.2 to 1.5 times the particle size of the abrasive grain. If too thin, the bonding strength between the abrasive grains and the braze alloy is low, and if too thick, the brazing filler metal and the support member are likely to peel off.
경질연마입자의 표면적의 40 이상은 납재로 피복되어 있을 필요가 있고, 표면적의 70 이상이 피복되어 있으면 바람직하다.40 or more of the surface area of the hard abrasive particle needs to be coat | covered with a brazing material, and it is preferable if 70 or more of the surface area is coat | covered.
경질연마입자의 티탄, 크롬, 지르코늄 등과 같은 활성금속, 또는 활성금속의탄화물, 또는 활성금속의 질화물 중에서 선택된 1 종 이상으로 이루어지는 피막의 두께에 대해서는, 계면에 금속탄화물층 또는 금속질화물층이 형성되기 위해서는 경질연마입자에는 두께 0.1 ㎛ 이상의 피복막이 필요하고, 계면에서의 금속탄화물층 또는 금속질화물층의 형성에 따른 접합강도향상은, 피복층의 두께가 10 ㎛ 이면 충분한 효과를 얻을 수 있으므로 0.1 ㎛ 이상, 10 ㎛ 이내로 한다.A metal carbide layer or a metal nitride layer is formed at the interface with respect to the thickness of the coating film made of one or more selected from active metals such as titanium, chromium, zirconium, hard carbide particles, carbides of active metals, or nitrides of active metals. In order to achieve this, the hard abrasive particles require a coating film of 0.1 μm or more in thickness, and the bonding strength improvement due to the formation of the metal carbide layer or the metal nitride layer at the interface is sufficient when the thickness of the coating layer is 10 μm, so that 0.1 μm or more, It should be within 10 micrometers.
경질연마입자의 직경은 50 ㎛ 이상 300 ㎛ 이하로 하는 것이 바람직하다. 50 ㎛ 미만인 경질연마입자로는 충분한 연마속도를 얻을 수 없으며, 50 내지 300 ㎛ 범위내이면 충분한 연마속도를 얻을 수 있다. 또한, 50 ㎛ 미만의 미립 경질연마입자는 응집되기 쉬운 경향이 있으며, 응집하여 클러스터를 형성하면 탈락하기 쉬어져서 스크래치 손상의 원인이 된다. 300 ㎛ 를 초과하는 조립 경질연마입자는 연마시의 응력집중이 커서 탈락하기 쉽다.The diameter of the hard abrasive particles is preferably 50 µm or more and 300 µm or less. Hard polishing particles less than 50 μm may not obtain a sufficient polishing rate, and a sufficient polishing rate may be obtained within the range of 50 to 300 μm. In addition, the particulate hard abrasive particles of less than 50 μm tend to aggregate, and when aggregated to form clusters, the particles tend to fall off, causing scratch damage. Granulated hard abrasive particles larger than 300 µm tend to drop out due to their large stress concentration during polishing.
지지부재는 페라이트계 스테인레스강으로, 지지부재 한쪽면에만 경질연마입자가 납땜된 것이 바람직하다. 페라이트계 스테인레스강은 가공이 용이하다. 또한 한쪽면을 경질연마입자를 납땜하지 않는 면으로 함으로써, 예컨대 자석에 의한 착탈이 가능해져서 작업효율을 향상시키는 데 크게 기여할 수 있다.The support member is made of ferritic stainless steel, and hard abrasive particles are soldered to only one side of the support member. Ferritic stainless steel is easy to process. Moreover, by making one side into the surface which does not solder hard abrasive particles, attachment / detachment by a magnet becomes possible, for example, and can contribute greatly to improving work efficiency.
본 발명의 드레서에 의하면 컨디셔닝 작업시에 경질연마입자의 탈락이 일어나기 어려우므로, 웨이퍼 표면에 도전체층 및 유전체층으로 이루어지는 반도체 장치가 형성된 반도체 기판의 표면을 화학적 기계적 연마에 의해 평탄화하는 동안, 동시 병행작업으로서, 상기 드레서를 사용한 컨디셔닝 작업을 수행하여 연마패드의 로딩으로 인한 웨이퍼 연마속도의 저하를 효과적으로 억제할 수 있다.According to the dresser of the present invention, since hard abrasive particles are hardly eliminated during conditioning, simultaneous parallel work is performed while chemically polishing the surface of the semiconductor substrate on which the semiconductor device including the conductor layer and the dielectric layer is formed on the wafer surface. As a result, a conditioning operation using the dresser can be performed to effectively suppress a decrease in the wafer polishing rate due to the loading of the polishing pad.
도 1 은 본 발명의 하나의 구체예에 관한 드레서를 모식적으로 나타내고 있다. 지지부재 (3) 의 표면을 납합금층 (2) 이 피복하고 있고, 이 납합금층 (2) 에 의해 경질연마입자 (1) 가 지지되어 있다. 각 입자 (1) 는 그 하부의 반이 납합금층 (2) 내에 매몰되어 지지되어 있다. 또한, 각 입자 (1) 와 납합금의 계면에는 금속탄화물층 또는 금속질화물층 (4) 이 존재하고, 이 계면층의 존재로 인해 입자 (1) 가 강고하게 납합금층 (2) 중에 지지된다.1 schematically shows a dresser according to one specific example of the present invention. The lead alloy layer 2 covers the surface of the support member 3, and the hard abrasive particles 1 are supported by the lead alloy layer 2. The lower half of each particle 1 is embedded in the lead alloy layer 2 and supported. In addition, a metal carbide layer or a metal nitride layer 4 exists at the interface between the particles 1 and the lead alloy, and the particles 1 are firmly supported in the lead alloy layer 2 due to the presence of the interface layer. .
예 1Example 1
본 발명의 드레서는 표 1 의 시료 2 에서 시료 17 까지 나타낸 바와 같은 입경의 다이아몬드, 입방정 질화붕소, 탄화붕소 및 탄화규소 등의 경질연마입자를 페라이트계 스테인레스로 제조된 기판에 표 1 에 기재된 납합금재료를 사용하여, 10-5Torr 의 진공중, 표 1 에 기재된 온도에서 30 분간 유지하고, 단층, 납땜함으로써 제조하였다. 얻어진 드레서를 사용하여 400 장의 반도체 웨이퍼의 연마실험을 수행하였다. 컨디셔닝은 1 회 연마할 때 마다 2 분간 수행하였다. 그 후, 400 장 연마후에 탈락한 경질연마입자에 의해 스크래치 손상이 발생된 웨이퍼 수를 조사하였다. 또한, 사용한 연마패드를 이용하여 2 시간 및 20 시간 연마후의 웨이퍼 연마속도를 조사하였다. 400 장의 웨이퍼의 연마에는 약 20 시간을 요한다. 결과를 표 1 에 도시하였다. 웨이퍼 표면 손상 및 연마입자의 입경은 전자현미경으로 관찰하였다.The dresser of the present invention is a lead alloy shown in Table 1 on the substrate made of ferritic stainless steel hard abrasive particles such as diamond, cubic boron nitride, boron carbide and silicon carbide having a particle diameter as shown in Sample 2 to Sample 17 in Table 1 Using the material, it hold | maintained for 30 minutes at the temperature of Table 1 in the vacuum of 10-5 Torr, and manufactured by single layer and soldering. Polishing experiment of 400 semiconductor wafers was performed using the obtained dresser. Conditioning was carried out for 2 minutes for each polishing. Thereafter, the number of wafers in which scratch damage was caused by hard abrasive particles dropped after 400 sheets of polishing was examined. In addition, the wafer polishing rate after 2 hours and 20 hours of polishing was investigated using the used polishing pad. Polishing 400 wafers takes about 20 hours. The results are shown in Table 1. Wafer surface damage and particle size of the abrasive particles were observed by electron microscopy.
본 발명에 의한 드레서는, 종래의 드레서에 비해 대폭 웨이퍼 표면의 스크래치 손상 발생이 저하되고, 연마속도의 저하도 개선되었다. 그러므로 높은 생산성과 높은 수율의 반도체 기판 제조를 실현할 수 있다.Compared with the conventional dresser, the dresser according to the present invention significantly reduces the occurrence of scratch damage on the surface of the wafer, and also reduces the polishing rate. Therefore, high productivity and high yield of semiconductor substrate manufacturing can be realized.
예 2Example 2
이온 플레이팅법을 이용하여 평균입경 150 ㎛ 의 다이아몬드 입자 위, 및 입방정 질화붕소 입자 위에 두께 2 ㎛ 의 티탄과, 두께 2 ㎛ 의 크롬을 각각 피복한다. 그 티탄 피복 다이아몬드, 티탄 피복 입방정 질화붕소와 크롬 피복 다이아몬드, 크롬 피복 입방정 질화붕소를 사용하여, 10-5Torr 의 진공중, 850 ℃ 에서 납땜을 수행하여 4 종의 드레서를 제조한다.Titanium having a thickness of 2 µm and chromium having a thickness of 2 µm are coated on the diamond particles having an average particle diameter of 150 µm and on the cubic boron nitride particles by using the ion plating method. Using the titanium coated diamond, titanium coated cubic boron nitride, chromium coated diamond and chromium coated cubic boron nitride, soldering was performed at 850 ° C. in a vacuum of 10 −5 Torr to produce four types of dressers.
상기 본 발명에 의한 4 종의 드레서 및 Ni 을 전착(電着)한 종래 드레서를 사용하여 400 장의 반도체 웨이퍼의 연마실험을 수행하였다. 컨디셔닝은 1 회 연마할 때 마다 2 분간 수행하였다. 그 후, 400 장 연마후에 탈락한 경질연마입자에 의한 스크래치 손상이 발생된 웨이퍼 수를 조사하였다. 또한, 5 시간 연마할 때 마다 웨이퍼 연마속도를 조사하였다. 400 장의 웨이퍼의 연마에는 약 20 시간을 요한다. 웨이퍼 표면 손상 및 연마입자의 입경은 전자현미경으로 관찰하였다.The polishing experiment of 400 semiconductor wafers was carried out using the four dressers according to the present invention and a conventional dresser electroded with Ni. Conditioning was carried out for 2 minutes for each polishing. Then, the number of wafers in which scratch damage was caused by hard abrasive particles dropped after 400 sheets of polishing was examined. In addition, the wafer polishing rate was investigated every 5 hours. Polishing 400 wafers takes about 20 hours. Wafer surface damage and particle size of the abrasive particles were observed by electron microscopy.
본 발명에 의한 드레서는, 종래의 드레서에 비해 대폭 웨이퍼 표면의 스크래치 손상 발생이 저하되어, 스크래치 손상이 발생된 웨이퍼는 종래의 드레서에서는 9 장인데 비해 상기 2 종의 발명품에서는 0 장이었다. 또한 발명품에서, 400 장 연마후의 연마속도는 저하되지 않았다. 그러므로 높은 생산성과 높은 수율의 반도체 기판 제조를 실현할 수 있다.The dresser according to the present invention significantly reduced the occurrence of scratch damage on the surface of the wafer as compared with the conventional dresser, and the wafer with scratch damage occurred was 0 in the two kinds of inventions, compared to 9 in the conventional dresser. In addition, in the invention, the polishing rate after 400 sheets polishing did not decrease. Therefore, high productivity and high yield of semiconductor substrate manufacturing can be realized.
예 3Example 3
이온 플레이팅법을 이용하여 평균입경 150 ㎛ 의 다이아몬드 입자 위, 및 입방정 질화붕소 입자 위에 두께 2 ㎛ 의 탄화티탄을 피복하였다. 그 탄화티탄 피복 다이아몬드 입자 및 탄화티탄 피복 입방정 질화붕소 입자를 사용하여, 10-5Torr 의 진공중, 850 ℃ 에서 납땜을 수행하여 2 종의 드레서를 제조하였다.Titanium carbide having a thickness of 2 µm was coated on the diamond particles having an average particle diameter of 150 µm and on the cubic boron nitride particles by the ion plating method. Using these titanium carbide coated diamond particles and titanium carbide coated cubic boron nitride particles, soldering was performed at 850 ° C. in a vacuum of 10 −5 Torr to prepare two types of dressers.
상기 본 발명예로서의 2 종의 드레서 및 Ni 를 전착한 종래 드레서를 사용하여 400 장의 반도체 웨이퍼의 연마실험을 수행하였다. 컨디셔닝은 1 회 연마할 때 마다 2 분간 수행하였다. 그 후, 400 장 연마후에 탈락한 경질연마입자에 의한 스크래치 손상이 발생된 웨이퍼 수를 조사하였다. 또한, 일정시간 연마후의 웨이퍼 연마속도를 조사하였다. 400 장의 웨이퍼의 연마에는 약 20 시간을 요한다. 웨이퍼 표면 손상 및 연마입자의 입경은 전자현미경으로 관찰하였다.The polishing experiment of 400 semiconductor wafers was carried out using the two types of dressers as examples of the present invention and a conventional dresser electrodeposited with Ni. Conditioning was carried out for 2 minutes for each polishing. Then, the number of wafers in which scratch damage was caused by hard abrasive particles dropped after 400 sheets of polishing was examined. In addition, the wafer polishing rate after polishing for a certain time was examined. Polishing 400 wafers takes about 20 hours. Wafer surface damage and particle size of the abrasive particles were observed by electron microscopy.
본 발명에 의한 드레서는, 종래의 드레서에 비해 대폭 웨이퍼 표면의 스크래치 손상 발생이 저하되어, 스크래치 손상이 발생된 웨이퍼는 종래의 드레서에서는 9 장인데 비해 발명품에서는 0 장이었다. 또한 발명품에서, 400 장 연마후의 연마속도는 저하되지 않았다. 그러므로 높은 생산성과 높은 수율의 반도체 기판 제조를 실현할 수 있다.In the dresser according to the present invention, scratch damage on the surface of the wafer was significantly reduced as compared with the conventional dresser, and the scratched damage wafer was 0 in the invention while 9 in the conventional dresser. In addition, in the invention, the polishing rate after 400 sheets polishing did not decrease. Therefore, high productivity and high yield of semiconductor substrate manufacturing can be realized.
예 4Example 4
본 발명의 드레서는, 표 2 의 시료 2 에서 시료 10 까지 나타낸 바와 같은 입경의 연마입자를 페라이트계 스테인레스로 제조된 기판에 표 2 에 기재된 납땜금속을 사용하여, 10-5Torr 의 진공중, 표 2 에 기재된 온도에서 30 분간 유지하고, 단층, 납땜함으로써 제조하였다. 종래의 Ni 전착 드레서 및 본 발명의 드레서를 사용하여 400 장의 실리콘 웨이퍼의 연마실험을 수행하였다. 컨디셔닝은 10 회 연마할 때 마다 2 분간 수행하였다. 그 후, 400 장 연마후에 탈락한 경질연마입자에 의한 스크래치 손상이 발생된 웨이퍼 수를 조사하였다. 또한, 사용한 연마패드를 사용하여 3 시간 및 30 시간 연마후의 웨이퍼 연마속도를 조사하였다. 400 장의 웨이퍼의 연마에는 약 30 시간을 요한다. 결과를 표 2 에 도시하였다. 웨이퍼 표면 손상 및 연마입자의 입경은 전자현미경으로 관찰하였다.The dresser of the present invention uses a brazing metal as shown in Table 2 on a substrate made of ferritic stainless with abrasive particles having a particle size as shown in Sample 2 to Sample 10 in Table 2, and the table is in vacuum of 10-5 Torr. It hold | maintained at the temperature of 2 minutes for 30 minutes, and manufactured by single layer and soldering. A polishing experiment of 400 silicon wafers was carried out using a conventional Ni electrodeposition dresser and the dresser of the present invention. Conditioning was performed for 2 minutes every 10 grinds. Then, the number of wafers in which scratch damage was caused by hard abrasive particles dropped after 400 sheets of polishing was examined. In addition, using the used polishing pad, the wafer polishing rate after polishing for 3 hours and 30 hours was examined. Polishing 400 wafers takes about 30 hours. The results are shown in Table 2. Wafer surface damage and particle size of the abrasive particles were observed by electron microscopy.
본 발명에 의한 드레서는 종래의 드레서에 비해 대폭 웨이퍼 표면의 스크래치 손상 발생이 저하되고, 연마속도의 저하도 없었다. 그러므로 높은 생산성과 높은 수율의 실리콘 웨이퍼 제조를 실현할 수 있다.Compared with the conventional dresser, the dresser according to the present invention significantly reduced the occurrence of scratch damage on the wafer surface, and there was no decrease in the polishing rate. Therefore, high productivity and high yield of silicon wafer manufacturing can be realized.
예 5Example 5
본 발명의 드레서는, 평균입경 150 ㎛ 의 다이아몬드를 페라이트계 스테인레스로 제조된 기판에 Au-Cu-2wtTi 조성의 납합금재료를 사용하여, 10-5Torr 의 진공중, 850 ℃ 에서 30 분간 유지하고, 단층, 납땜함으로써 제조한다.The dresser of the present invention, by a diamond having an average particle size of 150 ㎛ using the lead alloy material of the composition of Au-Cu-2wtTi to the prepared substrate to a ferritic stainless steel, of a 10 -5 Torr vacuum, maintained at 850 ℃ 30 minutes. It manufactures by single layer and soldering.
상기 본 발명에 의한 드레서 및 Ni 를 전착한 종래 드레서에 대해 400 장의 산화막 부착 반도체 웨이퍼의 연마실험을 수행하였다. 컨디셔닝은 1 회 연마할 때 마다 2 분간 연마하면서 인 사이투 (in situ) 로 수행하였다. 그 후, 400 장 연마후에 탈락한 다이아몬드 입자에 의한 스크래치 손상이 발생된 웨이퍼 수를 조사하였다. 또한, 사용한 연마패드를 이용하여 40 장 및 400 장 연마후의 웨이퍼 연마속도를 조사하였다. 웨이퍼 표면 손상 및 다이아몬드 입경은 전자현미경으로 관찰하였다.Polishing experiments of 400 wafers with an oxide film were carried out on the dresser according to the present invention and the conventional dresser on which Ni was electrodeposited. Conditioning was performed in situ, polishing for 2 minutes each time polishing. Thereafter, the number of wafers where scratch damage was caused by diamond particles dropped after 400 sheets of polishing was examined. In addition, wafer polishing rates after polishing 40 sheets and 400 sheets were examined using the used polishing pad. Wafer surface damage and diamond grain size were observed by electron microscopy.
본 발명에 의한 드레서는 종래의 드레서에 비해 대폭 웨이퍼 표면의 스크래치 손상 발생이 저하되어, 스크래치 손상이 발생된 웨이퍼는 종래의 드레서에서는 13 장인데 비해 상기 본 발명의 드레서는 0 장이었다. 또한 연마속도에 대해서는 발명품 드레서에서 400 장 연마후의 연마속도가 저하되지 않았다. 그러므로 높은 생산성과 높은 수율의 반도체 기판 제조를 실현하는 인 사이투 드레싱을 수행하는 CMP 연마기술이 가능해졌다.The dresser according to the present invention significantly reduced the occurrence of scratch damage on the surface of the wafer compared with the conventional dresser, and the scratched damage wafer was 0 in the conventional dresser, compared to 13 in the conventional dresser. As for the polishing rate, the polishing rate after polishing 400 sheets in the invention dresser did not decrease. Therefore, a CMP polishing technique has been made which performs in-situ dressing, which realizes high productivity and high yield of semiconductor substrate production.
표 1 에 계속Continued on Table 1
표 1 에 계속Continued on Table 1
표 2 에 계속Continued on Table 2
본 발명의 드레서는 반도체 기판의 평탄화 연마에 사용되는 연마패드의 컨디셔닝, 즉 다수의 미세공을 갖는 연마패드의 구멍안으로 진입 퇴적된 이물질의 제거에 사용된다.The dresser of the present invention is used for conditioning polishing pads used for flattening polishing of semiconductor substrates, that is, removing foreign matter deposited and entering into the holes of the polishing pad having a plurality of micropores.
Claims (27)
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27219796 | 1996-10-15 | ||
JP96-272197 | 1996-10-15 | ||
JP96-313209 | 1996-11-25 | ||
JP31320996 | 1996-11-25 | ||
JP97-009661 | 1997-01-22 | ||
JP00966197A JP3482313B2 (en) | 1997-01-22 | 1997-01-22 | Dresser for polishing cloth for semiconductor substrate and method of manufacturing the same |
JP97-156259 | 1997-06-13 | ||
JP15625897A JP3482321B2 (en) | 1996-10-15 | 1997-06-13 | Dresser for polishing cloth for semiconductor substrate and method of manufacturing the same |
JP97-156258 | 1997-06-13 | ||
JP15625997A JP3482322B2 (en) | 1996-11-25 | 1997-06-13 | Dresser for polishing cloth for semiconductor substrate and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20000049120A KR20000049120A (en) | 2000-07-25 |
KR100328108B1 true KR100328108B1 (en) | 2002-03-09 |
Family
ID=27519088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019997003204A KR100328108B1 (en) | 1996-10-15 | 1997-10-14 | Semiconductor substrate polishing pad dresser, method of manufacturing the same, and chemicomechanical polishing method using the same dresser |
Country Status (4)
Country | Link |
---|---|
US (2) | US6190240B1 (en) |
KR (1) | KR100328108B1 (en) |
AU (1) | AU4472997A (en) |
WO (1) | WO1998016347A1 (en) |
Families Citing this family (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9868100B2 (en) | 1997-04-04 | 2018-01-16 | Chien-Min Sung | Brazed diamond tools and methods for making the same |
US6884155B2 (en) * | 1999-11-22 | 2005-04-26 | Kinik | Diamond grid CMP pad dresser |
US7323049B2 (en) * | 1997-04-04 | 2008-01-29 | Chien-Min Sung | High pressure superabrasive particle synthesis |
US7368013B2 (en) * | 1997-04-04 | 2008-05-06 | Chien-Min Sung | Superabrasive particle synthesis with controlled placement of crystalline seeds |
US9409280B2 (en) | 1997-04-04 | 2016-08-09 | Chien-Min Sung | Brazed diamond tools and methods for making the same |
US9238207B2 (en) | 1997-04-04 | 2016-01-19 | Chien-Min Sung | Brazed diamond tools and methods for making the same |
US9199357B2 (en) | 1997-04-04 | 2015-12-01 | Chien-Min Sung | Brazed diamond tools and methods for making the same |
US9221154B2 (en) | 1997-04-04 | 2015-12-29 | Chien-Min Sung | Diamond tools and methods for making the same |
US9463552B2 (en) | 1997-04-04 | 2016-10-11 | Chien-Min Sung | Superbrasvie tools containing uniformly leveled superabrasive particles and associated methods |
US6679243B2 (en) | 1997-04-04 | 2004-01-20 | Chien-Min Sung | Brazed diamond tools and methods for making |
US7124753B2 (en) * | 1997-04-04 | 2006-10-24 | Chien-Min Sung | Brazed diamond tools and methods for making the same |
US7491116B2 (en) * | 2004-09-29 | 2009-02-17 | Chien-Min Sung | CMP pad dresser with oriented particles and associated methods |
US6368198B1 (en) * | 1999-11-22 | 2002-04-09 | Kinik Company | Diamond grid CMP pad dresser |
US6558570B2 (en) * | 1998-07-01 | 2003-05-06 | Micron Technology, Inc. | Polishing slurry and method for chemical-mechanical polishing |
ATE259277T1 (en) * | 1998-07-31 | 2004-02-15 | Saint Gobain Abrasives Inc | ROTATING DRESSING ROLLER WITH SOLDERED DIAMOND LAYER |
JP2001129755A (en) | 1999-08-20 | 2001-05-15 | Ebara Corp | Grinding device and dressing method |
US7201645B2 (en) * | 1999-11-22 | 2007-04-10 | Chien-Min Sung | Contoured CMP pad dresser and associated methods |
US6551176B1 (en) * | 2000-10-05 | 2003-04-22 | Applied Materials, Inc. | Pad conditioning disk |
US20040072510A1 (en) * | 2000-12-21 | 2004-04-15 | Toshiya Kinoshita | Cmp conditioner, method for arranging rigid grains used for cmp conditioner, and method for manufacturing cmp conditioner |
JP2002299289A (en) * | 2001-03-30 | 2002-10-11 | Toshiba Corp | Chemical mechanical polishing method and manufacturing method for semiconductor device |
TW524729B (en) * | 2001-11-15 | 2003-03-21 | Nanya Technology Corp | Conditioner of chemical mechanical polishing machine and method of detecting diamond fall-off thereof |
AU2003225999A1 (en) * | 2002-03-25 | 2003-10-13 | Thomas West, Inc | Smooth pads for cmp and polishing substrates |
IL156485A0 (en) * | 2003-06-17 | 2004-01-04 | J G Systems Inc | Cmp pad with long user life |
US20080041354A1 (en) * | 2004-08-16 | 2008-02-21 | Toyoda Van Mopppes Ltd. | Rotary Diamond Dresser |
US7089925B1 (en) | 2004-08-18 | 2006-08-15 | Kinik Company | Reciprocating wire saw for cutting hard materials |
US7762872B2 (en) * | 2004-08-24 | 2010-07-27 | Chien-Min Sung | Superhard cutters and associated methods |
US7658666B2 (en) * | 2004-08-24 | 2010-02-09 | Chien-Min Sung | Superhard cutters and associated methods |
US20070060026A1 (en) | 2005-09-09 | 2007-03-15 | Chien-Min Sung | Methods of bonding superabrasive particles in an organic matrix |
US20060258276A1 (en) * | 2005-05-16 | 2006-11-16 | Chien-Min Sung | Superhard cutters and associated methods |
US7354333B2 (en) * | 2005-01-21 | 2008-04-08 | International Business Machines Corporation | Detection of diamond contamination in polishing pad |
US9724802B2 (en) | 2005-05-16 | 2017-08-08 | Chien-Min Sung | CMP pad dressers having leveled tips and associated methods |
US20140120807A1 (en) * | 2005-05-16 | 2014-05-01 | Chien-Min Sung | Cmp pad conditioners with mosaic abrasive segments and associated methods |
US20140120724A1 (en) * | 2005-05-16 | 2014-05-01 | Chien-Min Sung | Composite conditioner and associated methods |
US8974270B2 (en) | 2011-05-23 | 2015-03-10 | Chien-Min Sung | CMP pad dresser having leveled tips and associated methods |
US9138862B2 (en) | 2011-05-23 | 2015-09-22 | Chien-Min Sung | CMP pad dresser having leveled tips and associated methods |
US8622787B2 (en) * | 2006-11-16 | 2014-01-07 | Chien-Min Sung | CMP pad dressers with hybridized abrasive surface and related methods |
US8678878B2 (en) | 2009-09-29 | 2014-03-25 | Chien-Min Sung | System for evaluating and/or improving performance of a CMP pad dresser |
US8398466B2 (en) * | 2006-11-16 | 2013-03-19 | Chien-Min Sung | CMP pad conditioners with mosaic abrasive segments and associated methods |
US8393934B2 (en) | 2006-11-16 | 2013-03-12 | Chien-Min Sung | CMP pad dressers with hybridized abrasive surface and related methods |
TWI290337B (en) * | 2005-08-09 | 2007-11-21 | Princo Corp | Pad conditioner for conditioning a CMP pad and method of making the same |
US7291799B2 (en) * | 2005-10-27 | 2007-11-06 | United Technologies Corporation | Electrode dressing template |
US20080096479A1 (en) * | 2006-10-18 | 2008-04-24 | Chien-Min Sung | Low-melting point superabrasive tools and associated methods |
US20080153398A1 (en) * | 2006-11-16 | 2008-06-26 | Chien-Min Sung | Cmp pad conditioners and associated methods |
KR20100106328A (en) * | 2007-11-13 | 2010-10-01 | 치엔 민 성 | Cmp pad dressers |
US9011563B2 (en) * | 2007-12-06 | 2015-04-21 | Chien-Min Sung | Methods for orienting superabrasive particles on a surface and associated tools |
WO2009096143A1 (en) * | 2008-01-31 | 2009-08-06 | Honda Motor Co., Ltd. | Sliding member, and method for treating surface of the sliding member |
JP5255860B2 (en) * | 2008-02-20 | 2013-08-07 | 新日鉄住金マテリアルズ株式会社 | Polishing cloth dresser |
US8252263B2 (en) * | 2008-04-14 | 2012-08-28 | Chien-Min Sung | Device and method for growing diamond in a liquid phase |
DE102009025242B4 (en) * | 2009-06-17 | 2013-05-23 | Siltronic Ag | Method for two-sided chemical grinding of a semiconductor wafer |
US9205530B2 (en) * | 2010-07-07 | 2015-12-08 | Seagate Technology Llc | Lapping a workpiece |
WO2012040374A2 (en) | 2010-09-21 | 2012-03-29 | Ritedia Corporation | Superabrasive tools having substantially leveled particle tips and associated methods |
TWI568538B (en) * | 2013-03-15 | 2017-02-01 | 中國砂輪企業股份有限公司 | Chemical mechanical polishing conditioner and manufacturing method thereof |
EP2835220B1 (en) * | 2013-08-07 | 2019-09-11 | Reishauer AG | Trimming tool, and method for manufacturing the same |
TWI546158B (en) * | 2013-12-20 | 2016-08-21 | 中國砂輪企業股份有限公司 | Low magnetic chemical mechanical polishing conditioner |
EP3280566B1 (en) * | 2015-04-06 | 2024-09-04 | II-VI Delaware, Inc. | Article having diamond-only contact surfaces |
CN107405755B (en) * | 2015-12-10 | 2019-03-22 | 联合材料公司 | Super-abrasive grinding wheel |
WO2019198503A1 (en) * | 2018-04-12 | 2019-10-17 | 住友電工ハードメタル株式会社 | Dresser |
US20190351527A1 (en) * | 2018-05-17 | 2019-11-21 | Entegris, Inc. | Conditioner for chemical-mechanical-planarization pad and related methods |
CN111775073B (en) * | 2020-06-19 | 2021-04-23 | 长江存储科技有限责任公司 | Polishing pad dresser and manufacturing method thereof |
TWI780883B (en) * | 2021-08-31 | 2022-10-11 | 中國砂輪企業股份有限公司 | Chemical mechanical polishing pad conditioner and manufacture method thereof |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3615309A (en) * | 1968-02-08 | 1971-10-26 | Remington Arms Co Inc | Armored metal tools |
US4992082A (en) * | 1989-01-12 | 1991-02-12 | Ford Motor Company | Method of toughening diamond coated tools |
JP2507893B2 (en) | 1989-07-27 | 1996-06-19 | 工業技術院長 | How to dress a diamond whetstone |
JPH045366A (en) * | 1990-04-19 | 1992-01-09 | Tategu Sogo Shosha Futaba:Kk | Housing room in structure |
JPH045366U (en) * | 1990-04-27 | 1992-01-17 | ||
US5173091A (en) * | 1991-06-04 | 1992-12-22 | General Electric Company | Chemically bonded adherent coating for abrasive compacts and method for making same |
EP0589434B1 (en) * | 1992-09-24 | 1998-04-08 | Ebara Corporation | Polishing apparatus |
GB9223826D0 (en) * | 1992-11-13 | 1993-01-06 | De Beers Ind Diamond | Abrasive device |
US5486131A (en) * | 1994-01-04 | 1996-01-23 | Speedfam Corporation | Device for conditioning polishing pads |
US5551959A (en) * | 1994-08-24 | 1996-09-03 | Minnesota Mining And Manufacturing Company | Abrasive article having a diamond-like coating layer and method for making same |
JP3575558B2 (en) * | 1994-09-09 | 2004-10-13 | 憲一 石川 | Wrap correction method and apparatus |
US5522965A (en) * | 1994-12-12 | 1996-06-04 | Texas Instruments Incorporated | Compact system and method for chemical-mechanical polishing utilizing energy coupled to the polishing pad/water interface |
US5785585A (en) * | 1995-09-18 | 1998-07-28 | International Business Machines Corporation | Polish pad conditioner with radial compensation |
US5921856A (en) * | 1997-07-10 | 1999-07-13 | Sp3, Inc. | CVD diamond coated substrate for polishing pad conditioning head and method for making same |
US5916010A (en) * | 1997-10-30 | 1999-06-29 | International Business Machines Corporation | CMP pad maintenance apparatus and method |
-
1997
- 1997-10-14 WO PCT/JP1997/003686 patent/WO1998016347A1/en active IP Right Grant
- 1997-10-14 KR KR1019997003204A patent/KR100328108B1/en not_active IP Right Cessation
- 1997-10-14 US US09/284,521 patent/US6190240B1/en not_active Expired - Fee Related
- 1997-10-14 AU AU44729/97A patent/AU4472997A/en not_active Abandoned
-
2000
- 2000-11-16 US US09/714,687 patent/US6752708B1/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
AU4472997A (en) | 1998-05-11 |
US6752708B1 (en) | 2004-06-22 |
KR20000049120A (en) | 2000-07-25 |
WO1998016347A1 (en) | 1998-04-23 |
US6190240B1 (en) | 2001-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100328108B1 (en) | Semiconductor substrate polishing pad dresser, method of manufacturing the same, and chemicomechanical polishing method using the same dresser | |
KR100360669B1 (en) | Abrasive dressing tool and manufac ture method of abrasive dressing tool | |
US6371838B1 (en) | Polishing pad conditioning device with cutting elements | |
US6293854B1 (en) | Dresser for polishing cloth and manufacturing method therefor | |
US5842912A (en) | Apparatus for conditioning polishing pads utilizing brazed diamond technology | |
CN113563081A (en) | Ceramic substrate with reaction sintered silicon carbide containing diamond particles | |
US6309433B1 (en) | Polishing pad conditioner for semiconductor substrate | |
CN114714245A (en) | Chemical-mechanical planarization pad conditioner | |
JP3678993B2 (en) | Dresser for CMP processing | |
JP3609059B2 (en) | Dresser for CMP processing | |
JP3482313B2 (en) | Dresser for polishing cloth for semiconductor substrate and method of manufacturing the same | |
JP3482321B2 (en) | Dresser for polishing cloth for semiconductor substrate and method of manufacturing the same | |
JP3482322B2 (en) | Dresser for polishing cloth for semiconductor substrate and method of manufacturing the same | |
JP2007229865A (en) | Dresser for polishing pad | |
JP3537300B2 (en) | Dresser for polishing cloth for semiconductor substrate and method of manufacturing the same | |
KR200201101Y1 (en) | Abrasive dressing tool | |
JP3368312B2 (en) | Dresser for polishing cloth for semiconductor substrate and method of manufacturing the same | |
CN116619246B (en) | CMP polishing pad trimmer with diamond columnar crystal clusters and preparation method thereof | |
JP3482328B2 (en) | Dresser for polishing cloth for semiconductor substrate and method of manufacturing the same | |
CN116652825B (en) | Diamond CMP polishing pad trimmer and preparation method thereof | |
JP4136714B2 (en) | Super abrasive grinding wheel | |
JP2001150351A (en) | Electrodeposition grinding wheel for dressing | |
KR101144168B1 (en) | Method for manufacturing of cmp pad conditioner | |
CN118769133A (en) | Hard particle filled CMP (chemical mechanical polishing) trimmer and preparation method thereof | |
JP3721545B2 (en) | Polishing cloth dresser for semiconductor substrates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20090225 Year of fee payment: 8 |
|
LAPS | Lapse due to unpaid annual fee |