JPS643064B2 - - Google Patents
Info
- Publication number
- JPS643064B2 JPS643064B2 JP2003183A JP2003183A JPS643064B2 JP S643064 B2 JPS643064 B2 JP S643064B2 JP 2003183 A JP2003183 A JP 2003183A JP 2003183 A JP2003183 A JP 2003183A JP S643064 B2 JPS643064 B2 JP S643064B2
- Authority
- JP
- Japan
- Prior art keywords
- polycrystalline silicon
- film
- layer
- resistance
- sio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000010408 film Substances 0.000 claims description 49
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 47
- 238000000034 method Methods 0.000 claims description 16
- 238000010438 heat treatment Methods 0.000 claims description 9
- 239000004065 semiconductor Substances 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 239000000758 substrate Substances 0.000 claims description 7
- 238000009792 diffusion process Methods 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 5
- 230000005855 radiation Effects 0.000 claims description 4
- 239000010409 thin film Substances 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims 2
- 239000010410 layer Substances 0.000 description 31
- 229910004298 SiO 2 Inorganic materials 0.000 description 18
- 238000000137 annealing Methods 0.000 description 7
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 229910052698 phosphorus Inorganic materials 0.000 description 5
- 239000011574 phosphorus Substances 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000011229 interlayer Substances 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- -1 boron ions Chemical class 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/324—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Semiconductor Integrated Circuits (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、LSI等半導体装置の配線および負荷
抵抗に使用する多結晶シリコン薄膜を同時に形成
して、製造工程を簡略化する、半導体装置の製造
方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is a method for manufacturing a semiconductor device that simplifies the manufacturing process by simultaneously forming a polycrystalline silicon thin film used for wiring and load resistance of a semiconductor device such as an LSI. It is related to.
従来例の構成とその問題点
MOS・LSIの製造プロセスで、多結晶シリコ
ン薄膜を用いた配線および負荷抵抗を形成する従
来方法の一例を第1図a〜hの工程順断面図によ
り説明する。まず、nチヤネルMOSトランジス
タを形成するため、P型シリコン基板1に厚いフ
イールドSiO2膜2および薄いゲートSiO2膜3を
それぞれ形成する(第1図a)。表面に例えば減
圧気相蒸着法(以下LPCVDと略す)で厚さ
400nmの多結晶シリコン膜4を成長させ、この多
結晶シリコン膜4に燐をイオン注入し、900℃、
30分程度のアニールを行なつてシート抵抗20Ω/
□の低抵抗層に形成する(第1図b)。次に、低
抵抗多結晶シリコン層4をフオトリゾグラフイ法
およびドライエツチング法により、パターニング
を行ないゲート電極4にパターン形成した後、
As注入によりソース・ドレイン領域5をセルフ
アライン的に形成する(第1図c)。ソース・ド
レイン領域形成後、表面に低温CVD法でSiO2膜
6を厚さ約400nm形成する(第1図d)。SiO2膜
6の一部にコンタクト窓7を形成する(第1図
e)。次に、第2層目の多結晶シリコン膜8を厚
さ200nm形成し、ボロンB+イオン注入を行なつ
た後アニールを行ない105〜107Ω/□程度のシー
ト抵抗層を形成する(第1図f)。第2層目の多
結晶シリコン膜8をパターニングして負荷抵抗層
を形成する(第1図g)。以降、第2多結晶シリ
コン層8の上に層間絶縁膜9を形成し、さらに、
これにコンタクト用窓を開け、ついでアルミニウ
ムAl電極10を形成することにより、MOSトラ
ンジスタのソースS、ゲートG、ドレインDおよ
び負荷抵抗Rの各電極端子が形成される(第1図
h)。Conventional Structure and Problems An example of a conventional method for forming wiring and load resistance using a polycrystalline silicon thin film in a MOS/LSI manufacturing process will be explained with reference to step-by-step sectional views shown in FIGS. 1a to 1h. First, in order to form an n-channel MOS transistor, a thick field SiO 2 film 2 and a thin gate SiO 2 film 3 are formed on a P-type silicon substrate 1 (FIG. 1a). For example, the thickness is applied to the surface using low pressure vapor phase deposition (LPCVD).
A 400 nm polycrystalline silicon film 4 was grown, phosphorous was ion-implanted into the polycrystalline silicon film 4, and the temperature was heated to 900°C.
After annealing for about 30 minutes, the sheet resistance was reduced to 20Ω/
It is formed in the low resistance layer of □ (Fig. 1b). Next, the low resistance polycrystalline silicon layer 4 is patterned by photolithography and dry etching to form a pattern on the gate electrode 4.
Source/drain regions 5 are formed in a self-aligned manner by As implantation (FIG. 1c). After forming the source/drain regions, a SiO 2 film 6 with a thickness of about 400 nm is formed on the surface by low-temperature CVD (FIG. 1d). A contact window 7 is formed in a part of the SiO 2 film 6 (FIG. 1e). Next, a second layer of polycrystalline silicon film 8 is formed to a thickness of 200 nm, boron B + ions are implanted, and annealing is performed to form a sheet resistance layer of about 10 5 to 10 7 Ω/□ ( Figure 1 f). The second layer polycrystalline silicon film 8 is patterned to form a load resistance layer (FIG. 1g). Thereafter, an interlayer insulating film 9 is formed on the second polycrystalline silicon layer 8, and further,
By opening a contact window in this and then forming an aluminum Al electrode 10, electrode terminals for the source S, gate G, drain D, and load resistor R of the MOS transistor are formed (FIG. 1h).
以上の従来方法ではゲート電極となる第1層の
低抵抗多結晶シリコン層の形成および負荷抵抗と
なる第2層の高抵抗多結晶シリコン層の形成を含
めて、2回の多結晶シリコン膜の形成が必要であ
り、工程が複雑である。また第1層目の多結晶シ
リコン膜を成長させる場合、層間絶縁膜の形成が
必要でありその厚さ分(例えば0.5μm程度)だけ
第2層目の多結晶シリコン膜形成の下地絶縁膜が
厚くなり、後のAl配線工程での下地段差が大き
く、Al配線工程での下地段差が大きく、Al配線
工程での断線の可能性が大きくなる不都合を生じ
ている。 In the conventional method described above, the polycrystalline silicon film is formed twice, including the formation of the first layer of low resistance polycrystalline silicon layer that will become the gate electrode and the formation of the second layer of high resistance polycrystalline silicon layer that will become the load resistance. It requires formation and the process is complicated. Furthermore, when growing the first layer of polycrystalline silicon film, it is necessary to form an interlayer insulating film, and the underlying insulating film for forming the second layer of polycrystalline silicon film is equal to the thickness (for example, about 0.5 μm). This results in problems such as an increase in thickness, a large base level difference in the subsequent Al wiring process, a large base level difference in the Al wiring process, and a high possibility of disconnection in the Al wiring process.
発明の目的
本発明は上記従来のシリコンゲートMOS・
LSIの製造方法での問題点、すなわち表面段差の
問題を除くことのできる半導体装置の製造方法を
提供せんとするものである。Purpose of the Invention The present invention relates to the conventional silicon gate MOS
It is an object of the present invention to provide a method for manufacturing a semiconductor device that can eliminate problems in LSI manufacturing methods, that is, the problem of surface steps.
発明の構成
本発明は、イオン注入ドーピングした同一の多
結晶シリコン膜に、高湿で多結晶シリコンに対し
て不活性でかつ多結晶シリコン膜中の不純物の散
逸のマスクとなる膜を選択的に形成した後、半導
体基板を短時間で赤外線輻射加熱方式による高温
熱処理を施し、ゲート電極、配線となる低抵抗多
結晶シリコン層と、高抵抗多結晶シリコン層を形
成することを特徴とするものであり、これによれ
ば工程が簡単で、Al配線形成工程での断線要因
である段差を抵減した平坦構造が得られる。Structure of the Invention The present invention selectively applies a film that is inert to polycrystalline silicon at high humidity and serves as a mask for the dissipation of impurities in the polycrystalline silicon film to the same polycrystalline silicon film that has been doped with ion implantation. After formation, the semiconductor substrate is subjected to high-temperature heat treatment using an infrared radiation heating method in a short time to form a low-resistance polycrystalline silicon layer that will serve as the gate electrode and wiring, and a high-resistance polycrystalline silicon layer. According to this method, the process is simple and a flat structure can be obtained in which steps that are a cause of disconnection in the Al wiring formation process are reduced.
実施例の説明
本発明の実施例について第2図a〜hの工程順
断面図により説明する。p型シリコン基板1に選
択的に厚いフイールドSiO2膜2および薄いゲー
トSiO2膜3を形成する(第2図a)。次に高抵抗
層と基板とを接続するコンタクト窓7を通常のフ
オトリゾグラフイ法およびエツチング法により形
成する(第2図b)。表面に例えばLP・CVD法
により600℃の低温で厚さ400nmの多結晶シリコ
ン膜4を成長し、燐(P)イオンを40KeVのエ
ネルギーで2×1016個/cm2注入する(第2図c)。
次に、多結晶シリコン膜4の表面に、SiO2膜あ
るいはシリコンナイトライド(Si3N4)膜等高温
でSiに対して不活性でかつ多結晶中の不純物の外
向拡散を防止する膜11を形成し、パターニング
によりゲート電極・配線領域となる多結晶シリコ
ン膜の表面のみを被覆し、他を除去する。次に低
抵抗ゲート配線領域の多結晶シリコン層の表面に
は、例えばCVD法で形成した0.3μm厚さのSiO2
膜11を有し、高抵抗負荷抵抗領域の多結晶シリ
コン層の表面には、CVD SiO2膜11を被覆しな
い状態で熱処理を施す。熱処理は例えばグラフア
イトヒーターを用いて、真空中で1200℃の温度で
約60秒の短時間加熱を行う(第2図d)。この熱
処理により、ゲート配線電極を形成する領域つま
り、SiO2膜11の直下の低温で堆積した多結晶
シリコン層は、注入した燐の活性化が進みかつ多
結晶Siの再結晶化が進むことにより低抵抗が得ら
れる。また、コンタクト窓7の直下の基板内には
n+形のコンタクト領域12が形成される。一方、
表面にSiO2膜11を有しない領域での多結晶シ
リコン層4は赤外線輻射による高温で短時間の加
熱により多結晶シリコン中の燐が外向拡散により
蒸発し高抵抗層が得られる。DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described with reference to step-by-step sectional views of FIGS. 2a to 2h. A thick field SiO 2 film 2 and a thin gate SiO 2 film 3 are selectively formed on a p-type silicon substrate 1 (FIG. 2a). Next, a contact window 7 connecting the high resistance layer and the substrate is formed by conventional photolithography and etching methods (FIG. 2b). A polycrystalline silicon film 4 with a thickness of 400 nm is grown on the surface at a low temperature of 600°C by, for example, the LP/CVD method, and phosphorus (P) ions are implanted at 2×10 16 /cm 2 at an energy of 40 KeV (Fig. 2). c).
Next, on the surface of the polycrystalline silicon film 4, a film 11 such as a SiO 2 film or a silicon nitride (Si 3 N 4 ) film that is inactive against Si at high temperatures and prevents outward diffusion of impurities in the polycrystalline silicon film 4 is applied. is formed and patterned to cover only the surface of the polycrystalline silicon film that will become the gate electrode/wiring region, and remove the rest. Next, the surface of the polycrystalline silicon layer in the low-resistance gate wiring region is coated with SiO 2 with a thickness of 0.3 μm formed by, for example, the CVD method.
The surface of the polycrystalline silicon layer having the film 11 and in the high resistance load resistance region is subjected to heat treatment without being covered with the CVD SiO 2 film 11. For the heat treatment, for example, using a graphite heater, heating is performed for a short time of about 60 seconds at a temperature of 1200° C. in a vacuum (Fig. 2 d). Through this heat treatment, the area where the gate wiring electrode is to be formed, that is, the polycrystalline silicon layer deposited at a low temperature directly under the SiO 2 film 11, is activated by the implanted phosphorus and recrystallization of the polycrystalline Si. Low resistance can be obtained. Also, inside the board directly under the contact window 7
An n + type contact region 12 is formed. on the other hand,
The region of the polycrystalline silicon layer 4 which does not have the SiO 2 film 11 on its surface is heated for a short time at a high temperature by infrared radiation, so that phosphorus in the polycrystalline silicon evaporates by outward diffusion and a high resistance layer is obtained.
第3図はLPCVD法により400nmの多結晶シリ
コン膜を形成した試料を赤外線輻射加熱法により
10-5torrの高真空中で10秒〜60秒加熱を行つた場
合のアニール時間とアニール後の多結晶シリコン
層のシート抵抗値の関係を実験によつて求めた相
関図である。第3図でAは多結晶シリコン層の上
にCVD SiO2膜を0.3μm被覆した試料、Bは多結
晶シリコン層の上に何も被覆しない場合の関係を
示してある。第3図より1200℃60秒のアニール条
件では被覆膜の有無により、約200倍の抵抗値の
差が生じている。次に高抵抗の多結晶シリコン層
の領域のボロンイオンを30KeVで1〜2×1014
個/cm2程度注入し、シート抵抗値103〜105Ω/□
程度の高抵抗多結晶シリコン層を形成する(第2
図e)。次に、多結晶シリコン膜4の不要な部分
をパターニング技術により除去をする(第2図
f)。次に、多結晶シリコン膜4の上に約0.3μm
のSiO2膜13をCVD法により成長し、高抵抗多
結晶シリコン領域の表面のみを被覆し、残りの部
分をパターニングにより除去してから、Asイオ
ン注入によりn+形のソース・ドレイン領域5を
形成する(第2図g)。このとき、一方のドレイ
ン領域5は前記コンタクト領域12と重ね合わさ
るようにする。 Figure 3 shows a sample on which a 400 nm polycrystalline silicon film was formed using the LPCVD method.
FIG. 2 is a correlation diagram obtained experimentally showing the relationship between the annealing time and the sheet resistance value of the polycrystalline silicon layer after annealing when heating is performed for 10 seconds to 60 seconds in a high vacuum of 10 −5 torr. In FIG. 3, A shows a sample in which the polycrystalline silicon layer is coated with a CVD SiO 2 film of 0.3 μm, and B shows the relationship in which nothing is coated on the polycrystalline silicon layer. From FIG. 3, under the annealing condition of 1200° C. for 60 seconds, there is a difference in resistance value of approximately 200 times depending on the presence or absence of the coating film. Next, boron ions in the region of the high-resistance polycrystalline silicon layer are heated to 1 to 2 × 10 14 at 30 KeV.
The sheet resistance value is 10 3 to 10 5 Ω/□.
Form a high-resistance polycrystalline silicon layer (second
Figure e). Next, unnecessary portions of the polycrystalline silicon film 4 are removed by patterning technology (FIG. 2f). Next, about 0.3 μm thick film is applied on the polycrystalline silicon film 4.
A SiO 2 film 13 is grown by the CVD method to cover only the surface of the high-resistance polycrystalline silicon region, the remaining part is removed by patterning, and then the n + type source/drain region 5 is grown by As ion implantation. form (Fig. 2g). At this time, one drain region 5 is made to overlap the contact region 12.
以降、ソース・ドレイン領域5の活性化アニー
ルを行つてから、SiO2膜13を残したまま、又
は除去した後、層間絶縁膜として約0.8μmのSiO2
膜9を形成し、ソース・ドレインゲート・負荷抵
抗に対するコンタクト窓を形成し、Al配線電極
10を形成してnチヤンネルMOSトランジスタ
および負荷抵抗素子が形成される(第2図h)。 Thereafter, after activation annealing of the source/drain regions 5 is performed, the SiO 2 film 13 is left or removed, and a SiO 2 film of approximately 0.8 μm is deposited as an interlayer insulating film.
A film 9 is formed, contact windows for the source, drain gate, and load resistance are formed, and an Al wiring electrode 10 is formed to form an n-channel MOS transistor and a load resistance element (FIG. 2h).
本実施例では多結晶シリコン層へのドープは
燐・ボロンを用いたが、シリコンに対するキヤリ
アとなる不純物、例えばAs,Sbでもよい。また
多結晶シリコン層の上の被覆膜は、SiO2の他
Si3N4等外向拡散を防止する膜であればよい。 In this embodiment, phosphorus and boron were used to dope the polycrystalline silicon layer, but impurities that serve as carriers for silicon, such as As and Sb, may also be used. In addition, the coating film on the polycrystalline silicon layer is made of other than SiO2 .
Any film that prevents outward diffusion such as Si 3 N 4 may be used.
発明の効果
以上、本発明のように、一層の多結晶シリコン
層に低抵抗の領域と高抵抗の領域を形成すること
によつて、工程の単純化ができ、かつAl配線層
の下地の段差を少くすることによりAl配線の断
線を少くすることができた。Effects of the Invention As described above, by forming a low-resistance region and a high-resistance region in a single layer of polycrystalline silicon layer as in the present invention, it is possible to simplify the process, and also to form a step difference in the base of the Al wiring layer. By reducing this, we were able to reduce the number of disconnections in the Al wiring.
第1図a〜hは従来法によりMOSLSIの製造
を行う工程順の断面略図、第2図a〜hは本発明
の方法によりMOSLSIを製造する工程順の断面
略図、第3図は燐を40KeVで2×1016個/cm2ドー
プした400nm厚さの多結晶シリコン膜を赤外線輻
射加熱方式で1200℃でアニールを行つた場合の、
アニール時間と多結晶層のシート抵抗値の関係を
示す特性図である。
1……p型シリコン半導体基板、2……SiO2
膜(フイールド)、3……SiO2膜(ゲート)、4
……多結晶シリコンゲート電極、5……ソース・
ドレインn+拡散領域、9……多結晶シリコン−
Al配線層間絶縁膜、10……Al配線電極、11
……SiO2膜、12……コンタクト拡散領域。
Figures 1a to 1h are cross-sectional schematic diagrams of the steps in manufacturing MOSLSI using the conventional method. Figures 2 a to h are cross-sectional diagrams of the steps in manufacturing MOSLSI by the method of the present invention. Figure 3 shows phosphorus at 40 KeV. When a 400 nm thick polycrystalline silicon film doped with 2×10 16 pieces/cm 2 is annealed at 1200°C using infrared radiation heating,
FIG. 3 is a characteristic diagram showing the relationship between annealing time and sheet resistance value of a polycrystalline layer. 1... p-type silicon semiconductor substrate, 2... SiO 2
Membrane (field), 3...SiO 2 membrane (gate), 4
...Polycrystalline silicon gate electrode, 5...Source/
Drain n + diffusion region, 9... polycrystalline silicon -
Al wiring interlayer insulating film, 10... Al wiring electrode, 11
...SiO 2 film, 12...contact diffusion region.
Claims (1)
面に、不純物をドープした多結晶シリコン薄膜を
比較的低温で堆積する工程、前記多結晶シリコン
膜の表面に、高温度で多結晶シリコンに対して不
活性でかつ多結晶シリコン膜中の不純物の外向拡
散を防止する膜を形成する工程、赤外線輻射加熱
方式により前記半導体基板を熱処理を施す工程を
具備することを特徴とする半導体装置の製造方
法。1. A step of depositing a polycrystalline silicon thin film doped with impurities at a relatively low temperature on the main surface on which the semiconductor element region of the semiconductor substrate is formed, and depositing an impurity-doped polycrystalline silicon thin film on the surface of the polycrystalline silicon film at a high temperature. A method for manufacturing a semiconductor device, comprising the steps of: forming a film that is active and prevents outward diffusion of impurities in a polycrystalline silicon film; and heat-treating the semiconductor substrate using an infrared radiation heating method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003183A JPS59145561A (en) | 1983-02-09 | 1983-02-09 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003183A JPS59145561A (en) | 1983-02-09 | 1983-02-09 | Manufacture of semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59145561A JPS59145561A (en) | 1984-08-21 |
JPS643064B2 true JPS643064B2 (en) | 1989-01-19 |
Family
ID=12015696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003183A Granted JPS59145561A (en) | 1983-02-09 | 1983-02-09 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59145561A (en) |
-
1983
- 1983-02-09 JP JP2003183A patent/JPS59145561A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59145561A (en) | 1984-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4309224A (en) | Method for manufacturing a semiconductor device | |
JPS6072272A (en) | Manufacture of semiconductor device | |
JPH0367334B2 (en) | ||
JPH0564456B2 (en) | ||
JP3307372B2 (en) | Semiconductor device and manufacturing method thereof | |
JP3003796B2 (en) | Method of manufacturing MOS type semiconductor device | |
JPS6226573B2 (en) | ||
JPS643064B2 (en) | ||
JPH10125919A (en) | Method for forming electrode of semiconductor element | |
JP2698585B2 (en) | Method of forming polycide electrode | |
JP3204007B2 (en) | Method for manufacturing semiconductor device | |
JPH0719759B2 (en) | Method for manufacturing semiconductor device | |
JPS61270869A (en) | Manufacture of semiconductor device | |
JP3127866B2 (en) | Method for manufacturing semiconductor device | |
JPH0127581B2 (en) | ||
JP2666565B2 (en) | Method for manufacturing semiconductor device | |
JPH04303944A (en) | Manufacture of semiconductor device | |
JPH01220438A (en) | Manufacture of semiconductor device | |
JP3070088B2 (en) | Method for manufacturing semiconductor device | |
JPH0155585B2 (en) | ||
JPH02277246A (en) | Manufacture of thin-film transistor | |
JPH0536911A (en) | Three-dimensional circuit element and manufacture thereof | |
JP3070090B2 (en) | Method for manufacturing semiconductor device | |
JPH05267164A (en) | Integrated circuit having silicon contact with silicide | |
JPH08264651A (en) | Manufacture of semiconductor device |